0 2 2 1 0 7 e88083df-301b-4845-9c9a-5323111273ec Shaded 0 100;240;240;240 100;207;207;207 637915032433308485 XHG....ⵙ⠀ᗝ⠀ⵙ⠀ꖴ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ᙏ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀◯⠀ⵙ⠀ИN⠀ⵙ⠀Ⓞ⠀ⵙ⠀ꖴ⠀ⵙ⠀✤⠀ⵙ⠀ꖴ⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ИN⠀ⵙ⠀ᗩ⠀ⵙ⠀ᴥ⠀ⵙ⠀✤⠀ⵙ⠀◯⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᗝ⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀◯⠀ⵙ⠀ᙁ⠀ⵙ⠀ᑎ⠀ⵙ⠀ꗳ⠀ⵙ⠀◯⠀ⵙ⠀◯⠀ⵙ⠀ꗳ⠀ⵙ⠀ᑎ⠀ⵙ⠀ᙁ⠀ⵙ⠀◯⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀ᗝ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀◯⠀ⵙ⠀✤⠀ⵙ⠀ᴥ⠀ⵙ⠀ᗩ⠀ⵙ⠀ИN⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ꖴ⠀ⵙ⠀✤⠀ⵙ⠀ꖴ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ИN⠀ⵙ⠀◯⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᙏ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᗝ⠀ⵙ....GHX 0 -5645 -13538 1.12505853 0 0 2 Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null 3.0.0.0 Michael Pryor 1c9de8a1-315f-4c56-af06-8f69fee80a7a Pufferfish 3.0.0.0 Heteroptera, Version=0.7.2.4, Culture=neutral, PublicKeyToken=null 0.7.2.4 Amin Bahrami [Studio Helioripple] 08bdcae0-d034-48dd-a145-24a9fcf3d3ff Heteroptera 0.7.2.4 1270 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 16a52424-0794-4f9c-a139-1eb37fe23898 04f6dd45-a05e-4255-b431-1cf39447f2cb bad1c978-837c-473b-b4f0-a58dfe6f997e d4204f84-391f-45d9-b27d-4db0c38c8965 7719845b-c4fb-40bb-aebe-71f18acb63b2 ed9b8f84-205b-4c77-9d51-bd3196eb98a9 20e239d4-cb33-4204-a2c2-5343e1abd3b3 4e2c6cf1-0fe3-48fd-ba3e-c18ad88efb7d b6b23334-d964-49d1-8bf0-e6c862f69bf1 e0a23baf-b2b5-496b-8de7-e4c471e49cc9 ae4cbbf6-df8f-41a7-a4be-fcc0b37593f8 10b0d55a-a9b1-453a-bc7d-e912f93c21c3 e1a9b758-7cee-4396-b62f-58ea93311af9 d619928d-8087-4f94-9a55-02fd5b30666e 99b73b36-7459-46d9-b1f0-3937348f98af 2b983b05-b6d6-4399-9b66-2339c3acc21a 6ef43a54-6999-4ccc-a174-6fba07e915d7 cc8b95bb-4946-4823-ad8a-25ceaba8d32e 70a003fd-4063-4183-a099-bb1e8ff9b09a 784a1ba3-f468-4303-a0ee-270fe195e74f 83802b83-02bd-494d-b870-ea094c68a146 05267ad3-2494-4a34-afff-4d362694e47c 22 e1295131-4df4-436a-ac28-dd49d2ec2943 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects c6d9ed22-f3b6-404a-9a1d-71836c532265 d7333872-0e06-4c03-ba89-d6407be7554d 9b1afeb1-d09b-4347-bfdf-3684ed6020e9 8f05758f-528d-4abe-a396-7016cab37bc7 481c1239-c2c2-4b27-9952-e232e2177102 60502e3d-7b53-49fc-8044-ffd2cd121805 de643b94-4758-4fff-9527-348baf5052a6 3e7a556e-c1e7-4458-88a5-92c9d2b5dc72 bfe8449c-a942-4118-b8c0-f94999971aed 6f068628-c4b9-4434-b450-3eb18eece1e1 b71aae03-de35-454b-80fa-09eb419fe2bf 3f8b08e2-012b-4117-8562-193ac6d58cd1 03a735fb-f0b8-408e-aa2e-38f3423396cb d4d70d80-e818-4fef-ba8e-09da9f91679c d4d7b6ef-9942-48a8-a5dc-93fd38f8614c 4ba46890-e14d-4ffa-988f-1dd7b7759090 5d0d4ef0-d8de-470e-bbae-355a6b237935 6f661aea-4de1-4ccd-be9b-060c820f3253 9b636a61-698d-4830-96f5-74961596764f 0e2d7da3-975f-4198-8e36-5db1d8a5abe6 0e85845b-9b1b-4be3-a812-e90c459106d4 9f7d1187-713e-4c8f-8c68-69b4d351ce97 566bcebd-f5e8-468a-9c11-d4b111aa2f0c 14114d11-a3cb-41ea-8397-075cb5e9d027 8a41f4c3-fac1-4c2d-a1c7-38bbb12715ac 231a94e3-3b48-4943-adac-c96d778b2484 af7b7c8d-309a-4b1f-b7d3-7aea131dc644 c5ec0fcd-b093-4db4-a17e-e93eede44c55 078cfa5d-a810-4461-afe5-3c7c6eff34df a1bef049-0c2f-4984-922a-a6675bf3c7b6 56534c49-1ea7-41c6-bf7c-258cabb3efce 08894441-b02f-4060-97bc-c16752f15988 37fb66b0-e790-4304-86c0-b0774e5826b8 5d29b998-e767-4908-9bd2-1eb4bcb4b5b9 34 24aeeca9-e806-44d7-b3c9-760bc20f33d3 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 323d251f-6e65-42e2-a0ed-7d56aeb82679 a0bba763-0936-4c88-a047-e5512c2ce288 faab667e-5a31-446d-9df5-62d1fb98dd78 b96f97f9-1163-4f69-8493-078db94ec775 b5bfeeda-dfe6-46de-93d1-b762b9bdcfef 7292bcf1-8a62-4adc-8f64-9825c537d2d0 8aa897df-9fca-48aa-ba32-8aa452f7a4b4 2b7eac1d-f600-4eff-90ef-3e3caed8387d 0430ac85-9cee-45ae-b7d9-c48cee3f94fd e536f346-c2a7-4f67-9e54-01f53d06d92f d9082955-a981-4b4e-933c-24ee73910995 d0db6d1f-005c-4599-ad03-e5e1298ca9b1 37850090-1f89-414f-a475-cd78f7946709 9530229d-2340-4f06-b2eb-2a75d4bc811f e2b00b73-8601-4e61-9b3e-f5f0b1508ee6 2cc54b6b-6a27-4347-ba1d-ad81725a8522 b4a4a92f-f13b-4445-b2dd-58356b29fa0e 37878e6a-dc90-46a6-bfdd-572c29007bbc f8342b6b-15c7-478d-88c8-5933a2ef1e09 0341b73f-f7f8-4b04-9f93-e590bbc75247 34521a17-b7e4-42f7-bc4c-f5a2c804e428 7fa07956-23c0-4600-9960-b23370a32f2b 1e539816-62d2-49f3-b7dc-a17e5e68207f a26d1668-a53e-4720-8aa2-43cf9a2c28b9 24 cbd5cee5-7699-4c42-af63-e2abf186af3f Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 7719845b-c4fb-40bb-aebe-71f18acb63b2 ed9b8f84-205b-4c77-9d51-bd3196eb98a9 20e239d4-cb33-4204-a2c2-5343e1abd3b3 4e2c6cf1-0fe3-48fd-ba3e-c18ad88efb7d b6b23334-d964-49d1-8bf0-e6c862f69bf1 e0a23baf-b2b5-496b-8de7-e4c471e49cc9 ae4cbbf6-df8f-41a7-a4be-fcc0b37593f8 10b0d55a-a9b1-453a-bc7d-e912f93c21c3 e1a9b758-7cee-4396-b62f-58ea93311af9 d619928d-8087-4f94-9a55-02fd5b30666e 99b73b36-7459-46d9-b1f0-3937348f98af 94e2a1cf-7e04-4d30-9f4f-09bcfed4b895 12 16a52424-0794-4f9c-a139-1eb37fe23898 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 97602853-3e3e-4ea3-bccf-23d81ae84039 4da276be-89da-408b-8dc4-821f992e6a62 91242ca9-e406-47a2-893f-f68e4deecb2e 1984de07-4690-4d15-83ab-ca5ac7ba39c7 273aa071-b046-4c31-896d-6c812d648444 756d8dbe-1ffd-4616-8e58-093e60e39611 476b90b0-0b4b-464e-94a2-2d01dbc41bf2 a42c0e6d-d4e1-4d09-ac9c-1e0bddea41b9 76a0ad3e-8ee8-48f0-beef-2e1ce81228b5 d6ce5ae8-4b3b-4dee-8441-52ee778febf0 14ccdfe7-041f-4ff7-b930-7473962ac27d 0e6380b4-7593-419b-a389-4238dbe87854 7c1a2569-b9d6-4ee6-a14e-357b1b128d42 38622d6e-1a4b-49a2-ae95-c398f56cbef4 b064badb-c636-4cdd-99a1-829a032c305b d6fb4439-46d5-46c4-ba9d-a5562dc2f6ca a75d9ecd-3e05-45c9-aba0-df2ef4da6b9d 61a87901-43ff-4f47-aae0-451d19806d9b 51a9cb88-e33f-4a56-bc83-f540c2b28374 241405ca-83b3-4478-94fc-fcce1c927c67 ad832235-2f45-429e-88b4-71fdd54d3135 f7a69548-1486-4abf-af34-435335bc55eb b7dff3c8-6998-400a-86c1-93344a002f5b 7fba6d47-f327-4abc-8332-cb072b40575d dd328417-f2f6-43dd-9c6a-57016cf47aa9 8415c0ad-da98-495f-a1d8-521fbb923339 1f60e8a7-f805-4f31-bb22-c674c43c383a 2c3a92e7-c8ad-4456-8ea8-baa10fb82052 74acc247-99e9-4190-8610-0d03e087bd07 18152b12-b828-4c2a-b1ed-119c6a76e5c2 78edcb05-0f20-4b9a-9e9a-568887d9bff3 30c9dafa-4bde-47dc-a1a3-deb5aa41fec3 198e96ba-1b71-4ced-b09d-05b7949855ab d2b47dc8-db36-4d13-9e45-ddc2a7e3e223 cba88513-3c9b-4cd4-adc0-c0681dfb069a 12a2eb83-f215-42e0-a529-0af180f3b656 32ee87fd-809e-4d75-b802-d8cf14460d4a 02e70f58-d9ac-421f-9454-279371d479d9 ca5e1db8-8f38-4ca8-a9fd-8ae3bb30cefe b140a825-f831-4c75-b129-fd2aacab08a2 c4af1fb1-2376-498f-97b1-8227cff3d55b d9fdc742-0047-44b5-940d-ede4925ef952 f603e053-8f5c-4e76-bd7f-e791aa0351ff 75ff8eaf-db18-4de7-8968-47178e8313b3 b6174ffb-29ba-4234-a1df-b6fceaa7b08f 2a2995c1-9fcd-4d07-93c9-6fa3fb680b84 ceb1084b-0f2d-45ad-bde4-528181c70e9e d75407d2-1b46-4319-b031-d0e0f8889e8c be07e18b-ee2b-425f-8717-647d2c0762de 253ffe5d-009c-4834-aad1-ffdc18d7364f 910470c3-c24c-4e4c-a8a1-7ebf3ef4edb5 9d3e2fa0-f2f8-499c-b0d6-aea998d09756 e4e439d5-2bfe-4a7a-99d5-72e4a4d936b5 21745270-0d6d-4a43-af3b-acda9251102d 33bc4610-c1e3-4eb2-b168-674aba0039e2 b83103ca-a33b-468d-9406-a510d64596df b4671e64-ccc0-47c3-b109-c46ed36fafb3 015d43a6-a11d-4625-9eab-b4277ad14e5d b3333154-b6fd-47c4-9adb-cca60594fda8 b9b4ea3a-3781-44e3-bec8-372e076bfc97 9152e93e-fc06-473a-87de-817dd123dc69 bd9b3b2e-928a-4927-9e9b-f7ec41b3fa13 eaacf0ad-c530-4f55-9eac-32e6212af5cb c1c641d7-d0f1-405c-b761-3ea255249986 23c5e705-57eb-4fce-8c17-2e061dc9cfe5 9c84bca9-ef0d-4bf5-b059-22ce236bc0a6 f475cbf4-4912-4270-bdd1-e0af1c26774e c771f533-a7d0-49a4-810b-6fe9255e3606 a97ebc4a-f948-4909-84db-94415087a878 45abe2ff-547c-476b-b92c-442e9f8c2fd5 bcb09746-9364-4bb4-bb5b-e2a04f08d1be 4b2607bf-a75f-4c8b-9b95-c39f41cdbc26 17682d40-32c3-40f2-9c75-1551cfde5a93 8eed39b3-b8cf-4370-bb00-d39f6814dd82 f047974c-a1ba-466a-901b-34bae44155f3 30c4ac7c-f35d-4173-b361-906a0d951d01 d60c0706-6576-4328-88c6-6acf5a73cfda 193ea5e5-0782-4606-a720-e997392040f4 eab2df7a-df01-4295-a49f-d16252df0110 4f9e4afc-4d5d-4f05-953b-9de13f68867e 62725a2d-d086-480b-b59c-20d70e010c2a c85b89ea-2c35-443e-b453-7c323d985667 83cd24a5-9dca-42f9-9595-2944c134e6f1 83 6ea1988c-9bd3-45b8-933e-53d96dbb3714 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 0be06014-0ecf-459b-a86e-d5a9462f0857 fd5f3d6b-8312-4598-8717-bd7013158ac8 d5ad4ac6-a82d-4a23-9599-a70c0eaea546 0fce987b-8641-4118-b7cc-114b6846d188 809af6a8-4634-4d16-b1e7-6d725f788939 e53b5806-1278-48b0-b40d-8251f7d8e523 c83888d0-b894-40fe-820b-af825c904fc3 8678bd6b-c571-4190-8bed-27a19fbb5a4b 69cb92e2-5dc1-4578-a030-e3fde0cf0c69 88f963a4-8bce-4d2b-969a-528dbf52cec6 96e719b4-9a6d-452e-8f37-602b6adb9fa3 45c3e10d-573a-4dad-962c-2e7c9f645ad9 e74e59b2-8cd1-4463-9f9e-699a51228e3e 908290ff-2ae5-443a-8c02-efd3ed2fe118 1ac526a1-e8f8-4de5-a9e0-0332f0e610b4 50ab8d1b-85d8-4277-8f06-ed620cbe042a 8cacd258-ba73-4c62-93cd-8d1e686a3c02 ec295bb2-6f65-40de-aea2-f7e5ac3e0e01 4f0205c8-b81e-4c66-9378-aa2d8f7ee9e2 383b2bad-9847-47e8-a0fb-694d2a476a78 4c448985-1964-4d98-a54b-8c378b64c191 de8b8d5b-29d5-4cfd-9b53-7fb2d3442fad be5f0e4e-5875-4c70-aa36-870c817df9e1 a19dc0b8-11b2-4e7d-bbd5-60cb3c62ba36 a17b5425-b933-4a96-b022-239c9056d234 bffee6c0-e4eb-4cb4-bae7-60a3dcdb7505 6263d839-2890-4f51-a4ca-400b76341a46 684dab19-ebc3-4fa2-85ae-30ba890d75cf 89237e9f-871d-48dd-9eab-340be1f24133 b60b5335-5a6b-4be3-8839-241b11937a8e 4204693a-6067-4379-a243-8448862f25b8 009cb74a-f9f4-4ccd-ab1c-2dd05580acb6 d461fc59-ff17-43bd-8530-b47d4e0b9d07 e00c36a5-d637-4c31-9c20-859c86dbc3f4 0258f90b-2449-4f50-9f7c-8ed53b74791e 574c27c9-3452-47a9-97c9-e01fb407b925 c6bbf3e9-5806-4a3c-ab8f-d72c75b2e3b8 c36c8810-c429-4a65-81c2-ee9afc72aab1 37daf086-17fc-4e47-ba8c-391198555b78 44fe1fbd-5b85-4a6f-b9c6-e285398e2914 a102b448-aa77-41af-b3e1-af7787a09310 c362505c-12b2-46bf-a82f-8c1d92073bd1 d689d842-3ece-40aa-8820-e9f429d00049 2f9e1ab9-aab9-423a-812a-3c7da9b498b3 a8987895-1926-435c-ac30-b55cbdf38020 69ffacb2-16a1-4129-973b-aa48634a37a7 ea54cb37-f08c-491b-ac20-a65e4389cca7 5d38ad1e-9c75-4669-82cd-7bb63c08c77d c531f81c-9d53-4f73-8799-3bd516a3edc6 877569dd-746a-480a-b6ae-2a0b26b46cb9 b0780f8b-24b8-49e3-9ca2-ead4f899b3af 5104e935-fd94-4795-b481-644285836bda ba05c31e-27c7-43c9-bb03-bdcfd5e8adcf 77c1dbe1-728b-4cff-a941-f348a22d517d ed7e6822-10cf-46e3-98d5-7d186149277e 36704715-e6fa-4103-b9c9-63c99693e5b3 3bfe6f5e-0bc5-434b-8a1f-1ea9e1325374 957deaf1-c564-47c7-b565-4f0dae2b1c92 6bd5e34d-dcf5-42c1-94eb-d3b84215d27e ad71ca87-a761-4963-809d-57f3d493a3b4 247eb013-2062-40dc-bced-7540d1c2f75f 056f1928-832c-436e-9583-925fe9f79c8d 693be2ef-8a44-48e6-8210-de71cb311eb1 2542a3f2-90db-4e1a-8579-508a04e14002 64568223-14eb-4477-af37-fa9297e41d7f eb97d3e3-58d2-4ca4-83ec-e802f3da77ff f8f514f7-3e33-426a-8203-3b6e245b29bf b59b106e-8761-4626-a895-2e38e0d747eb 7ae8b5fd-03a9-4f7a-b6fb-eedf36ea815f 5c493b6d-4ec3-4a33-9878-718b9f7f7899 f1ee4950-7f56-4f3d-8d6b-542a35f21276 24402fa4-4cf6-4928-aa18-97b2fb379b92 b53adb78-a001-472e-b4d9-21016d5a1502 0510202c-a370-465f-bd2a-2d6d989d6cf9 140588d4-2e33-43b3-9043-f29b91eda6ed ae0232f3-71a2-4c0b-b75d-03d815a4ab4a 5b1c30d5-f92b-4262-aaae-0a6ae10c6bf1 728569ed-5597-44af-981b-e70a8a64f2f2 4ccebb54-ff4f-4137-9be2-9b59e9e078ef 79 74e4bfc2-0153-4e05-8e73-4e6607ccec40 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 4da276be-89da-408b-8dc4-821f992e6a62 91242ca9-e406-47a2-893f-f68e4deecb2e 1984de07-4690-4d15-83ab-ca5ac7ba39c7 273aa071-b046-4c31-896d-6c812d648444 756d8dbe-1ffd-4616-8e58-093e60e39611 476b90b0-0b4b-464e-94a2-2d01dbc41bf2 a42c0e6d-d4e1-4d09-ac9c-1e0bddea41b9 76a0ad3e-8ee8-48f0-beef-2e1ce81228b5 d6ce5ae8-4b3b-4dee-8441-52ee778febf0 14ccdfe7-041f-4ff7-b930-7473962ac27d 0e6380b4-7593-419b-a389-4238dbe87854 7c1a2569-b9d6-4ee6-a14e-357b1b128d42 38622d6e-1a4b-49a2-ae95-c398f56cbef4 b064badb-c636-4cdd-99a1-829a032c305b d6fb4439-46d5-46c4-ba9d-a5562dc2f6ca a75d9ecd-3e05-45c9-aba0-df2ef4da6b9d 61a87901-43ff-4f47-aae0-451d19806d9b 51a9cb88-e33f-4a56-bc83-f540c2b28374 241405ca-83b3-4478-94fc-fcce1c927c67 ad832235-2f45-429e-88b4-71fdd54d3135 f7a69548-1486-4abf-af34-435335bc55eb b7dff3c8-6998-400a-86c1-93344a002f5b 7fba6d47-f327-4abc-8332-cb072b40575d dd328417-f2f6-43dd-9c6a-57016cf47aa9 8415c0ad-da98-495f-a1d8-521fbb923339 1f60e8a7-f805-4f31-bb22-c674c43c383a 2c3a92e7-c8ad-4456-8ea8-baa10fb82052 74acc247-99e9-4190-8610-0d03e087bd07 18152b12-b828-4c2a-b1ed-119c6a76e5c2 78edcb05-0f20-4b9a-9e9a-568887d9bff3 30c9dafa-4bde-47dc-a1a3-deb5aa41fec3 198e96ba-1b71-4ced-b09d-05b7949855ab d2b47dc8-db36-4d13-9e45-ddc2a7e3e223 cba88513-3c9b-4cd4-adc0-c0681dfb069a 12a2eb83-f215-42e0-a529-0af180f3b656 32ee87fd-809e-4d75-b802-d8cf14460d4a 02e70f58-d9ac-421f-9454-279371d479d9 ca5e1db8-8f38-4ca8-a9fd-8ae3bb30cefe b140a825-f831-4c75-b129-fd2aacab08a2 c4af1fb1-2376-498f-97b1-8227cff3d55b d9fdc742-0047-44b5-940d-ede4925ef952 f603e053-8f5c-4e76-bd7f-e791aa0351ff 75ff8eaf-db18-4de7-8968-47178e8313b3 b6174ffb-29ba-4234-a1df-b6fceaa7b08f 2a2995c1-9fcd-4d07-93c9-6fa3fb680b84 ceb1084b-0f2d-45ad-bde4-528181c70e9e d75407d2-1b46-4319-b031-d0e0f8889e8c be07e18b-ee2b-425f-8717-647d2c0762de 253ffe5d-009c-4834-aad1-ffdc18d7364f 910470c3-c24c-4e4c-a8a1-7ebf3ef4edb5 9d3e2fa0-f2f8-499c-b0d6-aea998d09756 e4e439d5-2bfe-4a7a-99d5-72e4a4d936b5 21745270-0d6d-4a43-af3b-acda9251102d 33bc4610-c1e3-4eb2-b168-674aba0039e2 b83103ca-a33b-468d-9406-a510d64596df b4671e64-ccc0-47c3-b109-c46ed36fafb3 015d43a6-a11d-4625-9eab-b4277ad14e5d b3333154-b6fd-47c4-9adb-cca60594fda8 b9b4ea3a-3781-44e3-bec8-372e076bfc97 9152e93e-fc06-473a-87de-817dd123dc69 bd9b3b2e-928a-4927-9e9b-f7ec41b3fa13 eaacf0ad-c530-4f55-9eac-32e6212af5cb c1c641d7-d0f1-405c-b761-3ea255249986 23c5e705-57eb-4fce-8c17-2e061dc9cfe5 9c84bca9-ef0d-4bf5-b059-22ce236bc0a6 f475cbf4-4912-4270-bdd1-e0af1c26774e c771f533-a7d0-49a4-810b-6fe9255e3606 a97ebc4a-f948-4909-84db-94415087a878 45abe2ff-547c-476b-b92c-442e9f8c2fd5 bcb09746-9364-4bb4-bb5b-e2a04f08d1be 4b2607bf-a75f-4c8b-9b95-c39f41cdbc26 17682d40-32c3-40f2-9c75-1551cfde5a93 8eed39b3-b8cf-4370-bb00-d39f6814dd82 f047974c-a1ba-466a-901b-34bae44155f3 30c4ac7c-f35d-4173-b361-906a0d951d01 d60c0706-6576-4328-88c6-6acf5a73cfda 193ea5e5-0782-4606-a720-e997392040f4 eab2df7a-df01-4295-a49f-d16252df0110 4f9e4afc-4d5d-4f05-953b-9de13f68867e 79 97602853-3e3e-4ea3-bccf-23d81ae84039 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects a274c88d-0131-427a-9dd0-3bda6e2eff29 64f5057a-5eca-4ebd-adac-a9588cc43a37 211d3ab7-e6e9-4dd3-bbe9-4076a44479de 3174a38d-b561-4a42-8f8a-31608ef08ab4 dbd22ad0-e116-471c-a510-5155790fca7b 68343da5-7432-441a-8a19-50a1f21b220e 45305164-c779-4caf-a203-99cb10700df1 3b518049-a721-4682-9863-fde5cd56ec7a 7b44aa52-4415-46b6-9a6f-8acd8b4eb189 3cdaef40-695e-4325-a023-127dff8a13a4 5e982791-82ff-440d-bacc-09c972bd83f7 ee304c2e-7991-484f-9da6-ff4fc47e9e92 8d8f743b-370c-4c43-90de-d16a3d5ab270 bf9904f8-fa01-421a-bbee-9be7276335f0 0592f089-92c7-4e08-8b1d-72b16d1814ee 2d8f7591-dfcc-4bab-82e3-0db34a1e332a 1f4f6537-e674-47b2-a3cc-0c14bffb73b6 9f5c6da6-1b66-497a-a401-6d7c972dd8f3 d14b1d35-9269-44ee-821f-67f2cd1897b1 35dc89a9-722a-43d7-a22e-b79159522d82 0a516f0c-a574-4254-9e94-e7e5df613da5 5e62133f-3e96-4273-aa14-46485a1d2993 0a9edd9f-b92b-4495-a186-4d2d750d8705 65613610-dbaa-4036-a8cf-1716c76246e5 f9a3ac63-bb35-4cd5-a701-0bc94605a753 e225702c-37cb-414c-b6ee-0dea08840fbd 2760a5c3-b698-426f-ab03-8032d516a479 da8953b6-d8e3-4aa4-bee0-df0ede441feb f439fa6b-f226-46ca-b01c-8ef27a697da4 0178cc91-2c55-4f13-8715-c9ae8cde7381 32aa66bf-b8f9-40a8-8447-dc53ebfd950d 44c51f6f-2d13-489d-a8d0-33396ca312d1 3e25c677-18d2-4a81-a487-3590cf9df727 dd4e68d8-40f1-4109-a9cb-bcf9fe696818 acfeae50-20a9-479f-aa7f-c6af7ab4d63b 85038b7a-945c-4f71-941f-78812db35fab 76614d91-3d1a-498e-8900-459619131110 3ae51560-a358-4655-aba3-08bdf86d0fc2 70bc89ee-6b70-4472-b8e5-64a5c9cb84a7 874e9e2e-591d-4afa-96d9-2baecebac97f 5ee0c642-0a89-4957-83c5-74bafd3f7d48 0943cba2-39fe-4125-9623-f70d3326971c 894c2165-9c4a-4fa0-a0bc-198755fb7e0f 3c806f62-3e23-4451-8b4c-1d0ee1812fe8 75434d61-d5bb-4800-bc6b-c6a0d8505f6c 0116a002-fce2-4e4c-9b8f-b77bf91c2f98 85c52366-0982-406d-b91c-f42517f13990 48b8c9ef-cb3c-4009-9684-cd48d749b5ab 044cb778-9490-4df3-9437-dd5b56522471 69e5ea57-7d81-4a09-8ef9-ccb25d57d505 a99be150-24a5-4ed5-b21a-92a285b690b0 8c5832d9-8a03-428a-be62-bf491697ddaa 30d2560c-f4c6-4925-a86c-db46776c8475 b62f19ca-87db-46ca-8c31-ea7e17696ffe 1c99c25f-7d5e-4c63-966a-976daadcec48 b2e78911-4591-4927-ad08-76285da0ffdc a47ffe02-4103-4c38-89e1-ede0b95c5a37 d2418b07-7276-422b-95a0-4b06d47778e7 68798621-f2f5-4d68-ab21-b493ba17bc76 e95c3dbd-5e70-4ea6-85cd-43d87435112a 13811ab4-b356-4a2f-bf6a-563f34659a7a 47d309cc-0087-490d-85c8-cf3d129b0f93 3f22465c-a1d8-4425-9fdc-e6135a397fbc 771a3c18-faa6-4281-b469-5031ab7617a5 3b43cc9f-9bf8-4ad1-96ae-3c1d8d223edd a5de6231-a691-45d0-887d-4c677b2cd883 ec2d9eee-a658-42ed-bf34-e56a1ed0c919 d473a50c-3902-4af3-ad36-6f85c9f36bc0 256d4876-ebd8-4914-aa20-11c64a0e56d7 52cee108-6acb-47c9-b99f-f64546acc12c d900ebd2-5fc1-475e-a940-194803b564d6 6c8e0d06-15c6-49e1-9067-12321dd4ee3b cd610f91-fe93-4eaa-b6dc-0b8fadea311f 600b5815-4862-4828-a936-e2ea98a22934 ff2db1c1-6c13-43aa-8303-844eb49d3ae6 8c08f54a-7801-4d61-a733-3a8ba0d87024 95874953-5edd-4e0b-9115-5fc68fd0f28d 5cb126fd-9c09-4d9d-9448-82cbad266c75 62732b5d-8ae6-4217-b2a2-eaaf8c992b76 4d8c850a-204d-4ade-81d2-820fdd96b58a 01d00c3f-0e5b-4a1c-8123-dd4db1c9e437 fa5ecd94-e7d5-46d8-825e-477b6d112c2b e2051d40-1ccc-45fe-82e2-b1b90760ee46 39c932f0-cb48-431a-af49-df26495dad11 61036b5a-8186-48eb-b8e1-970dd55c24f4 37daf650-3934-4620-a463-416b35449969 f9d2b63d-ffbc-48e6-b8fc-1b2cef2bb36f 1770ef93-fafd-46b6-9880-ef4537069dfd e51056f8-3107-4b1a-8fd5-ad73176b3deb d8ed0680-6313-4ea3-9083-6b6ef5b3df8e a746965c-93a8-4c42-ba22-60615b10d09a 1b5fbf91-fdf8-4030-a119-19e9899bcf85 49903633-9080-429b-8a6d-d1e6ebe41d4e 0964cac6-acfd-4cc9-9eaf-953e88fd0fc0 6cb2edf8-8cdf-4c12-85d6-a8bd4ae5d89e 6a8af3f4-c4cb-42f8-8235-d36afb706fae 50a35e3a-c50a-483f-ba6a-4078685fc7f5 7d097b82-7572-4bca-82b7-1d6802a40156 6668afd9-5abf-4c53-9854-9dacd7e2c2c6 99 d2ba622f-885f-4a7d-9b75-56c1bc638d23 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects d7333872-0e06-4c03-ba89-d6407be7554d 9b1afeb1-d09b-4347-bfdf-3684ed6020e9 8f05758f-528d-4abe-a396-7016cab37bc7 481c1239-c2c2-4b27-9952-e232e2177102 136cd97b-9deb-4449-b884-bf54a4c926d4 60502e3d-7b53-49fc-8044-ffd2cd121805 de643b94-4758-4fff-9527-348baf5052a6 3e7a556e-c1e7-4458-88a5-92c9d2b5dc72 bfe8449c-a942-4118-b8c0-f94999971aed 6f068628-c4b9-4434-b450-3eb18eece1e1 b71aae03-de35-454b-80fa-09eb419fe2bf 3f8b08e2-012b-4117-8562-193ac6d58cd1 03a735fb-f0b8-408e-aa2e-38f3423396cb d4d70d80-e818-4fef-ba8e-09da9f91679c d4d7b6ef-9942-48a8-a5dc-93fd38f8614c 4ba46890-e14d-4ffa-988f-1dd7b7759090 5d0d4ef0-d8de-470e-bbae-355a6b237935 6f661aea-4de1-4ccd-be9b-060c820f3253 9b636a61-698d-4830-96f5-74961596764f 0e2d7da3-975f-4198-8e36-5db1d8a5abe6 0e85845b-9b1b-4be3-a812-e90c459106d4 9f7d1187-713e-4c8f-8c68-69b4d351ce97 566bcebd-f5e8-468a-9c11-d4b111aa2f0c 14114d11-a3cb-41ea-8397-075cb5e9d027 8a41f4c3-fac1-4c2d-a1c7-38bbb12715ac 5d29b998-e767-4908-9bd2-1eb4bcb4b5b9 26 c6d9ed22-f3b6-404a-9a1d-71836c532265 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 9b1afeb1-d09b-4347-bfdf-3684ed6020e9 8f05758f-528d-4abe-a396-7016cab37bc7 481c1239-c2c2-4b27-9952-e232e2177102 136cd97b-9deb-4449-b884-bf54a4c926d4 60502e3d-7b53-49fc-8044-ffd2cd121805 25187908-b9ee-4eb4-8acb-6dab9ed5e5e2 91acf8ab-b95d-4cf9-9042-41f5397d7e87 de643b94-4758-4fff-9527-348baf5052a6 3e7a556e-c1e7-4458-88a5-92c9d2b5dc72 bfe8449c-a942-4118-b8c0-f94999971aed 6f068628-c4b9-4434-b450-3eb18eece1e1 b71aae03-de35-454b-80fa-09eb419fe2bf 3f8b08e2-012b-4117-8562-193ac6d58cd1 3aa9dd9c-e16a-46f7-8b96-6321eb6a7afc 8a41f4c3-fac1-4c2d-a1c7-38bbb12715ac 231a94e3-3b48-4943-adac-c96d778b2484 16 d7333872-0e06-4c03-ba89-d6407be7554d Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 5b1c30d5-f92b-4262-aaae-0a6ae10c6bf1 1 0be06014-0ecf-459b-a86e-d5a9462f0857 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects d5ad4ac6-a82d-4a23-9599-a70c0eaea546 1 fd5f3d6b-8312-4598-8717-bd7013158ac8 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 0fce987b-8641-4118-b7cc-114b6846d188 1 d5ad4ac6-a82d-4a23-9599-a70c0eaea546 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 809af6a8-4634-4d16-b1e7-6d725f788939 1 0fce987b-8641-4118-b7cc-114b6846d188 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 15296d3b-06c5-4a78-9204-c362bebd73b3 1 304daaaf-330d-4eca-a6e7-7296e3c523a5 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 15296d3b-06c5-4a78-9204-c362bebd73b3 1 c6d60dfe-4cb1-4743-9f16-d670ec8d290d Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 9b792e59-c476-4a7d-a5f9-efa565758290 1 4d4e3f11-e0fb-440f-b1bc-1562a0a3130f Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects e53b5806-1278-48b0-b40d-8251f7d8e523 1 809af6a8-4634-4d16-b1e7-6d725f788939 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects c83888d0-b894-40fe-820b-af825c904fc3 1 e53b5806-1278-48b0-b40d-8251f7d8e523 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 69cb92e2-5dc1-4578-a030-e3fde0cf0c69 1 c83888d0-b894-40fe-820b-af825c904fc3 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 64fca20e-296f-4f79-aa7f-c53c5f88866e 9b2a37bb-1555-4475-9897-d38d08b21505 27ab2024-18fc-4363-8275-015d2368f9de 26be2798-ae8b-4fb0-b7a2-e9f1edff6049 6525660d-29ee-4269-9203-539923b24a8e 708c9f15-3d1c-406b-8e76-cab318b67adc 936ab982-35fa-4088-8bfe-32405957deea 1fc4e7bf-6bb1-4e51-9bc5-7533ebe68ad0 b6df8fad-340c-4555-a43a-639976bc59fe 47d36a7d-3cd2-4782-9f53-9f4088b19d4b a4a55193-86eb-40c0-8f54-9e700ffb5262 84f4a890-2b31-4a54-b2a5-49681a5484c7 c20dd2aa-56ce-4ff5-8e86-52afad8c2c96 5ccec4b3-fea6-45d3-8cbe-91c674ae3851 ff82ce22-4075-4b1a-9609-55239f281a35 377c7605-11b6-4673-94de-cc5176b48b51 c3df9ab9-ce47-48e9-994e-14f1d7735c94 431dbfbf-14de-4cae-b7cc-93329a70f66c ff436794-13e0-4e1f-80d6-7f5a87203812 3eeef9bc-d5a9-4e6a-b71c-b4dfe8f6b841 20aa50e6-d0a5-4d7e-97e6-21b1a5d5f91e 74e89f85-5cd3-4475-b942-4195b9b26127 e32b8a72-3026-4389-9167-05dd22abd69e b9b95f50-9e5f-4c1f-9c6b-75e6fd956e6e 8fbbff63-ce96-4927-842d-2fd30969fea0 74712b8a-b204-4e6f-81d7-fdd3959b8d3a e0516fed-bf3c-4077-8700-ea6a5d8fd259 c376d704-0c1b-47cd-9bc3-72920e4bfead 9e30a520-265b-486e-a6d0-566777e09451 11c2aced-e753-46f2-bc94-82c65cf9d659 dbbe7cdd-1102-4fb8-9b97-609a8d9fa450 8ec0c145-f345-40f1-b548-bdeae4656453 8398b5f4-fd6c-4c31-b15b-85d87dd315bc 878ef2e7-03c9-4c81-ab95-3f6612107a06 759a9424-cadf-4276-8b23-6f50b024aaa8 35 56d9a1a8-56b7-414f-a794-eab21813130e Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects db956c37-8884-4b12-b22f-f8e62287b5cc bad32d9f-a228-4096-a7ad-611612df1ecf 5edee65c-191d-441c-951b-b650d396ebf2 13678ac4-534d-449b-a806-30e2c5627bc4 ed880257-cb73-4b3d-bdba-4c629f2654a0 2e4f40d1-57e5-4c19-a99f-429ba726780a 2f263c7c-b3da-4f0a-83ba-1f5794b02f50 6232a007-7131-40f6-a98e-54bf4f5de0e2 be88ae4a-34e9-40cb-900e-04d4d78a0355 cd03c22d-ecbe-479f-b24c-a9fc71964bbd ee60103a-50e1-4b3b-8a4b-e878472c2e33 fe0cca38-ef8c-474b-bb0d-65546deb0f8e cd3a4016-c65b-423e-80fe-187b9b727aaa 510ca252-0b8c-434d-87ff-0bb19e02de48 fcd5ed70-f2c4-4965-b73f-6ce7f3f76d7d 8b79d317-11af-4b0d-a24a-275e14631f8a b725dfd1-cfa6-4e7c-9b1a-61cd5476e7ad 964cb3ac-1a1f-431e-8b84-0556874d46d4 226f21c6-4fc4-4167-b7fd-59d96537bf6d a265b490-ccac-453e-82c7-8ff5a0e23517 44a14ffd-ef9a-45e3-b6f8-a5425130a8bf 6e32a2ca-5cb3-40d1-bb45-4d62304d533d c09e5ae2-030b-42b1-a084-044710815d2e e8733214-56ad-40ea-83a2-5e5d6fee430d 26a2087c-6b34-4cba-a4ca-cfd8860323fa 7b796d98-9d29-4777-978b-4e0f43e188d2 1b261338-78de-4ea1-819d-e804feffeeca c0c89fc9-9439-46ab-9f7e-31f42bf53c28 5086f2ab-1b64-44ce-8ebb-d3bf4b9ebde8 bfb9c742-ccba-40e2-9d19-47e55cf92c4b 3a3cdcad-cb6e-42a2-b26f-eabf35d1c224 6243360b-4cd0-4b51-bf13-b41a10039126 5d416a89-7386-4795-804d-85aad6db5f35 b998e5cb-ac9b-472c-bca9-b12d2a814ca3 1bcfcd5d-8614-4116-bfb8-776af73c4a1a 7b988f86-3299-4057-83e2-a2dfad7edd14 43169f25-9f97-4cc6-a9fb-70b22569a90b d14d45ee-9a5e-435f-8e00-0ea848456dec 7996ffe7-23e4-4271-8379-50fdc86d5ee4 35de8717-4eea-481e-bcfd-f9b50b3335bb 231d76fe-2789-4a1c-ac87-314c5549f831 09336dd8-3c4b-476c-b62d-d3b399ef2780 f14968fc-8c03-4bf0-9731-e104bcf98382 ab15d115-f73b-4d08-9382-99436259ff41 c4aa530e-cb9a-4448-b893-7d5534deb0e5 18765130-12d0-4e81-bb07-50c6d539a331 f0b3f7a9-a89a-41f9-8cd9-128e13fc28e9 0f3c6a22-bd04-4fde-9840-bae5878a8350 86e6e907-dd69-4742-a0dc-d9d47d443ec0 f3d39ea9-6927-457d-ada0-8a62ba409d0a f8227a59-b3bb-490c-a577-e7486021c81f 013e4f07-7992-470f-8e86-91ffaa46f551 ab1114a9-a08d-4c5d-b8cd-f951279bbcf5 a850910a-8d6e-49e7-b143-923ad41fdb78 22991b0e-0e2a-4ba1-a379-96fc369abcee e02db1d3-13e3-4587-a331-19c777c3db08 2b8982ad-31cf-4594-b562-7f255387572d f57f0a05-8d67-4d43-83ba-1fa5cf42da0e 47449d6f-59a8-4e29-bbce-0d0b02c29488 03b1bab6-b05f-4fbd-9d3d-8724ed5846a0 60 adde6a87-48a5-4b41-b3ac-b4cd01a228f1 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects a265b490-ccac-453e-82c7-8ff5a0e23517 1 db956c37-8884-4b12-b22f-f8e62287b5cc Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 5edee65c-191d-441c-951b-b650d396ebf2 13678ac4-534d-449b-a806-30e2c5627bc4 ed880257-cb73-4b3d-bdba-4c629f2654a0 2e4f40d1-57e5-4c19-a99f-429ba726780a 2f263c7c-b3da-4f0a-83ba-1f5794b02f50 6232a007-7131-40f6-a98e-54bf4f5de0e2 be88ae4a-34e9-40cb-900e-04d4d78a0355 cd03c22d-ecbe-479f-b24c-a9fc71964bbd fe0cca38-ef8c-474b-bb0d-65546deb0f8e ee60103a-50e1-4b3b-8a4b-e878472c2e33 db956c37-8884-4b12-b22f-f8e62287b5cc 11 bad32d9f-a228-4096-a7ad-611612df1ecf Group dd8134c0-109b-4012-92be-51d843edfff7 Duplicate Data Duplicate data a predefined number of times. true 5edee65c-191d-441c-951b-b650d396ebf2 true Duplicate Data Duplicate Data -227 13075 104 64 -168 13107 1 Data to duplicate 0fee1575-1b05-4e95-854f-38deb1513e17 true Data Data false e24c881f-304c-4235-90c4-49a1c051ffe0 1 -225 13077 42 20 -202.5 13087 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 1 Number of duplicates f0603782-24ec-4e61-9a14-a9bb8e32d6d4 true Number Number false e02db1d3-13e3-4587-a331-19c777c3db08 1 -225 13097 42 20 -202.5 13107 1 1 {0} 500 Retain list order cf5c548b-4ee5-41bd-9812-7d13de137bbe true Order Order false 0 -225 13117 42 20 -202.5 13127 1 1 {0} true 1 Duplicated data e09a8eb0-1bfc-4cc0-88ea-41d013cd872a true Data Data false 0 -153 13077 28 60 -137.5 13107 fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 DotNET VB Script (LEGACY) A VB.NET scriptable component true 13678ac4-534d-449b-a806-30e2c5627bc4 true DotNET VB Script (LEGACY) Turtle 0 Dim i As Integer Dim dir As New On3dVector(1, 0, 0) Dim pos As New On3dVector(0, 0, 0) Dim axis As New On3dVector(0, 0, 1) Dim pnts As New List(Of On3dVector) pnts.Add(pos) For i = 0 To Forward.Count() - 1 Dim P As New On3dVector dir.Rotate(Left(i), axis) P = dir * Forward(i) + pnts(i) pnts.Add(P) Next Points = pnts -233 12147 116 44 -172 12169 1 1 2 Script Variable Forward Script Variable Left 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 true true Forward Left true true 2 Print, Reflect and Error streams Output parameter Points 3ede854e-c753-40eb-84cb-b48008f14fd4 8ec86459-bf01-4409-baee-174d0d2b13d0 true true Output Points false false 1 false Script Variable Forward 994adef1-ec29-44d1-8210-b36829a504f0 true Forward Forward true 1 true e09a8eb0-1bfc-4cc0-88ea-41d013cd872a 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 -231 12149 44 20 -207.5 12159 1 false Script Variable Left f68aca5b-03a6-457f-8891-8d8897d5c5fe true Left Left true 1 true 03b1bab6-b05f-4fbd-9d3d-8724ed5846a0 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 -231 12169 44 20 -207.5 12179 Print, Reflect and Error streams 570b8aa3-f1c3-484e-8b48-2d2b2dc5a7a0 true Output Output false 0 -157 12149 38 20 -136.5 12159 Output parameter Points 387adaa7-7978-4287-b8f0-fb7ef543c454 true Points Points false 0 -157 12169 38 20 -136.5 12179 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true ed880257-cb73-4b3d-bdba-4c629f2654a0 true Point Point false 387adaa7-7978-4287-b8f0-fb7ef543c454 1 -198 11952 50 24 -173.876 11964.12 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true 2e4f40d1-57e5-4c19-a99f-429ba726780a true Series Series -225 12615 101 64 -175 12647 First number in the series 2a4b9236-af46-4ebb-bee9-bac256e25c4c true Start Start false 0 -223 12617 33 20 -205 12627 1 1 {0} 0 Step size for each successive number 2068224f-000f-4842-b679-1038ed72efc1 true Step Step false ddf56dc6-bdbe-4989-a020-ed82978a53db 1 -223 12637 33 20 -205 12647 1 1 {0} 1 Number of values in the series b43fd2f8-4acc-4fee-aba5-8ef775813a61 true Count Count false e02db1d3-13e3-4587-a331-19c777c3db08 1 -223 12657 33 20 -205 12667 1 Series of numbers 9b1cb421-16d8-4a53-b2e0-8d1623cb2148 true Series Series false 0 -160 12617 34 60 -141.5 12647 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values 2f263c7c-b3da-4f0a-83ba-1f5794b02f50 true Number Slider false 0 -250 13254 150 20 -249.166 13254.55 0 1 0 65536 0 0 4096 a4cd2751-414d-42ec-8916-476ebf62d7fe Radians Convert an angle specified in degrees to radians true 6232a007-7131-40f6-a98e-54bf4f5de0e2 true Radians Radians -235 12740 120 28 -174 12754 Angle in degrees 94b44f49-bf88-4b7c-9e90-82dd5652fc76 true Degrees Degrees false e8733214-56ad-40ea-83a2-5e5d6fee430d 1 -233 12742 44 24 -209.5 12754 Angle in radians ddf56dc6-bdbe-4989-a020-ed82978a53db true Radians Radians false 0 -159 12742 42 24 -136.5 12754 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers be88ae4a-34e9-40cb-900e-04d4d78a0355 true Digit Scroller Digit Scroller false 0 12 Digit Scroller 1 0.00000033527 -299 13045 250 20 -298.8889 13045.59 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true cd03c22d-ecbe-479f-b24c-a9fc71964bbd true One Over X One Over X -225 13157 100 28 -176 13171 Input value 31286c5a-c56a-4319-b789-d91bcab4d77b true Value Value false e02db1d3-13e3-4587-a331-19c777c3db08 1 -223 13159 32 24 -205.5 13171 Output value e24c881f-304c-4235-90c4-49a1c051ffe0 true Result Result false 0 -161 13159 34 24 -142.5 13171 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers a274c88d-0131-427a-9dd0-3bda6e2eff29 Number Number false 931b1327-0f41-42e6-b1eb-00468f33d6c8 1 4283 7033 50 24 4308.785 7045.021 1 1 {0} 1024 aaa665bd-fd6e-4ccb-8d2c-c5b33072125d Curvature Evaluate the curvature of a curve at a specified parameter. true 64f5057a-5eca-4ebd-adac-a9588cc43a37 Curvature Curvature 4239 6863 137 64 4309 6895 Curve to evaluate 3b3e217b-67a2-4987-bc0b-5480d1231817 Curve Curve false 3174a38d-b561-4a42-8f8a-31608ef08ab4 1 4241 6865 53 30 4269 6880 Parameter on curve domain to evaluate 72aacb95-9932-42b0-98f9-824d4c6656e9 Parameter Parameter false 46971004-a130-4645-b7c1-54287fdbbeac 1 4241 6895 53 30 4269 6910 Point on curve at {t} e9c1c0a3-5544-4e92-9e09-a6bd7dff59b1 Point Point false 0 4324 6865 50 20 4350.5 6875 Curvature vector at {t} b51c5bf6-0a16-4070-a003-702890971c28 Curvature Curvature false 0 4324 6885 50 20 4350.5 6895 Curvature circle at {t} 1411ee7a-158c-4ff3-87de-d1e1ca9a657d Curvature Curvature false 0 4324 6905 50 20 4350.5 6915 2162e72e-72fc-4bf8-9459-d4d82fa8aa14 Divide Curve Divide a curve into equal length segments true 211d3ab7-e6e9-4dd3-bbe9-4076a44479de Divide Curve Divide Curve 4245 6946 125 64 4295 6978 Curve to divide 3a59b0e7-5804-4f1a-abe8-1612cc2fb746 Curve Curve false 3174a38d-b561-4a42-8f8a-31608ef08ab4 1 4247 6948 33 20 4265 6958 Number of segments a0ba21d8-309a-472d-a546-60bd4c28509a Count Count false a274c88d-0131-427a-9dd0-3bda6e2eff29 1 4247 6968 33 20 4265 6978 1 1 {0} 10 Split segments at kinks 6a1149f7-6ba9-4473-b567-1dc58e824b31 Kinks Kinks false 0 4247 6988 33 20 4265 6998 1 1 {0} false 1 Division points 88e859b5-6de1-472e-89ad-c54242edd85c Points Points false 0 4310 6948 58 20 4340.5 6958 1 Tangent vectors at division points ad961923-5380-4be3-93a2-d2bc10db712c Tangents Tangents false 0 4310 6968 58 20 4340.5 6978 1 Parameter values at division points 46971004-a130-4645-b7c1-54287fdbbeac Parameters Parameters false 0 4310 6988 58 20 4340.5 6998 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 3174a38d-b561-4a42-8f8a-31608ef08ab4 2 Curve Curve false 23098590-a917-496b-a7fa-ab7fc86169d0 1 4281 7462 53 24 4317.5 7474.836 23862862-049a-40be-b558-2418aacbd916 Deconstruct Arc Retrieve the base plane, radius and angle domain of an arc. true dbd22ad0-e116-471c-a510-5155790fca7b Deconstruct Arc Deconstruct Arc 4251 6782 114 64 4291 6814 Arc or Circle to deconstruct 1d07eff1-b47d-4814-b941-e64ad1187bc7 Arc Arc false 1411ee7a-158c-4ff3-87de-d1e1ca9a657d 1 4253 6784 23 60 4266 6814 Base plane of arc or circle e6300693-bbb2-45d5-a8f4-6f70e4a2a26b Base Plane Base Plane false 0 4306 6784 57 20 4336 6794 Radius of arc or circle 5078cf9d-5a65-46c0-801d-34f40bee0f1b Radius Radius false 0 4306 6804 57 20 4336 6814 Angle domain (in radians) of arc 35aed2e6-13c9-42bf-8a37-77b587a3e345 Angle Angle false 0 4306 6824 57 20 4336 6834 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true 68343da5-7432-441a-8a19-50a1f21b220e One Over X One Over X 4258 6286 100 28 4307 6300 Input value beaa0d02-9628-4ea2-87b4-3f70b19314d7 Value Value false 771a3c18-faa6-4281-b469-5031ab7617a5 1 4260 6288 32 24 4277.5 6300 Output value b06621f6-9ae3-437e-aa25-87164cfe5a2a Result Result false 0 4322 6288 34 24 4340.5 6300 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 45305164-c779-4caf-a203-99cb10700df1 Quick Graph Quick Graph false 0 0a516f0c-a574-4254-9e94-e7e5df613da5 1 4233 6104 150 150 4233.486 6104.676 -1 4c4e56eb-2f04-43f9-95a3-cc46a14f495a Line Create a line between two points. true 3b518049-a721-4682-9863-fde5cd56ec7a Line Line 4251 6350 114 44 4323 6372 Line start point f9d77711-655e-4f78-83f6-5507d1e3a4c9 Start Point Start Point false e9c1c0a3-5544-4e92-9e09-a6bd7dff59b1 1 4253 6352 55 20 4282 6362 Line end point 3ad08e43-3dda-4f44-b0ae-1242d6063195 End Point End Point false e6300693-bbb2-45d5-a8f4-6f70e4a2a26b 1 4253 6372 55 20 4282 6382 Line segment c61c2f63-af12-47bf-ac8f-3ed53b4c2ca9 Line Line false 0 4338 6352 25 40 4352 6372 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values 7b44aa52-4415-46b6-9a6f-8acd8b4eb189 Number Slider false 0 4233 5269 150 20 4233.236 5269.235 6 1 0 2 0 0 0.04375 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 3cdaef40-695e-4325-a023-127dff8a13a4 Line SDL Line SDL 4247 5150 122 64 4327 5182 Line start point 3286d7d3-eab9-4125-817c-42f3bee3f20c Start Start false e9c1c0a3-5544-4e92-9e09-a6bd7dff59b1 1 4249 5152 63 20 4290 5162 Line tangent (direction) e8c607a5-494a-485e-ae31-9a08bd478f18 Direction Direction false 4836c153-f996-4137-982e-b59f019e6830 1 4249 5172 63 20 4290 5182 1 1 {0} 0 0 1 Line length 963d17b4-30bc-44c1-9e9a-e6c01a52c1fd -X Length Length false 8c5832d9-8a03-428a-be62-bf491697ddaa 1 4249 5192 63 20 4290 5202 1 1 {0} 1 Line segment 64fde29a-f76c-4fc1-b003-229851718aab Line Line false 0 4342 5152 25 60 4356 5182 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 5e982791-82ff-440d-bacc-09c972bd83f7 Evaluate Length Evaluate Length 4236 4886 144 64 4310 4918 Curve to evaluate 71ee2099-99ad-4c54-871b-fa71c5868e9d Curve Curve false 64fde29a-f76c-4fc1-b003-229851718aab 1 4238 4888 57 20 4268 4898 Length factor for curve evaluation a6327641-3497-419f-a005-6e3bc1a1946a Length Length false 0 4238 4908 57 20 4268 4918 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) c07b7a00-371b-4554-9541-b72e32c1ab5e Normalized Normalized false 0 4238 4928 57 20 4268 4938 1 1 {0} true Point at the specified length 4b649cee-a63e-4418-b303-e383307f5e39 Point Point false 0 4325 4888 53 20 4353 4898 Tangent vector at the specified length dd207488-6941-4306-9e5a-2e8ca02eef28 Tangent Tangent false 0 4325 4908 53 20 4353 4918 Curve parameter at the specified length fa6e7b64-7166-4723-9a64-31604937ca06 Parameter Parameter false 0 4325 4928 53 20 4353 4938 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true ee304c2e-7991-484f-9da6-ff4fc47e9e92 Interpolate Interpolate 4245 4784 125 84 4312 4826 1 Interpolation points 380ab18e-7626-439f-b5b2-9b3801878901 Vertices Vertices false 4b649cee-a63e-4418-b303-e383307f5e39 1 4247 4786 50 20 4273.5 4796 Curve degree bd7258d3-c797-48d5-8b1d-5e9a747941d0 Degree Degree false 0 4247 4806 50 20 4273.5 4816 1 1 {0} 3 Periodic curve 4a64f453-b023-45ab-9fc4-5a233b0013b1 Periodic Periodic false 0 4247 4826 50 20 4273.5 4836 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 8e13ed2c-66de-4bd1-92c3-b37c8c0e87a5 KnotStyle KnotStyle false 0 4247 4846 50 20 4273.5 4856 1 1 {0} 2 Resulting nurbs curve 71f0aa5a-eb75-494a-90f3-1bed30c8af4a Curve Curve false 0 4327 4786 41 26 4349 4799.333 Curve length 263d1019-1a33-41fc-a2e4-98a24dc87b4b Length Length false 0 4327 4812 41 27 4349 4826 Curve domain 03b60dca-5fc7-40b1-b3cc-833ce43733c1 Domain Domain false 0 4327 4839 41 27 4349 4852.667 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects a274c88d-0131-427a-9dd0-3bda6e2eff29 64f5057a-5eca-4ebd-adac-a9588cc43a37 211d3ab7-e6e9-4dd3-bbe9-4076a44479de 3174a38d-b561-4a42-8f8a-31608ef08ab4 dbd22ad0-e116-471c-a510-5155790fca7b 68343da5-7432-441a-8a19-50a1f21b220e 45305164-c779-4caf-a203-99cb10700df1 42201d77-7bc4-437d-baaf-c8290f91a477 3b518049-a721-4682-9863-fde5cd56ec7a dc8b9948-0b61-495f-bb5c-30271010864e 7b44aa52-4415-46b6-9a6f-8acd8b4eb189 3cdaef40-695e-4325-a023-127dff8a13a4 90f74d47-d623-4b80-a1f4-bde635cc690f 5e982791-82ff-440d-bacc-09c972bd83f7 ee304c2e-7991-484f-9da6-ff4fc47e9e92 f9a3ac63-bb35-4cd5-a701-0bc94605a753 e225702c-37cb-414c-b6ee-0dea08840fbd 0a9edd9f-b92b-4495-a186-4d2d750d8705 65613610-dbaa-4036-a8cf-1716c76246e5 2760a5c3-b698-426f-ab03-8032d516a479 da8953b6-d8e3-4aa4-bee0-df0ede441feb 75434d61-d5bb-4800-bc6b-c6a0d8505f6c 0116a002-fce2-4e4c-9b8f-b77bf91c2f98 a5de6231-a691-45d0-887d-4c677b2cd883 ec2d9eee-a658-42ed-bf34-e56a1ed0c919 d473a50c-3902-4af3-ad36-6f85c9f36bc0 256d4876-ebd8-4914-aa20-11c64a0e56d7 52cee108-6acb-47c9-b99f-f64546acc12c bf9904f8-fa01-421a-bbee-9be7276335f0 0592f089-92c7-4e08-8b1d-72b16d1814ee 35dc89a9-722a-43d7-a22e-b79159522d82 cd610f91-fe93-4eaa-b6dc-0b8fadea311f 600b5815-4862-4828-a936-e2ea98a22934 ff2db1c1-6c13-43aa-8303-844eb49d3ae6 8c08f54a-7801-4d61-a733-3a8ba0d87024 95874953-5edd-4e0b-9115-5fc68fd0f28d 5cb126fd-9c09-4d9d-9448-82cbad266c75 62732b5d-8ae6-4217-b2a2-eaaf8c992b76 4d8c850a-204d-4ade-81d2-820fdd96b58a 01d00c3f-0e5b-4a1c-8123-dd4db1c9e437 fa5ecd94-e7d5-46d8-825e-477b6d112c2b 1dd7f4ab-a114-475c-95ae-55222fa823af 42 8d8f743b-370c-4c43-90de-d16a3d5ab270 Group 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers bf9904f8-fa01-421a-bbee-9be7276335f0 Number Number false a274c88d-0131-427a-9dd0-3bda6e2eff29 1 4283 4435 50 24 4308 4447.974 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 0592f089-92c7-4e08-8b1d-72b16d1814ee Curve Curve false 71f0aa5a-eb75-494a-90f3-1bed30c8af4a 1 4283 4478 50 24 4308 4490.896 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 2d8f7591-dfcc-4bab-82e3-0db34a1e332a Line SDL Line SDL 4247 3131 122 64 4327 3163 Line start point dbcefbd2-614b-4797-832b-f81d701edb22 Start Start false 4b649cee-a63e-4418-b303-e383307f5e39 1 4249 3133 63 20 4290 3143 Line tangent (direction) a62f7611-d05a-45a4-99b8-5fa2c0c877b8 Direction Direction false 85c52366-0982-406d-b91c-f42517f13990 1 4249 3153 63 20 4290 3163 1 1 {0} 0 0 1 Line length 8094c76e-7ac6-446a-9a69-e9a6d5ed0353 ABS(X) Length Length false 68798621-f2f5-4d68-ab21-b493ba17bc76 1 4249 3173 63 20 4290 3183 1 1 {0} 1 Line segment 5f024167-e348-42e4-83bc-dd9abab2d75e Line Line false 0 4342 3133 25 60 4356 3163 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 1f4f6537-e674-47b2-a3cc-0c14bffb73b6 Evaluate Length Evaluate Length 4236 2808 144 64 4310 2840 Curve to evaluate a9f5ae23-e2e8-4d50-bd0a-1302109c8202 Curve Curve false 39c932f0-cb48-431a-af49-df26495dad11 1 4238 2810 57 20 4268 2820 Length factor for curve evaluation a855f905-eb00-4e85-9ac6-5358c993cc3b Length Length false 0 4238 2830 57 20 4268 2840 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 9d96a222-e833-4263-ae23-adc8d8ac4235 Normalized Normalized false 0 4238 2850 57 20 4268 2860 1 1 {0} true Point at the specified length bb672236-a7b7-45ef-afb8-18f1a2792e58 Point Point false 0 4325 2810 53 20 4353 2820 Tangent vector at the specified length ebdcc7f4-d376-494e-8670-0983c734abd2 Tangent Tangent false 0 4325 2830 53 20 4353 2840 Curve parameter at the specified length cad9e2f2-8f98-4f70-9ba2-226ce27dd3c0 Parameter Parameter false 0 4325 2850 53 20 4353 2860 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 9f5c6da6-1b66-497a-a401-6d7c972dd8f3 Interpolate Interpolate 4245 1805 125 84 4312 1847 1 Interpolation points 88806293-82d6-45f0-80c7-39622388bf14 Vertices Vertices false 61036b5a-8186-48eb-b8e1-970dd55c24f4 1 4247 1807 50 20 4273.5 1817 Curve degree fb8aa358-182c-4ed8-99c3-40914e0d15b8 Degree Degree false 0 4247 1827 50 20 4273.5 1837 1 1 {0} 3 Periodic curve 45907537-5a67-4cc8-8ad9-5cec2617ba05 Periodic Periodic false 0 4247 1847 50 20 4273.5 1857 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 9d25bf79-6925-466f-b4b5-dff8e01cf608 KnotStyle KnotStyle false 0 4247 1867 50 20 4273.5 1877 1 1 {0} 2 Resulting nurbs curve 1da8162b-ae51-4827-ad1c-b7cd643f0310 Curve Curve false 0 4327 1807 41 26 4349 1820.333 Curve length 54e28d59-6e6c-4a56-9108-4641e6543cc6 Length Length false 0 4327 1833 41 27 4349 1847 Curve domain c4b541f4-9081-4c7e-8daa-575e1720bef9 Domain Domain false 0 4327 1860 41 27 4349 1873.667 dde71aef-d6ed-40a6-af98-6b0673983c82 Nurbs Curve Construct a nurbs curve from control points. true d14b1d35-9269-44ee-821f-67f2cd1897b1 Nurbs Curve Nurbs Curve 4249 4702 118 64 4309 4734 1 Curve control points 3ff18bf3-5d68-4b9e-9917-b7bb61af2bf2 Vertices Vertices false 4b649cee-a63e-4418-b303-e383307f5e39 1 4251 4704 43 20 4274 4714 Curve degree b14f2c14-eb36-4789-967c-700423c1ba52 Degree Degree false 0 4251 4724 43 20 4274 4734 1 1 {0} 3 Periodic curve 6f008703-f6bc-4846-addf-3a1ff452f192 Periodic Periodic false 0 4251 4744 43 20 4274 4754 1 1 {0} false Resulting nurbs curve c4b8f674-25d7-435f-9a2d-167cba22f51d Curve Curve false 0 4324 4704 41 20 4346 4714 Curve length aa04aa2c-23cd-43d3-907e-2116eea30857 Length Length false 0 4324 4724 41 20 4346 4734 Curve domain ae54b1a5-92a7-46ff-80a7-a1e5bd027488 Domain Domain false 0 4324 4744 41 20 4346 4754 dd17d442-3776-40b3-ad5b-5e188b56bd4c Relative Differences Compute relative differences for a list of data true 35dc89a9-722a-43d7-a22e-b79159522d82 Relative Differences Relative Differences 4244 4289 128 28 4297 4303 1 List of data to operate on (numbers or points or vectors allowed) dc912cd1-d87a-4e87-bfcd-553952104036 Values Values false 1f0b848f-eb55-4dd9-a62f-a216daed8c78 1 4246 4291 36 24 4265.5 4303 1 Differences between consecutive items 080fa6d7-bbb3-4f71-a556-fd84a9bd5303 Differenced Differenced false 0 4312 4291 58 24 4342.5 4303 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 0a516f0c-a574-4254-9e94-e7e5df613da5 Relay false b06621f6-9ae3-437e-aa25-87164cfe5a2a 1 4288 6270 40 16 4308 6278 ab14760f-87a6-462e-b481-4a2c26a9a0d7 Derivatives Evaluate the derivatives of a curve at a specified parameter. true 5e62133f-3e96-4273-aa14-46485a1d2993 true Derivatives Derivatives 4489 -12736 117 144 4559 -12664 2 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 7 fbac3e32-f100-4292-8692-77240a42fd1a 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 Curve to evaluate adce5e85-6367-4fd0-937a-81ee71fc7bae true Curve Curve false 3174a38d-b561-4a42-8f8a-31608ef08ab4 1 4491 -12734 53 70 4519 -12699 Parameter on curve domain to evaluate cb7449e1-4990-44d4-b5c2-c25cabb4dd9e true Parameter Parameter false 46971004-a130-4645-b7c1-54287fdbbeac 1 4491 -12664 53 70 4519 -12629 Point on curve at {t} ae3a695a-cc15-499e-9427-1231fcbea6e4 true Point Point false 0 4574 -12734 30 20 4590.5 -12724 First curve derivative at t (Velocity) 60d7cf46-ac14-418d-825d-d81b9b00022b true false First derivative 1 false 0 4574 -12714 30 20 4590.5 -12704 Second curve derivative at t (Acceleration) bf13852d-01bb-4747-8df7-3dc60b6e7510 true false Second derivative 2 false 0 4574 -12694 30 20 4590.5 -12684 Third curve derivative at t (Jolt) 313febab-a771-45da-a567-310cd4182e68 true false Third derivative 3 false 0 4574 -12674 30 20 4590.5 -12664 Fourth curve derivative at t (Jounce) b7204c31-0fde-4f40-9482-20f3fbf74e06 true false Fourth derivative 4 false 0 4574 -12654 30 20 4590.5 -12644 Fifth curve derivative at t 48e9cfcc-4536-4f94-9f62-f42b525b36e5 true false Fifth derivative 5 false 0 4574 -12634 30 20 4590.5 -12624 Sixth curve derivative at t 7ca4635d-ac36-43c9-b4e8-aba60332ab9f true false Sixth derivative 6 false 0 4574 -12614 30 20 4590.5 -12604 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 0a9edd9f-b92b-4495-a186-4d2d750d8705 Create Material Create Material 4236 5030 144 104 4320 5082 Colour of the diffuse channel a7202bc8-4598-42f8-957a-f6555a07c6aa Diffuse Diffuse false 0 4238 5032 67 20 4273 5042 1 1 {0} 255;247;247;247 Colour of the specular highlight 5d0527bc-72be-4663-872d-6eb577a8ac79 Specular Specular false 0 4238 5052 67 20 4273 5062 1 1 {0} 255;0;255;255 Emissive colour of the material 47f1cb23-a432-4071-8600-aebcd5842f3c Emission Emission false 0 4238 5072 67 20 4273 5082 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 294b4b85-55d2-4e16-ac87-cded169a7fe0 Transparency Transparency false 0 4238 5092 67 20 4273 5102 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 94f8e021-e6b2-4d56-a720-491809182fec Shine Shine false 0 4238 5112 67 20 4273 5122 1 1 {0} 100 Resulting material f879f6ef-08b1-4623-b20f-9af580c53c42 Material Material false 0 4335 5032 43 100 4358 5082 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true 65613610-dbaa-4036-a8cf-1716c76246e5 Custom Preview Custom Preview 4267 4968 82 44 4335 4990 Geometry to preview true fad5b3a6-49a8-4f82-a9f6-18d5d74b27da Geometry Geometry false 64fde29a-f76c-4fc1-b003-229851718aab 1 4269 4970 51 20 4296 4980 The material override e3ce37ad-d33b-4831-bab7-83b4ca952e13 Material Material false f879f6ef-08b1-4623-b20f-9af580c53c42 1 4269 4990 51 20 4296 5000 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true f9a3ac63-bb35-4cd5-a701-0bc94605a753 Create Material Create Material 4236 7293 144 104 4320 7345 Colour of the diffuse channel c676bfd6-b42e-4a4f-8422-55fdbfa4fe01 Diffuse Diffuse false 0 4238 7295 67 20 4273 7305 1 1 {0} 255;176;176;176 Colour of the specular highlight afbce2bb-1b53-4415-abf2-4245c033b044 Specular Specular false 0 4238 7315 67 20 4273 7325 1 1 {0} 255;0;255;255 Emissive colour of the material f6841a37-fb17-4321-9ed3-0cb027307ef9 Emission Emission false 0 4238 7335 67 20 4273 7345 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent ea379476-7fab-4a1e-8355-ee1d08126eae Transparency Transparency false 0 4238 7355 67 20 4273 7365 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 8062fb9b-9c42-4850-bcdf-f865358e48bd Shine Shine false 0 4238 7375 67 20 4273 7385 1 1 {0} 100 Resulting material 0215cbc4-028c-4365-90da-fc87e4da209a Material Material false 0 4335 7295 43 100 4358 7345 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true e225702c-37cb-414c-b6ee-0dea08840fbd Custom Preview Custom Preview 4267 7232 82 44 4335 7254 Geometry to preview true 134b542f-fee7-495d-b747-f9d4cf6d1a83 Geometry Geometry false 3174a38d-b561-4a42-8f8a-31608ef08ab4 1 4269 7234 51 20 4296 7244 The material override 7b5413ed-65c9-44e2-8b86-ef9ccbf75ef2 Material Material false 0215cbc4-028c-4365-90da-fc87e4da209a 1 4269 7254 51 20 4296 7264 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 2760a5c3-b698-426f-ab03-8032d516a479 Create Material Create Material 4236 4580 144 104 4320 4632 Colour of the diffuse channel 3004ed07-b408-4bc0-9f42-eab20a9913b4 Diffuse Diffuse false 0 4238 4582 67 20 4273 4592 1 1 {0} 255;222;222;222 Colour of the specular highlight 326a914e-4cdd-4b71-9281-a5919bcf7baa Specular Specular false 0 4238 4602 67 20 4273 4612 1 1 {0} 255;0;255;255 Emissive colour of the material 8fe53ab0-2b1a-4163-8a29-185170fe17a8 Emission Emission false 0 4238 4622 67 20 4273 4632 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 031a6a8e-aefe-4c31-a56b-469422b15bd1 Transparency Transparency false 0 4238 4642 67 20 4273 4652 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine a0b5a56f-450e-4954-9df5-97e3bc851a26 Shine Shine false 0 4238 4662 67 20 4273 4672 1 1 {0} 100 Resulting material f6602620-7a60-4871-a019-14148ed2fb01 Material Material false 0 4335 4582 43 100 4358 4632 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true da8953b6-d8e3-4aa4-bee0-df0ede441feb Custom Preview Custom Preview 4267 4518 82 44 4335 4540 Geometry to preview true 339c6a8c-fc22-4cc3-977a-83fbcb85d4af Geometry Geometry false 0592f089-92c7-4e08-8b1d-72b16d1814ee 1 4269 4520 51 20 4296 4530 The material override 76efd886-8cd1-4f71-8ee3-a159fa2f19f4 Material Material false f6602620-7a60-4871-a019-14148ed2fb01 1 4269 4540 51 20 4296 4550 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true f439fa6b-f226-46ca-b01c-8ef27a697da4 Create Material Create Material 4236 3006 144 104 4320 3058 Colour of the diffuse channel 0416a759-ff94-4b06-851b-c108dbd684cc Diffuse Diffuse false 0 4238 3008 67 20 4273 3018 1 1 {0} 255;240;240;240 Colour of the specular highlight 4c205008-b0ed-43a1-956e-3cf50cc1a793 Specular Specular false 0 4238 3028 67 20 4273 3038 1 1 {0} 255;0;255;255 Emissive colour of the material 6b966806-b30a-4470-bbeb-5b10b43e2ba5 Emission Emission false 0 4238 3048 67 20 4273 3058 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 73b07a02-8696-4088-9279-7465b6e0db16 Transparency Transparency false 0 4238 3068 67 20 4273 3078 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 1d39b7f2-bc53-4ce2-bc31-c29c7c63e83a Shine Shine false 0 4238 3088 67 20 4273 3098 1 1 {0} 100 Resulting material f370679e-4137-46e5-90d0-7a08608cb812 Material Material false 0 4335 3008 43 100 4358 3058 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true 0178cc91-2c55-4f13-8715-c9ae8cde7381 Custom Preview Custom Preview 4267 2944 82 44 4335 2966 Geometry to preview true 0f98a5d2-51bb-4a8a-909e-5a183993c521 Geometry Geometry false 5f024167-e348-42e4-83bc-dd9abab2d75e 1 4269 2946 51 20 4296 2956 The material override a6df5039-34d5-4f10-9741-52b06df6a14a Material Material false f370679e-4137-46e5-90d0-7a08608cb812 1 4269 2966 51 20 4296 2976 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 32aa66bf-b8f9-40a8-8447-dc53ebfd950d Create Material Create Material 4236 1681 144 104 4320 1733 Colour of the diffuse channel e8adebd8-6175-4942-bb80-64935d55aa67 Diffuse Diffuse false 0 4238 1683 67 20 4273 1693 1 1 {0} 255;214;214;214 Colour of the specular highlight 94bee261-3f2c-4380-8b54-66fe1127b97f Specular Specular false 0 4238 1703 67 20 4273 1713 1 1 {0} 255;0;255;255 Emissive colour of the material 186a9b34-2cfc-4d95-a08f-7df92b2244fe Emission Emission false 0 4238 1723 67 20 4273 1733 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 70acf2e0-b087-4c5a-a9dc-f6e9a5d8b9ad Transparency Transparency false 0 4238 1743 67 20 4273 1753 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 4d3af56a-115c-4482-9c5f-f6e9b611454d Shine Shine false 0 4238 1763 67 20 4273 1773 1 1 {0} 100 Resulting material 3962c6a1-a3db-4768-983c-51adadc81907 Material Material false 0 4335 1683 43 100 4358 1733 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true 44c51f6f-2d13-489d-a8d0-33396ca312d1 Custom Preview Custom Preview 4267 1621 82 44 4335 1643 Geometry to preview true 31c8f3ef-c718-4172-afbf-959475f7f9df Geometry Geometry false 1da8162b-ae51-4827-ad1c-b7cd643f0310 1 4269 1623 51 20 4296 1633 The material override de51e392-4b52-4541-81af-eac785c5e2b2 Material Material false 3962c6a1-a3db-4768-983c-51adadc81907 1 4269 1643 51 20 4296 1653 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 3e25c677-18d2-4a81-a487-3590cf9df727 Line SDL Line SDL 4487 -13999 122 64 4567 -13967 Line start point 942dd0ac-dcb9-48b0-936d-2ee2ea08759a Start Start false 61036b5a-8186-48eb-b8e1-970dd55c24f4 1 4489 -13997 63 20 4530 -13987 Line tangent (direction) 1c110a20-f0df-4b1f-8f07-97cc9061cc6d Direction Direction false 313febab-a771-45da-a567-310cd4182e68 1 4489 -13977 63 20 4530 -13967 1 1 {0} 0 0 1 Line length e4cd914a-2710-4c25-bfb8-2062da80e245 -X Length Length false 68798621-f2f5-4d68-ab21-b493ba17bc76 1 4489 -13957 63 20 4530 -13947 1 1 {0} 1 Line segment 9dd13fb8-1000-4255-abae-a29abaced959 Line Line false 0 4582 -13997 25 60 4596 -13967 71b5b089-500a-4ea6-81c5-2f960441a0e8 PolyLine Create a polyline connecting a number of points. true dd4e68d8-40f1-4109-a9cb-bcf9fe696818 PolyLine PolyLine 4249 2705 118 44 4309 2727 1 Polyline vertex points e3d0b096-bd0f-4da3-9f01-58f9104484e7 Vertices Vertices false 61036b5a-8186-48eb-b8e1-970dd55c24f4 1 4251 2707 43 20 4274 2717 Close polyline 9915d3ec-2519-48fc-82fb-c2af8cbc300c Closed Closed false 0 4251 2727 43 20 4274 2737 1 1 {0} false Resulting polyline b7ca3e16-396e-4dae-ae87-2357a527d9d3 Polyline Polyline false 0 4324 2707 41 40 4346 2727 afb96615-c59a-45c9-9cac-e27acb1c7ca0 Explode Explode a curve into smaller segments. true acfeae50-20a9-479f-aa7f-c6af7ab4d63b Explode Explode 4240 2642 136 44 4307 2664 Curve to explode 7d7ade89-8572-4344-a579-2ef1a35f81fc Curve Curve false b7ca3e16-396e-4dae-ae87-2357a527d9d3 1 4242 2644 50 20 4268.5 2654 Recursive decomposition until all segments are atomic 2423035f-5e94-4fe9-aa63-504f956b7906 Recursive Recursive false 0 4242 2664 50 20 4268.5 2674 1 1 {0} true 1 Exploded segments that make up the base curve 27f38398-7433-4312-9f44-e7e1155e5725 Segments Segments false 0 4322 2644 52 20 4349.5 2654 1 Vertices of the exploded segments 2caa6f7d-a080-4170-88e1-71f328feabf4 Vertices Vertices false 0 4322 2664 52 20 4349.5 2674 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 85038b7a-945c-4f71-941f-78812db35fab 1 Curve Curve false 27f38398-7433-4312-9f44-e7e1155e5725 1 4282 2598 53 24 4318 2610.144 6f93d366-919f-4dda-a35e-ba03dd62799b Sort List Sort a list of numeric keys. true 76614d91-3d1a-498e-8900-459619131110 Sort List Sort List 4243 2484 130 44 4308 2506 2 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 2 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 1 List of sortable keys 51b6bbaf-0364-4adc-9798-246e82302730 Keys Keys false 5aa52642-225e-442f-843f-1f051f77e0ac 1 4245 2486 48 20 4270.5 2496 1 Optional list of values to sort synchronously a9112f66-0a37-4330-a32c-ef5afed08a17 Values Values A Values A true 85038b7a-945c-4f71-941f-78812db35fab 1 4245 2506 48 20 4270.5 2516 1 Sorted keys 5b746e58-f682-41be-a162-14fdf355725d Keys Keys false 0 4323 2486 48 20 4348.5 2496 1 Synchronous values in Values A 381361b4-db26-4b75-8518-89d520b8405a Values Values A Values A false 0 4323 2506 48 20 4348.5 2516 c75b62fa-0a33-4da7-a5bd-03fd0068fd93 Length Measure the length of a curve. true 3ae51560-a358-4655-aba3-08bdf86d0fc2 Length Length 4256 2548 104 28 4306 2562 Curve to measure 7c56ae0f-6703-4b32-be52-6af0ede5c339 Curve Curve false 85038b7a-945c-4f71-941f-78812db35fab 1 4258 2550 33 24 4276 2562 Curve length 5aa52642-225e-442f-843f-1f051f77e0ac Length Length false 0 4321 2550 37 24 4341 2562 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true 70bc89ee-6b70-4472-b8e5-64a5c9cb84a7 List Item List Item 4271 2007 74 64 4319 2039 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list 7bf82eff-016f-4d39-a14d-5f7db1f92f0d List List false 5b746e58-f682-41be-a162-14fdf355725d 1 4273 2009 31 20 4290 2019 Item index ca0d5804-11e3-455a-bb0b-a2197b555dcd Index Index false 0 4273 2029 31 20 4290 2039 1 1 {0} 0 Wrap index to list bounds 771ab200-3a73-45b6-843c-ed1984ec3668 Wrap Wrap false 0 4273 2049 31 20 4290 2059 1 1 {0} false Item at {i'} 8e54098a-6065-4d4a-a69b-cd4b228d604f false Item i false 0 4334 2009 9 60 4340 2039 6b1bd8b2-47a4-4aa6-a471-3fd91c62a486 Dot Display Draw a collection of coloured dots true false 874e9e2e-591d-4afa-96d9-2baecebac97f Dot Display Dot Display 4266 1908 83 64 4335 1940 Dot location true f7168ed5-33bc-455e-b0fe-90817048b08b Point Point false 61036b5a-8186-48eb-b8e1-970dd55c24f4 1 4268 1910 52 20 4303.5 1920 Dot colour 4ccc0b44-470f-454d-8830-231a71a351f6 Colour Colour false 0 4268 1930 52 20 4303.5 1940 1 1 {0} 255;194;194;194 Dot size f4559c99-dad2-4da9-bcf8-9f54935de914 X/2 Size Size false 8e54098a-6065-4d4a-a69b-cd4b228d604f 1 4268 1950 52 20 4303.5 1960 1 1 {0} 1 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 5ee0c642-0a89-4957-83c5-74bafd3f7d48 Create Material Create Material 4476 -14123 144 104 4560 -14071 Colour of the diffuse channel cd5bc4d8-893b-4b05-946c-baead3230f7e Diffuse Diffuse false 0 4478 -14121 67 20 4513 -14111 1 1 {0} 255;232;232;232 Colour of the specular highlight d5a0cbb2-eb0a-4e4a-b39f-31339525b863 Specular Specular false 0 4478 -14101 67 20 4513 -14091 1 1 {0} 255;0;255;255 Emissive colour of the material 5e2687cd-424e-49b4-bef1-d7afec1abb1b Emission Emission false 0 4478 -14081 67 20 4513 -14071 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 6318290d-39c5-4c22-bb7d-0c8704d92d8f Transparency Transparency false 0 4478 -14061 67 20 4513 -14051 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 242612c9-861c-48eb-822b-b37357c5c7d1 Shine Shine false 0 4478 -14041 67 20 4513 -14031 1 1 {0} 100 Resulting material 3eac8c27-eb1a-4691-aae0-5834962df0ee Material Material false 0 4575 -14121 43 100 4598 -14071 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true 0943cba2-39fe-4125-9623-f70d3326971c Custom Preview Custom Preview 4507 -14186 82 44 4575 -14164 Geometry to preview true aaf13ab8-8091-4aac-949b-0328caac6257 Geometry Geometry false 9dd13fb8-1000-4255-abae-a29abaced959 1 4509 -14184 51 20 4536 -14174 The material override 71dbdb3c-5df4-4d92-a450-4df5a8e77cc4 Material Material false 3eac8c27-eb1a-4691-aae0-5834962df0ee 1 4509 -14164 51 20 4536 -14154 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 894c2165-9c4a-4fa0-a0bc-198755fb7e0f Evaluate Length Evaluate Length 4476 -14270 144 64 4550 -14238 Curve to evaluate c346d149-b7fb-412c-a009-137f4538e11d Curve Curve false 9dd13fb8-1000-4255-abae-a29abaced959 1 4478 -14268 57 20 4508 -14258 Length factor for curve evaluation b8532543-8f37-400b-bc04-c8f7f67a68b1 Length Length false 0 4478 -14248 57 20 4508 -14238 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 1eb81f65-f577-4e40-8ec3-4711034e0683 Normalized Normalized false 0 4478 -14228 57 20 4508 -14218 1 1 {0} true Point at the specified length 71f06c1d-d566-45ae-86ef-8987eb309b61 Point Point false 0 4565 -14268 53 20 4593 -14258 Tangent vector at the specified length ce73c10d-6ef1-4034-889e-01da701851c3 Tangent Tangent false 0 4565 -14248 53 20 4593 -14238 Curve parameter at the specified length 30d3880f-a685-46b8-b6f3-de16802c8b0d Parameter Parameter false 0 4565 -14228 53 20 4593 -14218 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 3c806f62-3e23-4451-8b4c-1d0ee1812fe8 Interpolate Interpolate 4485 -14374 125 84 4552 -14332 1 Interpolation points acd0ae42-6de9-479d-b234-71dc4c8c339a Vertices Vertices false 71f06c1d-d566-45ae-86ef-8987eb309b61 1 4487 -14372 50 20 4513.5 -14362 Curve degree f01152aa-b4aa-4a8e-be08-375e305f592d Degree Degree false 0 4487 -14352 50 20 4513.5 -14342 1 1 {0} 3 Periodic curve 1563a0db-98d6-4d37-aaa5-7621a6e12d17 Periodic Periodic false 0 4487 -14332 50 20 4513.5 -14322 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) f96f7dee-be9a-4b23-93bd-a8b7664eda86 KnotStyle KnotStyle false 0 4487 -14312 50 20 4513.5 -14302 1 1 {0} 2 Resulting nurbs curve f61f2111-5326-4648-ba8c-1d4458c660dd Curve Curve false 0 4567 -14372 41 26 4589 -14358.67 Curve length 1c905852-3b56-4242-b499-2e7e7a432d49 Length Length false 0 4567 -14346 41 27 4589 -14332 Curve domain ccc00b0b-d5a3-4fe5-99aa-0b660e38fd54 Domain Domain false 0 4567 -14319 41 27 4589 -14305.33 2162e72e-72fc-4bf8-9459-d4d82fa8aa14 Divide Curve Divide a curve into equal length segments true 9b1afeb1-d09b-4347-bfdf-3684ed6020e9 Divide Curve Divide Curve 2730 5559 125 64 2780 5591 Curve to divide 8c9779e4-652d-4829-8f16-6dd31fc15821 Curve Curve false d0820e9a-52d6-4e80-af35-61b08c2f010e 1 2732 5561 33 20 2750 5571 Number of segments f1e327a6-5efc-4dce-9e92-dd7898cf6072 Count Count false 566bcebd-f5e8-468a-9c11-d4b111aa2f0c 1 2732 5581 33 20 2750 5591 1 1 {0} 10 Split segments at kinks e3e208ab-47f8-4da4-8666-5fd2b2147baf Kinks Kinks false 0 2732 5601 33 20 2750 5611 1 1 {0} false 1 Division points a2188ea9-a064-4c1e-9cb2-1eff68e42006 Points Points false 0 2795 5561 58 20 2825.5 5571 1 Tangent vectors at division points 3adc8599-1af2-41cc-8236-86d9abed6c09 Tangents Tangents false 0 2795 5581 58 20 2825.5 5591 1 Parameter values at division points a9e3d460-fa20-477f-9b99-4150b54e9bac Parameters Parameters false 0 2795 5601 58 20 2825.5 5611 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 8f05758f-528d-4abe-a396-7016cab37bc7 Line SDL Line SDL 2740 5642 106 64 2804 5674 Line start point 2568b4db-9a85-4c73-a9b2-333f3b1cec89 Start Start false 0 2742 5644 47 20 2767 5654 1 1 {0} 0 0 0 Line tangent (direction) ec9873b6-74e3-42d4-a0cc-0323d6a4527c Direction Direction false 0 2742 5664 47 20 2767 5674 1 1 {0} 1 0 0 Line length f8e8ab59-815f-457e-b45d-540005a6e03c Length Length false 0 2742 5684 47 20 2767 5694 1 1 {0} 1 Line segment d0820e9a-52d6-4e80-af35-61b08c2f010e Line Line false 0 2819 5644 25 60 2833 5674 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 481c1239-c2c2-4b27-9952-e232e2177102 Line SDL Line SDL 2740 5371 106 64 2804 5403 Line start point 10f7649a-403a-4475-a644-c1effa89f4e5 Start Start false a2188ea9-a064-4c1e-9cb2-1eff68e42006 1 2742 5373 47 20 2767 5383 1 1 {0} 0 0 0 Line tangent (direction) d783b12f-3971-478a-a61f-7a88efca0f03 Direction Direction false 0 2742 5393 47 20 2767 5403 1 1 {0} 0 1 0 Line length e5f3cdd3-07ca-4730-875f-7ce54355206e Length Length false 6cd0d5e1-a76e-4157-bcb0-cfc84b7fb662 1 2742 5413 47 20 2767 5423 1 1 {0} 1 Line segment 9b049f30-c8fb-42e2-8753-3a7428f5fa04 Line Line false 0 2819 5373 25 60 2833 5403 7376fe41-74ec-497e-b367-1ffe5072608b Curvature Graph Draws Rhino Curvature Graphs. true 75434d61-d5bb-4800-bc6b-c6a0d8505f6c Curvature Graph Curvature Graph 4272 7111 71 64 4329 7143 Curve for Curvature graph display true ba1b9963-5e52-444a-8ce0-0d312a00a656 Curve Curve false 3174a38d-b561-4a42-8f8a-31608ef08ab4 1 4274 7113 40 20 4295.5 7123 Sampling density of the Graph efc842a1-618e-4f18-8e41-c618ee60a1f3 Density Density false 0 4274 7133 40 20 4295.5 7143 1 1 {0} 1 Scale of graph f3648ad9-3ac7-4f51-8b71-1e52739b775f Scale Scale false 0116a002-fce2-4e4c-9b8f-b77bf91c2f98 1 4274 7153 40 20 4295.5 7163 1 1 {0} 105 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 0116a002-fce2-4e4c-9b8f-b77bf91c2f98 Digit Scroller false 0 12 11 90.0 4183 7201 250 20 4183.743 7201.873 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 85c52366-0982-406d-b91c-f42517f13990 Relay false 64fde29a-f76c-4fc1-b003-229851718aab 1 4288 3213 40 16 4308 3221 2fcc2743-8339-4cdf-a046-a1f17439191d Remap Numbers Remap numbers into a new numeric domain true 48b8c9ef-cb3c-4009-9684-cd48d749b5ab Remap Numbers Remap Numbers 4250 5460 115 64 4305 5492 Value to remap b5993e70-779b-4583-bbb5-6362587acad0 Value Value false a99be150-24a5-4ed5-b21a-92a285b690b0 1 4252 5462 38 20 4272.5 5472 Source domain 276d7e42-20ad-4da8-8fc0-f069a844c500 Source Source false e05b6516-f34d-4422-b08d-a2c40e898aa1 1 4252 5482 38 20 4272.5 5492 1 1 {0} 0 1 Target domain 3f7124d4-dcea-40aa-a60d-137b8d5f00e9 Target Target false 0 4252 5502 38 20 4272.5 5512 1 1 {0} 0 1 Remapped number 2f63ad6a-50d9-44f8-b78a-6d8a197ff60b Mapped Mapped false 0 4320 5462 43 30 4343 5477 Remapped and clipped number d27f1f0d-ad67-4a25-922b-b171843d62d1 Clipped Clipped false 0 4320 5492 43 30 4343 5507 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true 044cb778-9490-4df3-9437-dd5b56522471 Bounds Bounds 4247 5542 122 28 4311 5556 1 Numbers to include in Bounds e44f4cb9-e713-4977-895d-ad88998e3db9 Numbers Numbers false a99be150-24a5-4ed5-b21a-92a285b690b0 1 4249 5544 47 24 4274 5556 Numeric Domain between the lowest and highest numbers in {N} e05b6516-f34d-4422-b08d-a2c40e898aa1 Domain Domain false 0 4326 5544 41 24 4348 5556 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects f51f5f2d-941f-41ef-b98f-20f88c0f615c afc9108c-9db9-441a-9c43-d667d1c32b78 58b4763e-c14f-475c-bea3-43146b32e6bd 569a059d-e90a-4cb8-86b1-26bffb26bfcb 80033146-5b4f-404e-b6dc-65dc753db8a1 145eea6c-da47-45fb-84e7-715c62530022 22307018-81e5-47cd-acd7-460831a3214c 48b8c9ef-cb3c-4009-9684-cd48d749b5ab 044cb778-9490-4df3-9437-dd5b56522471 c3830b7d-0858-410d-89db-9af833da8bf5 8c5832d9-8a03-428a-be62-bf491697ddaa a99be150-24a5-4ed5-b21a-92a285b690b0 7b44aa52-4415-46b6-9a6f-8acd8b4eb189 30d2560c-f4c6-4925-a86c-db46776c8475 8a2d2bc3-4a52-4743-b71a-fe728e225613 15 69e5ea57-7d81-4a09-8ef9-ccb25d57d505 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object a99be150-24a5-4ed5-b21a-92a285b690b0 Relay false 0a516f0c-a574-4254-9e94-e7e5df613da5 1 4288 5589 40 16 4308 5597 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 8c5832d9-8a03-428a-be62-bf491697ddaa Relay false f7d55e75-471d-4ce7-af53-e36391965052 1 4288 5233 40 16 4308 5241 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 30d2560c-f4c6-4925-a86c-db46776c8475 Multiplication Multiplication 4267 5305 82 44 4298 5327 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication 7feef527-fa5c-4d89-aa11-45026d59f487 A A true 14bd8a6a-5af9-451e-86ed-f6bf0cd39f40 1 4269 5307 14 20 4277.5 5317 Second item for multiplication 5690a543-f357-4f26-ad44-7255a70c6a8e B B true 7b44aa52-4415-46b6-9a6f-8acd8b4eb189 1 4269 5327 14 20 4277.5 5337 Result of multiplication f7d55e75-471d-4ce7-af53-e36391965052 Result Result false 0 4313 5307 34 40 4331.5 5327 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values b62f19ca-87db-46ca-8c31-ea7e17696ffe Number Slider false 0 4236 3360 150 20 4236 3360.007 6 1 0 1 0 0 0.020588 2fcc2743-8339-4cdf-a046-a1f17439191d Remap Numbers Remap numbers into a new numeric domain true 1c99c25f-7d5e-4c63-966a-976daadcec48 Remap Numbers Remap Numbers 4250 3495 115 64 4305 3527 Value to remap ea2236d0-ef35-487a-8adb-a97612168788 Value Value false d2418b07-7276-422b-95a0-4b06d47778e7 1 4252 3497 38 20 4272.5 3507 Source domain 1eae3eec-6538-43f5-9cd6-7333fec36f2e Source Source false 5b9c6745-344e-40ce-b703-687ff7634d53 1 4252 3517 38 20 4272.5 3527 1 1 {0} 0 1 Target domain 3d89d664-685b-4863-9292-8d672d390813 Target Target false 0 4252 3537 38 20 4272.5 3547 1 1 {0} -1 1 Remapped number eca5d769-7430-4ced-8208-a3645409d38b Mapped Mapped false 0 4320 3497 43 30 4343 3512 Remapped and clipped number d24d2594-3f8b-414d-abcd-9e0136a48398 Clipped Clipped false 0 4320 3527 43 30 4343 3542 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true b2e78911-4591-4927-ad08-76285da0ffdc Bounds Bounds 4247 3578 122 28 4311 3592 1 Numbers to include in Bounds cd807512-c9ea-4f30-b657-cc117e38ffb4 Numbers Numbers false d2418b07-7276-422b-95a0-4b06d47778e7 1 4249 3580 47 24 4274 3592 Numeric Domain between the lowest and highest numbers in {N} 5b9c6745-344e-40ce-b703-687ff7634d53 Domain Domain false 0 4326 3580 41 24 4348 3592 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects f51f5f2d-941f-41ef-b98f-20f88c0f615c afc9108c-9db9-441a-9c43-d667d1c32b78 58b4763e-c14f-475c-bea3-43146b32e6bd 569a059d-e90a-4cb8-86b1-26bffb26bfcb 80033146-5b4f-404e-b6dc-65dc753db8a1 145eea6c-da47-45fb-84e7-715c62530022 22307018-81e5-47cd-acd7-460831a3214c 1c99c25f-7d5e-4c63-966a-976daadcec48 b2e78911-4591-4927-ad08-76285da0ffdc c3830b7d-0858-410d-89db-9af833da8bf5 68798621-f2f5-4d68-ab21-b493ba17bc76 d2418b07-7276-422b-95a0-4b06d47778e7 b62f19ca-87db-46ca-8c31-ea7e17696ffe e95c3dbd-5e70-4ea6-85cd-43d87435112a 14 a47ffe02-4103-4c38-89e1-ede0b95c5a37 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object d2418b07-7276-422b-95a0-4b06d47778e7 Relay false ff2db1c1-6c13-43aa-8303-844eb49d3ae6 1 4288 3623 40 16 4308 3631 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 68798621-f2f5-4d68-ab21-b493ba17bc76 Relay false 12ea02f8-81c6-46a9-a43c-8a7adbaf384c 1 4288 3256 40 16 4308 3264 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true e95c3dbd-5e70-4ea6-85cd-43d87435112a Multiplication Multiplication 4267 3295 82 44 4298 3317 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication ac4a55df-2bb3-4fb0-958d-257c7d151572 A A true 32f0b35d-e913-4f06-b93a-97544ad5d63d 1 4269 3297 14 20 4277.5 3307 Second item for multiplication 1c3d4bbb-df13-478b-ad73-7162f665914a B B true b62f19ca-87db-46ca-8c31-ea7e17696ffe 1 4269 3317 14 20 4277.5 3327 Result of multiplication 12ea02f8-81c6-46a9-a43c-8a7adbaf384c Result Result false 0 4313 3297 34 40 4331.5 3317 75eb156d-d023-42f9-a85e-2f2456b8bcce Interpolate (t) Create an interpolated curve through a set of points with tangents. true ee60103a-50e1-4b3b-8a4b-e878472c2e33 true Interpolate (t) Interpolate (t) -247 11844 144 84 -161 11886 1 Interpolation points 5e0892dc-4a0f-40e2-9b7f-dd8496e6f8c7 true Vertices Vertices false ed880257-cb73-4b3d-bdba-4c629f2654a0 1 -245 11846 69 20 -209 11856 Tangent at start of curve 3baa2089-7b0b-4d73-b557-3897101d5075 true Tangent Start Tangent Start false 0 -245 11866 69 20 -209 11876 1 1 {0} 0.0625 0 0 Tangent at end of curve bca82fcd-eda9-4855-aae8-a31dd638ce75 true Tangent End Tangent End false 0 -245 11886 69 20 -209 11896 1 1 {0} 0 0 0 Knot spacing (0=uniform, 1=chord, 2=sqrtchord) a91d8d40-4371-494c-92f6-2daa4a0f5a61 true KnotStyle KnotStyle false 0 -245 11906 69 20 -209 11916 1 1 {0} 2 Resulting nurbs curve d1cad267-2905-49dd-863c-5ec306105c06 true Curve Curve false 0 -146 11846 41 26 -124 11859.33 Curve length d4e8f984-2d5d-4099-a64b-d7ee84c5d11f true Length Length false 0 -146 11872 41 27 -124 11886 Curve domain aae9e7c9-c70b-470e-967d-8965a1c4bdc0 true Domain Domain false 0 -146 11899 41 27 -124 11912.67 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 5edee65c-191d-441c-951b-b650d396ebf2 13678ac4-534d-449b-a806-30e2c5627bc4 ed880257-cb73-4b3d-bdba-4c629f2654a0 2e4f40d1-57e5-4c19-a99f-429ba726780a 2f263c7c-b3da-4f0a-83ba-1f5794b02f50 6232a007-7131-40f6-a98e-54bf4f5de0e2 be88ae4a-34e9-40cb-900e-04d4d78a0355 cd03c22d-ecbe-479f-b24c-a9fc71964bbd 8 fe0cca38-ef8c-474b-bb0d-65546deb0f8e Group 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true cd3a4016-c65b-423e-80fe-187b9b727aaa true Evaluate Length Evaluate Length -247 11676 144 64 -173 11708 Curve to evaluate ab270c13-482f-4dba-8f8c-667cf2bccfb0 true Curve Curve false d1cad267-2905-49dd-863c-5ec306105c06 1 -245 11678 57 20 -215 11688 Length factor for curve evaluation b77d2cd7-d893-4dc6-ba2d-b654d3634874 true Length Length false 0 -245 11698 57 20 -215 11708 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 2ce86cd5-5fbd-43f2-9e46-762f0ea8ad48 true Normalized Normalized false 0 -245 11718 57 20 -215 11728 1 1 {0} true Point at the specified length 6de6fb51-beda-4a9c-8bf6-44fc7c3a928c true Point Point false 0 -158 11678 53 20 -130 11688 Tangent vector at the specified length ff8aacdd-97f6-438f-817a-9a56a4536825 true Tangent Tangent false 0 -158 11698 53 20 -130 11708 Curve parameter at the specified length ab545d28-efad-4fdc-9b57-d09124c3720b true Parameter Parameter false 0 -158 11718 53 20 -130 11728 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true 510ca252-0b8c-434d-87ff-0bb19e02de48 true Mirror Mirror -244 11614 138 44 -176 11636 Base geometry 241d2c7e-0587-403a-8cbf-f467d610bc5d true Geometry Geometry true d1cad267-2905-49dd-863c-5ec306105c06 1 -242 11616 51 20 -215 11626 Mirror plane b73fb547-2a14-42af-9268-8741c8dfe5b9 true Plane Plane false 809cc5ac-960d-4e08-8dab-40148f659f12 1 -242 11636 51 20 -215 11646 1 1 {0} 0 0 0 0 1 0 0 0 1 Mirrored geometry 80d8dfba-b9c1-4d87-9fdf-6ebc1450d987 true Geometry Geometry false 0 -161 11616 53 20 -133 11626 Transformation data 77e150c8-9396-4806-94c3-34aa0a3dc3d5 true Transform Transform false 0 -161 11636 53 20 -133 11646 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true fcd5ed70-f2c4-4965-b73f-6ce7f3f76d7d true Line SDL Line SDL -228 11760 106 64 -164 11792 Line start point 7e2a4f3e-5d27-453e-a9f9-bf4f1f748e31 true Start Start false 6de6fb51-beda-4a9c-8bf6-44fc7c3a928c 1 -226 11762 47 20 -201 11772 Line tangent (direction) 442a7145-a8ad-4fe0-87aa-87496e7e5ece true Direction Direction false ff8aacdd-97f6-438f-817a-9a56a4536825 1 -226 11782 47 20 -201 11792 1 1 {0} 0 0 1 Line length 0a0ac73a-af02-46ff-b234-7ef64334bc2f true Length Length false 0 -226 11802 47 20 -201 11812 1 1 {0} 1 Line segment 809cc5ac-960d-4e08-8dab-40148f659f12 true Line Line false 0 -149 11762 25 60 -135 11792 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true 8b79d317-11af-4b0d-a24a-275e14631f8a true Join Curves Join Curves -234 11552 118 44 -171 11574 1 Curves to join 6cdce605-31fd-491c-ac36-766bfea93faa true Curves Curves false d1cad267-2905-49dd-863c-5ec306105c06 80d8dfba-b9c1-4d87-9fdf-6ebc1450d987 2 -232 11554 46 20 -207.5 11564 Preserve direction of input curves 0d3969ce-31e3-4f57-9696-c46ee1366602 true Preserve Preserve false 0 -232 11574 46 20 -207.5 11584 1 1 {0} false 1 Joined curves and individual curves that could not be joined. cf31e72b-6a90-4794-a19d-2be419d19aed true Curves Curves false 0 -156 11554 38 40 -135.5 11574 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true b725dfd1-cfa6-4e7c-9b1a-61cd5476e7ad true Evaluate Length Evaluate Length -247 11468 144 64 -173 11500 Curve to evaluate 38f6fc31-45bd-4a70-9b17-4bb06e38031f true Curve Curve false cf31e72b-6a90-4794-a19d-2be419d19aed 1 -245 11470 57 20 -215 11480 Length factor for curve evaluation 2bb72ac2-f495-44e3-a11a-a308c204bbcb true Length Length false 0 -245 11490 57 20 -215 11500 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 29839782-8065-4d8b-b1b7-a13bf9dbdc4e true Normalized Normalized false 0 -245 11510 57 20 -215 11520 1 1 {0} true Point at the specified length b39750aa-21ef-4a5a-8740-7fdd65d5b48e true Point Point false 0 -158 11470 53 20 -130 11480 Tangent vector at the specified length 372674e2-50b7-4bfb-ab1d-bb7e8b75c515 true Tangent Tangent false 0 -158 11490 53 20 -130 11500 Curve parameter at the specified length f5bb72c6-4e2d-47d4-a871-ce65caed868f true Parameter Parameter false 0 -158 11510 53 20 -130 11520 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 964cb3ac-1a1f-431e-8b84-0556874d46d4 true Rotate Rotate -244 11385 138 64 -176 11417 Base geometry a4f21410-70fe-46e7-98d7-8793224d8bde true Geometry Geometry true cf31e72b-6a90-4794-a19d-2be419d19aed 1 -242 11387 51 20 -215 11397 Rotation angle in radians c56df01d-4b47-4c8e-81ba-7057ced1d137 true Angle Angle false 0 false -242 11407 51 20 -215 11417 1 1 {0} 3.1415926535897931 Rotation plane d9195291-084b-4fd6-b715-ff7af59871b1 true Plane Plane false b39750aa-21ef-4a5a-8740-7fdd65d5b48e 1 -242 11427 51 20 -215 11437 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 4b7f81ba-718b-415d-8e5a-3c633d24346e true Geometry Geometry false 0 -161 11387 53 30 -133 11402 Transformation data 3a5d1ebf-3ae7-46da-8628-59f4ad4e7905 true Transform Transform false 0 -161 11417 53 30 -133 11432 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true 226f21c6-4fc4-4167-b7fd-59d96537bf6d true Join Curves Join Curves -234 11322 118 44 -171 11344 1 Curves to join fabf4137-ead8-4c4a-a166-95a58b4c0bad true Curves Curves false cf31e72b-6a90-4794-a19d-2be419d19aed 4b7f81ba-718b-415d-8e5a-3c633d24346e 2 -232 11324 46 20 -207.5 11334 Preserve direction of input curves 6d100315-3d62-488c-be52-bbab983fd914 true Preserve Preserve false 0 -232 11344 46 20 -207.5 11354 1 1 {0} false 1 Joined curves and individual curves that could not be joined. 04d2c425-92a8-4d5b-bf08-b063e28d5edf true Curves Curves false 0 -156 11324 38 40 -135.5 11344 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects ee60103a-50e1-4b3b-8a4b-e878472c2e33 cd3a4016-c65b-423e-80fe-187b9b727aaa 510ca252-0b8c-434d-87ff-0bb19e02de48 fcd5ed70-f2c4-4965-b73f-6ce7f3f76d7d 8b79d317-11af-4b0d-a24a-275e14631f8a b725dfd1-cfa6-4e7c-9b1a-61cd5476e7ad 964cb3ac-1a1f-431e-8b84-0556874d46d4 226f21c6-4fc4-4167-b7fd-59d96537bf6d 6e32a2ca-5cb3-40d1-bb45-4d62304d533d 9 a265b490-ccac-453e-82c7-8ff5a0e23517 Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 44a14ffd-ef9a-45e3-b6f8-a5425130a8bf true Panel false 0 b998e5cb-ac9b-472c-bca9-b12d2a814ca3 1 Double click to edit panel content… -247 12706 145 20 0 0 0 -246.8201 12706.5 255;255;255;255 false false true false false true d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 6e32a2ca-5cb3-40d1-bb45-4d62304d533d true Curve Curve false 04d2c425-92a8-4d5b-bf08-b063e28d5edf 1 -199 11286 50 24 -174 11298.23 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 6e32a2ca-5cb3-40d1-bb45-4d62304d533d 1 c09e5ae2-030b-42b1-a084-044710815d2e Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values e8733214-56ad-40ea-83a2-5e5d6fee430d true Panel false 0 0 0.0000053644183496292 -394 12797 439 104 0 0 0 -393.022 12797.16 255;255;255;255 false false true false false true 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 26a2087c-6b34-4cba-a4ca-cfd8860323fa true Evaluate Length Evaluate Length -247 11196 144 64 -173 11228 Curve to evaluate a966cf4a-5ec5-41d3-82f6-4fd16d9818b3 true Curve Curve false 04d2c425-92a8-4d5b-bf08-b063e28d5edf 1 -245 11198 57 20 -215 11208 Length factor for curve evaluation 17838106-ce01-4b50-8dce-2b29ead2dae4 true Length Length false 0 -245 11218 57 20 -215 11228 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) fb8f5ae1-7d69-43b3-8269-948425a13989 true Normalized Normalized false 0 -245 11238 57 20 -215 11248 1 1 {0} true Point at the specified length d4d5ac12-1a31-4022-8d91-9b0deff373a2 true Point Point false 0 -158 11198 53 20 -130 11208 Tangent vector at the specified length c87ee5d0-529a-44f0-9205-ac78add5f358 true Tangent Tangent false 0 -158 11218 53 20 -130 11228 Curve parameter at the specified length 3779e032-21bf-4d31-a613-b3331d3baf0f true Parameter Parameter false 0 -158 11238 53 20 -130 11248 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 7b796d98-9d29-4777-978b-4e0f43e188d2 true Expression Expression -272 10974 194 28 -172 10988 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 872253d1-d04f-4f48-88b0-5a56b0b2f8b6 true Variable O O true 429b9784-3991-40dd-b4fc-7324008c5239 1 -270 10976 14 24 -261.5 10988 Result of expression 44c4e463-8e39-49cf-b1e3-7f0a2ce242a0 true Result false 0 -89 10976 9 24 -83 10988 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 1b261338-78de-4ea1-819d-e804feffeeca true Deconstruct Deconstruct -241 11108 132 64 -194 11140 Input point 92303b98-af3c-4290-b699-a801dc759d98 true Point Point false d4d5ac12-1a31-4022-8d91-9b0deff373a2 1 -239 11110 30 60 -222.5 11140 Point {x} component 429b9784-3991-40dd-b4fc-7324008c5239 true X component X component false 0 -179 11110 68 20 -143.5 11120 Point {y} component d92a6eb8-3adc-42ab-b1dd-cc6fd5ae1b75 true Y component Y component false 0 -179 11130 68 20 -143.5 11140 Point {z} component 693d19df-77a5-490c-a58d-735f7e092501 true Z component Z component false 0 -179 11150 68 20 -143.5 11160 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values c0c89fc9-9439-46ab-9f7e-31f42bf53c28 true Panel false 0 44c4e463-8e39-49cf-b1e3-7f0a2ce242a0 1 Double click to edit panel content… -254 10942 160 20 0 0 0 -253.5063 10942.22 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 5086f2ab-1b64-44ce-8ebb-d3bf4b9ebde8 true Expression Expression -272 10888 194 28 -172 10902 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 40d84ac4-901b-4025-995e-5a7b2cd3b051 true Variable O O true d92a6eb8-3adc-42ab-b1dd-cc6fd5ae1b75 1 -270 10890 14 24 -261.5 10902 Result of expression df1a2729-a520-499a-9fd0-a8b65794d183 true Result false 0 -89 10890 9 24 -83 10902 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values bfb9c742-ccba-40e2-9d19-47e55cf92c4b true Panel false 0 df1a2729-a520-499a-9fd0-a8b65794d183 1 Double click to edit panel content… -254 10853 160 20 0 0 0 -253.5063 10853.8 255;255;255;255 false false true false false true 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 3a3cdcad-cb6e-42a2-b26f-eabf35d1c224 true Division Division -216 10786 82 44 -185 10808 Item to divide (dividend) 26ba875e-d26b-4715-9873-17f18d0efde2 true A A false c0c89fc9-9439-46ab-9f7e-31f42bf53c28 1 -214 10788 14 20 -205.5 10798 Item to divide with (divisor) ed06cc38-fdf9-4b45-ab41-3d6287ca0a47 true B B false bfb9c742-ccba-40e2-9d19-47e55cf92c4b 1 -214 10808 14 20 -205.5 10818 The result of the Division 616fbb74-cb75-40af-8a97-d383c34f36ba true Result Result false 0 -170 10788 34 40 -151.5 10808 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 6243360b-4cd0-4b51-bf13-b41a10039126 true Panel false 0 b998e5cb-ac9b-472c-bca9-b12d2a814ca3 1 Double click to edit panel content… -255 10706 160 20 0 0 0 -254.2581 10706.28 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 5d416a89-7386-4795-804d-85aad6db5f35 true Expression Expression -272 10739 194 28 -172 10753 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable bb19316b-746a-4f27-8652-2823c6953f72 true Variable O O true 616fbb74-cb75-40af-8a97-d383c34f36ba 1 -270 10741 14 24 -261.5 10753 Result of expression 8261f4ba-6e49-4a2c-a90d-63b86dddb45b true Result false 0 -89 10741 9 24 -83 10753 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object b998e5cb-ac9b-472c-bca9-b12d2a814ca3 true Relay false 8261f4ba-6e49-4a2c-a90d-63b86dddb45b 1 -195 10664 40 16 -175 10672 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true 1bcfcd5d-8614-4116-bfb8-776af73c4a1a true Addition Addition -216 10601 82 44 -185 10623 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition a0ed3f37-6fa3-45a8-858d-063127ff8a9b true A A true bfb9c742-ccba-40e2-9d19-47e55cf92c4b 1 -214 10603 14 20 -205.5 10613 Second item for addition 01fa2527-fed9-4679-8d0b-13154e15b8aa true B B true c0c89fc9-9439-46ab-9f7e-31f42bf53c28 1 -214 10623 14 20 -205.5 10633 Result of addition 2e5b0884-c422-418c-985d-a3d108281c45 true Result Result false 0 -170 10603 34 40 -151.5 10623 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 7b988f86-3299-4057-83e2-a2dfad7edd14 true Division Division -216 10451 82 44 -185 10473 Item to divide (dividend) 7af19144-101f-4fd7-b4ae-b0ec49544cb3 true A A false 7996ffe7-23e4-4271-8379-50fdc86d5ee4 1 -214 10453 14 20 -205.5 10463 Item to divide with (divisor) 2e88e802-2d32-449a-955c-da6d6f7cd324 true B B false 0 -214 10473 14 20 -205.5 10483 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 The result of the Division 544e5366-cc02-4c90-87a2-fee9bebd91ea true Result Result false 0 -170 10453 34 40 -151.5 10473 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 43169f25-9f97-4cc6-a9fb-70b22569a90b true Expression Expression -272 10403 194 28 -172 10417 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable fc92cf4d-201d-4cfa-8e79-eb21e2742cc5 true Variable O O true 544e5366-cc02-4c90-87a2-fee9bebd91ea 1 -270 10405 14 24 -261.5 10417 Result of expression 1f548497-6dc7-4aab-896a-5843cdcb8ea7 true Result false 0 -89 10405 9 24 -83 10417 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values d14d45ee-9a5e-435f-8e00-0ea848456dec true Panel false 0 1f548497-6dc7-4aab-896a-5843cdcb8ea7 1 Double click to edit panel content… -254 10370 160 20 0 0 0 -253.5063 10370.14 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 7996ffe7-23e4-4271-8379-50fdc86d5ee4 true Panel false 0 12e30454-d44f-4207-9e27-41c21b4ca838 1 Double click to edit panel content… -254 10522 160 20 0 0 0 -253.5063 10522.05 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 35de8717-4eea-481e-bcfd-f9b50b3335bb true Expression Expression -272 10554 194 28 -172 10568 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 71cf5f71-6390-4db3-b49d-a155bdb8635d true Variable O O true 2e5b0884-c422-418c-985d-a3d108281c45 1 -270 10556 14 24 -261.5 10568 Result of expression 12e30454-d44f-4207-9e27-41c21b4ca838 true Result false 0 -89 10556 9 24 -83 10568 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 231d76fe-2789-4a1c-ac87-314c5549f831 true Scale Scale -252 10280 154 64 -168 10312 Base geometry 2f89036f-a302-4c26-8c58-a257774f9004 true Geometry Geometry true 6e32a2ca-5cb3-40d1-bb45-4d62304d533d 1 -250 10282 67 20 -207 10292 Center of scaling 1813bed0-02d6-4db0-b77f-366a4a290b1c true Center Center false 0 -250 10302 67 20 -207 10312 1 1 {0} 0 0 0 Scaling factor 68c9537b-eb7c-480a-b5ee-0770d1eae50a 1/X true Factor Factor false d14d45ee-9a5e-435f-8e00-0ea848456dec 1 -250 10322 67 20 -207 10332 1 1 {0} 0.5 Scaled geometry ecb3b5d5-ccc4-415b-bbfe-d76dab0e4a86 true Geometry Geometry false 0 -153 10282 53 30 -125 10297 Transformation data d7ce92c8-46c2-463c-99cf-b2526261e09a true Transform Transform false 0 -153 10312 53 30 -125 10327 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 09336dd8-3c4b-476c-b62d-d3b399ef2780 true Curve Curve false ecb3b5d5-ccc4-415b-bbfe-d76dab0e4a86 1 -198 9818 50 24 -173.5334 9830.496 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true f14968fc-8c03-4bf0-9731-e104bcf98382 true Expression Expression -272 11061 194 28 -172 11075 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable b2b86f5d-c078-454b-829f-05dc9c8931b7 true Variable O O true 693d19df-77a5-490c-a58d-735f7e092501 1 -270 11063 14 24 -261.5 11075 Result of expression 58bc3cd2-b8a5-4b29-9bc0-8c5da1c2d852 true Result false 0 -89 11063 9 24 -83 11075 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values ab15d115-f73b-4d08-9382-99436259ff41 true Panel false 0 58bc3cd2-b8a5-4b29-9bc0-8c5da1c2d852 1 Double click to edit panel content… -254 11027 160 20 0 0 0 -253.6343 11027.99 255;255;255;255 false false true false false true 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true c4aa530e-cb9a-4448-b893-7d5534deb0e5 true Evaluate Length Evaluate Length -247 10197 144 64 -173 10229 Curve to evaluate 2d7bcaf1-a4ba-425f-968c-c962f2bb6c85 true Curve Curve false ecb3b5d5-ccc4-415b-bbfe-d76dab0e4a86 1 -245 10199 57 20 -215 10209 Length factor for curve evaluation 1a3512d3-14c6-484e-a725-8ee8fb9d44d0 true Length Length false 0 -245 10219 57 20 -215 10229 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 1efbe105-5434-4501-b1b8-0f2cf92ec77f true Normalized Normalized false 0 -245 10239 57 20 -215 10249 1 1 {0} true Point at the specified length 53e8fe8a-51ac-4ae0-a3c1-fb0e6e7d6a7e true Point Point false 0 -158 10199 53 20 -130 10209 Tangent vector at the specified length 693f19a5-23b5-40d2-8501-3a342be28e63 true Tangent Tangent false 0 -158 10219 53 20 -130 10229 Curve parameter at the specified length 4d17e914-bbe1-481c-8fe9-a2528e296ff9 true Parameter Parameter false 0 -158 10239 53 20 -130 10249 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 18765130-12d0-4e81-bb07-50c6d539a331 true Expression Expression -272 9980 194 28 -172 9994 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 7a7c3697-e63a-45b2-bd06-037d2f29b817 true Variable O O true fc7c12b9-2081-4dd6-a05e-919a971f9006 1 -270 9982 14 24 -261.5 9994 Result of expression e5c82fa4-8603-4911-9120-70602d5d82d0 true Result false 0 -89 9982 9 24 -83 9994 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true f0b3f7a9-a89a-41f9-8cd9-128e13fc28e9 true Deconstruct Deconstruct -241 10114 132 64 -194 10146 Input point fd02f4e8-674d-438a-82b2-23a5bbbfc706 true Point Point false 53e8fe8a-51ac-4ae0-a3c1-fb0e6e7d6a7e 1 -239 10116 30 60 -222.5 10146 Point {x} component fc7c12b9-2081-4dd6-a05e-919a971f9006 true X component X component false 0 -179 10116 68 20 -143.5 10126 Point {y} component 239975f6-acba-4a08-91ad-5e51ab86046c true Y component Y component false 0 -179 10136 68 20 -143.5 10146 Point {z} component f0e11f46-3d6e-4e37-b2c1-807face13f86 true Z component Z component false 0 -179 10156 68 20 -143.5 10166 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 0f3c6a22-bd04-4fde-9840-bae5878a8350 true Panel false 0 e5c82fa4-8603-4911-9120-70602d5d82d0 1 Double click to edit panel content… -255 9948 160 20 0 0 0 -254.2507 9948.498 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 86e6e907-dd69-4742-a0dc-d9d47d443ec0 true Expression Expression -272 9894 194 28 -172 9908 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 54334a24-036b-4ac5-b49b-69c3f3f22e89 true Variable O O true 239975f6-acba-4a08-91ad-5e51ab86046c 1 -270 9896 14 24 -261.5 9908 Result of expression 0e99674f-be62-4152-b526-bf587f10b195 true Result false 0 -89 9896 9 24 -83 9908 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values f3d39ea9-6927-457d-ada0-8a62ba409d0a true Panel false 0 0e99674f-be62-4152-b526-bf587f10b195 1 Double click to edit panel content… -255 9861 160 20 0 0 0 -254.2507 9861.789 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true f8227a59-b3bb-490c-a577-e7486021c81f true Expression Expression -272 10066 194 28 -172 10080 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable c47913c4-1cd6-40fc-9d28-6bb1a5a7a9aa true Variable O O true f0e11f46-3d6e-4e37-b2c1-807face13f86 1 -270 10068 14 24 -261.5 10080 Result of expression 77239e3d-e6f7-4fea-bfcc-6de786eddc7e true Result false 0 -89 10068 9 24 -83 10080 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 013e4f07-7992-470f-8e86-91ffaa46f551 true Panel false 0 77239e3d-e6f7-4fea-bfcc-6de786eddc7e 1 Double click to edit panel content… -254 10034 160 20 0 0 0 -253.5063 10034.71 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values ab1114a9-a08d-4c5d-b8cd-f951279bbcf5 true Panel false 0 0 0 256 0.0013733120705119695 0 4096 0.0000053644183496292 -364 12921 379 104 0 0 0 -363.4622 12921.74 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values a850910a-8d6e-49e7-b143-923ad41fdb78 true Panel false 1 ad2d44fb-710b-47ac-aa9a-d583f9f0b202 1 Double click to edit panel content… -352 11993 355 100 0 0 0 -351.8826 11993.72 255;255;255;255 true true true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 22991b0e-0e2a-4ba1-a379-96fc369abcee true Expression Expression -272 12100 194 28 -172 12114 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 8350c149-7b8d-4513-9da7-d9fe62d90ee5 true Variable O O true 387adaa7-7978-4287-b8f0-fb7ef543c454 1 -270 12102 14 24 -261.5 12114 Result of expression ad2d44fb-710b-47ac-aa9a-d583f9f0b202 true Result false 0 -89 12102 9 24 -83 12114 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers e02db1d3-13e3-4587-a331-19c777c3db08 true Number Number false 2f263c7c-b3da-4f0a-83ba-1f5794b02f50 1 -199 13211 50 24 -174.0857 13223.4 2162e72e-72fc-4bf8-9459-d4d82fa8aa14 Divide Curve Divide a curve into equal length segments true 64fca20e-296f-4f79-aa7f-c53c5f88866e true Divide Curve Divide Curve -3550 15901 141 64 -3484 15933 Curve to divide 1b6b6509-be85-4df8-8cd8-fc7585d8fed2 true Curve Curve false d503ccca-e824-4afd-9579-51924ddeda66 1 -3548 15903 49 20 -3514 15913 Number of segments a5718a38-f8fc-4e21-bc6c-347bef03792e X/2 true Count Count false 47d36a7d-3cd2-4782-9f53-9f4088b19d4b 1 -3548 15923 49 20 -3514 15933 1 1 {0} 10 Split segments at kinks 9bfed599-46fa-4ecf-b3a1-348888166b9d true Kinks Kinks false 0 -3548 15943 49 20 -3514 15953 1 1 {0} false 1 Division points 233fdd06-e7d5-4a0c-a4d7-8f0b3d0d4612 true Points Points false 0 -3469 15903 58 20 -3438.5 15913 1 Tangent vectors at division points fee105b6-3bc7-4a27-9c25-60d8b44db38c true Tangents Tangents false 0 -3469 15923 58 20 -3438.5 15933 1 Parameter values at division points a0a908c6-1192-411c-a22a-5f77810ee1b7 true Parameters Parameters false 0 -3469 15943 58 20 -3438.5 15953 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 9b2a37bb-1555-4475-9897-d38d08b21505 true Line SDL Line SDL -3540 15983 122 64 -3460 16015 Line start point 5e507055-cbe2-432a-bbce-fc424c470038 true Start Start false 0 -3538 15985 63 20 -3497 15995 1 1 {0} 0 0 0 Line tangent (direction) 3d0e9370-3dae-4ec7-9308-a63c1461b179 true Direction Direction false 0 -3538 16005 63 20 -3497 16015 1 1 {0} 1 0 0 Line length 8dae98a7-0e9b-4185-8c60-8a77623f52e4 X/2 true Length Length false 0 -3538 16025 63 20 -3497 16035 1 1 {0} 1 Line segment d503ccca-e824-4afd-9579-51924ddeda66 true Line Line false 0 -3445 15985 25 60 -3431 16015 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 27ab2024-18fc-4363-8275-015d2368f9de true Line SDL Line SDL -3532 15819 106 64 -3468 15851 Line start point 78014ac8-12a2-4fa9-8a65-e18ceda7f175 true Start Start false 233fdd06-e7d5-4a0c-a4d7-8f0b3d0d4612 1 -3530 15821 47 20 -3505 15831 1 1 {0} 0 0 0 Line tangent (direction) 6f93dfe1-d4ed-43b8-8d3f-ca0a604718fe true Direction Direction false 0 -3530 15841 47 20 -3505 15851 1 1 {0} 0 1 0 Line length d817c66f-cbcc-4261-8bae-dd8ed1a3db70 true Length Length false 0 -3530 15861 47 20 -3505 15871 1 1 {0} 1 Line segment 38f60d72-95b9-474c-a523-e27fbbd26166 true Line Line false 0 -3453 15821 25 60 -3439 15851 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 26be2798-ae8b-4fb0-b7a2-e9f1edff6049 true Panel false 1 377c7605-11b6-4673-94de-cc5176b48b51 1 Double click to edit panel content… -3403 14183 194 292 0 0 0 -3402.743 14183.99 255;255;255;255 true true true false false C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT true 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 6525660d-29ee-4269-9203-539923b24a8e true Deconstruct Deconstruct -3553 14599 148 64 -3506 14631 Input point 424e3fe1-4f4b-43de-b9bc-242d9800f378 true Point Point false e370e985-4ce7-46a6-9272-61e578a1277f 1 -3551 14601 30 60 -3534.5 14631 Point {x} component 0b7cd3a8-2836-435f-b6ae-6abbe8053e01 true 2 X component X component false 0 -3491 14601 84 20 -3455.5 14611 Point {y} component ccd28879-e08a-4aaa-95c3-f7812fa57d94 true 2 Y component Y component false 0 -3491 14621 84 20 -3455.5 14631 Point {z} component d73bd698-c2ba-47ab-a022-c8f6738c678c true Z component Z component false 0 -3491 14641 84 20 -3455.5 14651 079bd9bd-54a0-41d4-98af-db999015f63d VB Script A VB.NET scriptable component true 708c9f15-3d1c-406b-8e76-cab318b67adc true VB Script TxtWriter true 0 If activate Then Dim i As Integer Dim aryText(4) As String aryText(0) = "Mary WriteLine" aryText(1) = "Had" aryText(2) = "Another" aryText(3) = "Little" aryText(4) = "One" ' the data is appended to the file. If file doesnt exist, a new file is created Dim objWriter As New System.IO.StreamWriter(filePath, append) For i = 0 To data.Count - 1 objWriter.WriteLine(data(i)) Next objWriter.Close() End If If clearFile Then Dim objWriter As New System.IO.StreamWriter(filePath, False) objWriter.Close() End If -3537 14050 115 104 -3461 14102 5 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 2 3ede854e-c753-40eb-84cb-b48008f14fd4 8ec86459-bf01-4409-baee-174d0d2b13d0 true Script Variable filePath 5e6166c1-8f32-4c96-a7ef-94db1e35eca9 true filePath filePath true 0 true 936ab982-35fa-4088-8bfe-32405957deea 1 abf1fd1b-dbe5-4be6-9832-d8dc105e207f -3535 14052 59 20 -3496 14062 1 true Script Variable data 2b82532a-02b6-40b4-acbc-7bf91bc4da68 true 1 data data true 1 true 26be2798-ae8b-4fb0-b7a2-e9f1edff6049 1 abf1fd1b-dbe5-4be6-9832-d8dc105e207f -3535 14072 59 20 -3496 14082 true Script Variable append aca517b8-0c59-4e5d-af97-a06b3482f5f5 true append append true 0 true 0 3cda2745-22ac-4244-9b04-97a5255fa60f -3535 14092 59 20 -3496 14102 true Script Variable activate db3c8491-f6fb-47a1-b7b0-99f86cb86ca5 true activate activate true 0 true 1fc4e7bf-6bb1-4e51-9bc5-7533ebe68ad0 1 3cda2745-22ac-4244-9b04-97a5255fa60f -3535 14112 59 20 -3496 14122 true Script Variable clearFile 3f95a4f7-45ac-4a38-8791-86d6583fade9 true clearFile clearFile true 0 true 0 3cda2745-22ac-4244-9b04-97a5255fa60f -3535 14132 59 20 -3496 14142 Print, Reflect and Error streams 0d196d2d-27eb-4232-8ac3-43330fd192b5 true out out false 0 -3446 14052 22 50 -3433.5 14077 Output parameter A cdf76903-298c-4cd4-bc34-601277df82d6 true A A false 0 -3446 14102 22 50 -3433.5 14127 06953bda-1d37-4d58-9b38-4b3c74e54c8f File Path Contains a collection of file paths false All files|*.* 936ab982-35fa-4088-8bfe-32405957deea true File Path File Path false 0 -3501 14183 50 24 -3476.364 14195.27 1 1 {0} false C:\IICSA.O____48361_EDIWID_1_TNEMERCNI____TNEIDARG_PUKOOL_ROLOC_DIOMGIS_ERUTAWRUC_RAENIL_NOITISNART_EGDE_LUF_EKUN____O____NUKE_FUL_EDGE_TRANSITION_LINEAR_CURWATURE_SIGMOID_COLOR_LOOKUP_GRADIENT____INCREMENT_1_DIWIDE_16384____O.ASCII a8b97322-2d53-47cd-905e-b932c3ccd74e Button Button object with two values False True 1fc4e7bf-6bb1-4e51-9bc5-7533ebe68ad0 true Button false 0 -3512 14009 66 22 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true f7cc57e0-6e1c-4e8f-aa0e-ee3adb1d2f25 true Curve Curve false e15c0da3-15dc-4bcb-8939-2c5ec5698b15 1 -2054 16291 50 24 -2029.867 16303.28 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 391fa384-4978-4146-9509-512cbdc302c5 true Evaluate Length Evaluate Length -2114 16194 160 64 -2024 16226 Curve to evaluate e2627c34-f2b2-4092-bf76-a9749b13996a true Curve Curve false f7cc57e0-6e1c-4e8f-aa0e-ee3adb1d2f25 1 -2112 16196 73 20 -2066 16206 Length factor for curve evaluation 728fac84-864b-4c8a-82a7-06415b3356cd true 1 Length Length false 0 -2112 16216 73 20 -2066 16226 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 72cac29d-b8f9-4681-9eaf-eea5c1b08077 true Normalized Normalized false 0 -2112 16236 73 20 -2066 16246 1 1 {0} true Point at the specified length fff8fda2-863f-489e-8499-7ed0fd9118e8 true Point Point false 0 -2009 16196 53 20 -1981 16206 Tangent vector at the specified length 0fd64b62-df1b-4ff8-8372-a03fc9fd689e true Tangent Tangent false 0 -2009 16216 53 20 -1981 16226 Curve parameter at the specified length 8165b44d-a61d-47a1-aceb-28259c1254c4 true Parameter Parameter false 0 -2009 16236 53 20 -1981 16246 fad344bc-09b1-4855-a2e6-437ef5715fe3 YZ Plane World YZ plane. true 05c68ab6-a4a6-4531-b120-cd1f09e2ec7b true YZ Plane YZ Plane -2083 16147 98 28 -2033 16161 Origin of plane d834e7d0-a9f3-4861-9f50-7030de4cfa24 true Origin Origin false fff8fda2-863f-489e-8499-7ed0fd9118e8 1 -2081 16149 33 24 -2063 16161 1 1 {0} 0 0 0 World YZ plane d0ae266b-1682-491c-bee6-76496606fcb1 true Plane Plane false 0 -2018 16149 31 24 -2001 16161 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true 57c99f13-3937-47f8-9b4a-59d033ef07aa true Mirror Mirror -2103 16085 138 44 -2035 16107 Base geometry e1372fd8-1f6b-46f6-aff4-1497de199bf0 true Geometry Geometry true f7cc57e0-6e1c-4e8f-aa0e-ee3adb1d2f25 1 -2101 16087 51 20 -2074 16097 Mirror plane b67b11e5-f515-4970-ba07-e4efad992b88 true Plane Plane false d0ae266b-1682-491c-bee6-76496606fcb1 1 -2101 16107 51 20 -2074 16117 1 1 {0} 0 0 0 0 1 0 0 0 1 Mirrored geometry af90f00b-316f-4b79-b6d5-c26969e27a7d true Geometry Geometry false 0 -2020 16087 53 20 -1992 16097 Transformation data dfa3bfe2-d964-4ef7-b3d4-3dd2cdc2ba81 true Transform Transform false 0 -2020 16107 53 20 -1992 16117 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true 8e038213-7c24-4b93-8b8f-587867a7e2ae true Join Curves Join Curves -2093 16023 118 44 -2030 16045 1 Curves to join 3f04730d-e061-4ce5-870b-f5dd685fc3b5 true Curves Curves false f7cc57e0-6e1c-4e8f-aa0e-ee3adb1d2f25 af90f00b-316f-4b79-b6d5-c26969e27a7d 2 -2091 16025 46 20 -2066.5 16035 Preserve direction of input curves 830e99be-e7eb-42d0-8674-e8ada6194bbb true Preserve Preserve false 0 -2091 16045 46 20 -2066.5 16055 1 1 {0} false 1 Joined curves and individual curves that could not be joined. 0062ed90-a595-40fe-804c-2efd80987eb9 true Curves Curves false 0 -2015 16025 38 40 -1994.5 16045 e87db220-a0a0-4d67-a405-f97fd14b2d7a Linear Array Create a linear array of geometry. true 87b5a07c-0959-48af-b3ea-1850aab4001c true Linear Array Linear Array -2103 15941 138 64 -2035 15973 Base geometry 6c39ac1f-6d7e-4afa-9784-7505cec6b5aa true Geometry Geometry true 0062ed90-a595-40fe-804c-2efd80987eb9 1 -2101 15943 51 20 -2074 15953 Linear array direction and interval 86849e41-c369-4e2e-8e88-3e49d728480a true Direction Direction false 0 -2101 15963 51 20 -2074 15973 1 1 {0} 2 0 0 Number of elements in array. a696f77a-9e2a-454c-81dc-0594079dda9a true Count Count false 0 -2101 15983 51 20 -2074 15993 1 1 {0} 2 1 Arrayed geometry d1c74620-5515-4d7d-8719-106dac105140 true Geometry Geometry false 0 -2020 15943 53 30 -1992 15958 1 Transformation data 52055a79-39cb-4026-8925-151ee0a65b01 true Transform Transform false 0 -2020 15973 53 30 -1992 15988 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true 49c9c7fd-8ff8-4fd2-812a-32a26c6caa11 true Join Curves Join Curves -2093 15879 118 44 -2030 15901 1 Curves to join aeed4693-6839-40fe-81f1-dba3eb2d45c3 true Curves Curves false d1c74620-5515-4d7d-8719-106dac105140 1 -2091 15881 46 20 -2066.5 15891 Preserve direction of input curves 863f4c8d-3241-49ad-b908-ee3f8d14f244 true Preserve Preserve false 0 -2091 15901 46 20 -2066.5 15911 1 1 {0} false 1 Joined curves and individual curves that could not be joined. 8242d54a-3ffe-4e4a-8c0f-855f7d7f23a0 true Curves Curves false 0 -2015 15881 38 40 -1994.5 15901 ccfd6ba8-ecb1-44df-a47e-08126a653c51 Curve Domain Measure and set the curve domain true 2e2550a6-0f32-4b90-92f0-a88401c43eb5 true Curve Domain Curve Domain -2092 15634 116 44 -2034 15656 Curve to measure/modify 6f0b21df-7243-4a6f-880d-4bf9ec4d5295 true Curve Curve false a4a42a27-5fc4-490b-8303-ab18a562494f 1 -2090 15636 41 20 -2068 15646 Optional domain, if omitted the curve will not be modified. 495e6c26-65b4-4514-9d7a-d835d5c8891c true Domain Domain true 0 -2090 15656 41 20 -2068 15666 Curve with new domain. ed3ec7e8-0919-40b1-ba85-4d0a5c4a6884 true Curve Curve false 0 -2019 15636 41 20 -1997 15646 Domain of original curve. 27c34c8f-207d-457e-b731-e3b60290a9db true Domain Domain false 0 -2019 15656 41 20 -1997 15666 429cbba9-55ee-4e84-98ea-876c44db879a Sub Curve Construct a curve from the sub-domain of a base curve. true 7b213b96-e17b-456d-ad30-40abe337bbab true Sub Curve Sub Curve -2096 15448 124 44 -2022 15470 Base curve 906f829e-51de-4f4a-9ff3-4a267aeec2d3 true Base curve Base curve false ed3ec7e8-0919-40b1-ba85-4d0a5c4a6884 1 -2094 15450 57 20 -2064 15460 Sub-domain to extract 8671c79d-4307-409c-ac8e-0d2a445dd560 true Domain Domain false 8eb97c76-eb9f-48c8-9612-d1b43ebbd702 1 -2094 15470 57 20 -2064 15480 Resulting sub curve e28d5d2e-89dd-4827-85f5-e2e51f7fb521 true Curve Curve false 0 -2007 15450 33 40 -1989 15470 825ea536-aebb-41e9-af32-8baeb2ecb590 Deconstruct Domain Deconstruct a numeric domain into its component parts. true 32cf64eb-77e3-47c3-b29f-62154dec420f true Deconstruct Domain Deconstruct Domain -2086 15572 104 44 -2028 15594 Base domain 51fb18cd-b90b-40e9-9ad0-e930de0d3f5e true Domain Domain false 27c34c8f-207d-457e-b731-e3b60290a9db 1 -2084 15574 41 40 -2062 15594 Start of domain 3751a54b-d1e2-4c42-8628-0a159963cec7 true Start Start false 0 -2013 15574 29 20 -1997 15584 End of domain 570c62b9-9108-47c6-9eaa-216ba72a2455 true End End false 0 -2013 15594 29 20 -1997 15604 d1a28e95-cf96-4936-bf34-8bf142d731bf Construct Domain Create a numeric domain from two numeric extremes. true 5b7c8774-56f8-42e4-bf79-9877cd6b989a true Construct Domain Construct Domain -2112 15510 156 44 -2014 15532 Start value of numeric domain 22fa7f17-f5da-40b4-8863-2c88b10ec655 X/8 true Domain start Domain start false 570c62b9-9108-47c6-9eaa-216ba72a2455 1 -2110 15512 81 20 -2060 15522 1 1 {0} 0 End value of numeric domain b6f88ef2-8810-41e8-ae51-ffc2cdf72cb2 X*5/8 true Domain end Domain end false 570c62b9-9108-47c6-9eaa-216ba72a2455 1 -2110 15532 81 20 -2060 15542 1 1 {0} 1 Numeric domain between {A} and {B} 8eb97c76-eb9f-48c8-9612-d1b43ebbd702 true Domain Domain false 0 -1999 15512 41 40 -1977 15532 e9eb1dcf-92f6-4d4d-84ae-96222d60f56b Move Translate (move) an object along a vector. true 2ec48aa0-7402-4ddd-b500-bcfd1a1aa573 true Move Move -2103 15386 138 44 -2035 15408 Base geometry f8152c64-e40d-4b71-bb87-55154d01b43e true Geometry Geometry true e28d5d2e-89dd-4827-85f5-e2e51f7fb521 1 -2101 15388 51 20 -2074 15398 Translation vector af49a999-8441-471b-9c57-83312322e672 true Motion Motion false 0 -2101 15408 51 20 -2074 15418 1 1 {0} -0.5 -0.5 0 Translated geometry bc56f6fb-d650-47f3-8d71-7e9e9e3c0fcd true Geometry Geometry false 0 -2020 15388 53 20 -1992 15398 Transformation data 5f161da1-07b5-46b9-b8bd-ad83b10a137e true Transform Transform false 0 -2020 15408 53 20 -1992 15418 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true eefdf17f-2113-431d-95b3-ae53cd004df8 true Scale Scale -2103 15304 138 64 -2035 15336 Base geometry 73e0633a-d04f-4133-ae51-48174c988f9e true Geometry Geometry true bc56f6fb-d650-47f3-8d71-7e9e9e3c0fcd 1 -2101 15306 51 20 -2074 15316 Center of scaling 3d4f3445-c33e-4002-9028-64d983a31393 true Center Center false 0 -2101 15326 51 20 -2074 15336 1 1 {0} 0 0 0 Scaling factor 458e71c8-1595-4d92-ae8a-3224e12907ad true Factor Factor false 0 -2101 15346 51 20 -2074 15356 1 1 {0} 0.5 Scaled geometry a63d6f9b-92ab-4a73-8a8c-f1af180d3bbc true Geometry Geometry false 0 -2020 15306 53 30 -1992 15321 Transformation data bc976f17-f482-49e6-8c51-77a28370063a true Transform Transform false 0 -2020 15336 53 30 -1992 15351 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 619e43ea-a120-4fab-9439-afa674d35b7e true Deconstruct Deconstruct -2118 15140 168 64 -2071 15172 Input point 692b111f-81c9-413e-af24-fc033d7b22d6 true Point Point false 7572c58f-0269-435e-9399-fdf575ea00ba 1 -2116 15142 30 60 -2099.5 15172 Point {x} component d46a2e9b-cf34-47c3-9abd-1bfccd68cb57 true 2 X component X component false true 0 -2056 15142 104 20 -2020.5 15152 Point {y} component 9cdd5043-0ca1-4a2a-9517-9ba56e5a9d2d true 2 Y component Y component false true 0 -2056 15162 104 20 -2020.5 15172 Point {z} component 68cee5b5-1a0c-414a-b42f-283a736eae0f true Z component Z component false 0 -2056 15182 104 20 -2020.5 15192 2162e72e-72fc-4bf8-9459-d4d82fa8aa14 Divide Curve Divide a curve into equal length segments true 6e4f0f3c-ab3d-4848-ae83-8423b238e701 true Divide Curve Divide Curve -2097 15222 125 64 -2047 15254 Curve to divide 4326514c-02cd-4318-bd8f-7c6612541ce4 true Curve Curve false a63d6f9b-92ab-4a73-8a8c-f1af180d3bbc 1 -2095 15224 33 20 -2077 15234 Number of segments e9df65e3-97f0-47bf-97c6-e75623abd4bc true Count Count false 9cc45261-b02e-4259-9e30-07f8e180b8a3 1 -2095 15244 33 20 -2077 15254 1 1 {0} 10 Split segments at kinks 4607a3e8-e812-4cd6-bb96-1800ca21fff9 true Kinks Kinks false 0 -2095 15264 33 20 -2077 15274 1 1 {0} false 1 Division points 7572c58f-0269-435e-9399-fdf575ea00ba true Points Points false 0 -2032 15224 58 20 -2001.5 15234 1 Tangent vectors at division points 40fb623b-2279-43dc-acba-322373661414 true Tangents Tangents false 0 -2032 15244 58 20 -2001.5 15254 1 Parameter values at division points 56615695-3f7f-46b4-a0b7-69d010edea23 true Parameters Parameters false 0 -2032 15264 58 20 -2001.5 15274 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values c188a258-5114-47ba-a541-5d1a01b556cc true Panel false 0 c0ec556d-72a4-4920-addc-a25ff2e1e4be 1 Double click to edit panel content… -1939 14621 181 292 0 0 0 -1938.868 14621.08 255;255;255;255 true true true false false C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 7c43d191-00a5-4c0d-b322-e5061edff1ea true Panel false 0 a0441a5a-2668-4e8c-b7fc-12917502af54 1 Double click to edit panel content… -2302 14621 181 292 0 0 0 -2301.67 14621.08 255;255;255;255 true true true false false C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT true 2013e425-8713-42e2-a661-b57e78840337 Concatenate Concatenate some fragments of text true 1bd31810-4c01-4950-b1a0-29cc3d316a9b true Concatenate Concatenate -2081 14527 93 64 -2055 14559 3 3ede854e-c753-40eb-84cb-b48008f14fd4 3ede854e-c753-40eb-84cb-b48008f14fd4 3ede854e-c753-40eb-84cb-b48008f14fd4 1 3ede854e-c753-40eb-84cb-b48008f14fd4 First text fragment e3887edc-d139-4aeb-be02-b05144212562 true Fragment A true 7c43d191-00a5-4c0d-b322-e5061edff1ea 1 -2079 14529 9 20 -2073 14539 Second text fragment f5683864-7c84-4d00-a36a-8541771e0f35 true Fragment B true f94b8dec-f42d-4a01-b6ff-da3f549f8b30 1 -2079 14549 9 20 -2073 14559 Third text fragment 553d771c-20da-4de2-b911-f77033af3a50 true Fragment A true c188a258-5114-47ba-a541-5d1a01b556cc 1 -2079 14569 9 20 -2073 14579 Resulting text consisting of all the fragments e47489ce-947c-436c-877c-c81e4a5e7b13 true 1 Result Result false 0 -2040 14529 50 60 -2021.5 14559 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values b22abe4a-d6ea-4ecd-9217-7ee811022f89 true Panel false 0 e47489ce-947c-436c-877c-c81e4a5e7b13 1 Double click to edit panel content… -2206 14228 350 292 0 0 0 -2205.68 14228.44 255;255;255;255 true true true false false C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT true 1817fd29-20ae-4503-b542-f0fb651e67d7 List Length Measure the length of a list. true 5a4eac60-4579-4169-adb8-3bff092e8404 true List Length List Length -2081 15049 93 28 -2042 15063 1 Base list 329d4e52-e590-4168-9b90-df419aae0516 true List List false 7572c58f-0269-435e-9399-fdf575ea00ba 1 -2079 15051 22 24 -2066.5 15063 Number of items in L 99d769f2-5d60-4f73-8631-ccffc8011575 true Length Length false 0 -2027 15051 37 24 -2007 15063 dd8134c0-109b-4012-92be-51d843edfff7 Duplicate Data Duplicate data a predefined number of times. true 935a4e27-0ed1-4c7f-bf85-72097409dfad true Duplicate Data Duplicate Data -2104 14966 140 64 -2045 14998 1 Data to duplicate 68fbaf93-b1cc-445b-b92a-aab258d1644a true Data Data false 0 -2102 14968 42 20 -2079.5 14978 1 1 {0} Grasshopper.Kernel.Types.GH_String false ; Number of duplicates f65f88ac-c79b-4d2a-b9b7-1a1674aca4d9 true Number Number false 99d769f2-5d60-4f73-8631-ccffc8011575 1 -2102 14988 42 20 -2079.5 14998 1 1 {0} 2 Retain list order d2a93bf6-60fb-4842-8daa-dda4ab94980d true Order Order false 0 -2102 15008 42 20 -2079.5 15018 1 1 {0} true 1 Duplicated data 150762f9-c5aa-4a4d-b6d7-6f411b9beb0c true 2 Data Data false true 0 -2030 14968 64 60 -2014.5 14998 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",X) true 78676aa6-d630-4afc-9928-fb1b343389e0 true Expression Expression -2144 15095 219 28 -2044 15109 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable d7e2d80b-6ab2-458b-a564-1bacb2b40d82 true Variable X X true d46a2e9b-cf34-47c3-9abd-1bfccd68cb57 1 -2142 15097 14 24 -2133.5 15109 Result of expression a0441a5a-2668-4e8c-b7fc-12917502af54 true Result Result false 0 -1961 15097 34 24 -1942.5 15109 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",Y) true 105c7a8a-c93d-47b9-af1f-5d0a78ade9ac true Expression Expression -2143 14920 218 28 -2044 14934 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable eabf4994-4c69-4fb2-9c2f-32dc63698d53 true Variable Y Y true 9cdd5043-0ca1-4a2a-9517-9ba56e5a9d2d 1 -2141 14922 13 24 -2133 14934 Result of expression c0ec556d-72a4-4920-addc-a25ff2e1e4be true Result Result false 0 -1961 14922 34 24 -1942.5 14934 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values f94b8dec-f42d-4a01-b6ff-da3f549f8b30 true Panel false 0 150762f9-c5aa-4a4d-b6d7-6f411b9beb0c 1 Double click to edit panel content… -2121 14622 181 292 0 0 0 -2120.764 14622.05 255;255;255;255 true true true false false C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT true c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects f7cc57e0-6e1c-4e8f-aa0e-ee3adb1d2f25 391fa384-4978-4146-9509-512cbdc302c5 05c68ab6-a4a6-4531-b120-cd1f09e2ec7b 57c99f13-3937-47f8-9b4a-59d033ef07aa 8e038213-7c24-4b93-8b8f-587867a7e2ae 87b5a07c-0959-48af-b3ea-1850aab4001c 49c9c7fd-8ff8-4fd2-812a-32a26c6caa11 2e2550a6-0f32-4b90-92f0-a88401c43eb5 7b213b96-e17b-456d-ad30-40abe337bbab 32cf64eb-77e3-47c3-b29f-62154dec420f 5b7c8774-56f8-42e4-bf79-9877cd6b989a 2ec48aa0-7402-4ddd-b500-bcfd1a1aa573 eefdf17f-2113-431d-95b3-ae53cd004df8 619e43ea-a120-4fab-9439-afa674d35b7e 6e4f0f3c-ab3d-4848-ae83-8423b238e701 c188a258-5114-47ba-a541-5d1a01b556cc 7c43d191-00a5-4c0d-b322-e5061edff1ea 1bd31810-4c01-4950-b1a0-29cc3d316a9b b22abe4a-d6ea-4ecd-9217-7ee811022f89 5a4eac60-4579-4169-adb8-3bff092e8404 935a4e27-0ed1-4c7f-bf85-72097409dfad 78676aa6-d630-4afc-9928-fb1b343389e0 105c7a8a-c93d-47b9-af1f-5d0a78ade9ac f94b8dec-f42d-4a01-b6ff-da3f549f8b30 a0ba8fac-f83b-475c-87c1-b7d4071e7084 1e6793b9-7876-44c3-81db-1f581a66cc6f 3d6e8a3d-110b-4477-9808-a3778be44782 9cc45261-b02e-4259-9e30-07f8e180b8a3 109e374b-4a2e-479b-9c78-4a16f0374be6 95f96cf7-23b6-4aba-a210-769d38bbb41c d112c991-f144-4804-bdab-b416453265b1 31 78fe944a-9bbd-4518-a13c-f4d11f1f61cd Group d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true eb12b45e-e57a-4979-9ae6-195bec0817cc true Curve Curve false e15c0da3-15dc-4bcb-8939-2c5ec5698b15 1 -2768 15397 50 24 -2743.969 15409.71 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 5f716f01-b809-441a-87bc-b0e3f99103e3 true Deconstruct Deconstruct -2821 15222 148 64 -2774 15254 Input point 89d0a090-e62e-4893-bb65-2ca861c9b120 true Point Point false e928512a-abc1-483c-bb4a-342192a50806 1 -2819 15224 30 60 -2802.5 15254 Point {x} component 4440b01d-0727-488c-b655-f93cd16a720e true 2 X component X component false 0 -2759 15224 84 20 -2723.5 15234 Point {y} component 6b0a7edd-e6c0-47a0-8363-8ecf033a1975 true 2 Y component Y component false 0 -2759 15244 84 20 -2723.5 15254 Point {z} component 867b8623-1bac-49a9-8148-1bb73db2132a true Z component Z component false 0 -2759 15264 84 20 -2723.5 15274 2162e72e-72fc-4bf8-9459-d4d82fa8aa14 Divide Curve Divide a curve into equal length segments true f6912693-e9d0-43ec-adb1-42336dd047c2 true Divide Curve Divide Curve -2810 15305 125 64 -2760 15337 Curve to divide 85e31ae8-ed79-457f-8aa1-e97d69f0e2b0 true Curve Curve false eb12b45e-e57a-4979-9ae6-195bec0817cc 1 -2808 15307 33 20 -2790 15317 Number of segments 281188f5-08fc-45b5-9296-0e61d6ceaf1b true Count Count false 1c624bab-037b-49da-8d79-e902bf35524d 1 -2808 15327 33 20 -2790 15337 1 1 {0} 10 Split segments at kinks 57785e03-c562-49f4-a08a-deae7e2bbc6d true Kinks Kinks false 0 -2808 15347 33 20 -2790 15357 1 1 {0} false 1 Division points e928512a-abc1-483c-bb4a-342192a50806 true Points Points false 0 -2745 15307 58 20 -2714.5 15317 1 Tangent vectors at division points 1f3b5ed3-f417-41b2-921e-be18a6eb525a true Tangents Tangents false 0 -2745 15327 58 20 -2714.5 15337 1 Parameter values at division points 26cf8e6c-4987-4589-9b48-2a625d096ea5 true Parameters Parameters false 0 -2745 15347 58 20 -2714.5 15357 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values b3a72a53-7382-458b-becc-3846cbbe9bd8 true Panel false 1 3f7c5dba-b728-47a8-ad2a-b092b6ddcd39 1 Double click to edit panel content… -2658 14609 172 292 0 0 0 -2657.968 14609.34 255;255;255;255 true true true false false C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values bf2b8521-eb6b-4a8f-8a5e-6a19574a1cdf true Panel false 1 c316a043-8820-4d2c-97ec-4950f3274d54 1 Double click to edit panel content… -3003 14609 172 292 0 0 0 -3002.456 14609.7 255;255;255;255 true true true false false C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT true 2013e425-8713-42e2-a661-b57e78840337 Concatenate Concatenate some fragments of text true 9872d5d2-39a4-4ec9-adc7-34328fee7da2 true Concatenate Concatenate -2794 14515 93 64 -2768 14547 3 3ede854e-c753-40eb-84cb-b48008f14fd4 3ede854e-c753-40eb-84cb-b48008f14fd4 3ede854e-c753-40eb-84cb-b48008f14fd4 1 3ede854e-c753-40eb-84cb-b48008f14fd4 First text fragment ef656576-c493-481f-ae0c-c6891cba1a56 true Fragment A true bf2b8521-eb6b-4a8f-8a5e-6a19574a1cdf 1 -2792 14517 9 20 -2786 14527 Second text fragment 86018d3f-98ba-416b-b295-c0bffa1d76de true Fragment B true 90365ad6-e298-473a-86cb-d4633ee6db2f 1 -2792 14537 9 20 -2786 14547 Third text fragment a8d20419-37a2-40c8-a92a-d5af32a1a3ef true Fragment A true b3a72a53-7382-458b-becc-3846cbbe9bd8 1 -2792 14557 9 20 -2786 14567 Resulting text consisting of all the fragments 4d12f9f7-cab6-4b98-9042-bb2352899f85 true 1 Result Result false 0 -2753 14517 50 60 -2734.5 14547 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values e9a82133-4720-4769-90c5-47f7ce7ac89c true Panel false 0.53023098409175873 4d12f9f7-cab6-4b98-9042-bb2352899f85 1 Double click to edit panel content… -2920 14217 350 292 0 0 0 -2919.738 14217.64 255;255;255;255 true true true false false C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT true 1817fd29-20ae-4503-b542-f0fb651e67d7 List Length Measure the length of a list. true 2282d336-365c-4bdb-b9c9-f6153d2023fd true List Length List Length -2794 15083 93 28 -2755 15097 1 Base list 2011b464-fc7a-4d43-b880-9a7d071e906f true List List false e928512a-abc1-483c-bb4a-342192a50806 1 -2792 15085 22 24 -2779.5 15097 Number of items in L b5b9a4a5-3ee0-42a1-a18a-fdaa72576c56 true Length Length false 0 -2740 15085 37 24 -2720 15097 dd8134c0-109b-4012-92be-51d843edfff7 Duplicate Data Duplicate data a predefined number of times. true 96613f16-8c7e-4e3e-9244-f130eb890b95 true Duplicate Data Duplicate Data -2817 15000 140 64 -2758 15032 1 Data to duplicate 7d490ed8-969e-4a1e-98c8-52e5f066545f true Data Data false 0 -2815 15002 42 20 -2792.5 15012 1 1 {0} Grasshopper.Kernel.Types.GH_String false ; Number of duplicates d9c03fee-a0fb-4d7a-84c1-6f5ef7eff5dc true Number Number false b5b9a4a5-3ee0-42a1-a18a-fdaa72576c56 1 -2815 15022 42 20 -2792.5 15032 1 1 {0} 2 Retain list order e4d4fa99-bb30-4b43-81ed-fefc20bda121 true Order Order false 0 -2815 15042 42 20 -2792.5 15052 1 1 {0} true 1 Duplicated data 4c47a8cd-b9b0-461a-a5dd-9a48a45b66a3 true 2 Data Data false true 0 -2743 15002 64 60 -2727.5 15032 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",X) true 87a4439e-5ed1-4725-98bb-f7d115ff7478 true Expression Expression -2865 15176 235 28 -2765 15190 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable ede71a7a-bac6-4b77-8756-ed81f96fc065 true Variable X X true 4440b01d-0727-488c-b655-f93cd16a720e 1 -2863 15178 14 24 -2854.5 15190 Result of expression c316a043-8820-4d2c-97ec-4950f3274d54 true Result Result false true 0 -2682 15178 50 24 -2663.5 15190 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",Y) true b30c2f20-07f0-4998-a514-8066fc6a1a12 true Expression Expression -2864 14953 234 28 -2765 14967 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 9accc4fb-e73f-4433-a286-c59ae478fb26 true Variable Y Y true 6b0a7edd-e6c0-47a0-8363-8ecf033a1975 1 -2862 14955 13 24 -2854 14967 Result of expression 3f7c5dba-b728-47a8-ad2a-b092b6ddcd39 true Result Result false true 0 -2682 14955 50 24 -2663.5 14967 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 90365ad6-e298-473a-86cb-d4633ee6db2f true Panel false 0 4c47a8cd-b9b0-461a-a5dd-9a48a45b66a3 1 Double click to edit panel content… -2830 14609 172 292 0 0 0 -2829.937 14609.49 255;255;255;255 true true true false false C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT true c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects eb12b45e-e57a-4979-9ae6-195bec0817cc d8eea3ec-5157-4ac0-92dd-492058fad237 59c8374e-36a2-40df-af0f-1946fb9c4c2e 6a58cb78-3aa0-4c67-9585-8364f6f684f5 2aafa1cf-f50a-4433-9467-6e2ba9b0a462 2ac06252-6a62-48fb-9825-5298bdbe9536 30aa3e57-dd88-4f54-ad69-4b2473594537 3662d19c-7316-4361-b4a3-db2bbd218382 b60eeacc-25e7-4f56-826d-40476555687d 71a4b562-3bee-43d5-9fb6-1c99bc3cd4cb ee5295ed-8446-4093-9cff-155530db048a 10338e33-43fc-4848-9f86-5e4608e349ae 5c73a0f5-f091-4315-897f-65bd97a0d6aa 5f716f01-b809-441a-87bc-b0e3f99103e3 f6912693-e9d0-43ec-adb1-42336dd047c2 b3a72a53-7382-458b-becc-3846cbbe9bd8 bf2b8521-eb6b-4a8f-8a5e-6a19574a1cdf 9872d5d2-39a4-4ec9-adc7-34328fee7da2 e9a82133-4720-4769-90c5-47f7ce7ac89c 2282d336-365c-4bdb-b9c9-f6153d2023fd 96613f16-8c7e-4e3e-9244-f130eb890b95 87a4439e-5ed1-4725-98bb-f7d115ff7478 b30c2f20-07f0-4998-a514-8066fc6a1a12 90365ad6-e298-473a-86cb-d4633ee6db2f dbba226e-a179-44e2-9128-0825b4dea6d8 6ccf331f-85f1-4064-857f-79b781e718d5 ad7bb29b-12e4-46ba-bd41-fb424d75c5d9 1c624bab-037b-49da-8d79-e902bf35524d 0d7b8cff-2594-4e45-ab9e-2f5f1341fd9b f6313031-c550-4d1d-8f43-99d56b12c44c 30 e409bbb2-316f-409c-95e6-3f4b7c2dc8b6 Group 079bd9bd-54a0-41d4-98af-db999015f63d VB Script A VB.NET scriptable component true dbba226e-a179-44e2-9128-0825b4dea6d8 true VB Script TxtWriter true 0 If activate Then Dim i As Integer Dim aryText(4) As String aryText(0) = "Mary WriteLine" aryText(1) = "Had" aryText(2) = "Another" aryText(3) = "Little" aryText(4) = "One" ' the data is appended to the file. If file doesnt exist, a new file is created Dim objWriter As New System.IO.StreamWriter(filePath, append) For i = 0 To data.Count - 1 objWriter.WriteLine(data(i)) Next objWriter.Close() End If If clearFile Then Dim objWriter As New System.IO.StreamWriter(filePath, False) objWriter.Close() End If -2805 14040 115 104 -2729 14092 5 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 2 3ede854e-c753-40eb-84cb-b48008f14fd4 8ec86459-bf01-4409-baee-174d0d2b13d0 true Script Variable filePath a23fff20-bfb8-4cc6-9e17-fcd7a01790a8 true filePath filePath true 0 true 6ccf331f-85f1-4064-857f-79b781e718d5 1 abf1fd1b-dbe5-4be6-9832-d8dc105e207f -2803 14042 59 20 -2764 14052 1 true Script Variable data 72d8161f-b538-4ae5-9384-58bbcb9cf13d true 1 data data true 1 true e9a82133-4720-4769-90c5-47f7ce7ac89c 1 abf1fd1b-dbe5-4be6-9832-d8dc105e207f -2803 14062 59 20 -2764 14072 true Script Variable append 0c4995db-4b39-40f5-8333-6c42d3a67924 true append append true 0 true 0 3cda2745-22ac-4244-9b04-97a5255fa60f -2803 14082 59 20 -2764 14092 true Script Variable activate 71dd2150-8eb6-430d-8654-4fcf43527fdf true activate activate true 0 true ad7bb29b-12e4-46ba-bd41-fb424d75c5d9 1 3cda2745-22ac-4244-9b04-97a5255fa60f -2803 14102 59 20 -2764 14112 true Script Variable clearFile cd661c15-4878-4982-b105-55468f1c7b12 true clearFile clearFile true 0 true 0 3cda2745-22ac-4244-9b04-97a5255fa60f -2803 14122 59 20 -2764 14132 Print, Reflect and Error streams 55b76fbc-c929-4370-963b-82599d65189f true out out false 0 -2714 14042 22 50 -2701.5 14067 Output parameter A dc1f9c8e-fa52-4000-8ad6-e630813683e2 true A A false 0 -2714 14092 22 50 -2701.5 14117 06953bda-1d37-4d58-9b38-4b3c74e54c8f File Path Contains a collection of file paths false All files|*.* 6ccf331f-85f1-4064-857f-79b781e718d5 true File Path File Path false 0 -2769 14174 50 24 -2744.277 14186.47 1 1 {0} false C:\VSC.O____STNEMGES_48361____DIOMGIS_ERUTAWRUC_RAENIL_NOITISNART_EGDE_LUF____O____FUL_EDGE_TRANSITION_LINEAR_CURWATURE_SIGMOID____16384_SEGMENTS____O.CSV a8b97322-2d53-47cd-905e-b932c3ccd74e Button Button object with two values False True ad7bb29b-12e4-46ba-bd41-fb424d75c5d9 true Button false 0 -2780 14018 66 22 079bd9bd-54a0-41d4-98af-db999015f63d VB Script A VB.NET scriptable component true a0ba8fac-f83b-475c-87c1-b7d4071e7084 true VB Script TxtWriter true 0 If activate Then Dim i As Integer Dim aryText(4) As String aryText(0) = "Mary WriteLine" aryText(1) = "Had" aryText(2) = "Another" aryText(3) = "Little" aryText(4) = "One" ' the data is appended to the file. If file doesnt exist, a new file is created Dim objWriter As New System.IO.StreamWriter(filePath, append) For i = 0 To data.Count - 1 objWriter.WriteLine(data(i)) Next objWriter.Close() End If If clearFile Then Dim objWriter As New System.IO.StreamWriter(filePath, False) objWriter.Close() End If -2092 14052 115 104 -2016 14104 5 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 2 3ede854e-c753-40eb-84cb-b48008f14fd4 8ec86459-bf01-4409-baee-174d0d2b13d0 true Script Variable filePath c90dafc0-991b-4b24-b372-26f3457b24f4 true filePath filePath true 0 true 1e6793b9-7876-44c3-81db-1f581a66cc6f 1 abf1fd1b-dbe5-4be6-9832-d8dc105e207f -2090 14054 59 20 -2051 14064 1 true Script Variable data 9a8a9cfe-d534-4b28-bd9c-3166283e3d8e true 1 data data true 1 true b22abe4a-d6ea-4ecd-9217-7ee811022f89 1 abf1fd1b-dbe5-4be6-9832-d8dc105e207f -2090 14074 59 20 -2051 14084 true Script Variable append 49879d42-8c70-443c-96f2-8e94c165a300 true append append true 0 true 0 3cda2745-22ac-4244-9b04-97a5255fa60f -2090 14094 59 20 -2051 14104 true Script Variable activate 67010aa9-6eee-435c-81ac-14a2beb83430 true activate activate true 0 true 3d6e8a3d-110b-4477-9808-a3778be44782 1 3cda2745-22ac-4244-9b04-97a5255fa60f -2090 14114 59 20 -2051 14124 true Script Variable clearFile af9a7a01-6d0a-4d7a-bc79-9a0507585127 true clearFile clearFile true 0 true 0 3cda2745-22ac-4244-9b04-97a5255fa60f -2090 14134 59 20 -2051 14144 Print, Reflect and Error streams 9c6f31cd-da7a-4aef-b4d7-b8908e1751b9 true out out false 0 -2001 14054 22 50 -1988.5 14079 Output parameter A 961bc7c5-a1af-472e-9695-84c8c25be36c true A A false 0 -2001 14104 22 50 -1988.5 14129 06953bda-1d37-4d58-9b38-4b3c74e54c8f File Path Contains a collection of file paths false All files|*.* 1e6793b9-7876-44c3-81db-1f581a66cc6f true File Path File Path false 0 -2055 14186 50 24 -2030.094 14198.22 1 1 {0} false C:\VSC.O____EPAHS_LANGIS____STNEMGES_48361____DIOMGIS_ERUTAWRUC_RAENIL_NOITISNART_EGDE_LUF____O____FUL_EDGE_TRANSITION_LINEAR_CURWATURE_SIGMOID____16384_SEGMENTS____SIGNAL_SHAPE____O.CSV a8b97322-2d53-47cd-905e-b932c3ccd74e Button Button object with two values False True 3d6e8a3d-110b-4477-9808-a3778be44782 true Button false 0 -2067 14012 66 22 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values b6df8fad-340c-4555-a43a-639976bc59fe true Panel false 1 c3df9ab9-ce47-48e9-994e-14f1d7735c94 1 Double click to edit panel content… -3745 14183 194 292 0 0 0 -3744.249 14183.27 255;255;255;255 true true true false false C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT true 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 47d36a7d-3cd2-4782-9f53-9f4088b19d4b X*4 true Number Number false e02db1d3-13e3-4587-a331-19c777c3db08 1 -3503 16118 53 24 -3467.059 16130.58 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 1c624bab-037b-49da-8d79-e902bf35524d X*4 true Number Number false e02db1d3-13e3-4587-a331-19c777c3db08 1 -2770 15439 53 24 -2734.969 15451.18 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 9cc45261-b02e-4259-9e30-07f8e180b8a3 X*4 true Number Number false e02db1d3-13e3-4587-a331-19c777c3db08 1 -2056 16333 53 24 -2020.867 16345.9 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true a4a55193-86eb-40c0-8f54-9e700ffb5262 true Curve Curve false e15c0da3-15dc-4bcb-8939-2c5ec5698b15 1 -3501 16076 50 24 -3476.888 16088.37 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 84f4a890-2b31-4a54-b2a5-49681a5484c7 true Expression Expression -3747 14553 194 28 -3647 14567 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 94f9eda3-bd56-4fd8-861a-2825f6c8b43f true Variable O O true 0b7cd3a8-2836-435f-b6ae-6abbe8053e01 1 -3745 14555 14 24 -3736.5 14567 Result of expression 005faa35-deb5-475f-bb9e-bf2deeb54731 true Result false 0 -3564 14555 9 24 -3558 14567 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true c20dd2aa-56ce-4ff5-8e86-52afad8c2c96 true Expression Expression -3405 14553 194 28 -3305 14567 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 10578647-61a2-434e-9cb2-13331d6797ac true Variable O O true ccd28879-e08a-4aaa-95c3-f7812fa57d94 1 -3403 14555 14 24 -3394.5 14567 Result of expression 7fa81195-a3d3-4cb0-a588-f06d82c50a40 true Result false 0 -3222 14555 9 24 -3216 14567 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:0.00000000000000}",O) true 5ccec4b3-fea6-45d3-8cbe-91c674ae3851 true Expression Expression -3809 14525 318 28 -3647 14539 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 150fabf1-ca09-423e-b50c-caeaf17f351a true Variable O O true 0b7cd3a8-2836-435f-b6ae-6abbe8053e01 1 -3807 14527 14 24 -3798.5 14539 Result of expression 9d725916-6db6-4992-991f-cb735f009979 true Result false 0 -3502 14527 9 24 -3496 14539 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:0.00000000000000}",O) true ff82ce22-4075-4b1a-9609-55239f281a35 true Expression Expression -3467 14525 318 28 -3305 14539 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable d746fd29-ce1c-41d1-81f2-fdf9c5f169de true Variable O O true ccd28879-e08a-4aaa-95c3-f7812fa57d94 1 -3465 14527 14 24 -3456.5 14539 Result of expression bdc74c8b-0903-4034-9228-c3b65ca33ade true Result false 0 -3160 14527 9 24 -3154 14539 8ec86459-bf01-4409-baee-174d0d2b13d0 Data Contains a collection of generic data true 377c7605-11b6-4673-94de-cc5176b48b51 true Data Data false 7fa81195-a3d3-4cb0-a588-f06d82c50a40 1 -3330 14494 50 24 -3305.888 14506.22 8ec86459-bf01-4409-baee-174d0d2b13d0 Data Contains a collection of generic data true c3df9ab9-ce47-48e9-994e-14f1d7735c94 true Data Data false 005faa35-deb5-475f-bb9e-bf2deeb54731 1 -3672 14494 50 24 -3647.888 14506.7 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 431dbfbf-14de-4cae-b7cc-93329a70f66c true Scale Scale -3548 15640 138 64 -3480 15672 Base geometry 535babb8-98b7-4909-b3b3-e6e549c1c92a true Geometry Geometry true a4a55193-86eb-40c0-8f54-9e700ffb5262 1 -3546 15642 51 20 -3519 15652 Center of scaling 9ad4454f-9f59-40e3-be99-632d1a1461a3 true Center Center false 0 -3546 15662 51 20 -3519 15672 1 1 {0} 0 0 0 Scaling factor 444ebc82-f6a0-4084-8984-dd4c66d945bf true Factor Factor false 20aa50e6-d0a5-4d7e-97e6-21b1a5d5f91e 1 -3546 15682 51 20 -3519 15692 1 1 {0} 0.5 Scaled geometry 2979390f-d371-4b3d-81eb-02a4ec91d8aa true Geometry Geometry false 0 -3465 15642 53 30 -3437 15657 Transformation data 3c95fe8e-b4a3-4ade-9777-00ba055b0e82 true Transform Transform false 0 -3465 15672 53 30 -3437 15687 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true ff436794-13e0-4e1f-80d6-7f5a87203812 true Scale Scale -3548 15557 138 64 -3480 15589 Base geometry e2e063e4-7a57-4670-b883-9610ae650a01 true Geometry Geometry true 38f60d72-95b9-474c-a523-e27fbbd26166 1 -3546 15559 51 20 -3519 15569 Center of scaling 7d0b0dfa-0f1c-4ed6-8e42-8083399ec7d1 true Center Center false 0 -3546 15579 51 20 -3519 15589 1 1 {0} 0 0 0 Scaling factor 03c65af6-f9df-4a0c-8c8d-2be13ae05be2 true Factor Factor false 20aa50e6-d0a5-4d7e-97e6-21b1a5d5f91e 1 -3546 15599 51 20 -3519 15609 1 1 {0} 1000 Scaled geometry 05d9ac10-8297-4558-bcc4-512a79bb9aef true Geometry Geometry false 0 -3465 15559 53 30 -3437 15574 Transformation data 4299bd6c-069d-4df0-b014-c60c42cf8307 true Transform Transform false 0 -3465 15589 53 30 -3437 15604 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 3eeef9bc-d5a9-4e6a-b71c-b4dfe8f6b841 true Scale Scale -3556 15411 154 64 -3472 15443 Base geometry 2c95390f-c055-43de-a302-eea659970034 true Geometry Geometry true 8f680386-5218-475e-a977-751a09d1b381 1 -3554 15413 67 20 -3511 15423 Center of scaling 3a890d52-159e-41a4-813d-beb71d5c9b4a true Center Center false 0 -3554 15433 67 20 -3511 15443 1 1 {0} 0 0 0 Scaling factor 0a0662f4-f3b0-42c3-babc-bae1f1d8d4d4 1/X true Factor Factor false 20aa50e6-d0a5-4d7e-97e6-21b1a5d5f91e 1 -3554 15453 67 20 -3511 15463 1 1 {0} 1000 Scaled geometry bc8d2834-7710-4101-8531-0bee4494488a true Geometry Geometry false 0 -3457 15413 53 30 -3429 15428 Transformation data 346351ac-a4dd-4b84-b239-5abf88a81ea2 true Transform Transform false 0 -3457 15443 53 30 -3429 15458 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 20aa50e6-d0a5-4d7e-97e6-21b1a5d5f91e true Relay false 878ef2e7-03c9-4c81-ab95-3f6612107a06 1 -3499 15704 40 16 -3479 15712 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 74e89f85-5cd3-4475-b942-4195b9b26127 true Digit Scroller Digit Scroller false 0 12 Digit Scroller 11 65536.0 -3602 15791 250 20 -3601.664 15791.87 84627490-0fb2-4498-8138-ad134ee4cb36 Curve | Curve Solve intersection events for two curves. true e32b8a72-3026-4389-9167-05dd22abd69e true Curve | Curve Curve | Curve -3552 15493 146 64 -3491 15525 First curve d663952a-5d9a-4e44-9b51-a361869661a8 true Curve A Curve A false 2979390f-d371-4b3d-81eb-02a4ec91d8aa 1 -3550 15495 44 30 -3526.5 15510 Second curve 4a95121f-390e-453e-9934-7dc6daa08f5c true Curve B Curve B false 05d9ac10-8297-4558-bcc4-512a79bb9aef 1 -3550 15525 44 30 -3526.5 15540 1 Intersection events 8f680386-5218-475e-a977-751a09d1b381 true 1 Points Points false 0 -3476 15495 68 20 -3448.5 15505 1 Parameters on first curve 7312b7f3-a9b2-4cf7-9fcb-b816dbf4b790 true Params A Params A false 0 -3476 15515 68 20 -3448.5 15525 1 Parameters on second curve 54580081-ce6c-42c4-94fd-fd0ef709e245 true Params B Params B false 0 -3476 15535 68 20 -3448.5 15545 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true b9b95f50-9e5f-4c1f-9c6b-75e6fd956e6e true Deconstruct Deconstruct -3563 15243 168 64 -3516 15275 Input point 9691647a-31ba-4d02-8adf-58cd81f7b5cc true Point Point false bc8d2834-7710-4101-8531-0bee4494488a 1 -3561 15245 30 60 -3544.5 15275 Point {x} component b486aa7d-f6a1-4814-b3cf-438ef0cca74b ABS(X) true 2 X component X component false 0 -3501 15245 104 20 -3465.5 15255 Point {y} component 7048b7e4-2b82-4636-addb-a3fc267cbf8e ABS(X) true 2 Y component Y component false 0 -3501 15265 104 20 -3465.5 15275 Point {z} component c48c8651-0127-48e2-8179-5e6f8376cd04 ABS(X) true 2 Z component Z component false 0 -3501 15285 104 20 -3465.5 15295 1817fd29-20ae-4503-b542-f0fb651e67d7 List Length Measure the length of a list. true 8fbbff63-ce96-4927-842d-2fd30969fea0 true List Length List Length -3526 15364 93 28 -3487 15378 1 Base list 6490099b-4346-4da0-87fe-2ce6e2bb25ca true List List false bc8d2834-7710-4101-8531-0bee4494488a 1 -3524 15366 22 24 -3511.5 15378 Number of items in L 21f3c613-50f4-4a4f-87c2-37cfe1944c59 true Length Length false 0 -3472 15366 37 24 -3452 15378 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 74712b8a-b204-4e6f-81d7-fdd3959b8d3a true Panel false 1 21f3c613-50f4-4a4f-87c2-37cfe1944c59 1 Double click to edit panel content… -3502 15335 50 20 0 0 0 -3501.752 15335.51 255;255;255;255 false false true false false true 9445ca40-cc73-4861-a455-146308676855 Range Create a range of numbers. true e0516fed-bf3c-4077-8700-ea6a5d8fd259 true Range Range -3542 15035 126 44 -3468 15057 Domain of numeric range b48f44ac-2a16-467a-928e-3aac4e3b52ed true Domain Domain false 0303c363-c34f-496f-bac0-3710a5f8be4b 1 -3540 15037 57 20 -3502 15047 1 1 {0} 0 1 Number of steps f707cf1c-d935-4b7a-855b-75a23f57f628 X-2 true Steps Steps false 74712b8a-b204-4e6f-81d7-fdd3959b8d3a 1 -3540 15057 57 20 -3502 15067 1 1 {0} 10 1 Range of numbers f21a2bc8-f755-4872-bdce-aa048e0bdaa6 true Range Range false 0 -3453 15037 35 40 -3434 15057 d1a28e95-cf96-4936-bf34-8bf142d731bf Construct Domain Create a numeric domain from two numeric extremes. true c376d704-0c1b-47cd-9bc3-72920e4bfead true Construct Domain Construct Domain -3557 15097 156 44 -3459 15119 Start value of numeric domain 3a3b46e2-d11f-4046-bb4b-163f2e97c77d true Domain start Domain start false 0 -3555 15099 81 20 -3505 15109 1 1 {0} 0 End value of numeric domain dd78b44c-eb2d-4532-8861-76b8ae124f11 X-2 true Domain end Domain end false 74712b8a-b204-4e6f-81d7-fdd3959b8d3a 1 -3555 15119 81 20 -3505 15129 1 1 {0} 1 Numeric domain between {A} and {B} 0303c363-c34f-496f-bac0-3710a5f8be4b true Domain Domain false 0 -3444 15099 41 40 -3422 15119 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true 9e30a520-265b-486e-a6d0-566777e09451 true List Item List Item -3532 14951 106 64 -3468 14983 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list 545715ba-a983-47e9-99b0-90738844316b true 1 List List false 4113c65f-aeda-403a-bd7b-e956ee7d8850 1 -3530 14953 47 20 -3497 14963 Item index a01827ce-2506-4ae1-a7c4-8d1d98fbde8f true Index Index false f21a2bc8-f755-4872-bdce-aa048e0bdaa6 1 -3530 14973 47 20 -3497 14983 1 1 {0} 0 Wrap index to list bounds 9a23e5fd-c798-4468-9248-0ed9d8c620e0 true Wrap Wrap false 0 -3530 14993 47 20 -3497 15003 1 1 {0} false Item at {i'} 491b4f9f-15b4-4a31-b218-8efc762778e3 true 1 false Item i false 0 -3453 14953 25 60 -3447 14983 3581f42a-9592-4549-bd6b-1c0fc39d067b Construct Point Construct a point from {xyz} coordinates. true 11c2aced-e753-46f2-bc94-82c65cf9d659 true Construct Point Construct Point -3552 14868 145 64 -3470 14900 {x} coordinate 773d5f0f-95c0-42aa-8bfd-fb61807d5c99 true X coordinate X coordinate false 0 -3550 14870 65 20 -3516 14880 1 1 {0} 0.5 {y} coordinate 7b2fbd6d-d0a0-4121-9253-5c6ac9e9f763 true Y coordinate Y coordinate false 0 -3550 14890 65 20 -3516 14900 1 1 {0} 0.5 {z} coordinate 6cabc128-7571-4ab6-8707-6b677c5773d2 true Z coordinate Z coordinate false 0 -3550 14910 65 20 -3516 14920 1 1 {0} 0 Point coordinate 5c03ce7b-657d-446c-93c8-a977f6b2ff83 true 1 Point Point false 0 -3455 14870 46 60 -3438.5 14900 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true dbbe7cdd-1102-4fb8-9b97-609a8d9fa450 true Rotate Rotate -3566 14785 174 64 -3498 14817 Base geometry e4f07825-ecca-4d9c-83e0-7ac2829d9654 true Geometry Geometry true 491b4f9f-15b4-4a31-b218-8efc762778e3 1 -3564 14787 51 20 -3537 14797 Rotation angle in radians 89bbb4e4-d7ab-4f46-9dd3-e676f0f789d8 true Angle Angle false 0 false -3564 14807 51 20 -3537 14817 1 1 {0} 3.1415926535897931 Rotation plane c98d6df7-a5d5-4a90-86c5-0c4bfa86f7f0 true Plane Plane false 5c03ce7b-657d-446c-93c8-a977f6b2ff83 1 -3564 14827 51 20 -3537 14837 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 0d4bbc48-88bc-4b87-beae-ef8b19c22fad true 1 Geometry Geometry false true 0 -3483 14787 89 30 -3455 14802 Transformation data fd0c334d-96af-47d5-b15a-fbe52889d2ad true Transform Transform false 0 -3483 14817 89 30 -3455 14832 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects d9ec1ef5-676f-48f2-92d9-91fe8fd24407 1f4605c1-9dbc-43c9-9132-f66d279638cf 9d3bb84a-af3e-4616-8f79-46bdd551a731 7f1d4dec-c817-4bcb-8251-77aff2d99383 4 31971a09-e2f8-415e-b91f-27183d2502ab Group 3581f42a-9592-4549-bd6b-1c0fc39d067b Construct Point Construct a point from {xyz} coordinates. true 8ec0c145-f345-40f1-b548-bdeae4656453 true Construct Point Construct Point -3544 15161 129 64 -3462 15193 {x} coordinate ef971293-49dd-46bc-a9c2-f111f8b3c18d true X coordinate X coordinate false b486aa7d-f6a1-4814-b3cf-438ef0cca74b 1 -3542 15163 65 20 -3508 15173 1 1 {0} 0 {y} coordinate 365fb45d-7784-45bf-accf-51778b039137 true Y coordinate Y coordinate false 7048b7e4-2b82-4636-addb-a3fc267cbf8e 1 -3542 15183 65 20 -3508 15193 1 1 {0} 0 {z} coordinate cbcb329a-d34b-4956-a4ae-c46e163bc3bc true Z coordinate Z coordinate false c48c8651-0127-48e2-8179-5e6f8376cd04 1 -3542 15203 65 20 -3508 15213 1 1 {0} 0 Point coordinate 4113c65f-aeda-403a-bd7b-e956ee7d8850 true Point Point false 0 -3447 15163 30 60 -3430.5 15193 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects fb10ff99-648c-4894-877f-9f74f536f80b 42c748e2-6b54-4ec4-8f80-278f307ae0c2 bd126e88-c131-4b1c-89af-0295006e1a7e ffe7ddf2-2629-4b1b-9093-40905fccbf9c 4 dff2d18f-b44d-4334-8ed3-7a80aaa034b2 Group 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true 8398b5f4-fd6c-4c31-b15b-85d87dd315bc true Merge Merge -3523 14682 87 84 -3487 14724 4 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 a97d8f7a-cae8-4d4b-8dbf-44cec9080f23 true false Data 1 D1 true 491b4f9f-15b4-4a31-b218-8efc762778e3 1 -3521 14684 19 20 -3510 14694 2 Data stream 2 e4056e67-c874-44dc-9e8a-585885bf4a19 true false Data 2 D2 true 5c03ce7b-657d-446c-93c8-a977f6b2ff83 1 -3521 14704 19 20 -3510 14714 2 Data stream 3 67f0aac8-1206-4ea8-93f9-27b6f45c2741 true false Data 3 D3 true 0d4bbc48-88bc-4b87-beae-ef8b19c22fad 1 -3521 14724 19 20 -3510 14734 2 Data stream 4 5e3bfd68-e2f3-499b-ab68-9c445051efe3 true false Data 4 D4 true 0 -3521 14744 19 20 -3510 14754 2 Result of merge e370e985-4ce7-46a6-9272-61e578a1277f true Result Result false 0 -3472 14684 34 80 -3453.5 14724 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 878ef2e7-03c9-4c81-ab95-3f6612107a06 true Number Number false 74e89f85-5cd3-4475-b942-4195b9b26127 1 -3501 15748 50 24 -3476.559 15760 1 1 {0} 65536 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 8ec0c145-f345-40f1-b548-bdeae4656453 1 759a9424-cadf-4276-8b23-6f50b024aaa8 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object e15c0da3-15dc-4bcb-8939-2c5ec5698b15 Relay false 09336dd8-3c4b-476c-b62d-d3b399ef2780 1 -2409 17401 40 16 -2389 17409 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",ROUND(X, 15)) true 0d7b8cff-2594-4e45-ab9e-2f5f1341fd9b true Expression Expression -2910 15129 326 28 -2765 15143 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable f80f3bcd-a545-45b0-bb2c-9b22a3d97200 true Variable X X true 4440b01d-0727-488c-b655-f93cd16a720e 1 -2908 15131 14 24 -2899.5 15143 Result of expression 1af3d812-d361-4591-832f-34ad39b46812 true Result Result false true 0 -2636 15131 50 24 -2617.5 15143 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",ROUND(Y, 15)) true f6313031-c550-4d1d-8f43-99d56b12c44c true Expression Expression -2910 14908 325 28 -2766 14922 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 7ce655c3-f528-4834-9984-15478742baa2 true Variable Y Y true 6b0a7edd-e6c0-47a0-8363-8ecf033a1975 1 -2908 14910 13 24 -2900 14922 Result of expression ac13e7bf-b02b-40c3-97b3-55d6fb7c2433 true Result Result false true 0 -2637 14910 50 24 -2618.5 14922 22990b1f-9be6-477c-ad89-f775cd347105 Flip Curve Flip a curve using an optional guide curve. true 109e374b-4a2e-479b-9c78-4a16f0374be6 true Flip Curve Flip Curve -2084 15816 100 44 -2034 15838 Curve to flip 7941a2a5-8fb8-4bec-ba86-6ddf24efa4ff true Curve Curve false 8242d54a-3ffe-4e4a-8c0f-855f7d7f23a0 1 -2082 15818 33 20 -2064 15828 Optional guide curve c7a0a6b9-4199-4d42-b407-00be7c1ec496 true Guide Guide true 0 -2082 15838 33 20 -2064 15848 Flipped curve 453387b1-bbdb-436b-a38f-26663ecda336 true Curve Curve false 0 -2019 15818 33 20 -2001 15828 Flip action 2a41d5da-d734-4b6c-a309-ee64c2cafce3 true Flag Flag false 0 -2019 15838 33 20 -2001 15848 eeafc956-268e-461d-8e73-ee05c6f72c01 Stream Filter Filters a collection of input streams true 95f96cf7-23b6-4aba-a210-769d38bbb41c true Stream Filter Stream Filter -2068 15696 89 64 -2023 15728 3 2e3ab970-8545-46bb-836c-1c11e5610bce 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Index of Gate stream dcd11d44-a57d-43fb-a60d-81403468801f true Gate Gate false d112c991-f144-4804-bdab-b416453265b1 1 -2066 15698 28 20 -2050.5 15708 1 1 {0} 0 2 Input stream at index 0 bfd95814-63f0-481e-bd33-57f6162181ec true false Stream 0 0 true 8242d54a-3ffe-4e4a-8c0f-855f7d7f23a0 1 -2066 15718 28 20 -2050.5 15728 2 Input stream at index 1 585c0802-ec70-464a-a377-31d5b8c7a0a0 true false Stream 1 1 true 453387b1-bbdb-436b-a38f-26663ecda336 1 -2066 15738 28 20 -2050.5 15748 2 Filtered stream a4a42a27-5fc4-490b-8303-ab18a562494f true false Stream S(0) false 0 -2008 15698 27 60 -1993 15728 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values d112c991-f144-4804-bdab-b416453265b1 true Number Slider false 0 -2101 15790 150 20 -2100.713 15790.07 0 1 0 1 0 0 0 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 8678bd6b-c571-4190-8bed-27a19fbb5a4b true Curve Curve false 0 25359 12081 50 24 25384.7 12093.21 1 1 {0;0;0;0} -1 pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P 00000000-0000-0000-0000-000000000000 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 8678bd6b-c571-4190-8bed-27a19fbb5a4b 1 69cb92e2-5dc1-4578-a030-e3fde0cf0c69 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 89237e9f-871d-48dd-9eab-340be1f24133 1 88f963a4-8bce-4d2b-969a-528dbf52cec6 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 45c3e10d-573a-4dad-962c-2e7c9f645ad9 e74e59b2-8cd1-4463-9f9e-699a51228e3e 908290ff-2ae5-443a-8c02-efd3ed2fe118 1ac526a1-e8f8-4de5-a9e0-0332f0e610b4 50ab8d1b-85d8-4277-8f06-ed620cbe042a 8cacd258-ba73-4c62-93cd-8d1e686a3c02 ec295bb2-6f65-40de-aea2-f7e5ac3e0e01 4f0205c8-b81e-4c66-9378-aa2d8f7ee9e2 4c448985-1964-4d98-a54b-8c378b64c191 383b2bad-9847-47e8-a0fb-694d2a476a78 88f963a4-8bce-4d2b-969a-528dbf52cec6 69cb92e2-5dc1-4578-a030-e3fde0cf0c69 eb97d3e3-58d2-4ca4-83ec-e802f3da77ff f8f514f7-3e33-426a-8203-3b6e245b29bf b59b106e-8761-4626-a895-2e38e0d747eb 7ae8b5fd-03a9-4f7a-b6fb-eedf36ea815f 5c493b6d-4ec3-4a33-9878-718b9f7f7899 f1ee4950-7f56-4f3d-8d6b-542a35f21276 693be2ef-8a44-48e6-8210-de71cb311eb1 2542a3f2-90db-4e1a-8579-508a04e14002 20 96e719b4-9a6d-452e-8f37-602b6adb9fa3 Group dd8134c0-109b-4012-92be-51d843edfff7 Duplicate Data Duplicate data a predefined number of times. true 45c3e10d-573a-4dad-962c-2e7c9f645ad9 true Duplicate Data Duplicate Data 25331 13065 104 64 25390 13097 1 Data to duplicate 6ab95784-ed61-435b-96a0-975d216bf164 true Data Data false ff663701-35a8-41a9-a9e6-3ed043495116 1 25333 13067 42 20 25355.5 13077 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 1 Number of duplicates 20eb3084-35ca-4289-9219-b2d49c898a33 true Number Number false 64568223-14eb-4477-af37-fa9297e41d7f 1 25333 13087 42 20 25355.5 13097 1 1 {0} 500 Retain list order 681ab8bb-eefc-4d58-b9e9-5392382a6f36 true Order Order false 0 25333 13107 42 20 25355.5 13117 1 1 {0} true 1 Duplicated data 34f0dba0-0301-4b92-a3fe-a19ba56a6ef7 true Data Data false 0 25405 13067 28 60 25420.5 13097 fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 DotNET VB Script (LEGACY) A VB.NET scriptable component true e74e59b2-8cd1-4463-9f9e-699a51228e3e true DotNET VB Script (LEGACY) Turtle 0 Dim i As Integer Dim dir As New On3dVector(1, 0, 0) Dim pos As New On3dVector(0, 0, 0) Dim axis As New On3dVector(0, 0, 1) Dim pnts As New List(Of On3dVector) pnts.Add(pos) For i = 0 To Forward.Count() - 1 Dim P As New On3dVector dir.Rotate(Left(i), axis) P = dir * Forward(i) + pnts(i) pnts.Add(P) Next Points = pnts 25325 11467 116 44 25386 11489 1 1 2 Script Variable Forward Script Variable Left 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 true true Forward Left true true 2 Print, Reflect and Error streams Output parameter Points 3ede854e-c753-40eb-84cb-b48008f14fd4 8ec86459-bf01-4409-baee-174d0d2b13d0 true true Output Points false false 1 false Script Variable Forward d16ee258-d9ab-458a-9bb1-c212d6ddaeca true Forward Forward true 1 true 34f0dba0-0301-4b92-a3fe-a19ba56a6ef7 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 25327 11469 44 20 25350.5 11479 1 false Script Variable Left 6459e70f-df80-4cc7-813b-b513d9113360 true Left Left true 1 true d5250384-0cfc-461f-8d2e-aed83cb60717 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 25327 11489 44 20 25350.5 11499 Print, Reflect and Error streams ef2a9db7-8232-4f58-bc22-400ae95d8013 true Output Output false 0 25401 11469 38 20 25421.5 11479 Output parameter Points 4b2d6be0-031f-4559-89a4-0096c0e9e848 true Points Points false 0 25401 11489 38 20 25421.5 11499 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 908290ff-2ae5-443a-8c02-efd3ed2fe118 true Point Point false 4b2d6be0-031f-4559-89a4-0096c0e9e848 1 25359 11086 50 24 25384.81 11098.8 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true 1ac526a1-e8f8-4de5-a9e0-0332f0e610b4 true Series Series 25333 12522 101 64 25383 12554 First number in the series 0657e0c5-7dbf-4982-b197-efc5dcd5b8ad true Start Start false 0 25335 12524 33 20 25353 12534 1 1 {0} 0 Step size for each successive number d19029f6-92c1-4cd8-8fcf-c6af38366e01 true Step Step false ae0232f3-71a2-4c0b-b75d-03d815a4ab4a 1 25335 12544 33 20 25353 12554 1 1 {0} 1 Number of values in the series 907ce87c-d3fb-4a83-a928-cbe5a9c019a0 true Count Count false 64568223-14eb-4477-af37-fa9297e41d7f 1 25335 12564 33 20 25353 12574 1 Series of numbers 49c1b877-fdb3-4465-b110-c6b10cdf2441 true Series Series false 0 25398 12524 34 60 25416.5 12554 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values 50ab8d1b-85d8-4277-8f06-ed620cbe042a true Number Slider false 0 25310 13245 150 20 25310.63 13245.66 0 1 0 65536 0 0 256 a4cd2751-414d-42ec-8916-476ebf62d7fe Radians Convert an angle specified in degrees to radians true 8cacd258-ba73-4c62-93cd-8d1e686a3c02 true Radians Radians 25323 12733 120 28 25384 12747 Angle in degrees 21c53376-7559-40bc-8bdb-6f23af54aebc true Degrees Degrees false d461fc59-ff17-43bd-8530-b47d4e0b9d07 1 25325 12735 44 24 25348.5 12747 Angle in radians 325f27d4-a4e3-4de0-b22e-2b7e9d4d37b4 true Radians Radians false 0 25399 12735 42 24 25421.5 12747 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers ec295bb2-6f65-40de-aea2-f7e5ac3e0e01 true Digit Scroller Digit Scroller false 0 12 Digit Scroller 1 0.00140216731 25260 13037 250 20 25260.35 13037.21 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true 4f0205c8-b81e-4c66-9378-aa2d8f7ee9e2 true One Over X One Over X 25333 13147 100 28 25382 13161 Input value 6add9a57-8003-4b63-b7e0-cf662a38f736 true Value Value false 64568223-14eb-4477-af37-fa9297e41d7f 1 25335 13149 32 24 25352.5 13161 Output value ff663701-35a8-41a9-a9e6-3ed043495116 true Result Result false 0 25397 13149 34 24 25415.5 13161 75eb156d-d023-42f9-a85e-2f2456b8bcce Interpolate (t) Create an interpolated curve through a set of points with tangents. true 383b2bad-9847-47e8-a0fb-694d2a476a78 true Interpolate (t) Interpolate (t) 25311 10979 144 84 25397 11021 1 Interpolation points 56262534-3c57-4f1c-83af-555e0482f4aa true Vertices Vertices false 908290ff-2ae5-443a-8c02-efd3ed2fe118 1 25313 10981 69 20 25349 10991 Tangent at start of curve c257fa5a-8ab8-4230-840b-c953eaf64795 true Tangent Start Tangent Start false 0 25313 11001 69 20 25349 11011 1 1 {0} 0.0625 0 0 Tangent at end of curve 79fe44e7-09b5-418d-8178-0d0c98fef165 true Tangent End Tangent End false 0 25313 11021 69 20 25349 11031 1 1 {0} 0 0 0 Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 08a99958-2a27-4991-abbf-c817c9714716 true KnotStyle KnotStyle false 0 25313 11041 69 20 25349 11051 1 1 {0} 2 Resulting nurbs curve 4050ad2c-5e3d-4904-a320-abd7fe2221d2 true Curve Curve false 0 25412 10981 41 26 25434 10994.33 Curve length 094dfd85-1e34-4fd1-8c16-0b45ca704387 true Length Length false 0 25412 11007 41 27 25434 11021 Curve domain 6e59181b-1f9a-4a9f-9ee1-f12d89d7b0a8 true Domain Domain false 0 25412 11034 41 27 25434 11047.67 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 45c3e10d-573a-4dad-962c-2e7c9f645ad9 e74e59b2-8cd1-4463-9f9e-699a51228e3e 908290ff-2ae5-443a-8c02-efd3ed2fe118 1ac526a1-e8f8-4de5-a9e0-0332f0e610b4 50ab8d1b-85d8-4277-8f06-ed620cbe042a 8cacd258-ba73-4c62-93cd-8d1e686a3c02 ec295bb2-6f65-40de-aea2-f7e5ac3e0e01 4f0205c8-b81e-4c66-9378-aa2d8f7ee9e2 b53adb78-a001-472e-b4d9-21016d5a1502 d461fc59-ff17-43bd-8530-b47d4e0b9d07 056f1928-832c-436e-9583-925fe9f79c8d 24402fa4-4cf6-4928-aa18-97b2fb379b92 0510202c-a370-465f-bd2a-2d6d989d6cf9 13 4c448985-1964-4d98-a54b-8c378b64c191 Group 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true de8b8d5b-29d5-4cfd-9b53-7fb2d3442fad true Evaluate Length Evaluate Length 25311 10811 144 64 25385 10843 Curve to evaluate 31717ae1-93c2-428d-af92-84c7cf5909de true Curve Curve false 4050ad2c-5e3d-4904-a320-abd7fe2221d2 1 25313 10813 57 20 25343 10823 Length factor for curve evaluation f34e43ea-2b73-42f6-aebc-fea9c02b1efd true Length Length false 0 25313 10833 57 20 25343 10843 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) e5e93e34-4260-4398-a936-af912206afe4 true Normalized Normalized false 0 25313 10853 57 20 25343 10863 1 1 {0} true Point at the specified length 1a277a71-111e-4f61-b188-0fbd711c6f12 true Point Point false 0 25400 10813 53 20 25428 10823 Tangent vector at the specified length beb0d37e-13fa-4d79-bebc-f79d675fa129 true Tangent Tangent false 0 25400 10833 53 20 25428 10843 Curve parameter at the specified length e11b4dc8-aa19-4daf-b73a-a85f3773043f true Parameter Parameter false 0 25400 10853 53 20 25428 10863 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true be5f0e4e-5875-4c70-aa36-870c817df9e1 true Mirror Mirror 25314 10749 138 44 25382 10771 Base geometry af084c56-70bd-42cc-8609-94f4b24be4b3 true Geometry Geometry true 4050ad2c-5e3d-4904-a320-abd7fe2221d2 1 25316 10751 51 20 25343 10761 Mirror plane 061313de-0895-42fb-a091-c2e0b3409d26 true Plane Plane false b61e6070-fb9d-4232-bc37-354c6df94646 1 25316 10771 51 20 25343 10781 1 1 {0} 0 0 0 0 1 0 0 0 1 Mirrored geometry b3fab030-ec36-413b-bb22-a1a708a15c8d true Geometry Geometry false 0 25397 10751 53 20 25425 10761 Transformation data 44d19e6f-1e47-488b-a099-6fe1ebef7448 true Transform Transform false 0 25397 10771 53 20 25425 10781 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true a19dc0b8-11b2-4e7d-bbd5-60cb3c62ba36 true Line SDL Line SDL 25330 10895 106 64 25394 10927 Line start point ff18a17c-fa27-4ca7-a35c-dd81a4c8e840 true Start Start false 1a277a71-111e-4f61-b188-0fbd711c6f12 1 25332 10897 47 20 25357 10907 Line tangent (direction) 0770b59d-c58b-4bbd-b3e6-f1f7ac55dfd7 true Direction Direction false beb0d37e-13fa-4d79-bebc-f79d675fa129 1 25332 10917 47 20 25357 10927 1 1 {0} 0 0 1 Line length 94054e0a-a900-446c-8edd-2dfd16b0dd8e true Length Length false 0 25332 10937 47 20 25357 10947 1 1 {0} 1 Line segment b61e6070-fb9d-4232-bc37-354c6df94646 true Line Line false 0 25409 10897 25 60 25423 10927 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true a17b5425-b933-4a96-b022-239c9056d234 true Join Curves Join Curves 25324 10687 118 44 25387 10709 1 Curves to join a7d2f32f-0347-4692-a16b-a8fa7c986d30 true Curves Curves false 4050ad2c-5e3d-4904-a320-abd7fe2221d2 b3fab030-ec36-413b-bb22-a1a708a15c8d 2 25326 10689 46 20 25350.5 10699 Preserve direction of input curves cbae510b-8019-476e-bc88-f52db782c55d true Preserve Preserve false 0 25326 10709 46 20 25350.5 10719 1 1 {0} false 1 Joined curves and individual curves that could not be joined. 36450c41-52e4-4b2e-b49f-0c6e5de84aa2 true Curves Curves false 0 25402 10689 38 40 25422.5 10709 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true bffee6c0-e4eb-4cb4-bae7-60a3dcdb7505 true Evaluate Length Evaluate Length 25311 10603 144 64 25385 10635 Curve to evaluate 6658536e-acb5-403c-a29a-ad84914513d3 true Curve Curve false 36450c41-52e4-4b2e-b49f-0c6e5de84aa2 1 25313 10605 57 20 25343 10615 Length factor for curve evaluation 9fa261d4-fc4c-4556-af9d-922e95fe9244 true Length Length false 0 25313 10625 57 20 25343 10635 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 081a47dd-8367-4a9d-a6d3-8018753b2efd true Normalized Normalized false 0 25313 10645 57 20 25343 10655 1 1 {0} true Point at the specified length 02e1596d-ffca-497b-b85b-2c3356fb951a true Point Point false 0 25400 10605 53 20 25428 10615 Tangent vector at the specified length cece903c-8bbe-400e-b48e-6f2a408e9b79 true Tangent Tangent false 0 25400 10625 53 20 25428 10635 Curve parameter at the specified length 00ee014d-ef1b-46b9-add5-50183cdd34e5 true Parameter Parameter false 0 25400 10645 53 20 25428 10655 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 6263d839-2890-4f51-a4ca-400b76341a46 true Rotate Rotate 25314 10520 138 64 25382 10552 Base geometry 2ea3fff0-67f2-4944-b6bf-ab33219b19f7 true Geometry Geometry true 36450c41-52e4-4b2e-b49f-0c6e5de84aa2 1 25316 10522 51 20 25343 10532 Rotation angle in radians cc6072d9-502c-4084-8377-d319d0627489 true Angle Angle false 0 false 25316 10542 51 20 25343 10552 1 1 {0} 3.1415926535897931 Rotation plane ed9be6ab-c7c0-46ee-b2d3-b56c09c4cd47 true Plane Plane false 02e1596d-ffca-497b-b85b-2c3356fb951a 1 25316 10562 51 20 25343 10572 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 791ebe5c-87ad-403d-8ff7-ce80d4848513 true Geometry Geometry false 0 25397 10522 53 30 25425 10537 Transformation data 3a723d4b-2f67-4de6-a78a-7035d42bddd0 true Transform Transform false 0 25397 10552 53 30 25425 10567 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true 684dab19-ebc3-4fa2-85ae-30ba890d75cf true Join Curves Join Curves 25324 10457 118 44 25387 10479 1 Curves to join 87b43af7-c729-4e6a-bf68-1a4737d3f489 true Curves Curves false 36450c41-52e4-4b2e-b49f-0c6e5de84aa2 791ebe5c-87ad-403d-8ff7-ce80d4848513 2 25326 10459 46 20 25350.5 10469 Preserve direction of input curves cb3f2326-ee77-4e90-9a89-5e1313bc7210 true Preserve Preserve false 0 25326 10479 46 20 25350.5 10489 1 1 {0} false 1 Joined curves and individual curves that could not be joined. 9e1b94a2-99b2-44aa-b7ca-e881ee48d2d8 true Curves Curves false 0 25402 10459 38 40 25422.5 10479 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 383b2bad-9847-47e8-a0fb-694d2a476a78 de8b8d5b-29d5-4cfd-9b53-7fb2d3442fad be5f0e4e-5875-4c70-aa36-870c817df9e1 a19dc0b8-11b2-4e7d-bbd5-60cb3c62ba36 a17b5425-b933-4a96-b022-239c9056d234 bffee6c0-e4eb-4cb4-bae7-60a3dcdb7505 6263d839-2890-4f51-a4ca-400b76341a46 684dab19-ebc3-4fa2-85ae-30ba890d75cf 4204693a-6067-4379-a243-8448862f25b8 9 89237e9f-871d-48dd-9eab-340be1f24133 Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values b60b5335-5a6b-4be3-8839-241b11937a8e true Panel false 0 d689d842-3ece-40aa-8820-e9f429d00049 1 Double click to edit panel content… 25312 12615 145 20 0 0 0 25312.38 12615.96 255;255;255;255 false false true false false true d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 4204693a-6067-4379-a243-8448862f25b8 true Curve Curve false 9e1b94a2-99b2-44aa-b7ca-e881ee48d2d8 1 25360 10426 50 24 25385.22 10438.46 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 4204693a-6067-4379-a243-8448862f25b8 1 009cb74a-f9f4-4ccd-ab1c-2dd05580acb6 Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values d461fc59-ff17-43bd-8530-b47d4e0b9d07 true Panel false 0 0 0.0014014999884235925 25165 12790 439 104 0 0 0 25165.93 12790.29 255;255;255;255 false false true false false true 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true e00c36a5-d637-4c31-9c20-859c86dbc3f4 true Evaluate Length Evaluate Length 25311 10331 144 64 25385 10363 Curve to evaluate b4782cdf-a573-4ac8-81d8-3a3c3980821b true Curve Curve false 9e1b94a2-99b2-44aa-b7ca-e881ee48d2d8 1 25313 10333 57 20 25343 10343 Length factor for curve evaluation a3a4657d-6639-4885-99a7-26365f8b6e4d true Length Length false 0 25313 10353 57 20 25343 10363 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 5d422b99-77f9-44a3-979f-653b421e37ea true Normalized Normalized false 0 25313 10373 57 20 25343 10383 1 1 {0} true Point at the specified length 387b7e56-7c99-49ec-b347-b7060ddde04a true Point Point false 0 25400 10333 53 20 25428 10343 Tangent vector at the specified length 74164024-be1f-4c52-9f08-9b067cafb8ea true Tangent Tangent false 0 25400 10353 53 20 25428 10363 Curve parameter at the specified length ea18cad0-f4c5-4093-bb76-2acd4555555a true Parameter Parameter false 0 25400 10373 53 20 25428 10383 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 0258f90b-2449-4f50-9f7c-8ed53b74791e true Expression Expression 25286 10109 194 28 25386 10123 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 7e38885d-ed6b-49da-bc43-e1a84a1d2674 true Variable O O true 292ef126-835c-4bf0-9893-67488a17c4d9 1 25288 10111 14 24 25296.5 10123 Result of expression 0d6c0bfc-169e-4f72-9f23-437eb12c8214 true Result false 0 25469 10111 9 24 25475 10123 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 574c27c9-3452-47a9-97c9-e01fb407b925 true Deconstruct Deconstruct 25317 10243 132 64 25364 10275 Input point 62e95adc-4eab-40b5-a64e-95da9b371e6d true Point Point false 387b7e56-7c99-49ec-b347-b7060ddde04a 1 25319 10245 30 60 25335.5 10275 Point {x} component 292ef126-835c-4bf0-9893-67488a17c4d9 true X component X component false 0 25379 10245 68 20 25414.5 10255 Point {y} component edc4300b-a059-41cf-9529-dd2086a225e5 true Y component Y component false 0 25379 10265 68 20 25414.5 10275 Point {z} component 96c2465c-22ba-4da2-90d3-72c71f8e4df3 true Z component Z component false 0 25379 10285 68 20 25414.5 10295 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values c6bbf3e9-5806-4a3c-ab8f-d72c75b2e3b8 true Panel false 0 0d6c0bfc-169e-4f72-9f23-437eb12c8214 1 Double click to edit panel content… 25304 10082 160 20 0 0 0 25304.72 10082.45 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true c36c8810-c429-4a65-81c2-ee9afc72aab1 true Expression Expression 25286 10023 194 28 25386 10037 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 1964230e-0424-49b8-94c3-995387b3a5c7 true Variable O O true edc4300b-a059-41cf-9529-dd2086a225e5 1 25288 10025 14 24 25296.5 10037 Result of expression 97b9357c-5971-4c4d-a02a-09aa3e756a13 true Result false 0 25469 10025 9 24 25475 10037 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 37daf086-17fc-4e47-ba8c-391198555b78 true Panel false 0 97b9357c-5971-4c4d-a02a-09aa3e756a13 1 Double click to edit panel content… 25304 9994 160 20 0 0 0 25304.72 9994.027 255;255;255;255 false false true false false true 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 44fe1fbd-5b85-4a6f-b9c6-e285398e2914 true Division Division 25342 9921 82 44 25373 9943 Item to divide (dividend) 018cf40a-ffa3-4db5-8a81-3b3bb2f02f0e true A A false c6bbf3e9-5806-4a3c-ab8f-d72c75b2e3b8 1 25344 9923 14 20 25352.5 9933 Item to divide with (divisor) 331475fc-78ae-4bad-b8a5-46a25122b26a true B B false 37daf086-17fc-4e47-ba8c-391198555b78 1 25344 9943 14 20 25352.5 9953 The result of the Division 28d39efb-0253-45f1-b5ef-6bb38788b4d7 true Result Result false 0 25388 9923 34 40 25406.5 9943 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values a102b448-aa77-41af-b3e1-af7787a09310 true Panel false 0 d689d842-3ece-40aa-8820-e9f429d00049 1 Double click to edit panel content… 25304 9846 160 20 0 0 0 25304.96 9846.512 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true c362505c-12b2-46bf-a82f-8c1d92073bd1 true Expression Expression 25286 9874 194 28 25386 9888 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 7759eba8-291f-45e4-b2d5-b4abec07e173 true Variable O O true 28d39efb-0253-45f1-b5ef-6bb38788b4d7 1 25288 9876 14 24 25296.5 9888 Result of expression 6de964ed-6bd8-4f74-a7c0-287c5084f789 true Result false 0 25469 9876 9 24 25475 9888 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object d689d842-3ece-40aa-8820-e9f429d00049 true Relay false 6de964ed-6bd8-4f74-a7c0-287c5084f789 1 25363 9799 40 16 25383 9807 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true 2f9e1ab9-aab9-423a-812a-3c7da9b498b3 true Addition Addition 25342 9736 82 44 25373 9758 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition de86611c-9d46-480d-b637-8e1aefb32d8d true A A true 37daf086-17fc-4e47-ba8c-391198555b78 1 25344 9738 14 20 25352.5 9748 Second item for addition bc9134fb-4752-4d31-a07c-5c8e2da350c8 true B B true c6bbf3e9-5806-4a3c-ab8f-d72c75b2e3b8 1 25344 9758 14 20 25352.5 9768 Result of addition 6b249492-ca97-4af2-a06b-2046935f0f14 true Result Result false 0 25388 9738 34 40 25406.5 9758 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true a8987895-1926-435c-ac30-b55cbdf38020 true Division Division 25342 9586 82 44 25373 9608 Item to divide (dividend) f775f3bd-b4f2-420e-a393-77d9dcaecbec true A A false 5d38ad1e-9c75-4669-82cd-7bb63c08c77d 1 25344 9588 14 20 25352.5 9598 Item to divide with (divisor) b3b644bf-1028-4663-bb5c-035f4264887b true B B false 0 25344 9608 14 20 25352.5 9618 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 The result of the Division 416e8064-9f0f-4d9b-b2db-0f65ee086b56 true Result Result false 0 25388 9588 34 40 25406.5 9608 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 69ffacb2-16a1-4129-973b-aa48634a37a7 true Expression Expression 25286 9538 194 28 25386 9552 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 2a552031-5f82-49f0-b2fe-d6aade26571c true Variable O O true 416e8064-9f0f-4d9b-b2db-0f65ee086b56 1 25288 9540 14 24 25296.5 9552 Result of expression 3fad3673-2f3c-47b3-8ec5-8cc65bc73971 true Result false 0 25469 9540 9 24 25475 9552 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values ea54cb37-f08c-491b-ac20-a65e4389cca7 true Panel false 0 3fad3673-2f3c-47b3-8ec5-8cc65bc73971 1 Double click to edit panel content… 25304 9510 160 20 0 0 0 25304.72 9510.367 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 5d38ad1e-9c75-4669-82cd-7bb63c08c77d true Panel false 0 38e7344e-f708-4f88-a876-2c3a66f71082 1 Double click to edit panel content… 25304 9662 160 20 0 0 0 25304.72 9662.277 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true c531f81c-9d53-4f73-8799-3bd516a3edc6 true Expression Expression 25286 9689 194 28 25386 9703 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 0774d1fa-5f5a-41ed-85b3-b904f177db60 true Variable O O true 6b249492-ca97-4af2-a06b-2046935f0f14 1 25288 9691 14 24 25296.5 9703 Result of expression 38e7344e-f708-4f88-a876-2c3a66f71082 true Result false 0 25469 9691 9 24 25475 9703 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 877569dd-746a-480a-b6ae-2a0b26b46cb9 true Scale Scale 25306 9415 154 64 25390 9447 Base geometry c3599339-1fb3-49c5-a07b-4b51e97661b2 true Geometry Geometry true 4204693a-6067-4379-a243-8448862f25b8 1 25308 9417 67 20 25351 9427 Center of scaling 89aef1e9-7140-4a20-8473-07e485ac5ff4 true Center Center false 0 25308 9437 67 20 25351 9447 1 1 {0} 0 0 0 Scaling factor e977af64-2c2e-4e47-b04e-5b87ea55c42f 1/X true Factor Factor false ea54cb37-f08c-491b-ac20-a65e4389cca7 1 25308 9457 67 20 25351 9467 1 1 {0} 0.5 Scaled geometry c897da8f-2a84-406d-8949-2463bc806522 true Geometry Geometry false 0 25405 9417 53 30 25433 9432 Transformation data 22292b14-ceae-42d8-99c3-9457f523f130 true Transform Transform false 0 25405 9447 53 30 25433 9462 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true b0780f8b-24b8-49e3-9ca2-ead4f899b3af true Curve Curve false c897da8f-2a84-406d-8949-2463bc806522 1 25359 8826 50 24 25384.7 8838.869 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 5104e935-fd94-4795-b481-644285836bda true Expression Expression 25286 10196 194 28 25386 10210 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable e778a8c2-ce9f-4465-88e1-d6389d8f03a5 true Variable O O true 96c2465c-22ba-4da2-90d3-72c71f8e4df3 1 25288 10198 14 24 25296.5 10210 Result of expression ee5860d6-07dc-42c1-b491-a363d9b9964c true Result false 0 25469 10198 9 24 25475 10210 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values ba05c31e-27c7-43c9-bb03-bdcfd5e8adcf true Panel false 0 ee5860d6-07dc-42c1-b491-a363d9b9964c 1 Double click to edit panel content… 25305 10168 160 20 0 0 0 25305.59 10168.22 255;255;255;255 false false true false false true 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 77c1dbe1-728b-4cff-a941-f348a22d517d true Evaluate Length Evaluate Length 25311 9205 144 64 25385 9237 Curve to evaluate b2b3693e-ae57-4dfe-a73a-7eb477a93d21 true Curve Curve false c897da8f-2a84-406d-8949-2463bc806522 1 25313 9207 57 20 25343 9217 Length factor for curve evaluation 10824d6a-34a9-453e-a5e8-c31b5902a35f true Length Length false 0 25313 9227 57 20 25343 9237 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 6146096c-62b0-4293-9dfd-be134a2e27b3 true Normalized Normalized false 0 25313 9247 57 20 25343 9257 1 1 {0} true Point at the specified length 235df291-e3ee-43c9-b742-ae83f703f283 true Point Point false 0 25400 9207 53 20 25428 9217 Tangent vector at the specified length 8ea36277-2dc9-4b05-950d-eae7b4189f4a true Tangent Tangent false 0 25400 9227 53 20 25428 9237 Curve parameter at the specified length 2a407ca2-64bd-41e5-8f43-b86e3fdd4220 true Parameter Parameter false 0 25400 9247 53 20 25428 9257 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true ed7e6822-10cf-46e3-98d5-7d186149277e true Expression Expression 25286 8988 194 28 25386 9002 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable d3348215-b5b4-41d4-8251-f4bff26c252d true Variable O O true 63785d1f-d1ec-4b65-8ae8-4948d1b5c20d 1 25288 8990 14 24 25296.5 9002 Result of expression 3ddf313e-e51c-42fa-b4bf-f04d5dabc4fc true Result false 0 25469 8990 9 24 25475 9002 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 36704715-e6fa-4103-b9c9-63c99693e5b3 true Deconstruct Deconstruct 25317 9122 132 64 25364 9154 Input point 10226b8a-49ef-4762-ad62-b2105c21ad36 true Point Point false 235df291-e3ee-43c9-b742-ae83f703f283 1 25319 9124 30 60 25335.5 9154 Point {x} component 63785d1f-d1ec-4b65-8ae8-4948d1b5c20d true X component X component false 0 25379 9124 68 20 25414.5 9134 Point {y} component d08fac8d-d0e3-4a18-b730-f48281008189 true Y component Y component false 0 25379 9144 68 20 25414.5 9154 Point {z} component c55eac9a-aefc-4b11-ab9a-d42b48254a80 true Z component Z component false 0 25379 9164 68 20 25414.5 9174 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 3bfe6f5e-0bc5-434b-8a1f-1ea9e1325374 true Panel false 0 3ddf313e-e51c-42fa-b4bf-f04d5dabc4fc 1 Double click to edit panel content… 25304 8955 160 20 0 0 0 25304.97 8955.793 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 957deaf1-c564-47c7-b565-4f0dae2b1c92 true Expression Expression 25286 8902 194 28 25386 8916 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 88f2333b-e8d8-4330-bd82-c57ea131424f true Variable O O true d08fac8d-d0e3-4a18-b730-f48281008189 1 25288 8904 14 24 25296.5 8916 Result of expression 9e216706-05b8-4261-8eb6-72f29a9f9034 true Result false 0 25469 8904 9 24 25475 8916 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 6bd5e34d-dcf5-42c1-94eb-d3b84215d27e true Panel false 0 9e216706-05b8-4261-8eb6-72f29a9f9034 1 Double click to edit panel content… 25304 8870 160 20 0 0 0 25304.98 8870.162 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true ad71ca87-a761-4963-809d-57f3d493a3b4 true Expression Expression 25286 9074 194 28 25386 9088 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 42174f80-7ee7-415a-8297-bed2120b1e47 true Variable O O true c55eac9a-aefc-4b11-ab9a-d42b48254a80 1 25288 9076 14 24 25296.5 9088 Result of expression 60d3fa91-7ed4-4789-b6de-6365743d9495 true Result false 0 25469 9076 9 24 25475 9088 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 247eb013-2062-40dc-bced-7540d1c2f75f true Panel false 0 60d3fa91-7ed4-4789-b6de-6365743d9495 1 Double click to edit panel content… 25304 9042 160 20 0 0 0 25304.72 9042.004 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 056f1928-832c-436e-9583-925fe9f79c8d true Panel false 0 0 1 16 0.35721403168191375 1 256 0.0014014999884235925 1 4096 25196 12913 379 104 0 0 0 25196.16 12913.29 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 693be2ef-8a44-48e6-8210-de71cb311eb1 true Panel false 0 29f48876-ab06-4cd7-8e67-8916c7700061 1 Double click to edit panel content… 25216 11128 337 276 0 0 0 25216.91 11128.4 255;255;255;255 true true true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 2542a3f2-90db-4e1a-8579-508a04e14002 true Expression Expression 25286 11419 194 28 25386 11433 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable c727f68c-269e-4a22-b4f2-a05ce9642d1d true Variable O O true 4b2d6be0-031f-4559-89a4-0096c0e9e848 1 25288 11421 14 24 25296.5 11433 Result of expression 29f48876-ab06-4cd7-8e67-8916c7700061 true Result false 0 25469 11421 9 24 25475 11433 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 64568223-14eb-4477-af37-fa9297e41d7f true Number Number false 50ab8d1b-85d8-4277-8f06-ed620cbe042a 1 25360 13203 50 24 25385.68 13215.96 cae9fe53-6d63-44ed-9d6d-13180fbf6f89 1c9de8a1-315f-4c56-af06-8f69fee80a7a Curve Graph Mapper Remap values with a custom graph using input curves. true eb97d3e3-58d2-4ca4-83ec-e802f3da77ff true Curve Graph Mapper Curve Graph Mapper 25214 11651 160 224 25282 11763 1 One or multiple graph curves to graph map values with 43c6df62-f227-47c7-bae2-a8726349380e true Curves Curves false 8678bd6b-c571-4190-8bed-27a19fbb5a4b 1 25216 11653 51 27 25243 11666.75 Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary 466e2f81-cf6e-439b-9ea0-e06358c16ba1 true Rectangle Rectangle false 72f41297-9724-405c-b6f5-330141fa27a4 1 25216 11680 51 28 25243 11694.25 1 1 {0;0;0;0;0} 0 0 0 1 0 0 0 1 0 0 1 0 1 1 Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis 7c66ffeb-78a7-485d-ba20-55bb18caca75 true Values Values false 49c1b877-fdb3-4465-b110-c6b10cdf2441 1 25216 11708 51 27 25243 11721.75 Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used) bbc7b1d8-5fb1-4430-b91f-ccb9e2a0858f true X Axis X Axis true 0 25216 11735 51 28 25243 11749.25 Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used) 73e3ae7b-74f9-466b-9745-281365fcbd28 true Y Axis Y Axis true 0 25216 11763 51 27 25243 11776.75 Flip the graphs X Axis from the bottom of the graph to the top of the graph 820ce0d6-a550-4e23-b6ed-989083eace44 true Flip Flip false 0 25216 11790 51 28 25243 11804.25 1 1 {0} false Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle 903a154f-5160-4aa0-90f4-5fbd822468c9 true Snap Snap false 0 25216 11818 51 27 25243 11831.75 1 1 {0} false Size of the graph labels ab4a7da3-5cd1-43d3-874b-df954d81a60b true Text Size Text Size false 0 25216 11845 51 28 25243 11859.25 1 1 {0} 0.015625 1 Resulting graph mapped values, mapped on the Y Axis 92f2fc28-d092-4a3f-8bf8-86115b5ba83f true Mapped Mapped false 0 25297 11653 75 20 25336 11663 1 The graph curves inside the boundary of the graph 971013ce-ea07-43e2-bc26-b371ca9c2fc8 true Graph Curves Graph Curves false 0 25297 11673 75 20 25336 11683 1 The points on the graph curves where the X Axis input values intersected true db2d1cf5-1f4e-489b-8481-39ad3e40f432 true Graph Points Graph Points false 0 25297 11693 75 20 25336 11703 1 The lines from the X Axis input values to the graph curves true 87269a2d-866b-45e1-9061-e409b53a7bde true Value Lines Value Lines false 0 25297 11713 75 20 25336 11723 1 The points plotted on the X Axis which represent the input values true aa4ad1d4-fc02-483d-806d-9df1b1a990c8 true Value Points Value Points false 0 25297 11733 75 20 25336 11743 1 The lines from the graph curves to the Y Axis graph mapped values true eb3c5cf2-7c2f-4df6-8017-60abaff538a8 true Mapped Lines Mapped Lines false 0 25297 11753 75 20 25336 11763 1 The points mapped on the Y Axis which represent the graph mapped values true aaa1a380-78bd-44e1-9977-bf10d2e246d2 true Mapped Points Mapped Points false 0 25297 11773 75 20 25336 11783 The graph boundary background as a surface b58644cb-6f0f-41a2-91ad-cf54e1d2f0c0 true Boundary Boundary false 0 25297 11793 75 20 25336 11803 1 The graph labels as curve outlines 42306c42-c7bb-4839-9902-2c0ef4989060 true Labels Labels false 0 25297 11813 75 20 25336 11823 1 True for input values outside of the X Axis domain bounds False for input values inside of the X Axis domain bounds 4fa67e71-7dfd-4806-9d0d-849ec2350573 true Out Of Bounds Out Of Bounds false 0 25297 11833 75 20 25336 11843 1 True for input values on the X Axis which intersect a graph curve False for input values on the X Axis which do not intersect a graph curve fa770a37-26ec-4673-9a09-d7f411eb4f1f true Intersected Intersected false 0 25297 11853 75 20 25336 11863 11bbd48b-bb0a-4f1b-8167-fa297590390d End Points Extract the end points of a curve. true f8f514f7-3e33-426a-8203-3b6e245b29bf true End Points End Points 25335 12011 96 44 25385 12033 Curve to evaluate 61145917-b67f-4fae-8823-d2e3e479ce8c true Curve Curve false 8678bd6b-c571-4190-8bed-27a19fbb5a4b 1 25337 12013 33 40 25355 12033 Curve start point 2fcb0938-f144-4f3e-a0f5-bdcf0e7f2279 true Start Start false 0 25400 12013 29 20 25416 12023 Curve end point 2e5e190e-4665-4784-9402-c3607cf2f323 true End End false 0 25400 12033 29 20 25416 12043 575660b1-8c79-4b8d-9222-7ab4a6ddb359 Rectangle 2Pt Create a rectangle from a base plane and two points true b59b106e-8761-4626-a895-2e38e0d747eb true Rectangle 2Pt Rectangle 2Pt 25320 11909 126 84 25378 11951 Rectangle base plane 66e424e4-a438-4e92-a2cf-a5449f6582dd true Plane Plane false 0 25322 11911 41 20 25344 11921 1 1 {0} 0 0 0 1 0 0 0 1 0 First corner point. 6d289dfa-d7f4-4cc5-a46c-3793c3c072ef true Point A Point A false 2fcb0938-f144-4f3e-a0f5-bdcf0e7f2279 1 25322 11931 41 20 25344 11941 1 1 {0;0;0;0;0} 0 0 0 Second corner point. 371cfbc6-38f1-42d3-8a6f-654351f37cfd true Point B Point B false 2e5e190e-4665-4784-9402-c3607cf2f323 1 25322 11951 41 20 25344 11961 1 1 {0;0;0;0;0} 1 1 0 Rectangle corner fillet radius 21c60a0e-74c2-48ad-91ec-03a9cc038298 true Radius Radius false 0 25322 11971 41 20 25344 11981 1 1 {0} 0 Rectangle defined by P, A and B 72f41297-9724-405c-b6f5-330141fa27a4 true Rectangle Rectangle false 0 25393 11911 51 40 25420 11931 Length of rectangle curve dd1480dc-b4cf-4cee-86e9-4edcb70da9c7 true Length Length false 0 25393 11951 51 40 25420 11971 310f9597-267e-4471-a7d7-048725557528 08bdcae0-d034-48dd-a145-24a9fcf3d3ff GraphMapper+ External Graph mapper You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode. true 7ae8b5fd-03a9-4f7a-b6fb-eedf36ea815f true GraphMapper+ GraphMapper+ false 25374 11771 126 104 25441 11823 External curve as a graph 7dfbfee0-c1ff-42ac-aee9-48a0524f7f85 true Curve Curve false 8678bd6b-c571-4190-8bed-27a19fbb5a4b 1 25376 11773 50 20 25402.5 11783 Optional Rectangle boundary. If omitted the curve's would be landed 36c7545b-437a-4166-b392-521487f8d894 true Boundary Boundary true 72f41297-9724-405c-b6f5-330141fa27a4 1 25376 11793 50 20 25402.5 11803 1 List of input numbers 187d96ee-a1c3-458f-b406-a82e523ab0b7 true Numbers Numbers false 49c1b877-fdb3-4465-b110-c6b10cdf2441 1 25376 11813 50 20 25402.5 11823 1 9 {0} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 (Optional) Input Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode f1a245d5-5020-489e-980d-98da7de9977b true Input Input true ed31a0bf-60d4-48ae-ae13-7521f47ecc0f 1 25376 11833 50 20 25402.5 11843 (Optional) Output Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode 483c0b1d-963a-4330-adcf-f5959840a802 true Output Output true ed31a0bf-60d4-48ae-ae13-7521f47ecc0f 1 25376 11853 50 20 25402.5 11863 1 Output Numbers 798a346b-7916-4296-831a-e40a3ce3bf54 true Number Number false 0 25456 11773 42 100 25478.5 11823 eeafc956-268e-461d-8e73-ee05c6f72c01 Stream Filter Filters a collection of input streams true 5c493b6d-4ec3-4a33-9878-718b9f7f7899 true Stream Filter Stream Filter 25349 11568 89 64 25394 11600 3 2e3ab970-8545-46bb-836c-1c11e5610bce 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Index of Gate stream 92f55c1a-4781-40ae-9250-bd054034bc8c true Gate Gate false f1ee4950-7f56-4f3d-8d6b-542a35f21276 1 25351 11570 28 20 25366.5 11580 1 1 {0} 0 2 Input stream at index 0 db3a5b58-ff19-46bc-92f9-3c7e646dcb61 true false Stream 0 0 true 92f2fc28-d092-4a3f-8bf8-86115b5ba83f 1 25351 11590 28 20 25366.5 11600 2 Input stream at index 1 f273e874-618a-41ef-b61b-74e7edc11282 true false Stream 1 1 true 798a346b-7916-4296-831a-e40a3ce3bf54 1 25351 11610 28 20 25366.5 11620 2 Filtered stream d5250384-0cfc-461f-8d2e-aed83cb60717 true false Stream S(1) false 0 25409 11570 27 60 25424 11600 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values f1ee4950-7f56-4f3d-8d6b-542a35f21276 true Number Slider false 0 25315 11540 150 20 25315.34 11540 0 1 0 1 0 0 1 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 24402fa4-4cf6-4928-aa18-97b2fb379b92 true Panel false 1 051c3105-2889-46bf-8c55-0d9190f4ef89 1 Double click to edit panel content… 25292 12176 185 271 0 0 0 25292.41 12176.41 255;255;255;255 true true true false false true f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true b53adb78-a001-472e-b4d9-21016d5a1502 true Bounds Bounds 25322 12118 122 28 25386 12132 1 Numbers to include in Bounds 2f16c49e-8194-4760-939d-ccaea4730f53 true Numbers Numbers false 24402fa4-4cf6-4928-aa18-97b2fb379b92 1 25324 12120 47 24 25349 12132 Numeric Domain between the lowest and highest numbers in {N} ed31a0bf-60d4-48ae-ae13-7521f47ecc0f true Domain Domain false 0 25401 12120 41 24 25423 12132 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 0510202c-a370-465f-bd2a-2d6d989d6cf9 true Expression Expression 25286 12478 194 28 25386 12492 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable d78701f3-1110-4a4f-b7bb-c2118ecedde9 true Variable O O true 49c1b877-fdb3-4465-b110-c6b10cdf2441 1 25288 12480 14 24 25296.5 12492 Result of expression 051c3105-2889-46bf-8c55-0d9190f4ef89 true Result false 0 25469 12480 9 24 25475 12492 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:0.00000000000000000000}",O) true 140588d4-2e33-43b3-9043-f29b91eda6ed true Expression Expression 25200 12685 367 28 25386 12699 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 9fe8bab1-2985-4c05-a4f4-d345f17cb2dc true Variable O O true 325f27d4-a4e3-4de0-b22e-2b7e9d4d37b4 1 25202 12687 14 24 25210.5 12699 Result of expression d2f13758-ed0b-483d-a131-96ad1e996d26 true Result false 0 25556 12687 9 24 25562 12699 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values ae0232f3-71a2-4c0b-b75d-03d815a4ab4a true Panel false 0 d2f13758-ed0b-483d-a131-96ad1e996d26 1 Double click to edit panel content… 25295 12656 179 20 0 0 0 25295.55 12656.19 255;255;255;255 false false true false false true c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects b0780f8b-24b8-49e3-9ca2-ead4f899b3af 1 5b1c30d5-f92b-4262-aaae-0a6ae10c6bf1 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 09336dd8-3c4b-476c-b62d-d3b399ef2780 1 1fcc8fff-e653-4017-bda1-1273d6df70e5 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects f9dd80e4-1f37-4628-bd32-7ebd0b7b38b9 1 3e8c29da-12bd-49e5-b89d-f946cd7910cc Group d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 8dfc4bf8-bd9d-4664-8d23-8c5fa26397de Curve Curve false 0 -198 9506 50 24 -173.4888 9518.627 1 1 {0;0;0;0;0;0;0} -1 zNx5PFTh3/j/CSERsqRSaLVURCTKZYm0EEIqikpJQvZKGklJKZKt1ZIoZUtZSkYha8i+ztj3pRAK/Y56f87le38e9z+/v25/eDXPc+ZcZ45zzlxTHlHmUSiUP8TXbGe/OJmIbwcNrM7Y2mnYnTtnZ7tB1NjSwfGMne2OrZs2y22S3Sy3RZH4g4zM5g2iGs42Ts4OljtsLZ2dHCxsNojqOR+3OXNir+UFQ7uzlrY75OVlZRU3W27bemKrvLy8nMz82VGE/m580y5Lu3OWTg4XNunZ2VzQcHZwsWQhFrK5/BuMw8LhhNUZF0u5k+cW2Nlb2to6Oxx3ZDlp4WQxuxI7OzvT7H7yrKdQZIkGTi3kXMBM/IF79lvVNQqF6dcVJkrBtX+v6fcfJgo/vD5GZY3urp4K3qwOCo/XvFXDL8ckfaaI5QGwLg8L5X9+DaP/on+e9T9l/n+tI6P6r6pQbaie6uwOTov+9w4u5U04qr+wkjdr5t8O7ll2YcnsDubCujzMsOLsjjL/58f2/2dn/+u5//MrEbZFg+ZDy6CV0FpoI5QBbYW2Qzuh3dBeaD90EP2/r+E79Ad0BDoKHYP+hI5DJ6CT0F/Q39Ap6DR0BvrnP8dO9e93KpQyDx5DKUzwGEphhsdQCgs8hlLmw2MohRUeQyls8BhKYYfHUMoCeAylcMBjKGUhPIZSOOExlMIFj6GURfAYSuGGx1AKz7+qQqlQGpTCC8uhVCgNSlkMy6FUKA1K4YPlUCqUBqXww3IoFUqDUgRgOZQKpUEpgrAcSoXSoJQlsBxKhdKgFCFYDqVCaVDKUlgOpUJpUMoyWA6lQmlQynJYDqVCaVCKMCyHUqE0KGUFLIdSoTQoZSUsh1KhNChFBJZDqVAalCL6r6JQVag5lAoNh9KgDChFDJ4PVYWaQ6nQcCgNyoBSVsHzoapQcygVGg6lQRlQymp4PlQVag6lQsOhNCgDSlkDz4eqQs2hVGg4lAZlQClr4flQVag5lAoNh9KgDChlHTwfqgo1h1Kh4VAalAGlrIfnQ1Wh5lAqNBxKgzKgFHF4PlQVag6lQsOhNCgDSpGA50NVoeZQKjQcSoMyoBRJeD5UFWoOpULDoTQoA0qRgudDVaHmUCo0HEqDMqCUDfB8qCrUHEqFhkNpUAaUshGeD1WFmkOp0HAoDcqAUjbB86GqUHMoFRoOpUEZUIo0PB+qCjWHUqHhUBqUASUnLbj/Pc/AXxfGB4V04tX/a94h73gq2nG+KWr64OFpuIFtx39c8a/bIPUO3e8FWmsy/+NW1ZwfBFmckdOkwguWSvX/sb47El24iiP0rgW5PhO7+S4rL0908+GdrIPHqTv+3+14o9djtZc/3HtCrl/6LF0m95oP2r6qy/v89Q/k+gp/t38bKTbtP6jG00a6vxrfslXX76I2V/fMTc9/k97DNjtuALJ+w74s8Dq3yn+80fadZ5ZGILr4WCYjGYmQblU1uz9B6Ohdx9HCfRtI/6104ue5nGC0NDk12at/K+nRT2b3MxQ5/Vqns3yjBulPZrjPCms+QA2nO/lk7HVIrzk4u/+PkFXxmpEXlUaku0V/oBfmPkZL+datlLQ9RvpX+mLidT1FC3cOiUwuOkX628tbXm6PCkfaDhbjAtq2pJ9zPEa83ggUYlDyaI+lE+nvd/q2B56IRFWmUqK1TJdIX8tIIY5DFPqhvq5A4Ikn6Z820lf2rX6GSmzcpFXjrpPOy7mAOD7RSJJ2bkVY+W3S+3VlD6m3R6PMnUHxXSvuka734TBx3J6jqgZzHdXbwaQfYL0aGPYsBpnyWCgVfH1I+tXCGOJ4xqJ69bVLIikRpCv7FpUMn3yBviWc9N4Y8Yz0wef91sKaL9E9lfPlO+tiSVc15GDXXhuHuM9LXHJ7/5r016GrieP/Cv2Jl3hs8TqJ9M9qW9WfdrxCJTPCI6kdKaQLftUgfi6vUcvK6/xb7qXh7Z/f5f4zOh61/5HYduHjB3zciInGqusJSJOdteb8exrpJlYCDevkElGu0AGX2JOfSV9+7OqL7VGJyKfJSK3FIo/0+AUdrgZ8SUj47KZMj4wC0iXXKmtZeSWhhcnq8UUuJaQ/FL7K7zGShFiDJlhdSstIFyh51xp4Ihkt0DGdx7eygvS2l1WJLyqSkdhQZVl2XBV+vfb1Hlkab5DA6g6755drSX+gT9tX9eYNan0a1JYV2kA6LdBzWd/qFBS6JFcinYlO+oaKJd2U+ynILlSwzce8BZ8/ly69FWR5iwIyH0pRzrXh4yby7OoGp7doyfGdn/NfdJDe0n9jv3r7W3Q0zNZOaVk36R9ilgubGL5DsRqopiK7l/QbdIPucznvEPtXsV72ZwOkr5cUSfHakoru7TGKO3B8mHSGvv2VsGepyLWBN6aI7wfpuQu27EngT0MW2vGpLt0jpLNmGvHnXktDK1W6Lzu2jpEuYfCxqX40DQWuXVM/xjxB+u2eA8+HT6YjRWOb47v2/yJd48nkOdaqdHT+mU9LXt4U6X5r7m4R1sxAiZIH1vbb/CFdt2x4cvPbDGTBzJK9YtU88v5tMjWWuWvte5TkGCz4PoaJ9BvXHKhmQe/RYwf7p7HaLKQfvSWv5jj/AwrzPV6qw8pKOpsMO+Wm8wc05WBRJtXKRvrG0NcfnnR8QPq+Zyq+NS0gfUiz3SXFKBPVernbFf5aSLqU8/FNhbmZ6NUql6BMpUWkc3nXtNLlPyLTZ0FLE/bzkC74qDdwLPojOpzFn7w1iJf0TyuU1RYKZiFL1lyupsHFpO88Zdorej0LFavfiAs14yc9dKT+jsLPLCS8NWndkVYB0q9kLVuyTo6GHDUuvpH0WEL6cNVQm8xZGqrUKt/PK7uU9CTB8NfKUTSU9OthmtifZaQfEKp11GqgoZy44nbnTmHSj0xsV9Dny0a1t3ZGyPSsJN36hs3okb3ZSMt9of/2a6KkP9v06/Upr2yk+5y4rUSKkb410v74+ffZyFTqtVdl2SrSI07p8bqPZCM9ETanRdxrSGffwpNxXeoTqlnuHrX86FrSORuFTANOfEIcfFTHhI/rSN+76cvPhw8/oRNbN72lbhYn3a/j7M3nFZ+QTcblQO1UCdLVJTX5khZ+RtPcz1hL9aRIH1xyI/C9xmck+qDzVNXMBtKLpvQX5F36jM5fc9wt+WkT6Uo/khzL3nxGk8nnNCp0ZEivcAsvr+/7jPIF+1P5tDaT/vQYy6qO1TlI+6h5nNYeWdLNPV6cGDqSgy7w7IhrOyxH+oebu4ImA3OQ0ITL1eNuW0hXzXZ5y1ycg1IouwU0ouRJb1VM+8TFkotmOCQuzm9UIN2Y48z7JdtzEd+ptDWyqxVJ/1Zb+FjMKRdZCC5TNriwjfTPApOnpV7lorIwddpYsxLpHcrtS+Tbc9GoUY91iuF20le6mMWpCOehdvcraG3DDtIlP06KaBvmIWeX32UDDoj03Z7rHfVv5yG3vfalh+6o4vPnlmjk4Zw8tExpnVWAjRrpaFf1ixNTeShhq1D5RUM8v/uwgPOGzZYvaCjT9rGDlgbpq2S2KjjbfEHFoTwfGtR34vP/sNOby8++oJ3moktF92iSTuOL++Xd+AV9QQVjMaZapG/q2cN2hz8fXWXak995cRfp2iudKoP25SOHHYlIP1qb9D9cVaaPr+Wjsreig8cbd+P7DEfMg2cf8tGZ7j/LH4vuJf3r29gbcaP5aBWvjPF1h314/2P+CCdvKEAJ7htqXn/TIb3QVeZA2skCdCRhTeZLtf34vlfBterjowLk6/1cd5G5HukNqQnUz5UF6NKvKjOj9frYD+lY5nMWojPmlEfM49hvXBPNLd5ZiJoMqOJupQb4+voudr/MvRBN6SX3Lks6QPp6TYXcipRCVKmsvMzkkSG+rsVddlf3E9v55nHlRYAR6TtWn+CpXVOEMo+50vwDjPG4YdJsdaZF6GLjoOzTRwdJD16mL1R3vwg9eOrc6PrGhPSgqRzJ2uIiJJt+U6Cq+hDpl96EiFazFKOzrV+cAtmO4HGNKyu/bS9G4iid9YuWKek8zXkCX52KkcKLvKT6IDPSnd58uv/lVTFKt9YZOTt+lHQN81/Dme3F6FH40ndFyuakv824R0kSLkHNk2O9cRwWpJs9Y9sfbliCMsyWy2zrwV7IuevyrdslSLx0a29hzXHSDwYbrnXIKUHD5T8ccqtPkG53P7LlwFQJKozLc3LtPInfL7yu7ZHZ8hWtqU+tFGc7RXpXzqWfrDZfUbChwp5l206TbinpdbEm6ivyM3Zecd3dCt8f7vw5E9HwFR15MGoTUX4GH895j41P8pWizCpj68eKZ0kXNdlTJrK3FAXU/KHEJtmQnjL90LLiainKD757sW+7LempRwOiPDJK0ZbHnLfu1tvh/TSdEBD7UYriXh6xN821J/21fPDqJv4ypCJUxpH7/DzppV2ijGcyZWjLSo2vAQEO+H2qNP3a6X1lSP++8rNyb0fSLcJvVa6xKkP3HvsoBXo5kX7xldu9Rq8ylNtW1N7m60x6pW4T9c7TMrRN10mm7KELPn+0rSyU3pch2tkI+ZPvXElXWHhmjF5dhlZML5CKq3cj3UiibtrjRxlC9ywdEtgvkr5UbYvykkXlaJpXofui6iV831N2OBcrUY5OZZqPCV51x+M6eRjKapaj9UnHpm+VXCa93M0rIcW8HKnnfTNvXXWF9IHXr3ZIu5ej+Tc4PvOoUUnvG67IjAgpRx0LojfEjmHf4qY/uPBNOaq4E5WnlOBJeo/2Lr9zX8tReLx3VNG5q6Qrh701yespRymFt33NNnuRXrOUdZHg/G/o3Typ7SOT2INFp6xNRb+hAM2RH3e+XMPX0fLzG8KUv6F6SSlBuQfepHtOvucuNv6GmqeqPVrOXydduFG3fPT8N8Tp6Cv7SPcGvg+4r9jE5/cNiQsrJp2U8cHvCz/NWtfFfkO7eweCty+5SfoeCYuX0p+/IXmKs9xaZl/SZb/bq29sJta/sjlcZBT7MaFHp0QmidfFxVa/ofcWvq7zSr/N569ALvsrU3U6buP5QHqmOmNTBbK7u2D8aocf6TMpag7xuyvQt28H+Ep67+B5lNigsP3JCqRUuOjChrG7+Drd82hmzZUKxD/P4bneVX/SxXZHfSsOq0AXxQaagzgDSL/7MdbwdEoFahjfWm8Zhv1YwmLV0a8VaMxwyJsmfo901oQHeo49FYhJ3iQ+OgM751tftXbmSrRfVWK1wP5A/L6ZcOWr1spKxOL3/P6iTuzRO6eTHyhWogCqamzAlfv4+mXye0k3qESaj1xGHi8PwvfVEZq9wLlKtJNZcUo2A3vNuHC28o1KlMPOs0PvSDCeBxp6HjSIqET61Dj+sRnso32Xh0zeV6LLXoatotEhpFd1Mmvur6pEjZaLer/phJLezkzhlx+qRAPbvS05JrEvVbsixLGgCvEPFnvkPQ8jPdL13qKvq6rQTduVRqwHH5D+62pcMnV7FTKMKR/KX/AQn8+8gtlixlWIy/iFAVcW9pclGj8T7aqQZvqgwzeXR/h+OG900aabVWiJU6Tsks2PsYstyg+NrELBpudO1Q9gP3LkRPPw+yok5q3avOz1E9LZxjZwK1RVoQsJ+YY1tk9JX8fzcYnVYBUK/bFjx42l4Xg+dvzh2+ts1cjtyKkLdHfs7f6uzwNEq1F33s2Xji3YH6cpxPpsq0YZriqCGrsiSOc2GnY7a1CNVHWFpvbFY2dfNVy97Ww1+m1XEOQvGEn6mOUH6ohXNbI1GBHkomJX2s0mH/qoGi1UkYzP7sX+WWkwef1bYn+Cr3i+No4i/dCOR+kRJdVo+L5QSuln7Pkzl9hZO6tRTrTFifWyz0ivMzQ/ZjhTja5e5Yp+E4HdvlvO47ZgDYpqfXXLcXE0ng97rVkbv6kGRQybrzl1DfsunmL+dK0a1FvS5eQ7jj3Ro4br9dEa9O6uHZV+9jnpv6/YlN90qUHMnWfVT7Zgf3ehQHT/nRo02P/6zRKTGNLDBB9kTkXXIK21snkTpdjnFZefuZdZg+5vVDjNujuW9Ok/d7u4q2rQsehoKvqMXf/SqUmn/hrkf6Z8LFLlBX4flOE+ns1ci/b7isRIv8ferpPQPrqsFt3VHrNtV3yJ7wPOaTu5ZWvRoIvBaloq9p6uKk2e3bXo9ums4OytcaQ/7Fn6avxYLRrpPxjclYZd80ancq5LLVq341evjPIr0lsTGtPd/GrR01bBw48+Ylffz9LH+6wWhZYveCau8Zr0A1eS7vtn1KKU58e8K/Oxi+wLcB8tq0UaPebvnuyPJ10o/b7Vjq5a1M7N1u9dg93PnFfk7HQtsvJLrfYxTyC98cyrU5f56lBw8rbVz3uxawqfZHWSqEPMz+R2DColkl6YQs3VRXVo5nG/qoAn9tbsuLNcRnWozv3GuS9fsF8cZtASrOtQaCDXYhbuJHycHzv5yVPr0NNNGZcKjbGXpyx48CSoDlHT5H4ufYo9e0FEQu/LOqR/Y0/R9y7slHV3Q5bS6lDR980a+puTSefbT10uVVWHvAWcn229hD3yssN8kd461JK5dMuzXOw/RD+KjM3UoV2lV+SDed6Qfn6QW/41Xz1ijvHq5TTFrqJwlmeXeD2KOXo5kC0Wu++ttZc/ba9HLRq6dt6j2LfcGtIS0a9H+gE2773VUkjfuzRrm5llPdp++tkbtrvYNR4JrHK/UI/amnUCOZqwJz38VXTJrx5lbWr295N6SzpT88aR9w/q0XVZ09Jt5tizT8dlGUfUoyuHDOZFX8Tu0Xjq9Z8rTNT/PP4/9IsQ//0PH/9GgopCZaCqUD2oOdQeSoX6Q8OhiVAatAzKgA7/Z/zNMD5UFCoDVYXqQc2h9lAq1B8aDk2E0qBlUAZ0GEqRhfGholAZqCpUD2oOtYdSof7QcGgilAYtgzKgw1CKHIwPFYXKQFWhelBzqD2UCvWHhkMToTRoGZQBHYZStsD4UFGoDFQVqgc1h9pDqVB/aDg0EUqDlkEZ0GEoRR7Gh4pCZaCqUD2oOdQeSoX6Q8OhiVAatAzKgA5DKQowPlQUKgNVhepBzaH2UCrUHxoOTYTSoGVQBnQYStkK40NFoTJQVage1BxqD6VC/aHh0EQoDVoGZUCHoRRFGB8qCpWBqkL1oOZQeygV6g8NhyZCadAyKAM6DKVsg/GholAZqCpUD2oOtYdSof7QcGgilAYtgzKgw1CKEowPFYXKQFWhelBzqD2UCvWHhkMToTRoGZQBHYZSlGF8qChUBqoK1YOaQ+2hVKg/NByaCKVBy6AM6DCUsh3Gh4pCZaCqUD2oOdQeSoX6Q8OhiVAatAzKgA5DKTtgfKgoVAaqCtWDmkPtoVSoPzQcmgilQcugDOgwlKIC40NFoTJQVage1BxqD6VC/aHh0EQoDVoGZUCHoRQE40NFoTJQVage1BxqD6VC/aHh0EQoDVoGZUCHoeRvbeLOzjP+t4kN9bv47e8x9ciNqi3HE4Td2SH/ofDbepR0U6CMpxC73fUNRzLz69GxGy9cuZe9I920XZBPpbEeyQQyL71ljb2+bk3AkyFi3CK19qvvsSud2/CsmakBLS88s/AnZyrpt5+LLp8RaEDbRQ58bDuK3Y3/WO6UeAOyUKFJ7U3CbsMR7lCv3ID0nNg8pVjS8Ae9O5M/gnUb0LV5Cr1eB7G3pbUKylo0oOT3MwEH4rBXe8olxDk2oOFjnyPC/mB3Nd3ox3y9ATWXXVIzMkwnXYbH8eq20AZ0f01diPcL7HEOvBY6LxvQA6+NhRJ/sJ8Pc/+t8qEB1ci7T6kaZZC+VuTJmkVfG5DUsJ5+YRx2enVOQga9AV1aM92Tw/Se9OMCb+x3fm9A16/bdUofxs6fH6ocx9SIluvpWnIkY//IKdExyNeI9jtneB3g+EC6g/AVde61jWgx32szjhPY97bISXAqNKL+vAyuTR+why8wtOvQakSLfm17nSmQSbpWjkffg4ONaHfG4IE0O+ySqzKdNlg1oqytfkIrCrE3vwtvDXNrRGvqLXn61nwkvZsiz9Xm04hoeqH7xajYw3jFS9jCGtGVg7HdHxuwJyUE/WZ70Yh6V60c+LQ1C5/PRmIObWmN6GKW+rkN97HrcAkvfJDfiC7Jf3b9NYz9TLlmhFRtI6pjkeMSXE8j/cfuPu7Qrkbk/psuwzDCPqy4VI7+sxGdO2G6oeEa9pn0bV0U1iak9LXoGmsK9kVqvgum+ZvQL7ZzHy3asA95JrtWrG5C1r/XmfUvzp7z8/rBfU22CU1N67VHq2OfYjmRtEitCRXUn672c8Aey3BUdtzfhF6PvHsbFYn93HHfO0lmxPYlQ5m7vmF30j16q+BsE7qvj9QOMn8inbcwkO/9hSaUOM02NCKHXbrffcH1G03oFvXL7Q8nsY8tLNsvGdSEkr1XP0gMws6fqlQYE9mEsqy+B5XmYb99X8xsJqEJ7ZS+MSM0gZ1RpjWwMbMJLU0VMbgt8Zl04TF3c4XCJsSmL7JI4gj2YWnFx0tqmlDXzXsJg7ex8+TF+5a3NSGjOp43jR+xX5Wr4Dk53IRyFQru/xjGHqlqIlQ61YTy673KpFfn4L9IcXrju3hBM2Lmfd4SaIT91c/lBpsEmpHRzm0aK32wb5MIO7RKrBmFpbbZfc3AnltTdXtwQzO6P76kNWoAuytfee09xWYUd8yN74loLukJZ6okuXc2I6faissfDmB/2s50/sT+ZjRvLPbBzHXsMkLxD+4ebkbxCxtaT2Rg3yHDFxpo2Ywy3eaV9g1gN4iLOWRn34xWjfypCRLLI71A6Fj5qkvNSGnjhLOFEfaRd/XfX3s3o8lVLGK6N7FL7Xobz+PfjIoNpvWOZGJ/MbNpas+DZrRhYd5ln+/YWa5sLzN91owG+DxWVq39gv+iIyhfVCu+GV0Y63ipehj7tvFLHaxpzej6+fkPCu9gdwl+K/g0uxmdeUg54fAZu9bZkteLippRon+v+9YJ7H8uLYs2qmxG6Y8Kjy7dmE86K0fEuGNTM5r/qP7KkuPYG66YRp7pbEYRl+ONN4dg19rIG6kw1IwuWaUfPlWM3YAeOlY/3owGLb8wvZtXQLrAza2PjCl01Jq6Ok9kK/Yac8uQF+x09M7ffXmUDfafybu6K3joSNnn2kUUif2Xqdq9KiE6Gjlnfni0BvuiL9Jh8aJ01F/wRTabq5D0a44zTMfE6Win0MpL0RrYrx48Wd0pTUc8sTviwi9g3+qvvVxrKx1Jce1UTk7A/lrFpd5dhY6c5+VG1XVg/x13duUtTTo6rX7cTFC4CN+Hdy0Ytd9HR6FsPozTBtg1n+ue3nSAjvhyVsSU+GB3trTy+XyIjmzS2SR3ZWEPjVl5SsacjjrzRtoqxrAbhcXxOZ+iI+H8+7qOG4rx/OFbW2SADZ24z5zvWHMC+462QonrDnS0jsNsdXcYduuaBx8N3IjjL2Ry7UMZ9htxXRfGL9NRwpPn1yLYSvD5nOLu4uRF7A/7ZHiwCnYmT46yAh864lzMfPChM/Yad8ln437Ez9Fr+dqEV9hvrj/GP3OPjvTcQm6Wt2H3O6Og3hRCR9UxOixMy7+S3lVz4EDQIzpa3L5RQNUAu+xFCbt1EXTEbC2949ZN7K82qWT5R9NRpanmTCsN+5EyG/vKF3TkHbGoQWsCu1uTwJvvr+koNb3b+J10KelRvHbp3Ul0lH3k9k+Z09ipI3lp6W/pqFbyI3r3BPvjrMq+k+l0tPRuRZpmNXaTAJU7vR/oKO8rs/MQaxnpJZ09jD00OmrW2RpPW4WdzuCQuP6Zjo7ObNYJVsF+nDKT8CiPjsTL65fYH8ZubSCVe6eAji66J1XquGDvFFyXaVpMRwsVKHul72F3EMgdYS2lIxarj+r88dgvBZ4t8iuno0/LPl2bKsDu7G8c/72Cju6/z6zv6sBe4yDIK1dNR9PJm7ir55WTHrBsmbNBLR0tSDYayFuB/aG/lLVePR2VuZiqZWzDfrXgqd/GRjqaL+Vem2CEXZdfMra3iY7qnr67EnMeO2tJoJUPnTgfSq6yRfhhb03mvM/eQkcXop7IP3qBPXab7lrrVuK6viM8FpqLfcmuScX0NjoS+BYUFNyC3U3xls1EO3G9r04Zuj+NPcalV1Kik466PR73Bi79Rnqe72qffV3EdWFX4xgoj/0Ob4n5iW46spOxcg/Ux859E9nZ9tBR4Nmv44HnsId7Uo1te+mopXtnw/2b2LfndsSc6KOjx/UnVwRHY9+oK9Ch209Ht1mG3oZkY5eh1tyQGaCjwQy7x2FN2NdTTk6xDxL3Q71DJQ8nsd+TjHxZO+tiseiJQAXpnIeTvj8doqOrfJOD4Zuxq9hGSB4bpqO92aero3SwH7XmfyH4nY6eSlC/Pz+DPaS78kMe4bsjpba/9MaeTHFIsvtBR8vcXiW/jsCuN+zzlXeEjja7BOknZWL3Fzc/+JpwzsFcgbd12N80PLytPkrcb30OT6WNYV8mPP9VOeF6ji+ZMnkr8c/FfmTo8Bhx/ZZqrsveiN11QuxeM+Eilu0nc3djP7M7Kc/0Jx0ZTFz4UGCJPckp5FMV4f51/FJfPbG/HdibunucuH5Th+K/PZ6zvrZQRRrht7bbaNWkY5/JvrVz9QRxHFYyDzdUYWcSS1S4Sbiouv5LxnfsAVod33oJ30HncurgqsLvL8N31bUn6UjXgXlfrwR2a6XzcRGE5/kv2zykib3hm4vcOOHMbntXjVpgf+cSMaP9i44yGVErJy9jz4pXkg4h/M6jnWtnwrBrnTjW1UK4nqKpPPM77LmbBXZJ/KajmR1SuuzfsP8UN7I9R/jRkmlbrkHsnKyLL8UTnkOTDlnMUU163FrpW/2E87Csz1uybo5/e5exfoqO8meMfwurY9ddc2CtOeEK57crrDqK/dkGkc4gwrmszFzWX8TuFDAgWED4aY497zcEYz9zpKd0knD2U49YZJOxywbwSopP09H6uyP6W79ifxdwa7sh4ZJt45Hbe7Efpm5e6UF4U8HBcTXWGjyPvWXXEU344ldfdHetwm4YrRVTRHhjB9OLfSrY6X/OuQ0R7pZeMN/gMPaFA2M2vDN0RPFsOXnQBfudlIjQzYSzfOfLM72H/ZFrO5ce4VXfpSWOx2PXYelrtiFcfjH7ndOF2D8XGK7wIdz2scOoTSf2Q8E69RGEa6vuNnVgqiV9Stt5XQbhj9qscl1XYl+zVnpxOeGZ8knSl5Wwb2Jce9VJuLjx/IdXjbGvtVo0/zfhvcv3sPk4YK804pNc9IeYTx477eR3B3u09ysJUcKT+rRa773Ern7qDO9mwleFVOqF5mH38YgYVCVc6vt01uNW7NeuB5TsJ9z4QbJ01Az2pazvM8wIX2ja9jR2WR3pQ/vWf7ImXMjjKk+8AvYbk7xDLoQvK/DyfGOA/ZjN/n1XCefY0vgjzRb73Uvt7bcJfxTkefKjL3YWt9ZPwYQXMZ2t/vwcu2SY+PBTwqOs/LULPmEX4ZB1iSW8368342szds7Va48mEv7hl8PGyl/Yr1qWJ6YS/rZ7dXidYD3pFw2TXD4S/kx2YjFdFnvAxsHUHML3avZ5t+tiP3zAxL2QcBW+yYkea+zzVt8qKiV8bN5Km6Hr2A9dsn1VSfiOMWP6aCT2xJd/1tYRbrUywuDXR+xZyoMqTYQfZ/+V+6ce+8ZarWnG7HZCj22bP47dYqXq6XbC87pLX3HwNZAueO/Q1S7CxS12i/JIY5farGLYS7jTvcJAgb3YX1IGWvoJ795twLb8NHbe3zdlhghndaFfFPXCPiD5YOf32fNT7vzg2qfY3aNoxEdNYn6VwXpc6j12Wwvu0lHCT1k+rZKpwT6aF6fzk/AlUUq7FUawhwvuihwnXGC65oMydyPpTW8syiYIn8/tKqMmhX3htEPDJOHWXkueae3Cfnb+vbxfhI/ypy/ZdwL7wIOY+79nz2ffI7f0r2Cv/uGvPUX48+SZGeOH2Bdb1bTPup5VpINpKvYH+vVnpwnvuKXVaVGB/VRWH33Wm5j7Dp0ewv7Clk9jZvbn++Fuic3CJtI9ppVDZj0qeouaw3rsdjfEmmdd701diqsGdodtjkv/EB7X4CF++Rj2bsrzPbPuvGTNo6uXsIsacjvOuoRFAbdPCPaBiNHAWQ9OsfXye4P9T411/KxnLeIfv1eK/Wa13edZdzmXbh3ah307T2vFrG8uPdr8mK2Z9JO1AYxZr5ZlMYhajT3QRKp31hNCXuTGIuyevbu+z7r6tO62+CPYe5zO/PzrJ0ZfvXHFHtPC8mvWLxeEiaYHYlc+4zL1d1xpdP9jAnZHNs6ZWUfB7Ww5Rdg5vzL/mfX4qZuXCrqwD5wJ+OuiJ6SHvjLT8X2pte6vBxZUHq8UwS7QMvHXWWUuVtcpY/8+NvudgS4Gi+yhH8T+4sqfv+sPTOVktjvOWX/xv/XNT1hv7r2L3XTy3/oVBdzRQ3HYXzL9W19L5q3Q2BfsC+f984zgw7d/tWG3Bk/2dqyL/Yn9LPjG6X/j/Me/hrDx/h/9RYj//oePv2GH8kCFoKJQcagMVBGqCtWG6kFNoOZQK6g91A1KhfpA/aGh0HBoLDQRmgalQfOhZdBaKAPaDR2GTvzn9av9KzuUByoEFYWKQ2WgilBVqDZUD2oCNYdaQe2hblAq1AfqDw2FhkNjoYnQNCgNmg8tg9ZCGdBu6DB0AkpR/1d2KA9UCCoKFYfKQBWhqlBtqB7UBGoOtYLaQ92gVKgP1B8aCg2HxkIToWlQGjQfWgathTKg3dBh6ASUovGv7FAeqBBUFCoOlYEqQlWh2lA9qAnUHGoFtYe6QalQH6g/NBQaDo2FJkLToDRoPrQMWgtlQLuhw9AJKGXnv7JDeaBCUFGoOFQGqghVhWpD9aAmUHOoFdQe6galQn2g/tBQaDg0FpoITYPSoPnQMmgtlAHthg5DJ6AUzX9lh/JAhaCiUHGoDFQRqgrVhupBTaDmUCuoPdQNSoX6QP2hodBwaCw0EZoGpUHzoWXQWigD2g0dhk5AKVr/yg7lgQpBRaHiUBmoIlQVqg3Vg5pAzaFWUHuoG5QK9YH6Q0Oh4dBYaCI0DUqD5kPLoLVQBrQbOgydgFJ2/Ss7lAcqBBWFikNloIpQVag2VA9qAjWHWkHtoW5QKtQH6g8NhYZDY6GJ0DQoDZoPLYPWQhnQbugwdAJK/rdVuLPzjP9tYvMfN1TSCoxjYZBeCF6W9C2daRF2qX87gTgsox3nC2Nfz/rPNYTcNrJLYi+g/xvvctGeLg5F7PM0/q3/zmNFBJcW9vylM3/XH948fJjHEPuee8x/15fs+MTPdxw7jZfvr58IDfoqYI+drrP1rz/ea+Uj5IG9dLnHX6+eUVJffhu78J/Jv86VzDW14gF2xa8582Zd3ZLxVjQWO9O9aaZZtxV6Y7f6HXYL7SKWWb9d5C2xLgd7EJcp21/3MGkT/4b9tnEvx6wbbZZ6LMXAHiWYyj3rn9qmjTcNYk/9tUhw1u8HlfFsnsIesER75aw7aEUVynG04A90wYXis14y5nxNQQg7PWm+wqy3RmqrbFuHPdfETWvWQ/ctn1Degt2C6fXhv9v/PpCkoo5d+JSW46wfvEs7q6aHfSUa8p9179WBa3cexS7Icjxl1k1fWtK1bLB77nVpnvWplYphuy9iX7Wag2ce4SqXOA7s88HOXr94z6wrpTZy7g/GXqx732/W5xfE5+k/w259M7Vh1uujqFTDZOzH5F/JMxEupmigdJCGXZSS+mjW3zisHj30FbveNa3FzIS7KY++Nm3E3iVeGjLrL51zTh/rxe7t2riJhfDImUCx4xPYj4hI1v31uOMNJ1lb8XEzcAudP/tBaY9M0Gl+7EuSntqyEl78dErXehX2YwPJZmyEbz/xhf2cDPZ989+fZp+9XtT9P9mpYKdeXXB3AeHbao3dHfZhV+1lVHEQPvJmmYLzYeyF2ypUOAkP29cw5GqFPXrkWDEX4YXsoS8uumDPCjb15Cace7PeicvXsP9s9zHnJfz3BNMK6j3slzdSzvERPnkuofpqOHaJ3PwXAoTfuWro7x2P3ei80jIhwuWmhnf7fMAuXleRvWx2fUcv5luF2Ln62Z+tIPzGYY5Mv1rsoSYxOaKEN7R5ufh3YufXC1m/hvBv7IPSgaPY958fKFtPeOkVrZ4gpjbS86Y7c6QIV3jnGxnKg131XR+bzOz281OPPFyJvSLvzpMthOdfKuR/sgH7olw/v22EH5PNKglXwv58X22dCuHibQHXo7SxL2Z19dlJeLiQCnpujN3MtP/Jntnz+ePH8diT2AuuRK7Sn93O/kWJcQ7YA9HWpSaEMyWus4qnYg/QSPA5RngIyzzRpDvYU/bvdT1N+MOkoJo3j7Az0yT67GbfR2403nn3EnvfwZ+9brPnp06xZnoa9s9f3S5fJXzr0OGp93nYP97LfHGb8KUGl5M/VmLXsO92CSFc9/h6q+xW7AeP5vZHzh63W3tX5Axjf7G1bnEC4QvMGsrzZrCPPjb6/p5wl/g87wLOdtITqL7+BYQvHv2tWLwMO9sXrsma2fs/i1XfV3Hsd8QT5LoIj2P5+ahcAbsep/fuccJfbb+rU7kTeydTgQb7PAY6L7p8utoAu1Si6YZlhCNfj7g6c+ysO7S5NhK+Zv0jk0Zb7LHqXcOqhKsIGbLQ3bH/2pbRYkR46MJr8S2+2LcrjfeeJfyBPOvB9lDsYkYLhbwIlyhMmu58jn250k2nh4T/Gj8c2ZOC3ctmmPMt4et2l+/s/4Q93t54oJTwezkt7YNl2Klhz1b1E15w2fDq92bsFHurjAVMDLT2Ur/waD/20j8un8QJLxK2Svn5C/th2yrt3YR7CHpqT7J3kD5yxtn0LOGbjvbW/hbELquvx3mX8Pkt+pYza7C7xB23SiG8M95sgCKH/eKuBGoD4V854+2Z1bBbhe08xcLMQFJq9YPz92MPt9wlKU14YYrDaXYz7G840pqPEM66c6aO4yx2v2N+wb6E3+Ga1OS6gN3wR8zJ94SvMK15yX0De7VYhtkg4aK2M2yLg7C7NzsGrybmZ13NBab8Udh/Lzy85gjhHmI+sYJJ2C9rp6wMItzS37lXKAu72NGYR+WEs8z7LLa8BPsD1qF3PPOJ+VKhn86KBux39rD6GBCuJtBkI9KDPd9pWiKEcO/PLz3ExufsD39yejPhLWnfPFfP78THYXC/oQQrA61nXeG8lg/7a9/3Qq6E86vLH1wvht2dadf6fMJFs1+sk5DG7nsnKEKYjYHYN/S2SO7A/rzEOc6J8KPd6MaGvdjf7U2wLiPcR7iYf9Mh7KVG69lk2BnIxtHLR/o09tsD8S8DCb/VL8WQccb+iemr52/CFxodWCrrhT1Tnf/D6QXEPFZEe7NcAPasI85+tYR3XWRfu+Up9q2iXBt0ORio+a7O9y2vsc//lFWZT3imj9k9+ffYdVXM87UXEvPbL0IsCgXYF10M2/+V8LH2IjWFGuwOOwbfH+Ik5kWa/FoKHdivfvG17iM8fUcSh8II9rBTGQVeXAzk2LfWR35eF55vH/M6sZqY96/il3+7hRv7vE6TgULCl7w77y23AvvJF5NvL3EzkH2cTMdmKewGwu+KlHkY6Fmwirv0NuzxE71xHLwMpPp6jeqGXdj5V8ps6yH8ZVc2n7gRdh+l3sKaxQyUm61PX3UCu9+YQ241H/G+tsbopvB57NYFTq6d/AwUH2U1wX8F+8OMSnE2QeJ4ikQs5vTDLrRtz7JtS4j51dCTzHkPsQu7rbjuLkTcBwrCm8disR8ft4koX0qM23rlcPc77OGHrB8rLmegIZUYgboc7M+Y5sUmEZ+Xwu4vHv3yDfupexf7tq9koJnpU3UpDOx23Lfu1osQ93nj9ting9glMhhpvmLE/UfAQ9NnCjtblICvzmoGOr20KMCWo5t0gZuPVq9eS7zfOfDYGwhhZ7moHbVwPfG+3Gn6SW4d9qX8zuvYJBgo66um9eIt2GMfFHwRkCLuz4bbdw+qYb/SZx6+dSMDjUfbqn7Zj/2D5tl8G2nifXBVisxjM+ytgsbGbzcTx+1ayi+7s9i5v7Yf5d1CzAcC+z3QBey8dmVjVAViPiDy4PHCG9itc3o3smwjrnfhdIXK+9gNP/1a8lCZgV4oIsmwSOyesdk5mirE/DYj++DhROyLN3JqsKgxENWo+smSj9hFQ5LDqzUY6M/PnuayIuwKAcv6PhCfV6MyxMe967CnLb2zKXU3A01HRuUpdGGXUpB0yd1HvN8VHd7QNop9QcJwcdd+BnJayMx2i6kHv/+WFSmvPEDMPxd5yG/iwZ6cYFJsZUwct9uKwcUrsE8f/e395RAD7frdxHZKCnvthkJ7JTPic6JNjNUvRexX2nLuZZsTn+s/LAq5qYU9PePID9OTxOfByU3n+Qyx89eU3Oe0IsYNlKkKscDOV0D1KDvLQMKuihGCdth1RazexNoxUDKH7pu77thNDOkKQY4MlNhyuofJF/thicaFwa4MtLLhqJh9CHZrA50tcZeI418ruq3mGfa9Ku1JlVcYaAu36yLFZOwbAuW8F18jxl2te+VeFnZZm/H4kz4MtChK/0xnMfauT+WbiojP/zlmhi/l6rF/uyzNohXAQBuMF4he7MJeneOwsSqI2B8jndj00Tnb11n6wu0BA807lCv6Y14v6Q+2RjvJPGWgA9Xo9Gpu7NvY1P2moojrKNzjkI4wdqG0h0ONsX8/X1TZSWA/8LklpPw1A8m6maf5KmD39Or2rE9moOMX7zAea2BHx6Jjx1MZ6EIsTeqFHnbTmMVsEpkMZDv60fWVGfbzLnohtp+I96PvnpEx1tg3bNxwIP8LA50k3nIfuGJPtf4pp1BCnOdPEKf3NeyZP2Nl074R82Sl3WynA7Bf9/fYpVvLQANZRodUn2Cf0QmynmhiIB62WwyeOOzLLoQEvmsjttMhdqk2FfuIYFC6Tw8Daf+5wBaSM+d42spV2A4R5z8328l95divsP2othoj3qdebbabaMJeqf08w+U3A/W7BbM97MV+rbXCMXReC7rESl+4ZRw7/5ng8RI2whNKDn9m7iO95Gms0pJFLagmT7lCmwd7U++JzU78LejN4eWGOcLYd/lkl7Yva0H94m4f5CWwWz4wXXBGrAWd5nbreySP/a6iXTlFvAWZbj5Km1TDvjemddmrTS1oJtJr2T5d7A1TS2qt5VtQ9nLXusDD2D/eVvu9fXsL4ljxtbHs1Jz9X6HgskqDWH96BwuzI/aHDXpKy/e0oC/iidKSV7A/Lc9QXK/fggJ/LEVat7B7LtY6rmXSgtRU7y0+GIL9IFU3xu3Y7PE85Wsahd1linUi81QLis/su26cgL05e91OQdsWZKDyrnvne+y6rUqXPJ1bkPT7k/7rv2CvXnvi9h/3FvR0QcnRmW/YzU45nvK/RmynvXtLQTP2RjOOCbnbLUh35svIjV7sYsvMpHsDW9BP5TfuSj+xS0+d/5X8sAVdDmZLYszrJ13AZEjrTlQL2hF90OEiF/ZpSXkm97gWVKpoGsm2FPuCX2eXur9pQdt/9K7yWYPd4qrlhTvvW5DACGf1b2nsp2ISFr353IJ61EYeH1fGTjsfkdtT1ILkjQdNP2hhTw5X9ZWtbEFta6+OsRtgnz9jpO3X2IL6Mk32aJthl1l8qm+yvQXtf6atctEK+yMn2lG3gRZUdHhPyhNH7C7uZ/3Yf7Ygr3ifu289sBc9kTv+cqYFScgZv/l4E/tat+dfzNhakRmnLHPG/TmvK2RF7CqeVvTEhHY85il29ZHEgQmhVrSeXvX2+kvsK96pXWWItSIHF3vGwbfYr+x23V8n2Yoy9mXkLaNhz7yYp9Im14oe1LLolBZif2B4ZtvM9lbE61V20LkKe6/aKXFJrVYkHfCliJOB/eTzO6On9rei1LU0v6Be7OeVva6nmLSi6e3pV7nHsD+dTshbfLwVRS2i3734B3uYm95jz7OtyGLsxoPqBQP4uk6w+0FxbkWaYfI+q/mxKxb3vPb3aEU9n++pWKzE3hN0LlXGpxV9+OwadVcce4y/009GQCvK86U/ipfF/iTrjEHEw1akVszB+3E79ocFy5PPR7ei8b3THZla2AV8+7axvWpFKweCJ810sI/pSoYbJrSiqaSqY3F62L8rHzP/P/qLEP/9Dx9/ww7lgQpBRaHiUBmoIlQVqg3Vg5pAzaFWUHuoG5QK9YH6Q0Oh4dBYaCI0DUqD5kPLoLVQBrQbOgyd+M/r3/2v7FAeqBBUFCoOlYEqQlWh2lA9qAnUHGoFtYe6QalQH6g/NBQaDo2FJkLToDRoPrQMWgtlQLuhw9AJKGXPv7JDeaBCUFGoOFQGqghVhWpD9aAmUHOoFdQe6galQn2g/tBQaDg0FpoITYPSoPnQMmgtlAHthg5DJ6CUvf/KDuWBCkFFoeJQGagiVBWqDdWDmkDNoVZQe6gblAr1gfpDQ6Hh0FhoIjQNSoPmQ8ugtVAGtBs6DJ2AUvb9KzuUByoEFYWKQ2WgilBVqDZUD2oCNYdaQe2hblAq1AfqDw2FhkNjoYnQNCgNmg8tg9ZCGdBu6DB0AkrR+Vd2KA9UCCoKFYfKQBWhqlBtqB7UBGoOtYLaQ92gVKgP1B8aCg2HxkIToWlQGjQfWgathTKg3dBh6ASUovuv7FAeqBBUFCoOlYEqQlWh2lA9qAnUHGoFtYe6QalQH6g/NBQaDo2FJkLToDRoPrQMWgtlQLuhw9AJKGX/v7JDeaBCUFGoOFQGqghVhWpD9aAmUHOoFdQe6galQn2g/tBQaDg0FpoITYPSoPnQMmgtlAHthg5DJ6AUvf/q7Dzjf5vYVPKdYY1MbkWNLvx5EwewT6cwLVNPb0VGW9t17hzGnrJlbFDtcyvSVwt+ffQkdmkX0RP6Ja1op/2tBSK22JV3+Jja17QiprP3tEtdsfPsOJf9pKUVJW4RNLDzxP7udKFrY18rOqTvz/XHF/vjhW6WEj9b0T6fhOMe97Gb/RC196a0oZ3MetsGHmNnydG6PMzRhs7nul/YG4N9XwNysBZoQ+6Hzy8MS8ReZae4ZUSkDY18DKupSsc+elk61leyDWm8Cs6b9xn7OfHfyTLybWjF9W3ZwsXY96dobutAbehQqk/iuirsob53RWL3tKGMPR8vizRj7xCT3HPBqA3d49q/mK0Lu30semxi3obOnWk92DSE/c1oyZTm2Tb0yueQYuQE9q6SF/vUXNoQy/Hix0bzBvHE28DVfo9nGzp47b7D+ALsu5+/3Wtxuw1tuo0ibizGnmeamu0d0oZCB8P4WZdjl9KIeZsa2YaymV6mOqzGvqXhMsf46zbEb57lXCKFvf0lb5RGOrE/d48qCW7BLpfFefxxThs6fEjv+77t2NkWjUiwlLWhox4Prp/fib1lkUCTa0Mbest6v9NrH/b9+VFmE51tKLOqcNrLEHvbkVg/7x9t6FksT/p5U+zPrCd0RWba0E2WO/N1TmLfmLvPK3dBO7rfGVkmYIO9hkmR002gHdVEjrEVO2KvFF5SpCDWjgwf3A6zu4T95rhsxLyN7ai2/pEjxQv7L82HdrWK7ejYytxrHr7Yaz/tXvJ+ZzsqUal73xOA/bIG/4UXeu1IlmWSTT0Me/KvMOco03akS00yuRGOvZ92biDWqh2tHkx/nB6D/dGiTlq6Uztiltb8UhuP/Uzt/rIqajuavzYht/0t9vPMn35P3W5HZa0FN5s+YJdo37xaOqwdNTl+ZPn8GbtTh886m+h2lMXcvT6oEPu2o+4db5Lakc6hFR0HyrE3lEYg1o/EuPn+m/7UYC//foP/RGE72ngq6mdwM3bd2hsahdXtaLebiszyDuzXn7fHKbe1o2SBR19v9WE/oZSzIXWI2B/zg7nd37HT9GWjt0+1I+eQM+yyE9g//RIdLWLvQCwrN9w+PYPdwOfMxEmBDpScekjzJssQ6eJGX/3ZVhHrT3JJhHBg//V94uGbTR1o173iDQE8c3ze9Qkr5Q7k12Ot5SqInSLcfG29dgc6ccPKZrcw9i2/nESGDDuQe7J1ENsq7CZqL59nWXSgH3aeaUnrsbN8eTcRatuB0hccLNm1Efvu47SRi5c6UGbQguICWeztFIqLpU8H0qqoeLVVEbs1t4eZSVAH+nMzwSpgB/YGTjWfA5EdiOfQwES1OvZyE1RpnNCBpCIOH2TXxt57/bzI8Q8dqMt9icdaHezLbz7d5VzQgfh2rLTaZID9ime6pH91B9qjfZJn9UHsXuaez5PbOpD4ZKYDsyn2aUlaaONwB8rNP3yr1By7XqwSnWuG2J83ncY3LLEbxCUf1FrYibyV/b5JWmNfF/eT7i1E+NWy3+m22O9ExRkVr+1Etjs2lW9xxK55ND54qVwnErvPrv/QFXtkUxL1nGonWnOu+OLAJeyiP3y+f9HpRCyflutKUbEbi9PzxI90otbXyUWG17ArrotovmvViYaqV4+e8cEeIxIqOO1MeJxogfVt7M9/Ju2z9+pEY4yQfQf9sW/3/XK0x78TyWy94il9H7uMbamk1ZNOtEFC9uxICHZXtvI7/XGd6JrmM66oh9hv7fxu5ZLeiT4IK59TeYr9y32TkPlfOpFFhfzd3EjsAqyrJsIqO5FSBMtFxedzzmfnL2fkWjuRp16MXMiLOdv/4VlYPtSJlshsyWl5Nef8GZuacJruROv0ueWEErFvVYiuEF7YheYVVt1UeoPd4qjptgKhLuTQeb5c+x3291o17BfXdaHvth38GunYj3EIiklv6ULzz+gck/iAnR4nYdGt1oV4K0Y+/P6I/ZyWSmz0/i4UcVBFOSMbe2o+reqUWRcq3DG/+2QOduYOrQKps10oSVng2++8Oddjq+XxUbcutCBAmuNKAXYpWz5P2vUuxC67PGKwCLvS5b3z/e93IbmeFy/2fJ0zbvPe0uORXcgo4/7WwDLsZ48EZCkmdqEA/qfH8r9hD331+R3vxy50ylJBsbcSe7RsRtBAURf60edbN1E95/62PGpHcV0XYrmeajpai33gztDd111daNjlRGNjPfY/XVtsA8a60JRpr3NyI/aHfZ4ZrszdqFZTZJdz85ztxy0/aM7bjfyHnezXMrBbMYet2yvSjYLPefN/bsFeYjOwUHFjNzKenjmo24bd5ZNJ7zplwp8HHf/Sjl1VhBq9ZHc3usceeHRT55zrQvGYGMfBblRzo/WCV9ec/eS1UJ85Sexn3tuOvO4599XWowMjDt3ogKZUzUQP9nSzELY+aje6qnDLZ2kfdtT00qXtTjc6wuGnJNE/5/6A4kWbHnUjs1wBefEB7B+XqvTXvOxGpS2leYKDc46PYUNWRVo3kmMTMByb4znW2V5led3Ir233lpwh7BNGpcu+VnYjV2PWPdeGsevvvXOxuLUb1S2NWSz/HbvWQOGeomFiO+Hujxrn+E+BetfCmW60PUxTwf0H9sTPumMFnD1IX9E5iH8Eu/SHvvSCZT3I7BPvzudz3FF4y8cC8R700ftU4uZR7POVun4XKPSgy9lPt6bO8ddukecKd/agnB2qUlvHsN8+n7yoyKAH3aH/qEia41evj9cXmfeg+c98Hdb/xJ7Skvq12LYHMWf2aYTO8WOvXnWWuPegqanNHizjc653/kqRUt8eJLNY38hmjs/4ubuWhfag3he1E6VzvK1drq/8eQ+al6IXJD2BnWspza0ipQctkvU1vDXHLaoEVlZ96kHi562Pts3xParGddVlPUh2Oq126yR2o6zC2NrmHkRx3tnlM8c1frf61vf3oBW8iXHVc9xXe6NH468eFNeroyX2C3vHDiPPZvZe1OzLVG01xyX6VwUyBHsR/9tJ19dzvFjBIbl1TS9ineTZPTTHT1N2NLfL9qLLESYnNv3GznreV6BLtReJpu5tsZ7j/XTXgz26vejxSHTDsznutUohqs+0Fy0Xu32mcY7vDZw3MWDdiz42aUbyTmHXjRY3GnbrRTu4TB7unOONI6wZP673IqZwhzPOc/xk5rx1Y/d7Ud3oLrFnczx8n1/oeGQv6g1Lqyqb44i2lvdXYi8SO/U+7Pccfzyqf3fqYy9amKZ3Zc00dm+DyMV/insRp+HjkL1z/JRo/IN5Db1IJz5hxH6O74gSWM/S04tuBflG3Z/jg70eqazjxLgBkqnv5nh4e8jeBfP70Ms/Pjtq5rjWdb62hXx9yOVuiObPOR7lFXd5kVgfGrM80sQ3g71++8rlvNJ9KOfOi8Uyc3xn2qb3fDv6UP897pE9c9xhQbSZ4N4+ZJDrcuvkHFffqsu09FAf2vNytMt9jn8rmoxdfroPSeWyC9yf4xVjl/RXOvehs7maK1/O8Y09cb9FvfrQ+w9C3FlzXLv+RMzqgD506FPqj29z13f1NFz3tA/J7Y+q6JjjvxntTBKv+5DzlMKH8Tn+Mcc+Wep9H2IfufiO/Q/27KkFJzYV9KH8ar1ioTkuPh3Cv7mmD+kq/mAVn+OHuFi+yHX0oSgPZzuFOT5msO2iwkgfOmLxctHOOX782ZpN2+b1o8gv6wb05jinS0qrMnc/+hGuxGc2x1c8rQ1RWdFPfP5dctNqjhskXNVRk+pHN2zUjR3nuNziaOad2/oRVebG1ctzXCZFLkNrVz8yjFkgcGOOC11cfX63UT9SQtX8/nO8dL+1+L4T/eh6QopP6ByvmJqh657vRzHv9VzD5/gZ/boQ/SvE68rK74yZ45rJ3/cb+vWjs1fMmuLn+B4NNfaDD/tRRSSfxds5XtSdTTv0oh8JT/q4vp/jGittL5imEq83ef267LnHrVRV9lhuP1qu5OCQN8efecv3WVT0IyPF8xZFc9xfUfvZyZZ+1K7NP1E6x7fsdTY7PdSPzOYtVa6c44890wWtp/tRud9i6do5HjrBW2azcACxJ1jVNszxgBXuN+2WDqCrz02U6XO8/fmYusP6AbSQb/xI6xxv8nOfcpIfQANrN/x/7dz/a9R1HMDxmMkGR+jCLxCKxUalOdByqQ17wYpY6jItlbK2LHKaF2dGTKZuuLBrljIn5lE7Ww5N0/JibvMaMo647CTYpujIZrWjNZf3+Xzmxrkv7nbdB3/w9aG/IHg+fvs8efP+6fPD583n83k93aP6UxMnNZU+Y0jr3nBPr+pd5Sc9ZSsN6Vu8cM0/qr9/4MXZO4sNqe5I1sRU92QkohXvGjLtgdIvTdWL2k/XVm43ZOnG+vJ+1Y8Ml6zZXWXIelfdEwOqXzyTPfnjQ4bkheeGBlUvK+yJ7DlqyI9TZs2Jq/747BMf7m0wpHzHrS23VM9v9SypDhkSGHnWN6Tvz8OLhmraDPFnFh4ZVr1u/YTvD14zpLvwjf0jqg82tb3ju2FI5ylvyajqF1b7s78YMcT3x+WHb6seSXP/7k83xe3N6tA99Emer26qKelX5m0c0/uHXavqs0zxlwUN3c/u63Idm29KZLzgrYTqyyLfho+LKd7ISxd03/96RcXJQlPKPijIHld9w6KVi79bZ8r0wOatus9fmjUY2GTKlWyjUfecj+KnGkpNafktbum+JXp+Q9NuU15tqHooqXrm2s8fDB4wJTTqX6b739fcV1u+MuVs62SP7lO22pMOUt0X/FT3kUn3vxA6Z4pnbNVR3S+dsScgmJJxzBvUvaqoOfTTr6bElo9GdD/s2rM90mvKYElup+6jP7yW+0vclCd7m7t179xsT0yw5L57b/bp/s3MtBMdmZbMvF7Qr/u0dnuSgiULjk+N6/5n5dczOnMseeRm/bCj59oTFix5pWnBbd0T15dXdz1vSbM7LaH7Y7X25AVLds7LG9e9eMXAhOjblnyWnJjU/WBa+NxfqfN/d3SXo7c1Hirt3WVJe+BnR8/YZE9qsCQWizl6/owlN2J+S4rcY46+o82e4JDaf5t9dfd9f2NltGggdV6tb0k61lu59mSH1D7pzvWP9nkvDl22ZNuwc/2btfbEB0veG3f22hU5zyVSz/3tY84+/XzQ/XLq+ezOD5J3+50fJPv/02vm5FfoDyHWBvYV62vXPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwf/Av 00000000-0000-0000-0000-000000000000 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 8dfc4bf8-bd9d-4664-8d23-8c5fa26397de 1 f9dd80e4-1f37-4628-bd32-7ebd0b7b38b9 Group 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 13811ab4-b356-4a2f-bf6a-563f34659a7a true Expression Expression 4211 6719 194 28 4311 6733 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable e4363c93-3df7-4a54-a55c-fc89bea1dab9 true Variable O O true 771a3c18-faa6-4281-b469-5031ab7617a5 1 4213 6721 14 24 4221.5 6733 Result of expression b7074eb2-4309-4c42-9b54-b4b4b797222a true Result false 0 4394 6721 9 24 4400 6733 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 47d309cc-0087-490d-85c8-cf3d129b0f93 Panel false 1 b7074eb2-4309-4c42-9b54-b4b4b797222a 1 Double click to edit panel content… 4215 6433 185 271 0 0 0 4215.832 6433.893 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 3f22465c-a1d8-4425-9fdc-e6135a397fbc Relay false 47d309cc-0087-490d-85c8-cf3d129b0f93 1 4288 6410 40 16 4308 6418 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 771a3c18-faa6-4281-b469-5031ab7617a5 Relay false 5078cf9d-5a65-46c0-801d-34f40bee0f1b 1 4288 6766 40 16 4308 6774 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 13811ab4-b356-4a2f-bf6a-563f34659a7a 47d309cc-0087-490d-85c8-cf3d129b0f93 3f22465c-a1d8-4425-9fdc-e6135a397fbc 771a3c18-faa6-4281-b469-5031ab7617a5 4 3b43cc9f-9bf8-4ad1-96ae-3c1d8d223edd Group 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true a5de6231-a691-45d0-887d-4c677b2cd883 true Expression Expression 4211 6019 194 28 4311 6033 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 55c29e61-d798-4888-9ce1-744c771e1aa8 true Variable O O true 256d4876-ebd8-4914-aa20-11c64a0e56d7 1 4213 6021 14 24 4221.5 6033 Result of expression bc7499c7-4854-430a-929c-f83f0f1d3cda true Result false 0 4394 6021 9 24 4400 6033 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values ec2d9eee-a658-42ed-bf34-e56a1ed0c919 Panel false 0 bc7499c7-4854-430a-929c-f83f0f1d3cda 1 Double click to edit panel content… 4208 5734 200 271 0 0 0 4208.899 5734.656 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object d473a50c-3902-4af3-ad36-6f85c9f36bc0 Relay false ec2d9eee-a658-42ed-bf34-e56a1ed0c919 1 4288 5691 40 16 4308 5699 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 256d4876-ebd8-4914-aa20-11c64a0e56d7 Relay false 0a516f0c-a574-4254-9e94-e7e5df613da5 1 4288 6066 40 16 4308 6074 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects a5de6231-a691-45d0-887d-4c677b2cd883 ec2d9eee-a658-42ed-bf34-e56a1ed0c919 d473a50c-3902-4af3-ad36-6f85c9f36bc0 256d4876-ebd8-4914-aa20-11c64a0e56d7 4 52cee108-6acb-47c9-b99f-f64546acc12c Group c75b62fa-0a33-4da7-a5bd-03fd0068fd93 Length Measure the length of a curve. true d900ebd2-5fc1-475e-a940-194803b564d6 Length Length 4256 7416 104 28 4306 7430 Curve to measure e615bc13-f7e8-4e7a-9a09-b195b451efd2 Curve Curve false 3174a38d-b561-4a42-8f8a-31608ef08ab4 1 4258 7418 33 24 4276 7430 Curve length b81ec812-8ec8-4429-a6a9-685744f02fd4 Length Length false 0 4321 7418 37 24 4341 7430 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 6c8e0d06-15c6-49e1-9067-12321dd4ee3b Multiplication Multiplication 4267 5368 82 44 4298 5390 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication 87730b00-70b5-4ec1-9f56-925eb9241e56 A A true 8a2d2bc3-4a52-4743-b71a-fe728e225613 1 4269 5370 14 20 4277.5 5380 Second item for multiplication 65069410-805b-4aff-a2bc-5302d7e92e35 B B true 2f63ad6a-50d9-44f8-b78a-6d8a197ff60b 1 4269 5390 14 20 4277.5 5400 Result of multiplication 14bd8a6a-5af9-451e-86ed-f6bf0cd39f40 Result Result false 0 4313 5370 34 40 4331.5 5390 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 728569ed-5597-44af-981b-e70a8a64f2f2 true Scale Scale 25306 9330 154 64 25390 9362 Base geometry 6595957a-21b8-4b62-9a8e-e5a3980160b0 true Geometry Geometry true 908290ff-2ae5-443a-8c02-efd3ed2fe118 1 25308 9332 67 20 25351 9342 Center of scaling 3864cd4d-8c57-4aee-ab34-b4fe1108c186 true Center Center false 0 25308 9352 67 20 25351 9362 1 1 {0} 0 0 0 Scaling factor 7fdd03e9-5a28-4c9d-8c2a-72657066d535 1/X true Factor Factor false ea54cb37-f08c-491b-ac20-a65e4389cca7 1 25308 9372 67 20 25351 9382 1 1 {0} 0.5 Scaled geometry a6c40f15-9b44-41cc-8093-43589b25d869 true Geometry Geometry false 0 25405 9332 53 30 25433 9347 Transformation data 67198943-928b-4658-a6f4-0695f9ee1588 true Transform Transform false 0 25405 9362 53 30 25433 9377 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 4ccebb54-ff4f-4137-9be2-9b59e9e078ef true Point Point false a6c40f15-9b44-41cc-8093-43589b25d869 1 25359 9294 50 24 25384.7 9306.037 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object cd610f91-fe93-4eaa-b6dc-0b8fadea311f Relay false 0a516f0c-a574-4254-9e94-e7e5df613da5 1 4288 4397 40 16 4308 4405 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 60502e3d-7b53-49fc-8044-ffd2cd121805 Multiplication Multiplication 2752 5496 82 44 2783 5518 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication bc726e13-5c6a-439c-b066-0d4f281fc28f A A true 6f068628-c4b9-4434-b450-3eb18eece1e1 1 2754 5498 14 20 2762.5 5508 Second item for multiplication 89757b60-91ec-4c56-8d64-3546a4655221 B B true 231a94e3-3b48-4943-adac-c96d778b2484 1 2754 5518 14 20 2762.5 5528 Result of multiplication 6cd0d5e1-a76e-4157-bcb0-cfc84b7fb662 Result Result false 0 2798 5498 34 40 2816.5 5518 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true de643b94-4758-4fff-9527-348baf5052a6 true Expression Expression 2696 6210 194 28 2796 6224 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 189b23cc-c534-4eaf-b05f-45d8bb13b838 true Variable O O true 6f068628-c4b9-4434-b450-3eb18eece1e1 1 2698 6212 14 24 2706.5 6224 Result of expression 529e84b3-b743-41a2-bb07-7f3eae076088 true Result false 0 2879 6212 9 24 2885 6224 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 3e7a556e-c1e7-4458-88a5-92c9d2b5dc72 Panel false 1 529e84b3-b743-41a2-bb07-7f3eae076088 1 Double click to edit panel content… 2686 5929 214 271 0 0 0 2686.397 5929.743 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object bfe8449c-a942-4118-b8c0-f94999971aed Relay false 3e7a556e-c1e7-4458-88a5-92c9d2b5dc72 1 2773 5894 40 16 2793 5902 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 6f068628-c4b9-4434-b450-3eb18eece1e1 Relay false 6f661aea-4de1-4ccd-be9b-060c820f3253 1 2773 6257 40 16 2793 6265 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects de643b94-4758-4fff-9527-348baf5052a6 3e7a556e-c1e7-4458-88a5-92c9d2b5dc72 bfe8449c-a942-4118-b8c0-f94999971aed 6f068628-c4b9-4434-b450-3eb18eece1e1 4 b71aae03-de35-454b-80fa-09eb419fe2bf Group 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 3f8b08e2-012b-4117-8562-193ac6d58cd1 Quick Graph Quick Graph false 0 6f068628-c4b9-4434-b450-3eb18eece1e1 1 2718 5727 150 150 2718.496 5727.921 -1 aaa665bd-fd6e-4ccb-8d2c-c5b33072125d Curvature Evaluate the curvature of a curve at a specified parameter. true 03a735fb-f0b8-408e-aa2e-38f3423396cb Curvature Curvature 2724 7063 137 64 2794 7095 Curve to evaluate ebdfab97-404e-4400-9ad6-ce97c362b1e6 Curve Curve false d4d7b6ef-9942-48a8-a5dc-93fd38f8614c 1 2726 7065 53 30 2754 7080 Parameter on curve domain to evaluate e3ba73f5-6e97-41e8-b413-d78f285ff5af Parameter Parameter false 28f77fbb-7355-4ecb-b9f0-9dc95a80eccd 1 2726 7095 53 30 2754 7110 Point on curve at {t} 47a169b5-dfa0-40c7-8ebf-fde319f791d4 Point Point false 0 2809 7065 50 20 2835.5 7075 Curvature vector at {t} 0ec276e2-20a9-47a4-ac50-e20d6ab1ee1e Curvature Curvature false 0 2809 7085 50 20 2835.5 7095 Curvature circle at {t} aacfbbaa-cbb2-41b5-aaff-4015453882fc Curvature Curvature false 0 2809 7105 50 20 2835.5 7115 2162e72e-72fc-4bf8-9459-d4d82fa8aa14 Divide Curve Divide a curve into equal length segments true d4d70d80-e818-4fef-ba8e-09da9f91679c Divide Curve Divide Curve 2730 7146 125 64 2780 7178 Curve to divide 408b244a-22a1-4b81-951c-acb668d4e260 Curve Curve false d4d7b6ef-9942-48a8-a5dc-93fd38f8614c 1 2732 7148 33 20 2750 7158 Number of segments 0b7485c5-b465-41d0-86b4-72f23669fed5 Count Count false 566bcebd-f5e8-468a-9c11-d4b111aa2f0c 1 2732 7168 33 20 2750 7178 1 1 {0} 10 Split segments at kinks 471cb14c-744e-4892-9209-47493c02fe01 Kinks Kinks false 0 2732 7188 33 20 2750 7198 1 1 {0} false 1 Division points 75ceaaaf-4b5c-4960-a81b-4117cc5d4b54 Points Points false 0 2795 7148 58 20 2825.5 7158 1 Tangent vectors at division points 4aa2e999-e805-449c-b9ff-4c18b1d29197 Tangents Tangents false 0 2795 7168 58 20 2825.5 7178 1 Parameter values at division points 28f77fbb-7355-4ecb-b9f0-9dc95a80eccd Parameters Parameters false 0 2795 7188 58 20 2825.5 7198 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true d4d7b6ef-9942-48a8-a5dc-93fd38f8614c 2 Curve Curve false 23098590-a917-496b-a7fa-ab7fc86169d0 1 2767 7282 53 24 2803.437 7294.059 23862862-049a-40be-b558-2418aacbd916 Deconstruct Arc Retrieve the base plane, radius and angle domain of an arc. true 4ba46890-e14d-4ffa-988f-1dd7b7759090 Deconstruct Arc Deconstruct Arc 2736 6982 114 64 2776 7014 Arc or Circle to deconstruct 5ef3799d-3c27-41aa-b079-76a2250a67e5 Arc Arc false aacfbbaa-cbb2-41b5-aaff-4015453882fc 1 2738 6984 23 60 2751 7014 Base plane of arc or circle dae57143-ddef-46e4-99de-d144d87b1d8b Base Plane Base Plane false 0 2791 6984 57 20 2821 6994 Radius of arc or circle 2eb519fd-6a71-465a-9619-d9e8eb664335 Radius Radius false 0 2791 7004 57 20 2821 7014 Angle domain (in radians) of arc 9094aa8f-9691-4663-a757-5232472ae614 Angle Angle false 0 2791 7024 57 20 2821 7034 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true 5d0d4ef0-d8de-470e-bbae-355a6b237935 One Over X One Over X 2743 6318 100 28 2792 6332 Input value 717d554b-ee89-4984-8501-fca87732899a Value Value false 9f7d1187-713e-4c8f-8c68-69b4d351ce97 1 2745 6320 32 24 2762.5 6332 Output value 8942d533-358d-4c7c-8ea8-d0f51eda1186 Result Result false 0 2807 6320 34 24 2825.5 6332 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 6f661aea-4de1-4ccd-be9b-060c820f3253 Relay false 8942d533-358d-4c7c-8ea8-d0f51eda1186 1 2773 6289 40 16 2793 6297 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 9b636a61-698d-4830-96f5-74961596764f true Expression Expression 2696 6895 194 28 2796 6909 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 111ad032-1d08-4851-87d8-c242727847a7 true Variable O O true 9f7d1187-713e-4c8f-8c68-69b4d351ce97 1 2698 6897 14 24 2706.5 6909 Result of expression 5e99dcb1-4f43-4cbb-9a7e-485893ea738a true Result false 0 2879 6897 9 24 2885 6909 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 0e2d7da3-975f-4198-8e36-5db1d8a5abe6 Panel false 1 5e99dcb1-4f43-4cbb-9a7e-485893ea738a 1 Double click to edit panel content… 2701 6605 185 271 0 0 0 2701.033 6605.335 255;255;255;255 true true true false false false b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 0e85845b-9b1b-4be3-a812-e90c459106d4 Relay false 0e2d7da3-975f-4198-8e36-5db1d8a5abe6 1 2773 6567 40 16 2793 6575 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 9f7d1187-713e-4c8f-8c68-69b4d351ce97 Relay false 2eb519fd-6a71-465a-9619-d9e8eb664335 1 2773 6949 40 16 2793 6957 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 566bcebd-f5e8-468a-9c11-d4b111aa2f0c Number Number false 931b1327-0f41-42e6-b1eb-00468f33d6c8 1 2768 7238 50 24 2793.937 7250.646 1 1 {0} 1024 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 14114d11-a3cb-41ea-8397-075cb5e9d027 Curve Curve false 9b049f30-c8fb-42e2-8753-3a7428f5fa04 1 2768 5317 50 24 2793.368 5329.088 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 5 255;255;255;255 A group of Grasshopper objects 14114d11-a3cb-41ea-8397-075cb5e9d027 1 8a41f4c3-fac1-4c2d-a1c7-38bbb12715ac Group f3230ecb-3631-4d6f-86f2-ef4b2ed37f45 Replace Nulls Replace nulls or invalid data with other data true 600b5815-4862-4828-a936-e2ea98a22934 Replace Nulls Replace Nulls 4240 4337 136 44 4326 4359 1 Items to test for null 031d96f7-8481-4d4a-9b81-160a3396d767 Items Items false cd610f91-fe93-4eaa-b6dc-0b8fadea311f 1 4242 4339 69 20 4278 4349 1 Items to replace nulls with cbf1802f-d79f-4412-88e4-d0fd9c2c1fc7 Replacements Replacements false 0 4242 4359 69 20 4278 4369 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 0 1 List without any nulls 1f0b848f-eb55-4dd9-a62f-a216daed8c78 Items Items false 0 4341 4339 33 20 4359 4349 Number of items replaced a5afb553-925f-43c4-a825-447d3d7bfb65 Count Count false 0 4341 4359 33 20 4359 4369 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object ff2db1c1-6c13-43aa-8303-844eb49d3ae6 Relay false 080fa6d7-bbb3-4f71-a556-fd84a9bd5303 1 4288 4252 40 16 4308 4260 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 8c08f54a-7801-4d61-a733-3a8ba0d87024 Quick Graph Quick Graph false 0 95874953-5edd-4e0b-9115-5fc68fd0f28d 1 4233 4052 150 150 4233.828 4052.635 -1 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 95874953-5edd-4e0b-9115-5fc68fd0f28d Relay false ff2db1c1-6c13-43aa-8303-844eb49d3ae6 1 4288 4216 40 16 4308 4224 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 5cb126fd-9c09-4d9d-9448-82cbad266c75 true Expression Expression 4211 3965 194 28 4311 3979 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 4c58974c-b1d9-40b1-a891-5eabc20bda90 true Variable O O true 01d00c3f-0e5b-4a1c-8123-dd4db1c9e437 1 4213 3967 14 24 4221.5 3979 Result of expression e60b926d-ac8a-4eb5-9f55-3b56b430cfc3 true Result false 0 4394 3967 9 24 4400 3979 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 62732b5d-8ae6-4217-b2a2-eaaf8c992b76 Panel false 0 e60b926d-ac8a-4eb5-9f55-3b56b430cfc3 1 Double click to edit panel content… 4208 3682 200 271 0 0 0 4208.241 3682.615 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 4d8c850a-204d-4ade-81d2-820fdd96b58a Relay false 62732b5d-8ae6-4217-b2a2-eaaf8c992b76 1 4288 3664 40 16 4308 3672 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 01d00c3f-0e5b-4a1c-8123-dd4db1c9e437 Relay false 95874953-5edd-4e0b-9115-5fc68fd0f28d 1 4288 4012 40 16 4308 4020 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 5cb126fd-9c09-4d9d-9448-82cbad266c75 62732b5d-8ae6-4217-b2a2-eaaf8c992b76 4d8c850a-204d-4ade-81d2-820fdd96b58a 01d00c3f-0e5b-4a1c-8123-dd4db1c9e437 8c08f54a-7801-4d61-a733-3a8ba0d87024 95874953-5edd-4e0b-9115-5fc68fd0f28d 6 fa5ecd94-e7d5-46d8-825e-477b6d112c2b Group ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true e2051d40-1ccc-45fe-82e2-b1b90760ee46 Multiplication Multiplication 4267 3396 82 44 4298 3418 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication d5f4a7da-4dd5-4ff9-9a1b-49fe042ec60d A A true eca5d769-7430-4ced-8208-a3645409d38b 1 4269 3398 14 20 4277.5 3408 Second item for multiplication 9e974e1f-1e02-48b7-bfe6-7c150dd511a2 B B true 76cb75e1-43cf-4e78-ae62-734915746e29 1 4269 3418 14 20 4277.5 3428 Result of multiplication 32f0b35d-e913-4f06-b93a-97544ad5d63d Result Result false 0 4313 3398 34 40 4331.5 3418 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 2df1f8fc-64bf-4e4b-a60b-3fb33cc9fd01 Line SDL Line SDL -13782 22599 106 64 -13718 22631 Line start point c54d12b6-d6d2-495b-b838-07a0520624e4 Start Start false 0 -13780 22601 47 20 -13755 22611 1 1 {0} 0 0 0 Line tangent (direction) a387e6d1-42d4-4708-b061-84b25b674829 Direction Direction false 0 -13780 22621 47 20 -13755 22631 1 1 {0} -0.5 0 0 Line length c36c2235-5eaf-437b-8a3d-5bd00adc44b6 Length Length false 0 -13780 22641 47 20 -13755 22651 1 1 {0} 1 Line segment 013f3902-ac62-471f-913d-6b70709a644d Line Line false 0 -13703 22601 25 60 -13689 22631 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 5bab25d9-56ac-4d32-844e-0ecfd01f1f9e Line SDL Line SDL -13782 22743 106 64 -13718 22775 Line start point 0c1f3cb7-0183-4fae-af72-a660ebff7330 Start Start false 0 -13780 22745 47 20 -13755 22755 1 1 {0} 1 1 0 Line tangent (direction) c3b760fc-685f-41be-88e6-5409041d5b92 Direction Direction false 0 -13780 22765 47 20 -13755 22775 1 1 {0} 1 0 0 Line length b8a3bae6-0b05-4a99-8026-f223ea878881 Length Length false 0 -13780 22785 47 20 -13755 22795 1 1 {0} 1 Line segment d8f6b94f-360d-4beb-810a-57991853e22e Line Line false 0 -13703 22745 25 60 -13689 22775 22990b1f-9be6-477c-ad89-f775cd347105 Flip Curve Flip a curve using an optional guide curve. true ba271c46-fe3a-48aa-b5f3-e84f4aecbca8 Flip Curve Flip Curve -13779 22536 100 44 -13729 22558 Curve to flip 4de6b7a3-32b3-40e4-8769-771102e78672 Curve Curve false 013f3902-ac62-471f-913d-6b70709a644d 1 -13777 22538 33 20 -13759 22548 Optional guide curve c7874f1e-1178-481a-a23a-a45ddb6a935e Guide Guide true 0 -13777 22558 33 20 -13759 22568 Flipped curve 6ccb97b0-1e14-49b2-a135-93dab85d9891 Curve Curve false 0 -13714 22538 33 20 -13696 22548 Flip action 76123488-8f88-4453-a792-33c39f2d9543 Flag Flag false 0 -13714 22558 33 20 -13696 22568 22990b1f-9be6-477c-ad89-f775cd347105 Flip Curve Flip a curve using an optional guide curve. true ac3c3e2b-cbe8-47d5-b631-479f1efb11ec Flip Curve Flip Curve -13779 22679 100 44 -13729 22701 Curve to flip 42fe7b93-aa0d-4826-afa2-cec3a5df89ee Curve Curve false d8f6b94f-360d-4beb-810a-57991853e22e 1 -13777 22681 33 20 -13759 22691 Optional guide curve a74c6312-3c78-4cbc-b45f-8221f13984aa Guide Guide true 0 -13777 22701 33 20 -13759 22711 Flipped curve 56c3de07-9943-4d4f-9fe5-b44ac9f9f196 Curve Curve false 0 -13714 22681 33 20 -13696 22691 Flip action 991bfe87-9d9a-4c6a-9d3a-3170f388bec9 Flag Flag false 0 -13714 22701 33 20 -13696 22711 5909dbcb-4950-4ce4-9433-7cf9e62ee011 Blend Curve Create a blend curve between two curves. true 1b03b2f8-0f41-4cdc-9de3-f381902f125c Blend Curve Blend Curve -13787 22339 118 104 -13718 22391 First curve for blend f784e390-a80a-4024-be92-b2cb2237accc Curve A Curve A false 6ccb97b0-1e14-49b2-a135-93dab85d9891 1 -13785 22341 52 20 -13757.5 22351 Second curve for blend 068c4f67-8be1-46c3-9a72-e78b870d224a Curve B Curve B false d8f6b94f-360d-4beb-810a-57991853e22e 1 -13785 22361 52 20 -13757.5 22371 Bulge factor at A 38f05c2c-1b90-495c-91bd-dc22907ae857 Bulge A Bulge A false 5ebd08e3-1d91-4fcc-bcad-eb3a8e77e9bd 1 -13785 22381 52 20 -13757.5 22391 1 1 {0} 1 Bulge factor at B ff1c5a50-1233-4a01-a228-ef0dabd4d80b Bulge B Bulge B false 5ebd08e3-1d91-4fcc-bcad-eb3a8e77e9bd 1 -13785 22401 52 20 -13757.5 22411 1 1 {0} 1 Continuity of blend (0=position, 1=tangency, 2=curvature) 3815bdbb-ace0-4185-ac3a-f5c327929840 Continuity Continuity false 0 -13785 22421 52 20 -13757.5 22431 1 1 {0} 2 Blend curve connecting the end of A to the start of B 153ce435-1c6f-4961-9a71-d0a0af201f65 Blend Blend false 0 -13703 22341 32 100 -13685.5 22391 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 39c932f0-cb48-431a-af49-df26495dad11 Curve Curve false 5f024167-e348-42e4-83bc-dd9abab2d75e 1 4283 2895 50 24 4308 2907.582 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 61036b5a-8186-48eb-b8e1-970dd55c24f4 Relay false bb672236-a7b7-45ef-afb8-18f1a2792e58 1 4288 2773 40 16 4308 2781 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 37daf650-3934-4620-a463-416b35449969 true Expression Expression 4211 2402 194 28 4311 2416 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 9730946c-a145-45c8-aa9e-8dba73e6cd04 true Variable O O true e51056f8-3107-4b1a-8fd5-ad73176b3deb 1 4213 2404 14 24 4221.5 2416 Result of expression d4a4ed03-0cc0-46ff-9359-035244fdd4dc true Result false 0 4394 2404 9 24 4400 2416 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values f9d2b63d-ffbc-48e6-b8fc-1b2cef2bb36f Panel false 0 d4a4ed03-0cc0-46ff-9359-035244fdd4dc 1 Double click to edit panel content… 4211 2119 194 271 0 0 0 4211.045 2119.177 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 1770ef93-fafd-46b6-9880-ef4537069dfd Relay false f9d2b63d-ffbc-48e6-b8fc-1b2cef2bb36f 1 4288 2101 40 16 4308 2109 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object e51056f8-3107-4b1a-8fd5-ad73176b3deb Relay false 5b746e58-f682-41be-a162-14fdf355725d 1 4288 2447 40 16 4308 2455 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 37daf650-3934-4620-a463-416b35449969 f9d2b63d-ffbc-48e6-b8fc-1b2cef2bb36f 1770ef93-fafd-46b6-9880-ef4537069dfd e51056f8-3107-4b1a-8fd5-ad73176b3deb 4 d8ed0680-6313-4ea3-9083-6b6ef5b3df8e Group 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true a746965c-93a8-4c42-ba22-60615b10d09a Create Material Create Material 4476 -14498 144 104 4560 -14446 Colour of the diffuse channel 175e106b-c54e-440f-b201-4a30b4479824 Diffuse Diffuse false 0 4478 -14496 67 20 4513 -14486 1 1 {0} 255;207;207;207 Colour of the specular highlight 3907fdb0-9bb6-4168-8255-33d06da4a5a4 Specular Specular false 0 4478 -14476 67 20 4513 -14466 1 1 {0} 255;0;255;255 Emissive colour of the material 4ca928fa-d51c-47ab-868b-b9cd5ad2a4a4 Emission Emission false 0 4478 -14456 67 20 4513 -14446 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 6be2492e-681d-45b2-8e54-96a122763bae Transparency Transparency false 0 4478 -14436 67 20 4513 -14426 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 6cba6d00-a570-441e-a794-b2bde1c8bce2 Shine Shine false 0 4478 -14416 67 20 4513 -14406 1 1 {0} 100 Resulting material 61c7892c-838c-4bef-9c90-26cc90dbc3aa Material Material false 0 4575 -14496 43 100 4598 -14446 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true 1b5fbf91-fdf8-4030-a119-19e9899bcf85 Custom Preview Custom Preview 4507 -14561 82 44 4575 -14539 Geometry to preview true e728a154-7a23-4426-8068-39ad90664828 Geometry Geometry false f61f2111-5326-4648-ba8c-1d4458c660dd 1 4509 -14559 51 20 4536 -14549 The material override e1bca1e3-517c-4c4a-acb8-5d0f80125eab Material Material false 61c7892c-838c-4bef-9c90-26cc90dbc3aa 1 4509 -14539 51 20 4536 -14529 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 2df1f8fc-64bf-4e4b-a60b-3fb33cc9fd01 5bab25d9-56ac-4d32-844e-0ecfd01f1f9e ba271c46-fe3a-48aa-b5f3-e84f4aecbca8 ac3c3e2b-cbe8-47d5-b631-479f1efb11ec 7c5248fa-deac-45e4-b5a1-c56612264153 1b03b2f8-0f41-4cdc-9de3-f381902f125c b61d4846-0a2c-4cb6-9506-cacc1d5d15cd 5ebd08e3-1d91-4fcc-bcad-eb3a8e77e9bd 8 0135048a-26b4-4af1-a205-9d8732b9d6fb Group 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 1dd7f4ab-a114-475c-95ae-55222fa823af Digit Scroller false 0 12 11 256.0 4183 7075 250 20 4183.743 7075.877 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers b61d4846-0a2c-4cb6-9506-cacc1d5d15cd Digit Scroller false 0 12 1 0.50000000000 -13855 22500 250 20 -13854.98 22500.15 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 5ebd08e3-1d91-4fcc-bcad-eb3a8e77e9bd Relay false b61d4846-0a2c-4cb6-9506-cacc1d5d15cd 1 -13752 22461 40 16 -13732 22469 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 49903633-9080-429b-8a6d-d1e6ebe41d4e Quick Graph Quick Graph false 0 ae3a695a-cc15-499e-9427-1231fcbea6e4 1 4473 -12902 150 150 4473.346 -12901.92 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 0964cac6-acfd-4cc9-9eaf-953e88fd0fc0 Quick Graph Quick Graph false 0 60d7cf46-ac14-418d-825d-d81b9b00022b 1 4473 -13071 150 150 4473.346 -13070.92 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 6cb2edf8-8cdf-4c12-85d6-a8bd4ae5d89e Quick Graph Quick Graph false 0 bf13852d-01bb-4747-8df7-3dc60b6e7510 1 4473 -13239 150 150 4473.346 -13238.44 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 6a8af3f4-c4cb-42f8-8235-d36afb706fae Quick Graph Quick Graph false 0 313febab-a771-45da-a567-310cd4182e68 1 4473 -13408 150 150 4473.346 -13407.44 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 50a35e3a-c50a-483f-ba6a-4078685fc7f5 Quick Graph Quick Graph false 0 b7204c31-0fde-4f40-9482-20f3fbf74e06 1 4473 -13578 150 150 4473.104 -13577.17 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 7d097b82-7572-4bca-82b7-1d6802a40156 Quick Graph Quick Graph false 0 48e9cfcc-4536-4f94-9f62-f42b525b36e5 1 4473 -13747 150 150 4473.104 -13746.95 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 6668afd9-5abf-4c53-9854-9dacd7e2c2c6 Quick Graph Quick Graph false 0 7ca4635d-ac36-43c9-b4e8-aba60332ab9f 1 4473 -13916 150 150 4473.104 -13915.69 -1 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 1818d3db-972f-47b4-b0c9-65197dfe11c2 true Point Point false 0 -12873 22921 50 24 -12848.95 22933.84 1 1 {0} 0 0 0 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 9f25a355-7662-4195-8bad-1228d1b92e3a true Point Point false 0 -12873 22963 50 24 -12848.95 22975.33 1 1 {0} 0.25 0 0 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true bdf07b41-b621-4b36-819a-8bd27aca0e34 true Point Point false 0 -12873 23006 50 24 -12848.95 23018.71 1 1 {0} 0.394775268579572 0.197847617914238 0 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 3a8f6210-9f26-43e4-8b81-9b30c45b88b3 true Point Point false 0 -12873 23053 50 24 -12848.54 23065.03 1 1 {0} 0.200657721514105 0 0 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true e6c35ec2-ba17-4faf-bedc-9905f308c518 true Point Point false 0 -12873 22715 50 24 -12848.09 22727.27 1 1 {0} 0.5 0.5 0 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true 41c9204f-fb15-49e7-9e6f-1f04ee4cfc2e true Merge Merge -12893 22750 87 144 -12857 22822 7 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 1b7d2336-0b9d-47ce-b5a1-ed7b229efeac true false Data 1 D1 true 1818d3db-972f-47b4-b0c9-65197dfe11c2 1 -12891 22752 19 20 -12880 22762 2 Data stream 2 7d23cc1e-b361-4ccd-82dd-cca3cfbbc15f true false Data 2 D2 true 9f25a355-7662-4195-8bad-1228d1b92e3a 1 -12891 22772 19 20 -12880 22782 2 Data stream 3 a689816b-5ebe-4a34-91e7-e043313eb3fe true false Data 3 D3 true bdf07b41-b621-4b36-819a-8bd27aca0e34 1 -12891 22792 19 20 -12880 22802 2 Data stream 4 313e47fa-4c2a-4dad-a1fd-49ed9925b99f true false Data 4 D4 true 0 -12891 22812 19 20 -12880 22822 2 Data stream 5 ed5f14a0-0c1a-4651-8847-ba22c778fe88 true false Data 5 D5 true 0 -12891 22832 19 20 -12880 22842 2 Data stream 6 c79e50a7-2e4d-4e14-ad92-8e0ba11e0b59 true false Data 6 D6 true 0 -12891 22852 19 20 -12880 22862 2 Data stream 7 64079409-bb3a-4789-b544-4ee321deb040 true false Data 7 D7 true 0 -12891 22872 19 20 -12880 22882 2 Result of merge a539d1e9-68b9-430e-a3d7-537c65f05f7c true Result Result false 0 -12842 22752 34 140 -12823.5 22822 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true a51298b4-d113-4e33-b945-2f96e88302ea true Rotate Rotate -12925 22527 154 64 -12857 22559 Base geometry de05e983-9d6a-4257-995e-ef69084268dc true Geometry Geometry true a539d1e9-68b9-430e-a3d7-537c65f05f7c 1 -12923 22529 51 20 -12896 22539 Rotation angle in radians a266731d-89a1-463f-9de8-321659cbee1f true Angle Angle false 0 false -12923 22549 51 20 -12896 22559 1 1 {0} 3.1415926535897931 Rotation plane 6d069752-8260-43f5-bcbf-a824af1e9d7f true Plane Plane false e6c35ec2-ba17-4faf-bedc-9905f308c518 1 -12923 22569 51 20 -12896 22579 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry b0394c3c-26aa-4d54-b33f-ffd0e0c9426a true Geometry Geometry false true 0 -12842 22529 69 30 -12814 22544 Transformation data 16ffc00d-f46f-4cf8-b3c7-bc98f4c1e945 true Transform Transform false 0 -12842 22559 69 30 -12814 22574 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true 57338b09-cfcc-43c5-af5d-62540440940e true Merge Merge -12893 22421 87 84 -12857 22463 4 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 7023e8c0-e2bd-417c-be59-7ed3d26ba6bd true false Data 1 D1 true a539d1e9-68b9-430e-a3d7-537c65f05f7c 1 -12891 22423 19 20 -12880 22433 2 Data stream 2 79d07e16-9e3c-42ef-9d76-41932ef42d5c true false Data 2 D2 true e6c35ec2-ba17-4faf-bedc-9905f308c518 1 -12891 22443 19 20 -12880 22453 2 Data stream 3 33e90266-6168-4cf8-97bd-eb2c44a236d6 true false Data 3 D3 true d8e7c413-da6d-49c8-8b76-cf94bbbde9c2 1 -12891 22463 19 20 -12880 22473 2 Data stream 4 f794f028-631f-4cfe-8d4d-2183b67ea77b true false Data 4 D4 true 0 -12891 22483 19 20 -12880 22493 2 Result of merge 8d495468-0570-4f48-bb1c-5aaabfff109f true Result Result false 0 -12842 22423 34 80 -12823.5 22463 dde71aef-d6ed-40a6-af98-6b0673983c82 Nurbs Curve Construct a nurbs curve from control points. true fe55b884-74d2-4ace-91ec-46bb8aa6d46e true Nurbs Curve Nurbs Curve -12918 22244 118 64 -12858 22276 1 Curve control points 7fe7b8fc-fec4-4321-92c1-0e6182219a0a true Vertices Vertices false 8d495468-0570-4f48-bb1c-5aaabfff109f 1 -12916 22246 43 20 -12893 22256 Curve degree c71205c6-66b5-49ac-9a49-9e7a69e35a93 true Degree Degree false 0 -12916 22266 43 20 -12893 22276 1 1 {0} 11 Periodic curve c2998f02-a1fb-49ae-84ab-f1ad6c66b669 true Periodic Periodic false 0 -12916 22286 43 20 -12893 22296 1 1 {0} false Resulting nurbs curve e22f8f4c-01d9-40da-84dd-7b1c9d05dc05 true Curve Curve false 0 -12843 22246 41 20 -12821 22256 Curve length 9312300e-0dbd-4b1c-85ee-c473762db936 true Length Length false 0 -12843 22266 41 20 -12821 22276 Curve domain a2c8554b-5662-4c85-aca3-96762059833a true Domain Domain false 0 -12843 22286 41 20 -12821 22296 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 88d85a7a-6236-4486-80da-b121d9a65425 true Point Point false 0 -12873 23091 50 24 -12848.45 23103.03 1 1 {0} 0.283026022490193 0.08609833667516 0 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true a22527ce-b848-4876-ae6c-e284f5e1a12e true Point Point false 0 -12873 23142 50 24 -12848.45 23154.92 1 1 {0} 0.332348228366894 0.163223259975457 0 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true fa928cff-b283-44fa-ac3e-1c442a6c1672 true Mirror Mirror -12918 22610 138 44 -12850 22632 Base geometry 16123eaa-bc27-4e53-b85c-4397bdf91758 true Geometry Geometry true b0394c3c-26aa-4d54-b33f-ffd0e0c9426a 1 -12916 22612 51 20 -12889 22622 Mirror plane 80cf4e6c-d577-4ed1-86a6-cb94f169c26f true Plane Plane false e7375d9f-5a67-4bd3-9539-8914551d4c92 1 -12916 22632 51 20 -12889 22642 1 1 {0} 0 0 0 0 1 0 0 0 1 Mirrored geometry d8e7c413-da6d-49c8-8b76-cf94bbbde9c2 true Geometry Geometry false 0 -12835 22612 53 20 -12807 22622 Transformation data dad63748-20ec-49f8-be3a-64adc4b8f57d true Transform Transform false 0 -12835 22632 53 20 -12807 22642 17b7152b-d30d-4d50-b9ef-c9fe25576fc2 XY Plane World XY plane. true 5419777c-8b79-4b71-8094-671e26c8e42f true XY Plane XY Plane -12900 22668 98 28 -12850 22682 Origin of plane f378614e-5fd1-4224-aa44-1c402747a088 true Origin Origin false e6c35ec2-ba17-4faf-bedc-9905f308c518 1 -12898 22670 33 24 -12880 22682 1 1 {0} 0 0 0 World XY plane e7375d9f-5a67-4bd3-9539-8914551d4c92 true Plane Plane false 0 -12835 22670 31 24 -12818 22682 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 440a5d0a-f4bb-43f8-9b0b-9f129f6b6ddb true Interpolate Interpolate -12918 22321 125 84 -12851 22363 1 Interpolation points 93a04a85-8966-4529-bf74-64647084f7d6 true Vertices Vertices false 8d495468-0570-4f48-bb1c-5aaabfff109f 1 -12916 22323 50 20 -12889.5 22333 Curve degree ecc241b9-be30-434b-a539-7190153555eb true Degree Degree false 0 -12916 22343 50 20 -12889.5 22353 1 1 {0} 3 Periodic curve 8f2f38c6-16be-4b50-a09f-4c92a6d03cee true Periodic Periodic false 0 -12916 22363 50 20 -12889.5 22373 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) e6abb7eb-e3f2-4fb8-a0ff-18fd1e81c3b7 true KnotStyle KnotStyle false 0 -12916 22383 50 20 -12889.5 22393 1 1 {0} 1 Resulting nurbs curve 715cdc1a-d856-4941-b0ad-3b9c04d514a5 true Curve Curve false 0 -12836 22323 41 26 -12814 22336.33 Curve length 794a44d9-4e35-433d-86d7-666be64886b9 true Length Length false 0 -12836 22349 41 27 -12814 22363 Curve domain e30a2443-c95f-45fa-8e9a-c981d2b000bc true Domain Domain false 0 -12836 22376 41 27 -12814 22389.67 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 1818d3db-972f-47b4-b0c9-65197dfe11c2 9f25a355-7662-4195-8bad-1228d1b92e3a bdf07b41-b621-4b36-819a-8bd27aca0e34 3a8f6210-9f26-43e4-8b81-9b30c45b88b3 e6c35ec2-ba17-4faf-bedc-9905f308c518 41c9204f-fb15-49e7-9e6f-1f04ee4cfc2e a51298b4-d113-4e33-b945-2f96e88302ea 57338b09-cfcc-43c5-af5d-62540440940e fe55b884-74d2-4ace-91ec-46bb8aa6d46e 88d85a7a-6236-4486-80da-b121d9a65425 a22527ce-b848-4876-ae6c-e284f5e1a12e fa928cff-b283-44fa-ac3e-1c442a6c1672 5419777c-8b79-4b71-8094-671e26c8e42f 440a5d0a-f4bb-43f8-9b0b-9f129f6b6ddb 14 a309790d-41a6-4472-877b-e83d98be0d70 Group 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 2b8982ad-31cf-4594-b562-7f255387572d true Expression Expression -272 12535 194 28 -172 12549 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 6263f94c-d40f-4e1a-9b62-b12a0091989f true Variable O O true 03b1bab6-b05f-4fbd-9d3d-8724ed5846a0 1 -270 12537 14 24 -261.5 12549 Result of expression c4d40938-2a1a-4c0c-b929-c8188cbe547c true Result false 0 -89 12537 9 24 -83 12549 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values f57f0a05-8d67-4d43-83ba-1fa5cf42da0e true Panel false 0 c4d40938-2a1a-4c0c-b929-c8188cbe547c 1 Double click to edit panel content… -272 12248 194 271 0 0 0 -271.1929 12248.61 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 47449d6f-59a8-4e29-bbce-0d0b02c29488 true Relay false f57f0a05-8d67-4d43-83ba-1fa5cf42da0e 1 -195 12212 40 16 -175 12220 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 03b1bab6-b05f-4fbd-9d3d-8724ed5846a0 true Relay false 9b1cb421-16d8-4a53-b2e0-8d1623cb2148 1 -195 12580 40 16 -175 12588 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects eaa87f52-c666-41a9-b556-acd207f0b6c7 c4fa04b7-3725-4402-b9f5-638b88ba78f6 b661329d-1c86-4c6d-95f9-d705a1115677 e63f5e4a-94fa-4924-86f4-2933a2da291b ee7f15b8-98b7-4e5e-8ef0-3c65b1428def c1f6941e-67c3-4804-8c8b-0274a0e48a3d c8f545e8-6340-444b-b8d2-3b5a3ae04fa3 a60d4ff8-ca3f-45c9-b2ca-62bf83022599 65b567a8-78ea-4eb1-b9ff-a6002f44885b f7402af7-b96e-4810-a00d-c27261a92d89 a63c1906-6c40-43b6-bf50-e976a76ef9eb 6b414199-1a78-4066-bf90-85da6bce32c0 54b025ce-50fe-46f2-8bd2-3bb3a203f49a 5dc5632c-8c01-41c5-af25-47838fc684b2 8ebdaf25-4561-4c91-82bd-831e0ae5c7dd fbfa9e12-50d3-43cd-9bf6-5fa8bf22d1a4 45c22674-d02a-44ba-b8eb-5d5f3acf5790 0a9908b8-576f-4498-957f-369fefe28b2a 202ceb8e-71f2-43ee-b2b9-f9a6b1d331b1 9186d39b-d4cc-45e6-a786-965ed70f8528 bf5cfc02-9b93-47a0-bace-8cf4f6b9f48d a8b4d7ba-71d5-4764-b276-828e069e1a14 07782138-aba3-44d1-9dec-33b387755b83 7f21031c-6647-46ce-835e-6c92a920335e 2a1012b3-1746-43f3-86ea-7f5c3c2e45f9 3fd109c6-3ae8-453e-b871-73884b2fd78d 58fbe8f8-b6cc-49b3-868f-2f5e9adf5eb4 080c45e6-3c93-4ede-8bae-6942df87d901 a8a49fdf-31eb-4a9f-a98d-e15015261400 23d8ebc4-a04d-40ff-98e4-1a30f772a64a 9cc8f06a-8751-4d91-8029-e814fe94e287 64f4c70f-d50b-4286-9b15-67fe6a6b6671 a0e07e08-fe1e-408d-b57c-4a0a1c879a92 7b96ee99-1a36-400f-9885-b6de6377a16f 130ea919-f2f4-4d96-a399-8e265bf54af8 c6f6074b-b03a-49dc-aac8-2e1469dc341f 04f1da23-038a-4f15-bb9e-f3ce4920ed5a 2b84984b-394d-4dbc-8fc8-6cb8c68caa3f 9cf2d03c-25ee-4970-b1c2-03c6d2473ade fb8356cd-bc57-4212-b603-ece8bc609c2e 64c144e6-a1e8-4d25-b361-aa88bebf6277 86fc2dd8-2814-43bc-8aa6-998446a8e239 f9285ab5-378d-4ddf-95cc-b5dd1c1ba77d 166e572a-6023-47d4-b8f6-57f8ebfb97da 5de4bf60-eae6-465d-b779-f5efb709b4ad f18cc5c3-73d8-4311-8236-bf6b13104193 96bb9f3d-3d8c-4d3a-859d-4a8d3f4c5d5e 4edfafd8-3b0c-4943-bb10-917abaeb9712 f91bfec0-c6ad-4011-8456-67697a779eb3 91b67f5a-4dff-4683-a8db-dc90bf6de0f8 d0b32d0e-885a-4c2b-b378-441bba4876b7 1498e329-39e2-490d-bf26-64cc72d5b628 b59393f3-2b17-47be-bc0e-82711f27e393 942441e0-2a69-43f4-80f2-24729e38a366 c2f1f615-6fd6-4da2-9d18-b2d721b79703 11a52911-ee4b-4695-868f-5bf4c41520d5 28041f4d-ea5e-40a7-8e96-c4fe6c94f571 86694246-d580-4d98-8160-6ae52ac6f1b8 7ae05443-fd59-4dfe-ba49-c100f76256e7 41402c3f-e413-42af-bec9-2fa5b5ce34fa 60 bad5c919-ca65-44cf-8be2-feeef714fad2 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 9186d39b-d4cc-45e6-a786-965ed70f8528 1 eaa87f52-c666-41a9-b556-acd207f0b6c7 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects b661329d-1c86-4c6d-95f9-d705a1115677 e63f5e4a-94fa-4924-86f4-2933a2da291b ee7f15b8-98b7-4e5e-8ef0-3c65b1428def c1f6941e-67c3-4804-8c8b-0274a0e48a3d c8f545e8-6340-444b-b8d2-3b5a3ae04fa3 a60d4ff8-ca3f-45c9-b2ca-62bf83022599 65b567a8-78ea-4eb1-b9ff-a6002f44885b f7402af7-b96e-4810-a00d-c27261a92d89 6b414199-1a78-4066-bf90-85da6bce32c0 a63c1906-6c40-43b6-bf50-e976a76ef9eb eaa87f52-c666-41a9-b556-acd207f0b6c7 11 c4fa04b7-3725-4402-b9f5-638b88ba78f6 Group dd8134c0-109b-4012-92be-51d843edfff7 Duplicate Data Duplicate data a predefined number of times. true b661329d-1c86-4c6d-95f9-d705a1115677 Duplicate Data Duplicate Data 3742 11336 104 64 3801 11368 1 Data to duplicate fa1ee80a-25e2-4624-99fd-12b709505b79 Data Data false 3d4cd0a5-11ef-4190-a953-f2d1da8a2ad4 1 3744 11338 42 20 3766.5 11348 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 1 Number of duplicates 9fc44f7a-5480-4ba7-9d60-d503a9585fc4 Number Number false 11a52911-ee4b-4695-868f-5bf4c41520d5 1 3744 11358 42 20 3766.5 11368 1 1 {0} 500 Retain list order ccd3258b-eccf-4f8e-99f7-68b527fee35a Order Order false 0 3744 11378 42 20 3766.5 11388 1 1 {0} true 1 Duplicated data e074e6d9-878a-4027-857f-b9ae9b303522 Data Data false 0 3816 11338 28 60 3831.5 11368 fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 DotNET VB Script (LEGACY) A VB.NET scriptable component true e63f5e4a-94fa-4924-86f4-2933a2da291b DotNET VB Script (LEGACY) Turtle 0 Dim i As Integer Dim dir As New On3dVector(1, 0, 0) Dim pos As New On3dVector(0, 0, 0) Dim axis As New On3dVector(0, 0, 1) Dim pnts As New List(Of On3dVector) pnts.Add(pos) For i = 0 To Forward.Count() - 1 Dim P As New On3dVector dir.Rotate(Left(i), axis) P = dir * Forward(i) + pnts(i) pnts.Add(P) Next Points = pnts 3737 10377 116 44 3798 10399 1 1 2 Script Variable Forward Script Variable Left 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 true true Forward Left true true 2 Print, Reflect and Error streams Output parameter Points 3ede854e-c753-40eb-84cb-b48008f14fd4 8ec86459-bf01-4409-baee-174d0d2b13d0 true true Output Points false false 1 false Script Variable Forward cb49d094-135a-4555-8461-a28402f74759 Forward Forward true 1 true e074e6d9-878a-4027-857f-b9ae9b303522 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 3739 10379 44 20 3762.5 10389 1 false Script Variable Left b7ac10e4-066f-4481-9133-46686d683dea Left Left true 1 true 41402c3f-e413-42af-bec9-2fa5b5ce34fa 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 3739 10399 44 20 3762.5 10409 Print, Reflect and Error streams b819959a-eb73-4527-b54f-285a2b786d1a Output Output false 0 3813 10379 38 20 3833.5 10389 Output parameter Points 72e2f1ea-5de4-4652-b1b6-c001429a1607 Points Points false 0 3813 10399 38 20 3833.5 10409 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true ee7f15b8-98b7-4e5e-8ef0-3c65b1428def Point Point false 72e2f1ea-5de4-4652-b1b6-c001429a1607 1 3771 10182 50 24 3796.124 10194.12 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true c1f6941e-67c3-4804-8c8b-0274a0e48a3d Series Series 3745 10845 101 64 3795 10877 First number in the series 0c9f6bae-0fc9-4a5c-a763-9f565f59aa5b Start Start false 0 3747 10847 33 20 3765 10857 1 1 {0} 0 Step size for each successive number 16734827-34c7-4da5-9bad-004561de16b2 Step Step false b1464b45-8fd5-4217-9845-9c2f64eafd27 1 3747 10867 33 20 3765 10877 1 1 {0} 1 Number of values in the series 4f1fcd1a-e5fd-444e-9644-5bd99614cf11 Count Count false 11a52911-ee4b-4695-868f-5bf4c41520d5 1 3747 10887 33 20 3765 10897 1 Series of numbers 96634ed3-55a8-4c30-a62c-e5002f4aa576 Series Series false 0 3810 10847 34 60 3828.5 10877 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values c8f545e8-6340-444b-b8d2-3b5a3ae04fa3 Number Slider false 0 3720 11506 150 20 3720.834 11506.56 0 1 0 65536 0 0 256 a4cd2751-414d-42ec-8916-476ebf62d7fe Radians Convert an angle specified in degrees to radians true a60d4ff8-ca3f-45c9-b2ca-62bf83022599 Radians Radians 3735 10970 120 28 3796 10984 Angle in degrees 366e99dd-4acc-4d1b-976c-c249abf42af3 Degrees Degrees false ba1a1a80-2ca7-4a73-8c0f-0ec9ae1d1d34 1 3737 10972 44 24 3760.5 10984 Angle in radians b1464b45-8fd5-4217-9845-9c2f64eafd27 Radians Radians false 0 3811 10972 42 24 3833.5 10984 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 65b567a8-78ea-4eb1-b9ff-a6002f44885b Digit Scroller Digit Scroller false 0 12 Digit Scroller 1 0.00000007490 3667 11268 250 20 3667.111 11268.59 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true f7402af7-b96e-4810-a00d-c27261a92d89 One Over X One Over X 3747 11418 100 28 3796 11432 Input value 47da93b8-893a-480a-9527-0d3593e614f1 Value Value false 11a52911-ee4b-4695-868f-5bf4c41520d5 1 3749 11420 32 24 3766.5 11432 Output value 3d4cd0a5-11ef-4190-a953-f2d1da8a2ad4 Result Result false 0 3811 11420 34 24 3829.5 11432 75eb156d-d023-42f9-a85e-2f2456b8bcce Interpolate (t) Create an interpolated curve through a set of points with tangents. true a63c1906-6c40-43b6-bf50-e976a76ef9eb Interpolate (t) Interpolate (t) 3723 10074 144 84 3809 10116 1 Interpolation points e3065d9d-8f71-48ad-8734-2bceb07257e8 Vertices Vertices false ee7f15b8-98b7-4e5e-8ef0-3c65b1428def 1 3725 10076 69 20 3761 10086 Tangent at start of curve db01c631-588e-4417-9638-ca735b8efe45 Tangent Start Tangent Start false 0 3725 10096 69 20 3761 10106 1 1 {0} 0.0625 0 0 Tangent at end of curve fe6b8754-06e2-462e-b0b1-05b9bbaa16dd Tangent End Tangent End false 0 3725 10116 69 20 3761 10126 1 1 {0} 0 0 0 Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 3142f1aa-090d-4ded-95bd-b2b87f5f92d5 KnotStyle KnotStyle false 0 3725 10136 69 20 3761 10146 1 1 {0} 2 Resulting nurbs curve 99dabb3c-3d24-49d7-986a-4aad0362e8b7 Curve Curve false 0 3824 10076 41 26 3846 10089.33 Curve length bded6360-0fc6-4f89-9430-0d54011f95f2 Length Length false 0 3824 10102 41 27 3846 10116 Curve domain d32034a8-334d-4f6f-9d00-22ab40cdaa16 Domain Domain false 0 3824 10129 41 27 3846 10142.67 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects b661329d-1c86-4c6d-95f9-d705a1115677 e63f5e4a-94fa-4924-86f4-2933a2da291b ee7f15b8-98b7-4e5e-8ef0-3c65b1428def c1f6941e-67c3-4804-8c8b-0274a0e48a3d c8f545e8-6340-444b-b8d2-3b5a3ae04fa3 a60d4ff8-ca3f-45c9-b2ca-62bf83022599 65b567a8-78ea-4eb1-b9ff-a6002f44885b f7402af7-b96e-4810-a00d-c27261a92d89 8 6b414199-1a78-4066-bf90-85da6bce32c0 Group 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 54b025ce-50fe-46f2-8bd2-3bb3a203f49a Evaluate Length Evaluate Length 3723 9906 144 64 3797 9938 Curve to evaluate 7ad96e1d-9539-4135-a0e5-0acc0dad4a6f Curve Curve false 99dabb3c-3d24-49d7-986a-4aad0362e8b7 1 3725 9908 57 20 3755 9918 Length factor for curve evaluation 5dfc7ef1-53aa-4438-8523-7821e643bccc Length Length false 0 3725 9928 57 20 3755 9938 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 942309c7-fbd6-494c-9b9a-a244767daef9 Normalized Normalized false 0 3725 9948 57 20 3755 9958 1 1 {0} true Point at the specified length b9e6c70d-992e-448d-ba9e-9211e8aba31b Point Point false 0 3812 9908 53 20 3840 9918 Tangent vector at the specified length 44a4b18d-e6f4-4180-a885-9ded5d7912cb Tangent Tangent false 0 3812 9928 53 20 3840 9938 Curve parameter at the specified length 2213bae4-c45e-4ed2-823f-102defe2e9d9 Parameter Parameter false 0 3812 9948 53 20 3840 9958 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true 5dc5632c-8c01-41c5-af25-47838fc684b2 Mirror Mirror 3726 9844 138 44 3794 9866 Base geometry 641fe1aa-50be-4640-9915-ef256ac29568 Geometry Geometry true 99dabb3c-3d24-49d7-986a-4aad0362e8b7 1 3728 9846 51 20 3755 9856 Mirror plane bfd4d8f6-8141-4f64-b024-7ccbba3bd042 Plane Plane false 8cbed87f-21f3-4b60-bdb9-9e4684fba899 1 3728 9866 51 20 3755 9876 1 1 {0} 0 0 0 0 1 0 0 0 1 Mirrored geometry 3a7355fc-f2e2-4cce-a6d8-8c171b38786d Geometry Geometry false 0 3809 9846 53 20 3837 9856 Transformation data 03f9d71a-6701-4505-b13d-db6d1ac022d8 Transform Transform false 0 3809 9866 53 20 3837 9876 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 8ebdaf25-4561-4c91-82bd-831e0ae5c7dd Line SDL Line SDL 3742 9990 106 64 3806 10022 Line start point e3cc991e-182d-44c5-b1c3-698d7323216f Start Start false b9e6c70d-992e-448d-ba9e-9211e8aba31b 1 3744 9992 47 20 3769 10002 Line tangent (direction) 96c03d69-7839-4e70-88cf-462580b0e92e Direction Direction false 44a4b18d-e6f4-4180-a885-9ded5d7912cb 1 3744 10012 47 20 3769 10022 1 1 {0} 0 0 1 Line length 8a6e365e-4bc3-4a99-98a9-414897a694ac Length Length false 0 3744 10032 47 20 3769 10042 1 1 {0} 1 Line segment 8cbed87f-21f3-4b60-bdb9-9e4684fba899 Line Line false 0 3821 9992 25 60 3835 10022 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true fbfa9e12-50d3-43cd-9bf6-5fa8bf22d1a4 Join Curves Join Curves 3736 9782 118 44 3799 9804 1 Curves to join 9ce03d64-a788-4a93-9b5c-7f85fb5b297a Curves Curves false 99dabb3c-3d24-49d7-986a-4aad0362e8b7 3a7355fc-f2e2-4cce-a6d8-8c171b38786d 2 3738 9784 46 20 3762.5 9794 Preserve direction of input curves 672f6b26-864c-424d-913d-f8c61491c982 Preserve Preserve false 0 3738 9804 46 20 3762.5 9814 1 1 {0} false 1 Joined curves and individual curves that could not be joined. 9496f55c-b47f-481f-9261-b1150e0ebdfe Curves Curves false 0 3814 9784 38 40 3834.5 9804 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 45c22674-d02a-44ba-b8eb-5d5f3acf5790 Evaluate Length Evaluate Length 3723 9698 144 64 3797 9730 Curve to evaluate ffdbc0d2-57eb-4c4b-a9f2-05dcc4049e73 Curve Curve false 9496f55c-b47f-481f-9261-b1150e0ebdfe 1 3725 9700 57 20 3755 9710 Length factor for curve evaluation 019664fa-1094-4e09-82f9-973c5d1c29ca Length Length false 0 3725 9720 57 20 3755 9730 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) ea653249-ae5b-4562-bb37-091a6da5efaf Normalized Normalized false 0 3725 9740 57 20 3755 9750 1 1 {0} true Point at the specified length 2d3b5427-8216-45bb-bc29-915e51ee9f0b Point Point false 0 3812 9700 53 20 3840 9710 Tangent vector at the specified length ecd8fc17-8b33-4220-86c0-778fb147cf39 Tangent Tangent false 0 3812 9720 53 20 3840 9730 Curve parameter at the specified length e4dc077c-ed39-4f6a-8a05-e5120969b59b Parameter Parameter false 0 3812 9740 53 20 3840 9750 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 0a9908b8-576f-4498-957f-369fefe28b2a Rotate Rotate 3726 9615 138 64 3794 9647 Base geometry dec6d105-bc0e-452a-8af5-75af092add00 Geometry Geometry true 9496f55c-b47f-481f-9261-b1150e0ebdfe 1 3728 9617 51 20 3755 9627 Rotation angle in radians 17931a34-91d7-424a-9bcc-baf8bcb1379e Angle Angle false 0 false 3728 9637 51 20 3755 9647 1 1 {0} 3.1415926535897931 Rotation plane 5d19d155-cb49-42da-a415-a49caeb6ef3f Plane Plane false 2d3b5427-8216-45bb-bc29-915e51ee9f0b 1 3728 9657 51 20 3755 9667 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 40a81509-a78e-40b3-8765-9ee9b3907257 Geometry Geometry false 0 3809 9617 53 30 3837 9632 Transformation data 14dcb3ef-d666-4cd5-bbcb-849a36aaa575 Transform Transform false 0 3809 9647 53 30 3837 9662 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true 202ceb8e-71f2-43ee-b2b9-f9a6b1d331b1 Join Curves Join Curves 3736 9552 118 44 3799 9574 1 Curves to join 9013ad37-eb1d-483f-be30-aa1d23f2fe7e Curves Curves false 9496f55c-b47f-481f-9261-b1150e0ebdfe 40a81509-a78e-40b3-8765-9ee9b3907257 2 3738 9554 46 20 3762.5 9564 Preserve direction of input curves 9ff80f65-141d-4f24-af7e-015c5d2b1d6f Preserve Preserve false 0 3738 9574 46 20 3762.5 9584 1 1 {0} false 1 Joined curves and individual curves that could not be joined. 77a3ce43-8057-49f5-89c2-e576f8185ca0 Curves Curves false 0 3814 9554 38 40 3834.5 9574 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects a63c1906-6c40-43b6-bf50-e976a76ef9eb 54b025ce-50fe-46f2-8bd2-3bb3a203f49a 5dc5632c-8c01-41c5-af25-47838fc684b2 8ebdaf25-4561-4c91-82bd-831e0ae5c7dd fbfa9e12-50d3-43cd-9bf6-5fa8bf22d1a4 45c22674-d02a-44ba-b8eb-5d5f3acf5790 0a9908b8-576f-4498-957f-369fefe28b2a 202ceb8e-71f2-43ee-b2b9-f9a6b1d331b1 a8b4d7ba-71d5-4764-b276-828e069e1a14 9 9186d39b-d4cc-45e6-a786-965ed70f8528 Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values bf5cfc02-9b93-47a0-bace-8cf4f6b9f48d Panel false 0 7b96ee99-1a36-400f-9885-b6de6377a16f 1 Double click to edit panel content… 3723 10936 145 20 0 0 0 3723.18 10936.5 255;255;255;255 false false true false false true d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true a8b4d7ba-71d5-4764-b276-828e069e1a14 Curve Curve false 77a3ce43-8057-49f5-89c2-e576f8185ca0 1 3771 9516 50 24 3796 9528.229 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects a8b4d7ba-71d5-4764-b276-828e069e1a14 1 07782138-aba3-44d1-9dec-33b387755b83 Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 7f21031c-6647-46ce-835e-6c92a920335e Panel false 0 0 0.0013733120705119695*4*4 3667 11017 270 20 0 0 0 3667.602 11017.88 255;255;255;255 false false true false false true 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 2a1012b3-1746-43f3-86ea-7f5c3c2e45f9 Evaluate Length Evaluate Length 3723 9426 144 64 3797 9458 Curve to evaluate 5b68b4fb-21fa-478e-b2b4-b7a5b8956d27 Curve Curve false 77a3ce43-8057-49f5-89c2-e576f8185ca0 1 3725 9428 57 20 3755 9438 Length factor for curve evaluation d4d2450a-d244-4b39-9363-a79325d76ef5 Length Length false 0 3725 9448 57 20 3755 9458 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) a602434f-88e6-44fc-8420-a75fad704911 Normalized Normalized false 0 3725 9468 57 20 3755 9478 1 1 {0} true Point at the specified length 2e1363a0-d01d-4fec-9718-b5cfd286f332 Point Point false 0 3812 9428 53 20 3840 9438 Tangent vector at the specified length c28f84ad-a06e-4383-bf93-524e5f7ad2ef Tangent Tangent false 0 3812 9448 53 20 3840 9458 Curve parameter at the specified length 53df6d40-a16c-489c-826a-72a348f7c973 Parameter Parameter false 0 3812 9468 53 20 3840 9478 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 3fd109c6-3ae8-453e-b871-73884b2fd78d Expression Expression 3698 9204 194 28 3798 9218 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 51b39648-a335-4baf-919c-4e28aaced3a7 Variable O O true a8af648d-a529-4226-844e-f5e69e490c76 1 3700 9206 14 24 3708.5 9218 Result of expression f652f373-453b-4ac3-a6bf-c966beff5ae9 Result false 0 3881 9206 9 24 3887 9218 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 58fbe8f8-b6cc-49b3-868f-2f5e9adf5eb4 Deconstruct Deconstruct 3729 9338 132 64 3776 9370 Input point 26df8ffd-d7d3-41c4-b462-393891888fab Point Point false 2e1363a0-d01d-4fec-9718-b5cfd286f332 1 3731 9340 30 60 3747.5 9370 Point {x} component a8af648d-a529-4226-844e-f5e69e490c76 X component X component false 0 3791 9340 68 20 3826.5 9350 Point {y} component 04a6236c-0529-4b05-b53e-6fa4a6f56ac2 Y component Y component false 0 3791 9360 68 20 3826.5 9370 Point {z} component ddad9d4b-4540-4db5-abac-979b7741b090 Z component Z component false 0 3791 9380 68 20 3826.5 9390 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 080c45e6-3c93-4ede-8bae-6942df87d901 Panel false 0 f652f373-453b-4ac3-a6bf-c966beff5ae9 1 Double click to edit panel content… 3716 9172 160 20 0 0 0 3716.494 9172.221 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true a8a49fdf-31eb-4a9f-a98d-e15015261400 Expression Expression 3698 9118 194 28 3798 9132 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 49cce6d3-764c-43f0-b964-90db538179a2 Variable O O true 04a6236c-0529-4b05-b53e-6fa4a6f56ac2 1 3700 9120 14 24 3708.5 9132 Result of expression 2f3ca44d-569c-425e-aadc-f845e807a4ad Result false 0 3881 9120 9 24 3887 9132 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 23d8ebc4-a04d-40ff-98e4-1a30f772a64a Panel false 0 2f3ca44d-569c-425e-aadc-f845e807a4ad 1 Double click to edit panel content… 3716 9083 160 20 0 0 0 3716.494 9083.797 255;255;255;255 false false true false false true 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 9cc8f06a-8751-4d91-8029-e814fe94e287 Division Division 3754 9016 82 44 3785 9038 Item to divide (dividend) 147147c2-a2a7-4448-b13c-09dabd84758f A A false 080c45e6-3c93-4ede-8bae-6942df87d901 1 3756 9018 14 20 3764.5 9028 Item to divide with (divisor) 8926f2a0-bc0c-4640-97f1-57559a99e3cd B B false 23d8ebc4-a04d-40ff-98e4-1a30f772a64a 1 3756 9038 14 20 3764.5 9048 The result of the Division 4168a486-0edf-4466-8b21-791b9740d2e7 Result Result false 0 3800 9018 34 40 3818.5 9038 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 64f4c70f-d50b-4286-9b15-67fe6a6b6671 Panel false 0 7b96ee99-1a36-400f-9885-b6de6377a16f 1 Double click to edit panel content… 3715 8936 160 20 0 0 0 3715.742 8936.281 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true a0e07e08-fe1e-408d-b57c-4a0a1c879a92 Expression Expression 3698 8969 194 28 3798 8983 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 19731689-10c1-4f5c-94e5-b161105ed2e4 Variable O O true 4168a486-0edf-4466-8b21-791b9740d2e7 1 3700 8971 14 24 3708.5 8983 Result of expression 34c452a1-e376-4945-8193-4fe30398e5d7 Result false 0 3881 8971 9 24 3887 8983 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 7b96ee99-1a36-400f-9885-b6de6377a16f Relay false 34c452a1-e376-4945-8193-4fe30398e5d7 1 3775 8894 40 16 3795 8902 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true 130ea919-f2f4-4d96-a399-8e265bf54af8 Addition Addition 3754 8831 82 44 3785 8853 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition 354b657d-eed4-4c62-b565-91035253b8e0 A A true 23d8ebc4-a04d-40ff-98e4-1a30f772a64a 1 3756 8833 14 20 3764.5 8843 Second item for addition 5dde32a7-d278-417e-bb8e-717be2dd2194 B B true 080c45e6-3c93-4ede-8bae-6942df87d901 1 3756 8853 14 20 3764.5 8863 Result of addition da5e9210-aa07-4405-b4ff-7f40e685264d Result Result false 0 3800 8833 34 40 3818.5 8853 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true c6f6074b-b03a-49dc-aac8-2e1469dc341f Division Division 3754 8681 82 44 3785 8703 Item to divide (dividend) 10c78b2c-0453-4b6d-93f5-98c0372221af A A false 9cf2d03c-25ee-4970-b1c2-03c6d2473ade 1 3756 8683 14 20 3764.5 8693 Item to divide with (divisor) 0ab7e06f-8504-4e2a-8bc5-dccbd09e3d3a B B false 0 3756 8703 14 20 3764.5 8713 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 The result of the Division 49550776-6b67-4836-a8f1-f1bb92a2284c Result Result false 0 3800 8683 34 40 3818.5 8703 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 04f1da23-038a-4f15-bb9e-f3ce4920ed5a Expression Expression 3698 8633 194 28 3798 8647 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 2e540c81-fbe7-4c94-ba2f-0dabfe2462fd Variable O O true 49550776-6b67-4836-a8f1-f1bb92a2284c 1 3700 8635 14 24 3708.5 8647 Result of expression 6fd448b9-6239-4db9-9b3c-4a6570895a70 Result false 0 3881 8635 9 24 3887 8647 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 2b84984b-394d-4dbc-8fc8-6cb8c68caa3f Panel false 0 6fd448b9-6239-4db9-9b3c-4a6570895a70 1 Double click to edit panel content… 3716 8600 160 20 0 0 0 3716.494 8600.139 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 9cf2d03c-25ee-4970-b1c2-03c6d2473ade Panel false 0 c7e172fc-45a1-403a-bc75-d970e3632366 1 Double click to edit panel content… 3716 8752 160 20 0 0 0 3716.494 8752.049 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true fb8356cd-bc57-4212-b603-ece8bc609c2e Expression Expression 3698 8784 194 28 3798 8798 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 3ee4e4f4-83f3-4907-bb38-5542571f95e9 Variable O O true da5e9210-aa07-4405-b4ff-7f40e685264d 1 3700 8786 14 24 3708.5 8798 Result of expression c7e172fc-45a1-403a-bc75-d970e3632366 Result false 0 3881 8786 9 24 3887 8798 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 64c144e6-a1e8-4d25-b361-aa88bebf6277 Scale Scale 3718 8510 154 64 3802 8542 Base geometry f0b390b0-07dc-4059-8798-0ac921130986 Geometry Geometry true a8b4d7ba-71d5-4764-b276-828e069e1a14 1 3720 8512 67 20 3763 8522 Center of scaling c8c7700e-cf80-4e83-837b-450195f8b9de Center Center false 0 3720 8532 67 20 3763 8542 1 1 {0} 0 0 0 Scaling factor e400d07b-1e9f-47d1-9d83-0b54fa7a6706 1/X Factor Factor false 2b84984b-394d-4dbc-8fc8-6cb8c68caa3f 1 3720 8552 67 20 3763 8562 1 1 {0} 0.5 Scaled geometry dcee2938-844f-4bbc-a8c0-59aecd955ae6 Geometry Geometry false 0 3817 8512 53 30 3845 8527 Transformation data e163d462-6338-4f09-b200-a47004968f54 Transform Transform false 0 3817 8542 53 30 3845 8557 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 86fc2dd8-2814-43bc-8aa6-998446a8e239 Curve Curve false dcee2938-844f-4bbc-a8c0-59aecd955ae6 1 3771 8048 50 24 3796.467 8060.496 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true f9285ab5-378d-4ddf-95cc-b5dd1c1ba77d Expression Expression 3698 9291 194 28 3798 9305 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable af8e9ca5-8825-464b-8fc7-23d2e2ff17a1 Variable O O true ddad9d4b-4540-4db5-abac-979b7741b090 1 3700 9293 14 24 3708.5 9305 Result of expression 4747135b-03a4-4b6e-8cc1-4c83c5d147b6 Result false 0 3881 9293 9 24 3887 9305 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 166e572a-6023-47d4-b8f6-57f8ebfb97da Panel false 0 4747135b-03a4-4b6e-8cc1-4c83c5d147b6 1 Double click to edit panel content… 3716 9257 160 20 0 0 0 3716.366 9257.994 255;255;255;255 false false true false false true 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 5de4bf60-eae6-465d-b779-f5efb709b4ad Evaluate Length Evaluate Length 3723 8427 144 64 3797 8459 Curve to evaluate 92f23770-fc31-4292-ad84-8ff452db746b Curve Curve false dcee2938-844f-4bbc-a8c0-59aecd955ae6 1 3725 8429 57 20 3755 8439 Length factor for curve evaluation 4e7f439d-cfdd-4831-8a20-c0497ab47502 Length Length false 0 3725 8449 57 20 3755 8459 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) d486d9e7-3ffb-49d9-bad8-788d26e5110e Normalized Normalized false 0 3725 8469 57 20 3755 8479 1 1 {0} true Point at the specified length c0e204f4-d005-41a4-973a-7b57e9be9ab7 Point Point false 0 3812 8429 53 20 3840 8439 Tangent vector at the specified length 8cc84fda-289c-4c87-87c8-9466f1666b37 Tangent Tangent false 0 3812 8449 53 20 3840 8459 Curve parameter at the specified length 252d752d-ef2f-4a27-a121-4ed9454a7846 Parameter Parameter false 0 3812 8469 53 20 3840 8479 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true f18cc5c3-73d8-4311-8236-bf6b13104193 Expression Expression 3698 8210 194 28 3798 8224 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 6bf7b93e-bd0f-49e9-ba67-ba5da4f1868b Variable O O true 1102b695-a324-462f-8810-6fa53b966ad9 1 3700 8212 14 24 3708.5 8224 Result of expression 1e77ca74-cf7b-4321-b38c-a3163c909fa0 Result false 0 3881 8212 9 24 3887 8224 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 96bb9f3d-3d8c-4d3a-859d-4a8d3f4c5d5e Deconstruct Deconstruct 3729 8344 132 64 3776 8376 Input point 5c957068-4a85-43a9-8c44-355e78fd0d6b Point Point false c0e204f4-d005-41a4-973a-7b57e9be9ab7 1 3731 8346 30 60 3747.5 8376 Point {x} component 1102b695-a324-462f-8810-6fa53b966ad9 X component X component false 0 3791 8346 68 20 3826.5 8356 Point {y} component 74738e6c-77cc-4f85-b1dc-0465dc04801f Y component Y component false 0 3791 8366 68 20 3826.5 8376 Point {z} component 7377a684-0c05-416e-8fec-f9f6068f4477 Z component Z component false 0 3791 8386 68 20 3826.5 8396 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 4edfafd8-3b0c-4943-bb10-917abaeb9712 Panel false 0 1e77ca74-cf7b-4321-b38c-a3163c909fa0 1 Double click to edit panel content… 3715 8178 160 20 0 0 0 3715.749 8178.498 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true f91bfec0-c6ad-4011-8456-67697a779eb3 Expression Expression 3698 8124 194 28 3798 8138 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable df784300-8909-47e0-843d-e71310e7b206 Variable O O true 74738e6c-77cc-4f85-b1dc-0465dc04801f 1 3700 8126 14 24 3708.5 8138 Result of expression 0cd35029-1027-442c-b2a4-26e1dfbfdec1 Result false 0 3881 8126 9 24 3887 8138 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 91b67f5a-4dff-4683-a8db-dc90bf6de0f8 Panel false 0 0cd35029-1027-442c-b2a4-26e1dfbfdec1 1 Double click to edit panel content… 3715 8091 160 20 0 0 0 3715.749 8091.789 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true d0b32d0e-885a-4c2b-b378-441bba4876b7 Expression Expression 3698 8296 194 28 3798 8310 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable e36616dd-0650-4dfa-9af9-67b25ec8d729 Variable O O true 7377a684-0c05-416e-8fec-f9f6068f4477 1 3700 8298 14 24 3708.5 8310 Result of expression 8fb3798e-f6dd-4399-99bf-e1fd2621633d Result false 0 3881 8298 9 24 3887 8310 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 1498e329-39e2-490d-bf26-64cc72d5b628 Panel false 0 8fb3798e-f6dd-4399-99bf-e1fd2621633d 1 Double click to edit panel content… 3716 8264 160 20 0 0 0 3716.494 8264.711 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values b59393f3-2b17-47be-bc0e-82711f27e393 Panel false 0 0 0 256 0.0013733120705119695 0 4096 0.0000053644183496292 3614 11057 379 104 0 0 0 3614.538 11057.74 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 942441e0-2a69-43f4-80f2-24729e38a366 Panel false 1 9693cd0c-6060-4d7f-a338-911dba0b51e3 1 Double click to edit panel content… 3618 10223 355 100 0 0 0 3618.117 10223.72 255;255;255;255 true true true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true c2f1f615-6fd6-4da2-9d18-b2d721b79703 Expression Expression 3698 10330 194 28 3798 10344 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 4141f7a5-69d9-475a-944b-26346500ac07 Variable O O true 72e2f1ea-5de4-4652-b1b6-c001429a1607 1 3700 10332 14 24 3708.5 10344 Result of expression 9693cd0c-6060-4d7f-a338-911dba0b51e3 Result false 0 3881 10332 9 24 3887 10344 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 11a52911-ee4b-4695-868f-5bf4c41520d5 Number Number false c8f545e8-6340-444b-b8d2-3b5a3ae04fa3 1 3771 11464 50 24 3796 11476.4 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 86fc2dd8-2814-43bc-8aa6-998446a8e239 1 a735dbd6-46f1-4990-9841-38358cb90a79 Group 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 28041f4d-ea5e-40a7-8e96-c4fe6c94f571 Expression Expression 3698 10765 194 28 3798 10779 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 6c1574ce-673c-4f5a-b977-9343ac291640 Variable O O true 41402c3f-e413-42af-bec9-2fa5b5ce34fa 1 3700 10767 14 24 3708.5 10779 Result of expression fa389df7-74ab-4f83-8e43-bc53ee77a82e Result false 0 3881 10767 9 24 3887 10779 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 86694246-d580-4d98-8160-6ae52ac6f1b8 Panel false 0 fa389df7-74ab-4f83-8e43-bc53ee77a82e 1 Double click to edit panel content… 3698 10478 194 271 0 0 0 3698.807 10478.61 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 7ae05443-fd59-4dfe-ba49-c100f76256e7 Relay false 86694246-d580-4d98-8160-6ae52ac6f1b8 1 3775 10442 40 16 3795 10450 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 41402c3f-e413-42af-bec9-2fa5b5ce34fa Relay false 96634ed3-55a8-4c30-a62c-e5002f4aa576 1 3775 10810 40 16 3795 10818 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects fd81a449-0a91-4607-9bf8-8553b274feb2 94a40cb3-66ae-46f0-a709-a15fd0efaa35 3d5e8a20-18e8-45b9-b26a-582f2e4def01 f74c430d-ed74-462d-8f45-a21df852c02c 427f90f8-2e34-4bbf-9f6a-7042a4e2cbb3 2dd4ffd3-b670-4952-a635-b12de6c47de8 18973c30-d366-4c25-962b-bab8e0067332 946c5917-e45e-4f46-905c-dea49915e158 bdcc331f-b637-41f0-94e2-4f12b70251cc 49d4be71-1a77-4646-88b4-190a19e18789 ff1b7a95-2a0a-42c3-a277-bcfafc77f2ba 8620a36d-f016-4257-ae95-972461b8dea7 aa914107-1d65-4d2d-ba79-c1fe9df58f85 e3f73a96-c462-4252-bea1-843d1db7b994 b431e33f-493c-4f69-961a-2bdd27b0b423 52963e78-1b77-4ee7-b1e9-bd9b9a36e644 6b38181f-5f9b-41b0-81b3-51717e81ed43 71ce374d-fb88-4062-b84e-1df6fe4abc69 9871b117-ed76-48da-9b9d-4641dc5a56f4 8be4afd4-1678-4052-90ca-124a199935e6 52a7c8f5-ebf3-465f-b047-5cc9b0649c43 6d988f5a-f9eb-4e9a-94c8-3b505d7ad973 27e211c0-ef2f-49d5-8971-f2ca9ad49e6b 6e364311-c38b-465c-854a-669474a20531 5944e598-cecb-4095-b35b-48ac8e442e2a debc3215-bf33-4546-8691-0ad7cf85840f 5290c9e3-8c45-4f35-9fba-63bacb0a972f 556ab023-c3f5-41a4-ae19-cec03405eccc c4e43f61-126f-4987-98f6-f61ae9e11743 669601ad-c306-4479-af1b-f98d37928ede fd036caf-aeec-48d3-a62f-73710312680c 837b272a-eec1-486b-b98f-cda424c584f2 98b146e4-5b50-43f4-b589-1f02b86a6917 ae045a03-6354-4728-a5cb-98c8c4c05fbb 26b9a1e8-931e-4308-b076-5dbc987ab5ea 4d4328e7-ddb3-4302-97e1-7b7af024dfeb 3500ade5-7819-4191-bfb0-e582092db080 93c8ebc7-1fd8-4b43-8114-e5c8b2e204c4 a2a94db7-6ca0-4a5f-9135-86ab8db24e51 4fbed52a-0ae4-49f5-9d06-f4eb03d35034 9004ba57-a8e9-4d21-929c-ae939b9af8df ec452d8d-f33b-477b-bdba-3dbfef9b7561 0ac1b008-6cb1-4730-9f53-d5be7f8edb47 5666caf3-3e8d-4f54-8575-3129d5b2372b ad959b91-bde6-46f4-a065-a06124974ebf e927f1f1-025a-4d72-874f-d7cadc4d07db 03c079d1-214a-4367-8a79-014e07a300ec bb4c2afb-4bca-4df7-8dc6-3ce78e75888b ea3c720c-0f74-4866-b9d7-3cc115570ea1 633ce0ae-bb91-4421-9202-19d3ab9df774 bb8833cc-0755-4539-bf0e-40e6fb53efe2 c042fb9d-002c-456b-ace2-4265be68d648 ad6201fb-63c1-4a0f-8015-2d21f5cb9555 dd437aea-2710-413b-928a-0863c45ceacc 4c28dc57-c974-4062-8a1c-2d65d0f1cc9c f031001d-2a39-489f-8101-d849af796a93 dcde6481-a8c5-4eaa-b1f0-fbbb49b24675 1ea70de6-eb5f-4c57-a884-6f4fedf1a3ca 3a6719a1-945e-415e-984c-488a86c00cf4 8e346cb9-87c1-4e10-ab8e-798cf64471cb 4ae83b19-8812-4c53-9790-87c6cc59246b 2a2a7f3e-94c5-4192-b444-f05866d8c054 8c0ee1df-15d2-4d4b-824d-4f852fe37c47 013bc8b0-e297-49d9-947e-acd8090d019b 5ecee3d4-17a6-4ec2-b746-1150c99f835b bfb0ca9a-3809-4c3f-bc7b-e5a4ed892909 c344e708-6261-40b6-9c1b-511e7f599e65 f5c80cb3-2331-4236-a4e9-29f011aa2408 cba31048-121f-4809-a1ca-b361c15f7c76 2aee8a4d-7144-4a3d-b986-47d52cbe1c41 a265c7f4-5a15-4b8e-8333-ea56d088de18 767263a1-1b23-48dd-a005-17d0f2ae92c6 2f47d230-2571-418d-80cf-6e8e5d31cb9e 16209b7e-55fa-4b5c-92ba-5c1d1bd41dec 819a2a51-f04e-4192-8c95-3fa161e7540c 1538eb2e-e611-4f4c-b500-1df33502eff4 dfe1b26e-b4a6-4bce-9c77-643d58fbc36d 85605b21-aef8-4f87-a515-10b78df9f610 20f05475-7967-45b4-a63c-62a20fa8690b 8435fa98-38c7-45cb-8f29-4044d9a40f9c 99f0b699-2a90-441f-b737-27aea108d33f 9c3ae34b-8ebd-4141-9330-6abe5cacb47e dedce1f8-5c0b-4ad6-99a0-98dfdf02d373 462c2450-1262-4529-888f-d92602268217 256f333c-199f-4c9d-b6cd-360ee8130e4f eddced5d-470a-4523-8c85-9ce09e106bd4 45c4a4df-7a0e-4c17-b315-c34cbb7fd959 2b4023ed-6e0a-4afe-bb9f-ecbb8113662b 825638de-2ab4-4773-89a4-115a142aa39f 6ea1cc49-480d-44f3-bdb9-b3d927b1fe3d ea922329-8796-47c0-8451-a5fd2cfbccad c3ad1e45-4f5f-4553-acdd-858c3a4e0f41 f9b56b83-0126-4319-84c8-15c7ed86f831 6d63313d-1e96-406b-8a05-33d5bb3f5c37 191575b6-d18b-4bc4-a751-a71c3b22572c 7ed372a1-ff72-4050-8dd8-49ddee401c65 d7cb1ca0-8832-4010-880c-2d2f4b9341bd 629a4827-371f-4b44-b590-45c23fc93574 9b66414e-8eef-4712-bc33-6df624d3786e 99 8d7ede46-a94d-4f4a-97fd-51d73c459ac3 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 1c661983-65cd-4dd3-8a9d-2fde71bd76fd 93ab0a8f-aee3-4747-910f-6806f1daee3d 99b8e4f4-ef55-452f-9b1e-6ec52d78cb44 c6837ab8-492f-4d65-bbf8-6543cded1f15 4c639447-1097-40fd-aaf4-5f66d6735968 19e4d4f5-b4c6-47ac-b2de-2dc048d892ae 0cf1fffb-593e-4a7c-8010-e3d13314dcba ac1918ea-52ea-4b61-8cf0-6af20695bb26 60389f86-e487-48bb-87ab-a0952ba905c1 f109cbbc-8240-46dd-b41c-e591ae1f4961 3ec709d0-dd1a-40ac-8f1e-e9cc9451e984 e1a1a5d7-0656-4bdd-b6cc-e4dfdf98c291 6ca5822e-4069-49d7-aa8b-eef76e54ce95 015ffee2-3b22-47cb-a911-fccec397f86f 992b7fbd-ed14-4b15-b66a-137b35a55879 d478e4fa-fa9f-4892-a286-2ea4285b715c 25f8ef07-5890-4a6e-93df-c40fa14cb9a7 f90295eb-99e8-4a80-a13c-999e99532b9e b9f31a57-9540-4917-a8e6-18eaa5a83db2 284b7739-106a-47b8-9c88-030d60937329 21551a57-e773-47f0-8220-7a72f7a746fa caa84d96-f583-479a-81ee-60953020e5a6 6b922c6a-cc70-4092-ae71-ade7d284d862 4387f3a9-9141-47dd-995a-483dc9b6b025 58a42877-bb06-47a3-a4f1-d98c96f28c1e 25 59db8d3f-46a9-4ec8-b13e-3ec43b7a2169 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 93ab0a8f-aee3-4747-910f-6806f1daee3d 99b8e4f4-ef55-452f-9b1e-6ec52d78cb44 c6837ab8-492f-4d65-bbf8-6543cded1f15 4c639447-1097-40fd-aaf4-5f66d6735968 19e4d4f5-b4c6-47ac-b2de-2dc048d892ae 25187908-b9ee-4eb4-8acb-6dab9ed5e5e2 91acf8ab-b95d-4cf9-9042-41f5397d7e87 0cf1fffb-593e-4a7c-8010-e3d13314dcba ac1918ea-52ea-4b61-8cf0-6af20695bb26 60389f86-e487-48bb-87ab-a0952ba905c1 f109cbbc-8240-46dd-b41c-e591ae1f4961 3ec709d0-dd1a-40ac-8f1e-e9cc9451e984 e1a1a5d7-0656-4bdd-b6cc-e4dfdf98c291 3aa9dd9c-e16a-46f7-8b96-6321eb6a7afc 58a42877-bb06-47a3-a4f1-d98c96f28c1e 15 1c661983-65cd-4dd3-8a9d-2fde71bd76fd Group 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers fd81a449-0a91-4607-9bf8-8553b274feb2 true Number Number false cbcfa187-ddf9-492d-89f7-d6ae71b5a4f0 1 -9286 25970 50 24 -9261.215 25982.83 1 1 {0} 1024 aaa665bd-fd6e-4ccb-8d2c-c5b33072125d Curvature Evaluate the curvature of a curve at a specified parameter. true 94a40cb3-66ae-46f0-a709-a15fd0efaa35 true Curvature Curvature -9331 25800 137 64 -9261 25832 Curve to evaluate b5366ae1-9969-43e0-9d79-28600bb960e2 true Curve Curve false f74c430d-ed74-462d-8f45-a21df852c02c 1 -9329 25802 53 30 -9301 25817 Parameter on curve domain to evaluate 5514044d-3457-4bca-9fe9-b9657fc69b73 true Parameter Parameter false 35c11e73-023d-4ab3-8c15-e16ba789d504 1 -9329 25832 53 30 -9301 25847 Point on curve at {t} 590db2af-0bde-4699-8b52-40835db3bb9e true Point Point false 0 -9246 25802 50 20 -9219.5 25812 Curvature vector at {t} ea3589ee-11f4-41cf-9fde-8cbc58c2937c true Curvature Curvature false 0 -9246 25822 50 20 -9219.5 25832 Curvature circle at {t} 3d335e02-e502-4f9d-9184-53d513f2e177 true Curvature Curvature false 0 -9246 25842 50 20 -9219.5 25852 2162e72e-72fc-4bf8-9459-d4d82fa8aa14 Divide Curve Divide a curve into equal length segments true 3d5e8a20-18e8-45b9-b26a-582f2e4def01 true Divide Curve Divide Curve -9325 25883 125 64 -9275 25915 Curve to divide f3733026-6ea6-4eb2-ad9c-7d432f2a097b true Curve Curve false f74c430d-ed74-462d-8f45-a21df852c02c 1 -9323 25885 33 20 -9305 25895 Number of segments 6d61becd-353f-4ad5-9bc3-4f6a34fade16 true Count Count false fd81a449-0a91-4607-9bf8-8553b274feb2 1 -9323 25905 33 20 -9305 25915 1 1 {0} 10 Split segments at kinks 25795ab8-0014-47eb-940b-d403f2be6d1e true Kinks Kinks false 0 -9323 25925 33 20 -9305 25935 1 1 {0} false 1 Division points aa6b87c9-dd77-470d-8d5d-e8d2db9b5640 true Points Points false 0 -9260 25885 58 20 -9229.5 25895 1 Tangent vectors at division points 026cba8a-c152-4e67-bc04-a1a58e4c5b58 true Tangents Tangents false 0 -9260 25905 58 20 -9229.5 25915 1 Parameter values at division points 35c11e73-023d-4ab3-8c15-e16ba789d504 true Parameters Parameters false 0 -9260 25925 58 20 -9229.5 25935 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true f74c430d-ed74-462d-8f45-a21df852c02c true 2 Curve Curve false cdd90f4c-6009-4e4b-b819-b49fd5b7e2d2 1 -9288 26362 53 24 -9252.303 26374.66 23862862-049a-40be-b558-2418aacbd916 Deconstruct Arc Retrieve the base plane, radius and angle domain of an arc. true 427f90f8-2e34-4bbf-9f6a-7042a4e2cbb3 true Deconstruct Arc Deconstruct Arc -9319 25719 114 64 -9279 25751 Arc or Circle to deconstruct 447b210e-b829-403f-81af-d5f722a05636 true Arc Arc false 3d335e02-e502-4f9d-9184-53d513f2e177 1 -9317 25721 23 60 -9304 25751 Base plane of arc or circle 4b2a4668-d28e-4375-be15-c164f7559fe8 true Base Plane Base Plane false 0 -9264 25721 57 20 -9234 25731 Radius of arc or circle b713a28b-9c99-4284-b4f0-6985cf828693 true Radius Radius false 0 -9264 25741 57 20 -9234 25751 Angle domain (in radians) of arc a77e3fdd-d47a-433c-9fb6-a49dd0782527 true Angle Angle false 0 -9264 25761 57 20 -9234 25771 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true 2dd4ffd3-b670-4952-a635-b12de6c47de8 true One Over X One Over X -9312 25223 100 28 -9263 25237 Input value af1bb7a9-4438-44b0-aa70-40ef2a9fd7c4 true Value Value false 013bc8b0-e297-49d9-947e-acd8090d019b 1 -9310 25225 32 24 -9292.5 25237 Output value 4a062c8a-ea9d-451a-abb9-92de136371dd true Result Result false 0 -9248 25225 34 24 -9229.5 25237 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 18973c30-d366-4c25-962b-bab8e0067332 true Quick Graph Quick Graph false 0 52a7c8f5-ebf3-465f-b047-5cc9b0649c43 1 -9337 25042 150 150 -9336.514 25042.48 -1 4c4e56eb-2f04-43f9-95a3-cc46a14f495a Line Create a line between two points. true 946c5917-e45e-4f46-905c-dea49915e158 true Line Line -9319 25273 114 44 -9247 25295 Line start point 0f946c86-f0ad-4f5b-a540-409fa8d4efa2 true Start Point Start Point false 590db2af-0bde-4699-8b52-40835db3bb9e 1 -9317 25275 55 20 -9288 25285 Line end point a2bf1a47-689b-486a-828f-ab6c2a323bc7 true End Point End Point false 4b2a4668-d28e-4375-be15-c164f7559fe8 1 -9317 25295 55 20 -9288 25305 Line segment 8dc86efd-1160-4e38-823d-bceac100c097 true Line Line false 0 -9232 25275 25 40 -9218 25295 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values bdcc331f-b637-41f0-94e2-4f12b70251cc true Number Slider false 0 -9337 24207 150 20 -9336.764 24207.04 6 1 0 2 0 0 0.0625 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 49d4be71-1a77-4646-88b4-190a19e18789 true Line SDL Line SDL -9323 24087 122 64 -9243 24119 Line start point c38f5fb0-065a-4c59-8e8e-967e82755228 true Start Start false 590db2af-0bde-4699-8b52-40835db3bb9e 1 -9321 24089 63 20 -9280 24099 Line tangent (direction) 87868348-29be-4270-b74b-281568d312be true Direction Direction false 8dc86efd-1160-4e38-823d-bceac100c097 1 -9321 24109 63 20 -9280 24119 1 1 {0} 0 0 1 Line length e6d04158-1afa-4034-876d-cc8e9dc4a3bc -ABS(X) true Length Length false c042fb9d-002c-456b-ace2-4265be68d648 1 -9321 24129 63 20 -9280 24139 1 1 {0} 1 Line segment f7ba28da-fefa-419b-a7b2-18d8b67d29e2 true Line Line false 0 -9228 24089 25 60 -9214 24119 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true ff1b7a95-2a0a-42c3-a277-bcfafc77f2ba true Evaluate Length Evaluate Length -9334 23823 144 64 -9260 23855 Curve to evaluate f81328a8-875f-4be5-9e9d-1ed2861a6a4e true Curve Curve false f7ba28da-fefa-419b-a7b2-18d8b67d29e2 1 -9332 23825 57 20 -9302 23835 Length factor for curve evaluation d8156b44-c391-4304-9b16-ad23948d540b true Length Length false 0 -9332 23845 57 20 -9302 23855 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) b10a9501-ed3b-43ee-9721-a28c78641862 true Normalized Normalized false 0 -9332 23865 57 20 -9302 23875 1 1 {0} true Point at the specified length ca1aff94-019e-4a46-97b1-33342bd83e90 true Point Point false 0 -9245 23825 53 20 -9217 23835 Tangent vector at the specified length dbb9fcc5-dbb3-4370-843b-27a9afa23b08 true Tangent Tangent false 0 -9245 23845 53 20 -9217 23855 Curve parameter at the specified length 8820e060-c309-4b9a-bc04-fb04d2243d5b true Parameter Parameter false 0 -9245 23865 53 20 -9217 23875 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 8620a36d-f016-4257-ae95-972461b8dea7 true Interpolate Interpolate -9325 23721 125 84 -9258 23763 1 Interpolation points 2d168944-454e-4b1f-964c-d3348d405137 true Vertices Vertices false ca1aff94-019e-4a46-97b1-33342bd83e90 1 -9323 23723 50 20 -9296.5 23733 Curve degree cf89848e-34b5-4363-b93a-0c77b3786bec true Degree Degree false 0 -9323 23743 50 20 -9296.5 23753 1 1 {0} 3 Periodic curve b28dd793-8451-45dc-a0a8-513562e53b01 true Periodic Periodic false 0 -9323 23763 50 20 -9296.5 23773 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) cc46eeca-00b7-4394-a599-fb645fdf7cab true KnotStyle KnotStyle false 0 -9323 23783 50 20 -9296.5 23793 1 1 {0} 2 Resulting nurbs curve c0e1e2e4-2938-4a4b-bc4d-60ad57a289bb true Curve Curve false 0 -9243 23723 41 26 -9221 23736.33 Curve length 7fc31018-195c-4bcb-85e8-d53258d591ca true Length Length false 0 -9243 23749 41 27 -9221 23763 Curve domain 12b3e518-c845-4f87-82d3-3bb86ed365a8 true Domain Domain false 0 -9243 23776 41 27 -9221 23789.67 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects fd81a449-0a91-4607-9bf8-8553b274feb2 94a40cb3-66ae-46f0-a709-a15fd0efaa35 3d5e8a20-18e8-45b9-b26a-582f2e4def01 f74c430d-ed74-462d-8f45-a21df852c02c 427f90f8-2e34-4bbf-9f6a-7042a4e2cbb3 2dd4ffd3-b670-4952-a635-b12de6c47de8 18973c30-d366-4c25-962b-bab8e0067332 42201d77-7bc4-437d-baaf-c8290f91a477 946c5917-e45e-4f46-905c-dea49915e158 dc8b9948-0b61-495f-bb5c-30271010864e bdcc331f-b637-41f0-94e2-4f12b70251cc 49d4be71-1a77-4646-88b4-190a19e18789 90f74d47-d623-4b80-a1f4-bde635cc690f ff1b7a95-2a0a-42c3-a277-bcfafc77f2ba 8620a36d-f016-4257-ae95-972461b8dea7 5944e598-cecb-4095-b35b-48ac8e442e2a debc3215-bf33-4546-8691-0ad7cf85840f 27e211c0-ef2f-49d5-8971-f2ca9ad49e6b 6e364311-c38b-465c-854a-669474a20531 5290c9e3-8c45-4f35-9fba-63bacb0a972f 556ab023-c3f5-41a4-ae19-cec03405eccc ad959b91-bde6-46f4-a065-a06124974ebf e927f1f1-025a-4d72-874f-d7cadc4d07db bfb0ca9a-3809-4c3f-bc7b-e5a4ed892909 c344e708-6261-40b6-9c1b-511e7f599e65 f5c80cb3-2331-4236-a4e9-29f011aa2408 cba31048-121f-4809-a1ca-b361c15f7c76 2aee8a4d-7144-4a3d-b986-47d52cbe1c41 e3f73a96-c462-4252-bea1-843d1db7b994 b431e33f-493c-4f69-961a-2bdd27b0b423 8be4afd4-1678-4052-90ca-124a199935e6 2f47d230-2571-418d-80cf-6e8e5d31cb9e 16209b7e-55fa-4b5c-92ba-5c1d1bd41dec 819a2a51-f04e-4192-8c95-3fa161e7540c 1538eb2e-e611-4f4c-b500-1df33502eff4 dfe1b26e-b4a6-4bce-9c77-643d58fbc36d 85605b21-aef8-4f87-a515-10b78df9f610 20f05475-7967-45b4-a63c-62a20fa8690b 8435fa98-38c7-45cb-8f29-4044d9a40f9c 99f0b699-2a90-441f-b737-27aea108d33f 9c3ae34b-8ebd-4141-9330-6abe5cacb47e cbcfa187-ddf9-492d-89f7-d6ae71b5a4f0 42 aa914107-1d65-4d2d-ba79-c1fe9df58f85 Group 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers e3f73a96-c462-4252-bea1-843d1db7b994 true Number Number false fd81a449-0a91-4607-9bf8-8553b274feb2 1 -9287 23373 50 24 -9262 23385.78 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true b431e33f-493c-4f69-961a-2bdd27b0b423 true Curve Curve false c0e1e2e4-2938-4a4b-bc4d-60ad57a289bb 1 -9287 23416 50 24 -9262 23428.71 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 52963e78-1b77-4ee7-b1e9-bd9b9a36e644 true Line SDL Line SDL -9323 22103 122 64 -9243 22135 Line start point 627c9c66-c2b8-41f1-8066-a75eb943e379 true Start Start false ca1aff94-019e-4a46-97b1-33342bd83e90 1 -9321 22105 63 20 -9280 22115 Line tangent (direction) 98a4099e-6804-46bb-9349-464c9ce61d0e true Direction Direction false 03c079d1-214a-4367-8a79-014e07a300ec 1 -9321 22125 63 20 -9280 22135 1 1 {0} 0 0 1 Line length 843fcf5d-ea0c-4f44-8d5a-ee5f9d800942 ABS(X) true Length Length false 3a6719a1-945e-415e-984c-488a86c00cf4 1 -9321 22145 63 20 -9280 22155 1 1 {0} 1 Line segment 816b0be2-357e-40d1-b261-7bcf4333e662 true Line Line false 0 -9228 22105 25 60 -9214 22135 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 6b38181f-5f9b-41b0-81b3-51717e81ed43 true Evaluate Length Evaluate Length -9334 21780 144 64 -9260 21812 Curve to evaluate ec3d516b-d9c0-4d9d-9b1d-985e28c7b783 true Curve Curve false 462c2450-1262-4529-888f-d92602268217 1 -9332 21782 57 20 -9302 21792 Length factor for curve evaluation 02d374a3-21bd-44b1-8a07-87df41ce60df true Length Length false 0 -9332 21802 57 20 -9302 21812 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 16761ddf-fcd9-4e3f-808f-bf894e2083f9 true Normalized Normalized false 0 -9332 21822 57 20 -9302 21832 1 1 {0} true Point at the specified length f3cab11a-e97b-45af-bb37-68a6b816c734 true Point Point false 0 -9245 21782 53 20 -9217 21792 Tangent vector at the specified length bee9d5a5-ec7c-4669-8f1b-e6647f2a687d true Tangent Tangent false 0 -9245 21802 53 20 -9217 21812 Curve parameter at the specified length e2fb0072-88b1-49dd-9c1e-0503d1b99d38 true Parameter Parameter false 0 -9245 21822 53 20 -9217 21832 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 71ce374d-fb88-4062-b84e-1df6fe4abc69 true Interpolate Interpolate -9325 20777 125 84 -9258 20819 1 Interpolation points 9eaf1bd7-324b-457d-8dcf-a0b63c44d9cd true Vertices Vertices false 256f333c-199f-4c9d-b6cd-360ee8130e4f 1 -9323 20779 50 20 -9296.5 20789 Curve degree 3575bcd1-e419-44af-ac17-63054f1c52f3 true Degree Degree false 0 -9323 20799 50 20 -9296.5 20809 1 1 {0} 3 Periodic curve 805d7e81-9bf8-4c47-a814-99424b44e128 true Periodic Periodic false 0 -9323 20819 50 20 -9296.5 20829 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 6feac273-1827-49ac-b5ea-f0bd511f8583 true KnotStyle KnotStyle false 0 -9323 20839 50 20 -9296.5 20849 1 1 {0} 2 Resulting nurbs curve e17fafe9-9d26-4bfc-b017-176aac88278e true Curve Curve false 0 -9243 20779 41 26 -9221 20792.33 Curve length 3cb4f7e6-90c7-45d5-b9d5-d29635f9a164 true Length Length false 0 -9243 20805 41 27 -9221 20819 Curve domain 8a48503b-1321-4340-a935-7e1a373719c7 true Domain Domain false 0 -9243 20832 41 27 -9221 20845.67 dde71aef-d6ed-40a6-af98-6b0673983c82 Nurbs Curve Construct a nurbs curve from control points. true 9871b117-ed76-48da-9b9d-4641dc5a56f4 true Nurbs Curve Nurbs Curve -9321 23639 118 64 -9261 23671 1 Curve control points bf32989c-5bd6-4b69-8718-e7c3126a3559 true Vertices Vertices false ca1aff94-019e-4a46-97b1-33342bd83e90 1 -9319 23641 43 20 -9296 23651 Curve degree 6a581f97-c7f0-4bb9-8023-61bc21f253f4 true Degree Degree false 0 -9319 23661 43 20 -9296 23671 1 1 {0} 3 Periodic curve 6b4b65a2-9e7b-4def-8245-2f5842f69b39 true Periodic Periodic false 0 -9319 23681 43 20 -9296 23691 1 1 {0} false Resulting nurbs curve 6d2f72e1-001f-46bf-bd8a-d288f09e6e75 true Curve Curve false 0 -9246 23641 41 20 -9224 23651 Curve length 2d9c012b-d4f8-49de-ba62-d0e77fa24415 true Length Length false 0 -9246 23661 41 20 -9224 23671 Curve domain 5409afb1-504d-4804-939c-76d0edb50fd6 true Domain Domain false 0 -9246 23681 41 20 -9224 23691 dd17d442-3776-40b3-ad5b-5e188b56bd4c Relative Differences Compute relative differences for a list of data true 8be4afd4-1678-4052-90ca-124a199935e6 true Relative Differences Relative Differences -9326 23226 128 28 -9273 23240 1 List of data to operate on (numbers or points or vectors allowed) 59aa34dd-b023-48df-b638-4f6e4a629151 true Values Values false 09ead44e-3fee-4284-b1f9-0b3fc0c0b2dd 1 -9324 23228 36 24 -9304.5 23240 1 Differences between consecutive items 1f0b4fda-010b-4918-919d-181f286a2fc8 true Differenced Differenced false 0 -9258 23228 58 24 -9227.5 23240 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 52a7c8f5-ebf3-465f-b047-5cc9b0649c43 true Relay false 4a062c8a-ea9d-451a-abb9-92de136371dd 1 -9282 25207 40 16 -9262 25215 ab14760f-87a6-462e-b481-4a2c26a9a0d7 Derivatives Evaluate the derivatives of a curve at a specified parameter. true 6d988f5a-f9eb-4e9a-94c8-3b505d7ad973 true Derivatives Derivatives -9321 20430 117 144 -9251 20502 2 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 7 fbac3e32-f100-4292-8692-77240a42fd1a 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 Curve to evaluate fcabeaa1-6ec3-4a73-ba7a-eae2a2b90599 true Curve Curve false f74c430d-ed74-462d-8f45-a21df852c02c 1 -9319 20432 53 70 -9291 20467 Parameter on curve domain to evaluate 6707f57b-6ee9-48a2-8272-8ceb7a7ff539 true Parameter Parameter false 35c11e73-023d-4ab3-8c15-e16ba789d504 1 -9319 20502 53 70 -9291 20537 Point on curve at {t} a0e42231-baad-49ec-8d9d-db63cae0997a true Point Point false 0 -9236 20432 30 20 -9219.5 20442 First curve derivative at t (Velocity) 5b8ecad7-0817-49e5-a03b-180d457fcf0e true false First derivative 1 false 0 -9236 20452 30 20 -9219.5 20462 Second curve derivative at t (Acceleration) 78bccc4f-3dcd-4487-90dc-8628c3281cac true false Second derivative 2 false 0 -9236 20472 30 20 -9219.5 20482 Third curve derivative at t (Jolt) 8441d80e-f14e-491c-b590-87e03b599ef3 true false Third derivative 3 false 0 -9236 20492 30 20 -9219.5 20502 Fourth curve derivative at t (Jounce) 74acaba9-e83d-432c-8e4e-866392c3d1e5 true false Fourth derivative 4 false 0 -9236 20512 30 20 -9219.5 20522 Fifth curve derivative at t 619c36d7-96b7-4633-b71d-7acbefc65eab true false Fifth derivative 5 false 0 -9236 20532 30 20 -9219.5 20542 Sixth curve derivative at t 55aea648-06bd-4947-b96a-51225473ea2f true false Sixth derivative 6 false 0 -9236 20552 30 20 -9219.5 20562 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 27e211c0-ef2f-49d5-8971-f2ca9ad49e6b true Create Material Create Material -9334 23967 144 104 -9250 24019 Colour of the diffuse channel fc54bdbe-2a8b-41c8-8858-452a76e2ccf7 true Diffuse Diffuse false 0 -9332 23969 67 20 -9297 23979 1 1 {0} 255;247;247;247 Colour of the specular highlight 930a46ef-f98e-4c08-bbca-19db08804069 true Specular Specular false 0 -9332 23989 67 20 -9297 23999 1 1 {0} 255;0;255;255 Emissive colour of the material 2cc56b8e-3652-4c16-b48b-74674b00afd8 true Emission Emission false 0 -9332 24009 67 20 -9297 24019 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent b316cf66-48e4-41eb-b2de-bb23d9cec10a true Transparency Transparency false 0 -9332 24029 67 20 -9297 24039 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine ae959438-259f-41c8-a2e9-d76510ed6da3 true Shine Shine false 0 -9332 24049 67 20 -9297 24059 1 1 {0} 100 Resulting material f88ece74-f9b2-4981-a565-6a02f27e09af true Material Material false 0 -9235 23969 43 100 -9212 24019 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true 6e364311-c38b-465c-854a-669474a20531 true Custom Preview Custom Preview -9303 23905 82 44 -9235 23927 Geometry to preview true 966cdb5d-7cc5-44ae-8091-d2827d8f989e true Geometry Geometry false f7ba28da-fefa-419b-a7b2-18d8b67d29e2 1 -9301 23907 51 20 -9274 23917 The material override 8d9d4073-ae49-42ad-ab0e-4e71c55021fa true Material Material false f88ece74-f9b2-4981-a565-6a02f27e09af 1 -9301 23927 51 20 -9274 23937 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 5944e598-cecb-4095-b35b-48ac8e442e2a true Create Material Create Material -9334 26230 144 104 -9250 26282 Colour of the diffuse channel 636882c6-76e9-4a5f-b067-17d2ec7d9400 true Diffuse Diffuse false 0 -9332 26232 67 20 -9297 26242 1 1 {0} 255;176;176;176 Colour of the specular highlight 3ecb36f5-f4fb-4776-a16e-3442037cc155 true Specular Specular false 0 -9332 26252 67 20 -9297 26262 1 1 {0} 255;0;255;255 Emissive colour of the material c09130c0-8773-4791-9389-bb3e5cc7e767 true Emission Emission false 0 -9332 26272 67 20 -9297 26282 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 266ac31e-f081-43a3-a1b8-ebbe9f1da188 true Transparency Transparency false 0 -9332 26292 67 20 -9297 26302 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 8ad1ce49-cf05-4415-92f8-fc1aec783bae true Shine Shine false 0 -9332 26312 67 20 -9297 26322 1 1 {0} 100 Resulting material ea1197fe-9fda-4a17-88d1-da430b63856d true Material Material false 0 -9235 26232 43 100 -9212 26282 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true debc3215-bf33-4546-8691-0ad7cf85840f true Custom Preview Custom Preview -9303 26169 82 44 -9235 26191 Geometry to preview true 887c9ac7-efda-4f94-814c-30bd85c5d8fd true Geometry Geometry false f74c430d-ed74-462d-8f45-a21df852c02c 1 -9301 26171 51 20 -9274 26181 The material override f62775ef-20dc-42bf-bbb6-001dd028efe0 true Material Material false ea1197fe-9fda-4a17-88d1-da430b63856d 1 -9301 26191 51 20 -9274 26201 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 5290c9e3-8c45-4f35-9fba-63bacb0a972f true Create Material Create Material -9334 23517 144 104 -9250 23569 Colour of the diffuse channel a152bdcc-8fd6-439d-a385-a52468ce9c83 true Diffuse Diffuse false 0 -9332 23519 67 20 -9297 23529 1 1 {0} 255;222;222;222 Colour of the specular highlight 3b5f3096-bcca-4a63-b22c-03a278a82ce1 true Specular Specular false 0 -9332 23539 67 20 -9297 23549 1 1 {0} 255;0;255;255 Emissive colour of the material 98a98ff1-b2b0-4361-b74c-d1383b56c3b6 true Emission Emission false 0 -9332 23559 67 20 -9297 23569 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent c88190ea-c9dd-4b37-b4ae-247e4ca281ce true Transparency Transparency false 0 -9332 23579 67 20 -9297 23589 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 8c9f8bd1-c50a-4adf-bc97-f8eabc6f7dcd true Shine Shine false 0 -9332 23599 67 20 -9297 23609 1 1 {0} 100 Resulting material 302cf7df-7b48-4ff3-bd5f-7f17fbb14626 true Material Material false 0 -9235 23519 43 100 -9212 23569 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true 556ab023-c3f5-41a4-ae19-cec03405eccc true Custom Preview Custom Preview -9303 23455 82 44 -9235 23477 Geometry to preview true 60e62c4b-34bc-43d6-93db-19f3a6140229 true Geometry Geometry false b431e33f-493c-4f69-961a-2bdd27b0b423 1 -9301 23457 51 20 -9274 23467 The material override f5d33227-40e4-478f-9297-1b460076d980 true Material Material false 302cf7df-7b48-4ff3-bd5f-7f17fbb14626 1 -9301 23477 51 20 -9274 23487 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true c4e43f61-126f-4987-98f6-f61ae9e11743 true Create Material Create Material -9334 21978 144 104 -9250 22030 Colour of the diffuse channel 406a7fee-676e-426c-8920-c04cb4ff6f73 true Diffuse Diffuse false 0 -9332 21980 67 20 -9297 21990 1 1 {0} 255;240;240;240 Colour of the specular highlight 8646b4b9-cac5-4336-ad61-85ac3bea7ff7 true Specular Specular false 0 -9332 22000 67 20 -9297 22010 1 1 {0} 255;0;255;255 Emissive colour of the material bc30b50e-6df3-4650-95d4-d0d1903f690b true Emission Emission false 0 -9332 22020 67 20 -9297 22030 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 54e1fe2f-a7e8-41b2-aed8-6dc98a894ae6 true Transparency Transparency false 0 -9332 22040 67 20 -9297 22050 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine f2163080-a3e0-4773-8715-4b90ec03bd20 true Shine Shine false 0 -9332 22060 67 20 -9297 22070 1 1 {0} 100 Resulting material 505b6445-8613-41a9-b24b-75c2f16a3339 true Material Material false 0 -9235 21980 43 100 -9212 22030 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true 669601ad-c306-4479-af1b-f98d37928ede true Custom Preview Custom Preview -9303 21916 82 44 -9235 21938 Geometry to preview true 7bcae449-9f77-426e-9b98-7c9747fc0df3 true Geometry Geometry false 816b0be2-357e-40d1-b261-7bcf4333e662 1 -9301 21918 51 20 -9274 21928 The material override 7ea2a72b-4a4e-4aaf-b307-ee364bcefa69 true Material Material false 505b6445-8613-41a9-b24b-75c2f16a3339 1 -9301 21938 51 20 -9274 21948 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true fd036caf-aeec-48d3-a62f-73710312680c true Create Material Create Material -9334 20653 144 104 -9250 20705 Colour of the diffuse channel d96f02a5-596d-4c3c-8fb3-6846c0a50fa4 true Diffuse Diffuse false 0 -9332 20655 67 20 -9297 20665 1 1 {0} 255;214;214;214 Colour of the specular highlight 5c6168ee-0653-4844-9138-d20640fd3dc3 true Specular Specular false 0 -9332 20675 67 20 -9297 20685 1 1 {0} 255;0;255;255 Emissive colour of the material 9fa89004-eb60-4e29-9f67-f90e59b2a0d7 true Emission Emission false 0 -9332 20695 67 20 -9297 20705 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent bf05fb02-2c0e-4be3-8903-65d40e2be818 true Transparency Transparency false 0 -9332 20715 67 20 -9297 20725 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 7f55bb9a-55d5-4706-a263-02a2f94d926e true Shine Shine false 0 -9332 20735 67 20 -9297 20745 1 1 {0} 100 Resulting material fc253baf-edd0-4707-8f66-d1f8f87895d3 true Material Material false 0 -9235 20655 43 100 -9212 20705 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true 837b272a-eec1-486b-b98f-cda424c584f2 true Custom Preview Custom Preview -9303 20593 82 44 -9235 20615 Geometry to preview true dd5af49b-5904-4091-a731-06c9e4243943 true Geometry Geometry false e17fafe9-9d26-4bfc-b017-176aac88278e 1 -9301 20595 51 20 -9274 20605 The material override 6e2ba1b7-e406-4009-8236-ba5b35ffe945 true Material Material false fc253baf-edd0-4707-8f66-d1f8f87895d3 1 -9301 20615 51 20 -9274 20625 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 98b146e4-5b50-43f4-b589-1f02b86a6917 true Line SDL Line SDL -9323 19167 122 64 -9243 19199 Line start point 758ec686-b6d1-4ba7-a49e-c857af4ef76c true Start Start false 256f333c-199f-4c9d-b6cd-360ee8130e4f 1 -9321 19169 63 20 -9280 19179 Line tangent (direction) 793656a1-b2f4-4fc9-bda6-7bf523676410 true Direction Direction false 8441d80e-f14e-491c-b590-87e03b599ef3 1 -9321 19189 63 20 -9280 19199 1 1 {0} 0 0 1 Line length 75e3792b-4db8-4fd8-87b2-e810a1ecb011 -X true Length Length false 3a6719a1-945e-415e-984c-488a86c00cf4 1 -9321 19209 63 20 -9280 19219 1 1 {0} 1 Line segment 516291c1-7aa1-4f2d-8e3c-3eabd37ebe81 true Line Line false 0 -9228 19169 25 60 -9214 19199 71b5b089-500a-4ea6-81c5-2f960441a0e8 PolyLine Create a polyline connecting a number of points. true ae045a03-6354-4728-a5cb-98c8c4c05fbb true PolyLine PolyLine -9321 21677 118 44 -9261 21699 1 Polyline vertex points ef4a60e9-ac8b-4930-a115-7f909acaf86e true Vertices Vertices false 256f333c-199f-4c9d-b6cd-360ee8130e4f 1 -9319 21679 43 20 -9296 21689 Close polyline 4b9d9d45-e313-4c02-a075-0f16a23317f8 true Closed Closed false 0 -9319 21699 43 20 -9296 21709 1 1 {0} false Resulting polyline 3f9ccfee-62d3-4c55-8287-3567fff2c6cb true Polyline Polyline false 0 -9246 21679 41 40 -9224 21699 afb96615-c59a-45c9-9cac-e27acb1c7ca0 Explode Explode a curve into smaller segments. true 26b9a1e8-931e-4308-b076-5dbc987ab5ea true Explode Explode -9330 21614 136 44 -9263 21636 Curve to explode 8082237a-1d85-4343-b2fe-7365cc8ed248 true Curve Curve false 3f9ccfee-62d3-4c55-8287-3567fff2c6cb 1 -9328 21616 50 20 -9301.5 21626 Recursive decomposition until all segments are atomic 8d771a8f-5917-4ab6-999d-27e12eff9ef5 true Recursive Recursive false 0 -9328 21636 50 20 -9301.5 21646 1 1 {0} true 1 Exploded segments that make up the base curve a4a0de16-757d-4ded-9f33-bd7de93b41aa true Segments Segments false 0 -9248 21616 52 20 -9220.5 21626 1 Vertices of the exploded segments e0c3b1ad-2723-4376-a30c-fbd578c9649c true Vertices Vertices false 0 -9248 21636 52 20 -9220.5 21646 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 4d4328e7-ddb3-4302-97e1-7b7af024dfeb true 1 Curve Curve false a4a0de16-757d-4ded-9f33-bd7de93b41aa 1 -9288 21570 53 24 -9252.5 21582.95 6f93d366-919f-4dda-a35e-ba03dd62799b Sort List Sort a list of numeric keys. true 3500ade5-7819-4191-bfb0-e582092db080 true Sort List Sort List -9327 21456 130 44 -9262 21478 2 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 2 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 1 List of sortable keys 1198b878-cfd2-47e5-8dca-39ddf0d70e6d true Keys Keys false 98f4df2d-9e69-4cb4-af1c-6444dfcdf787 1 -9325 21458 48 20 -9299.5 21468 1 Optional list of values to sort synchronously 67426194-aa9f-45f1-b3fc-bdfffc3bf85b true Values Values A Values A true 4d4328e7-ddb3-4302-97e1-7b7af024dfeb 1 -9325 21478 48 20 -9299.5 21488 1 Sorted keys 9c31c3ff-030e-4897-be1c-7b749e625208 true Keys Keys false 0 -9247 21458 48 20 -9221.5 21468 1 Synchronous values in Values A e7c4b320-14db-4e5e-8012-973177569083 true Values Values A Values A false 0 -9247 21478 48 20 -9221.5 21488 c75b62fa-0a33-4da7-a5bd-03fd0068fd93 Length Measure the length of a curve. true 93c8ebc7-1fd8-4b43-8114-e5c8b2e204c4 true Length Length -9314 21520 104 28 -9264 21534 Curve to measure 9650e786-1eda-474c-bc71-27c2d58790d4 true Curve Curve false 4d4328e7-ddb3-4302-97e1-7b7af024dfeb 1 -9312 21522 33 24 -9294 21534 Curve length 98f4df2d-9e69-4cb4-af1c-6444dfcdf787 true Length Length false 0 -9249 21522 37 24 -9229 21534 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true a2a94db7-6ca0-4a5f-9135-86ab8db24e51 true List Item List Item -9299 20979 74 64 -9251 21011 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list 59ce7648-20c5-4bfd-83b0-4acdf5d098bf true List List false 9c31c3ff-030e-4897-be1c-7b749e625208 1 -9297 20981 31 20 -9280 20991 Item index 72276524-dbcd-4d81-834f-6113a72fa64c true Index Index false 0 -9297 21001 31 20 -9280 21011 1 1 {0} 0 Wrap index to list bounds ebe8bedb-19ce-4917-9c51-0c51eddb484d true Wrap Wrap false 0 -9297 21021 31 20 -9280 21031 1 1 {0} false Item at {i'} e6a9b95b-b222-4b1a-9106-e38ce0a60ef3 true false Item i false 0 -9236 20981 9 60 -9230 21011 6b1bd8b2-47a4-4aa6-a471-3fd91c62a486 Dot Display Draw a collection of coloured dots true false 4fbed52a-0ae4-49f5-9d06-f4eb03d35034 true Dot Display Dot Display -9304 20880 83 64 -9235 20912 Dot location true 25b83050-e263-4c58-99a0-c96e4512e112 true Point Point false 256f333c-199f-4c9d-b6cd-360ee8130e4f 1 -9302 20882 52 20 -9266.5 20892 Dot colour 11f7bb21-4b0d-4389-8a20-836b6e25d67c true Colour Colour false 0 -9302 20902 52 20 -9266.5 20912 1 1 {0} 255;194;194;194 Dot size b368810b-3bbe-424b-85da-d8848a3eb9c0 X/2 true Size Size false e6a9b95b-b222-4b1a-9106-e38ce0a60ef3 1 -9302 20922 52 20 -9266.5 20932 1 1 {0} 1 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 9004ba57-a8e9-4d21-929c-ae939b9af8df true Create Material Create Material -9334 19043 144 104 -9250 19095 Colour of the diffuse channel 49365762-437f-4c9c-a9db-d1d04144c3f0 true Diffuse Diffuse false 0 -9332 19045 67 20 -9297 19055 1 1 {0} 255;232;232;232 Colour of the specular highlight 3c1c1a65-8e2f-40b4-b64a-b583dd44d987 true Specular Specular false 0 -9332 19065 67 20 -9297 19075 1 1 {0} 255;0;255;255 Emissive colour of the material cdfae7c3-13df-45eb-bec2-9fb33d857435 true Emission Emission false 0 -9332 19085 67 20 -9297 19095 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 7a87b593-09c5-4edf-b92b-3b8adaade17c true Transparency Transparency false 0 -9332 19105 67 20 -9297 19115 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 7639dac2-9da2-4257-8f30-47b6ead7794c true Shine Shine false 0 -9332 19125 67 20 -9297 19135 1 1 {0} 100 Resulting material 6c4dd769-982d-48db-9737-cc4e67e265fd true Material Material false 0 -9235 19045 43 100 -9212 19095 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true ec452d8d-f33b-477b-bdba-3dbfef9b7561 true Custom Preview Custom Preview -9303 18980 82 44 -9235 19002 Geometry to preview true 4e3671ba-b435-4ec5-b5f4-9f45c74ba8f1 true Geometry Geometry false 516291c1-7aa1-4f2d-8e3c-3eabd37ebe81 1 -9301 18982 51 20 -9274 18992 The material override e9961fc0-e956-43cf-b6b0-558698384f4e true Material Material false 6c4dd769-982d-48db-9737-cc4e67e265fd 1 -9301 19002 51 20 -9274 19012 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 0ac1b008-6cb1-4730-9f53-d5be7f8edb47 true Evaluate Length Evaluate Length -9334 18896 144 64 -9260 18928 Curve to evaluate e16c6742-fa46-42fc-b79f-9180d246fa51 true Curve Curve false 516291c1-7aa1-4f2d-8e3c-3eabd37ebe81 1 -9332 18898 57 20 -9302 18908 Length factor for curve evaluation 33e5cbf5-a111-413b-aeee-29152a062f2c true Length Length false 0 -9332 18918 57 20 -9302 18928 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 2d5adcb2-acc2-40a4-94c6-4c88ed344864 true Normalized Normalized false 0 -9332 18938 57 20 -9302 18948 1 1 {0} true Point at the specified length e711d67a-f652-4919-ab0b-c31432c9fbb9 true Point Point false 0 -9245 18898 53 20 -9217 18908 Tangent vector at the specified length 5c0d9cd2-5b57-4ea1-b524-2be5cda52800 true Tangent Tangent false 0 -9245 18918 53 20 -9217 18928 Curve parameter at the specified length 220b3ba4-4013-4cef-b85b-0ac056dabbb2 true Parameter Parameter false 0 -9245 18938 53 20 -9217 18948 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 5666caf3-3e8d-4f54-8575-3129d5b2372b true Interpolate Interpolate -9325 18792 125 84 -9258 18834 1 Interpolation points 20463074-6551-4dfd-acec-b8a4d028cf3e true Vertices Vertices false e711d67a-f652-4919-ab0b-c31432c9fbb9 1 -9323 18794 50 20 -9296.5 18804 Curve degree 86b3bdad-c824-4179-b453-7abe9fc8db2b true Degree Degree false 0 -9323 18814 50 20 -9296.5 18824 1 1 {0} 3 Periodic curve ac098bc1-6582-413a-ab0c-7d1650953f0b true Periodic Periodic false 0 -9323 18834 50 20 -9296.5 18844 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 8ee4836b-5dc7-4643-89c5-40a92f8e429e true KnotStyle KnotStyle false 0 -9323 18854 50 20 -9296.5 18864 1 1 {0} 2 Resulting nurbs curve c53594c6-7765-4edd-9143-ad1c5bb118d4 true Curve Curve false 0 -9243 18794 41 26 -9221 18807.33 Curve length d2a4e044-7960-4920-80bd-ee2260249749 true Length Length false 0 -9243 18820 41 27 -9221 18834 Curve domain c8f1cdba-cf7e-4cf9-bd97-5c6445bc6763 true Domain Domain false 0 -9243 18847 41 27 -9221 18860.67 2162e72e-72fc-4bf8-9459-d4d82fa8aa14 Divide Curve Divide a curve into equal length segments true 93ab0a8f-aee3-4747-910f-6806f1daee3d true Divide Curve Divide Curve -10231 24715 125 64 -10181 24747 Curve to divide 19b3d1a7-bf1b-4aac-b0f1-04623c237e08 true Curve Curve false 7fdc9300-6cbf-4a29-a03a-92e9a40941ca 1 -10229 24717 33 20 -10211 24727 Number of segments 6065d60d-9338-4ebe-8ab8-04eba8b6030c true Count Count false 6b922c6a-cc70-4092-ae71-ade7d284d862 1 -10229 24737 33 20 -10211 24747 1 1 {0} 10 Split segments at kinks 9441cda5-f331-4d5a-9664-ad5973c619f3 true Kinks Kinks false 0 -10229 24757 33 20 -10211 24767 1 1 {0} false 1 Division points c174415d-9265-49de-a761-e110e24288d1 true Points Points false 0 -10166 24717 58 20 -10135.5 24727 1 Tangent vectors at division points 15e3ceaf-f017-40c8-b24f-89f0cbc46951 true Tangents Tangents false 0 -10166 24737 58 20 -10135.5 24747 1 Parameter values at division points 1bf7cef9-feb2-44d9-9ec1-054d3042a64e true Parameters Parameters false 0 -10166 24757 58 20 -10135.5 24767 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 99b8e4f4-ef55-452f-9b1e-6ec52d78cb44 true Line SDL Line SDL -10222 24798 106 64 -10158 24830 Line start point 70241e77-2779-4773-aa93-c113b1533cf0 true Start Start false 0 -10220 24800 47 20 -10195 24810 1 1 {0} 0 0 0 Line tangent (direction) 5dab8a28-4a4d-4273-a21c-23f90eb5ee31 true Direction Direction false 0 -10220 24820 47 20 -10195 24830 1 1 {0} 1 0 0 Line length 55edd0d9-dc5c-4def-9e48-0e04f108835a true Length Length false 0 -10220 24840 47 20 -10195 24850 1 1 {0} 1 Line segment 7fdc9300-6cbf-4a29-a03a-92e9a40941ca true Line Line false 0 -10143 24800 25 60 -10129 24830 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true c6837ab8-492f-4d65-bbf8-6543cded1f15 true Line SDL Line SDL -10222 24547 106 64 -10158 24579 Line start point eef2b1cf-cbc2-4962-aae7-d207a5067da1 true Start Start false c174415d-9265-49de-a761-e110e24288d1 1 -10220 24549 47 20 -10195 24559 1 1 {0} 0 0 0 Line tangent (direction) dd3a41cb-9036-407e-9a91-b00fe2f2e0eb true Direction Direction false 0 -10220 24569 47 20 -10195 24579 1 1 {0} 0 1 0 Line length be7475b9-0745-4a7a-9066-2cb6bbb15571 true Length Length false 202652b1-b262-48b4-9c0a-8bfef6b70c4f 1 -10220 24589 47 20 -10195 24599 1 1 {0} 1 Line segment 3cc701d3-0f0b-42c8-8f89-b9159cf05c65 true Line Line false 0 -10143 24549 25 60 -10129 24579 7376fe41-74ec-497e-b367-1ffe5072608b Curvature Graph Draws Rhino Curvature Graphs. true ad959b91-bde6-46f4-a065-a06124974ebf true Curvature Graph Curvature Graph -9298 26048 71 64 -9241 26080 Curve for Curvature graph display true e1fd64bc-7e8f-40cd-8156-a9c2f868ddf7 true Curve Curve false f74c430d-ed74-462d-8f45-a21df852c02c 1 -9296 26050 40 20 -9274.5 26060 Sampling density of the Graph ce8b21ce-edf4-4e27-896c-399b8d718478 true Density Density false 0 -9296 26070 40 20 -9274.5 26080 1 1 {0} 1 Scale of graph 9af9ce91-dead-4a37-a3be-e4851c89ac1c true Scale Scale false e927f1f1-025a-4d72-874f-d7cadc4d07db 1 -9296 26090 40 20 -9274.5 26100 1 1 {0} 105 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers e927f1f1-025a-4d72-874f-d7cadc4d07db true Digit Scroller false 0 12 11 90.0 -9387 26139 250 20 -9386.257 26139.68 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 03c079d1-214a-4367-8a79-014e07a300ec true Relay false f7ba28da-fefa-419b-a7b2-18d8b67d29e2 1 -9282 22185 40 16 -9262 22193 2fcc2743-8339-4cdf-a046-a1f17439191d Remap Numbers Remap numbers into a new numeric domain true bb4c2afb-4bca-4df7-8dc6-3ce78e75888b true Remap Numbers Remap Numbers -9320 24414 115 64 -9265 24446 Value to remap 191af6e0-b924-4ebd-b87e-0352744cdc1a true Value Value false bb8833cc-0755-4539-bf0e-40e6fb53efe2 1 -9318 24416 38 20 -9297.5 24426 Source domain c98c8896-2656-4e65-b252-66c1e819c19f true Source Source false c06501dc-bbcf-4267-a26f-10c83fa4679f 1 -9318 24436 38 20 -9297.5 24446 1 1 {0} 0 1 Target domain 95f4febe-997b-4d1e-81af-6d7c1ee8781c true Target Target false 0 -9318 24456 38 20 -9297.5 24466 1 1 {0} 0 1 Remapped number 4123e666-aaea-4abb-a2dc-959403a78040 true Mapped Mapped false 0 -9250 24416 43 30 -9227 24431 Remapped and clipped number d2dafdbc-c4ab-4f53-83eb-46286aa70347 true Clipped Clipped false 0 -9250 24446 43 30 -9227 24461 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true ea3c720c-0f74-4866-b9d7-3cc115570ea1 true Bounds Bounds -9323 24497 122 28 -9259 24511 1 Numbers to include in Bounds db26e314-e939-46e4-b1fe-a7b8127f8003 true Numbers Numbers false bb8833cc-0755-4539-bf0e-40e6fb53efe2 1 -9321 24499 47 24 -9296 24511 Numeric Domain between the lowest and highest numbers in {N} c06501dc-bbcf-4267-a26f-10c83fa4679f true Domain Domain false 0 -9244 24499 41 24 -9222 24511 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects f51f5f2d-941f-41ef-b98f-20f88c0f615c afc9108c-9db9-441a-9c43-d667d1c32b78 58b4763e-c14f-475c-bea3-43146b32e6bd 569a059d-e90a-4cb8-86b1-26bffb26bfcb 80033146-5b4f-404e-b6dc-65dc753db8a1 145eea6c-da47-45fb-84e7-715c62530022 22307018-81e5-47cd-acd7-460831a3214c bb4c2afb-4bca-4df7-8dc6-3ce78e75888b ea3c720c-0f74-4866-b9d7-3cc115570ea1 c3830b7d-0858-410d-89db-9af833da8bf5 c042fb9d-002c-456b-ace2-4265be68d648 bb8833cc-0755-4539-bf0e-40e6fb53efe2 bdcc331f-b637-41f0-94e2-4f12b70251cc ad6201fb-63c1-4a0f-8015-2d21f5cb9555 14 633ce0ae-bb91-4421-9202-19d3ab9df774 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object bb8833cc-0755-4539-bf0e-40e6fb53efe2 true Relay false 52a7c8f5-ebf3-465f-b047-5cc9b0649c43 1 -9282 24543 40 16 -9262 24551 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object c042fb9d-002c-456b-ace2-4265be68d648 true Relay false 68995b86-f06d-4501-aafb-7f4e7f7a7ae0 1 -9282 24170 40 16 -9262 24178 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true ad6201fb-63c1-4a0f-8015-2d21f5cb9555 true Multiplication Multiplication -9303 24242 82 44 -9272 24264 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication cb6efc08-c9d8-4524-970e-8d5275571316 true A A true 8ec909b8-ac70-40f2-985c-aa362547ce12 1 -9301 24244 14 20 -9292.5 24254 Second item for multiplication f698477a-a835-46ea-bcac-49c1f2c0470c true B B true bdcc331f-b637-41f0-94e2-4f12b70251cc 1 -9301 24264 14 20 -9292.5 24274 Result of multiplication 68995b86-f06d-4501-aafb-7f4e7f7a7ae0 true Result Result false 0 -9257 24244 34 40 -9238.5 24264 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values dd437aea-2710-413b-928a-0863c45ceacc true Number Slider false 0 -9337 22332 150 20 -9337 22332.82 6 1 0 1 0 0 0.452284 2fcc2743-8339-4cdf-a046-a1f17439191d Remap Numbers Remap numbers into a new numeric domain true 4c28dc57-c974-4062-8a1c-2d65d0f1cc9c true Remap Numbers Remap Numbers -9320 22432 115 64 -9265 22464 Value to remap 18ee36a0-d7a0-494e-96ff-6db5efd91200 true Value Value false 1ea70de6-eb5f-4c57-a884-6f4fedf1a3ca 1 -9318 22434 38 20 -9297.5 22444 Source domain 04e361f5-41db-4bc5-a487-dcfcbd2d0a29 true Source Source false 0f81169b-eadf-4918-84c1-d0ef59981182 1 -9318 22454 38 20 -9297.5 22464 1 1 {0} 0 1 Target domain 9b027bcc-e232-4939-a61a-c398464e899a true Target Target false 0 -9318 22474 38 20 -9297.5 22484 1 1 {0} -1 1 Remapped number 173a0b59-1c04-43db-a331-89a053d6fb16 true Mapped Mapped false 0 -9250 22434 43 30 -9227 22449 Remapped and clipped number 74f1eabd-7a8f-441f-80c6-1d0e75a512ff true Clipped Clipped false 0 -9250 22464 43 30 -9227 22479 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true f031001d-2a39-489f-8101-d849af796a93 true Bounds Bounds -9323 22515 122 28 -9259 22529 1 Numbers to include in Bounds 2e52074a-de4b-4fdb-90bd-d5826a0e6222 true Numbers Numbers false 1ea70de6-eb5f-4c57-a884-6f4fedf1a3ca 1 -9321 22517 47 24 -9296 22529 Numeric Domain between the lowest and highest numbers in {N} 0f81169b-eadf-4918-84c1-d0ef59981182 true Domain Domain false 0 -9244 22517 41 24 -9222 22529 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects f51f5f2d-941f-41ef-b98f-20f88c0f615c afc9108c-9db9-441a-9c43-d667d1c32b78 58b4763e-c14f-475c-bea3-43146b32e6bd 569a059d-e90a-4cb8-86b1-26bffb26bfcb 80033146-5b4f-404e-b6dc-65dc753db8a1 145eea6c-da47-45fb-84e7-715c62530022 22307018-81e5-47cd-acd7-460831a3214c 4c28dc57-c974-4062-8a1c-2d65d0f1cc9c f031001d-2a39-489f-8101-d849af796a93 c3830b7d-0858-410d-89db-9af833da8bf5 3a6719a1-945e-415e-984c-488a86c00cf4 1ea70de6-eb5f-4c57-a884-6f4fedf1a3ca dd437aea-2710-413b-928a-0863c45ceacc 8e346cb9-87c1-4e10-ab8e-798cf64471cb 14 dcde6481-a8c5-4eaa-b1f0-fbbb49b24675 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 1ea70de6-eb5f-4c57-a884-6f4fedf1a3ca true Relay false 819a2a51-f04e-4192-8c95-3fa161e7540c 1 -9282 22560 40 16 -9262 22568 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 3a6719a1-945e-415e-984c-488a86c00cf4 true Relay false 39e593b4-f0b7-409b-85a0-21dd96be2dca 1 -9282 22228 40 16 -9262 22236 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 8e346cb9-87c1-4e10-ab8e-798cf64471cb true Multiplication Multiplication -9303 22267 82 44 -9272 22289 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication b94bae4b-57cf-47b0-8aca-757f98292e6f true A A true 8810b4a0-9f31-4eff-9363-f5750e8310f7 1 -9301 22269 14 20 -9292.5 22279 Second item for multiplication f12f1aed-05d1-4ab0-9c96-dfe03691f68b true B B true dd437aea-2710-413b-928a-0863c45ceacc 1 -9301 22289 14 20 -9292.5 22299 Result of multiplication 39e593b4-f0b7-409b-85a0-21dd96be2dca true Result Result false 0 -9257 22269 34 40 -9238.5 22289 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 4ae83b19-8812-4c53-9790-87c6cc59246b true Expression Expression -9359 25656 194 28 -9259 25670 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable adb863e8-6dcd-4041-8304-c5da7028f8bd true Variable O O true 013bc8b0-e297-49d9-947e-acd8090d019b 1 -9357 25658 14 24 -9348.5 25670 Result of expression d0227405-e7b3-47fc-b363-1d8ea8130e46 true Result false 0 -9176 25658 9 24 -9170 25670 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 2a2a7f3e-94c5-4192-b444-f05866d8c054 true Panel false 1 d0227405-e7b3-47fc-b363-1d8ea8130e46 1 Double click to edit panel content… -9354 25371 185 271 0 0 0 -9353.668 25371.7 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 8c0ee1df-15d2-4d4b-824d-4f852fe37c47 true Relay false 2a2a7f3e-94c5-4192-b444-f05866d8c054 1 -9282 25347 40 16 -9262 25355 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 013bc8b0-e297-49d9-947e-acd8090d019b true Relay false b713a28b-9c99-4284-b4f0-6985cf828693 1 -9282 25703 40 16 -9262 25711 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 4ae83b19-8812-4c53-9790-87c6cc59246b 2a2a7f3e-94c5-4192-b444-f05866d8c054 8c0ee1df-15d2-4d4b-824d-4f852fe37c47 013bc8b0-e297-49d9-947e-acd8090d019b 4 5ecee3d4-17a6-4ec2-b746-1150c99f835b Group 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true bfb0ca9a-3809-4c3f-bc7b-e5a4ed892909 true Expression Expression -9359 24956 194 28 -9259 24970 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable de3b134c-c21f-450c-a662-2a225c9cab92 true Variable O O true cba31048-121f-4809-a1ca-b361c15f7c76 1 -9357 24958 14 24 -9348.5 24970 Result of expression 6ca6859a-c41e-4d8b-a20d-078ce04bdcc4 true Result false 0 -9176 24958 9 24 -9170 24970 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values c344e708-6261-40b6-9c1b-511e7f599e65 true Panel false 0 6ca6859a-c41e-4d8b-a20d-078ce04bdcc4 1 Double click to edit panel content… -9362 24672 200 271 0 0 0 -9361.102 24672.46 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object f5c80cb3-2331-4236-a4e9-29f011aa2408 true Relay false c344e708-6261-40b6-9c1b-511e7f599e65 1 -9282 24628 40 16 -9262 24636 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object cba31048-121f-4809-a1ca-b361c15f7c76 true Relay false 52a7c8f5-ebf3-465f-b047-5cc9b0649c43 1 -9282 25003 40 16 -9262 25011 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects bfb0ca9a-3809-4c3f-bc7b-e5a4ed892909 c344e708-6261-40b6-9c1b-511e7f599e65 f5c80cb3-2331-4236-a4e9-29f011aa2408 cba31048-121f-4809-a1ca-b361c15f7c76 4 2aee8a4d-7144-4a3d-b986-47d52cbe1c41 Group c75b62fa-0a33-4da7-a5bd-03fd0068fd93 Length Measure the length of a curve. true a265c7f4-5a15-4b8e-8333-ea56d088de18 true Length Length -9314 24367 104 28 -9264 24381 Curve to measure 771d51ca-8415-440b-8bcc-8f76ff84cfe9 true Curve Curve false f74c430d-ed74-462d-8f45-a21df852c02c 1 -9312 24369 33 24 -9294 24381 Curve length 3f2dee01-ebed-4ecc-8d9a-cf8c8f386f33 true Length Length false 0 -9249 24369 37 24 -9229 24381 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 767263a1-1b23-48dd-a005-17d0f2ae92c6 true Multiplication Multiplication -9303 24305 82 44 -9272 24327 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication c330e492-6830-4e5d-8e81-4e8d87e22ee8 true A A true 3f2dee01-ebed-4ecc-8d9a-cf8c8f386f33 1 -9301 24307 14 20 -9292.5 24317 Second item for multiplication 6d1ae28b-1ba1-44c1-a954-292ed5e1bcda true B B true 4123e666-aaea-4abb-a2dc-959403a78040 1 -9301 24327 14 20 -9292.5 24337 Result of multiplication 8ec909b8-ac70-40f2-985c-aa362547ce12 true Result Result false 0 -9257 24307 34 40 -9238.5 24327 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 2f47d230-2571-418d-80cf-6e8e5d31cb9e true Relay false 52a7c8f5-ebf3-465f-b047-5cc9b0649c43 1 -9282 23334 40 16 -9262 23342 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values 4c639447-1097-40fd-aaf4-5f66d6735968 true Number Slider false 0 -10254 24637 150 20 -10253.15 24637.28 6 1 0 256 0 0 13.114764 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 19e4d4f5-b4c6-47ac-b2de-2dc048d892ae true Multiplication Multiplication -10212 24652 82 44 -10181 24674 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication feeb2a07-7824-41c9-9439-185415dbd07e true A A true f109cbbc-8240-46dd-b41c-e591ae1f4961 1 -10210 24654 14 20 -10201.5 24664 Second item for multiplication 0fbc25ab-85f6-4691-b919-d59b83eebf41 true B B true 4c639447-1097-40fd-aaf4-5f66d6735968 1 -10210 24674 14 20 -10201.5 24684 Result of multiplication 202652b1-b262-48b4-9c0a-8bfef6b70c4f true Result Result false 0 -10166 24654 34 40 -10147.5 24674 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 0cf1fffb-593e-4a7c-8010-e3d13314dcba true Expression Expression -10268 25366 194 28 -10168 25380 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 7deb7413-fafe-4104-bde2-aec3a80af375 true Variable O O true f109cbbc-8240-46dd-b41c-e591ae1f4961 1 -10266 25368 14 24 -10257.5 25380 Result of expression 4148a129-2c01-4f55-8939-e310a77ca08c true Result false 0 -10085 25368 9 24 -10079 25380 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values ac1918ea-52ea-4b61-8cf0-6af20695bb26 true Panel false 1 4148a129-2c01-4f55-8939-e310a77ca08c 1 Double click to edit panel content… -10263 25084 214 271 0 0 0 -10262.73 25084.72 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 60389f86-e487-48bb-87ab-a0952ba905c1 true Relay false ac1918ea-52ea-4b61-8cf0-6af20695bb26 1 -10191 25046 40 16 -10171 25054 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object f109cbbc-8240-46dd-b41c-e591ae1f4961 true Relay false f90295eb-99e8-4a80-a13c-999e99532b9e 1 -10191 25413 40 16 -10171 25421 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 0cf1fffb-593e-4a7c-8010-e3d13314dcba ac1918ea-52ea-4b61-8cf0-6af20695bb26 60389f86-e487-48bb-87ab-a0952ba905c1 f109cbbc-8240-46dd-b41c-e591ae1f4961 4 3ec709d0-dd1a-40ac-8f1e-e9cc9451e984 Group 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph e1a1a5d7-0656-4bdd-b6cc-e4dfdf98c291 true Quick Graph Quick Graph false 0 f109cbbc-8240-46dd-b41c-e591ae1f4961 1 -10240 24882 150 150 -10239.63 24882.9 -1 aaa665bd-fd6e-4ccb-8d2c-c5b33072125d Curvature Evaluate the curvature of a curve at a specified parameter. true 6ca5822e-4069-49d7-aa8b-eef76e54ce95 true Curvature Curvature -10227 26041 137 64 -10157 26073 Curve to evaluate a0558302-ff30-4030-a81f-0fc30cffd69e true Curve Curve false 992b7fbd-ed14-4b15-b66a-137b35a55879 1 -10225 26043 53 30 -10197 26058 Parameter on curve domain to evaluate 41013118-0d72-4cd7-a08e-9ffe749e399d true Parameter Parameter false 05618346-2792-4b1f-ba4e-3bbaa12dde3f 1 -10225 26073 53 30 -10197 26088 Point on curve at {t} ba67eeec-9f79-49eb-bed3-091051cee62d true Point Point false 0 -10142 26043 50 20 -10115.5 26053 Curvature vector at {t} c8bf61be-95d1-40e4-894d-a5a202cb674c true Curvature Curvature false 0 -10142 26063 50 20 -10115.5 26073 Curvature circle at {t} d5661948-a11c-4cec-9937-41f81a0320a7 true Curvature Curvature false 0 -10142 26083 50 20 -10115.5 26093 2162e72e-72fc-4bf8-9459-d4d82fa8aa14 Divide Curve Divide a curve into equal length segments true 015ffee2-3b22-47cb-a911-fccec397f86f true Divide Curve Divide Curve -10225 26124 125 64 -10175 26156 Curve to divide b0194119-2295-4052-98b1-a7e01ab3bb72 true Curve Curve false 992b7fbd-ed14-4b15-b66a-137b35a55879 1 -10223 26126 33 20 -10205 26136 Number of segments efc6b2ba-abc3-4fb3-8bb1-b7c050d1311f true Count Count false 6b922c6a-cc70-4092-ae71-ade7d284d862 1 -10223 26146 33 20 -10205 26156 1 1 {0} 10 Split segments at kinks 029b5d81-76eb-4fc7-9741-8a1ed7c00839 true Kinks Kinks false 0 -10223 26166 33 20 -10205 26176 1 1 {0} false 1 Division points eb1bf5c8-aa76-4a6f-b4f0-a9293e4ecf36 true Points Points false 0 -10160 26126 58 20 -10129.5 26136 1 Tangent vectors at division points cbfcc2ce-e958-44ba-a909-e311f818925d true Tangents Tangents false 0 -10160 26146 58 20 -10129.5 26156 1 Parameter values at division points 05618346-2792-4b1f-ba4e-3bbaa12dde3f true Parameters Parameters false 0 -10160 26166 58 20 -10129.5 26176 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 992b7fbd-ed14-4b15-b66a-137b35a55879 true 2 Curve Curve false cdd90f4c-6009-4e4b-b819-b49fd5b7e2d2 1 -10181 26258 53 24 -10145.19 26270.44 23862862-049a-40be-b558-2418aacbd916 Deconstruct Arc Retrieve the base plane, radius and angle domain of an arc. true d478e4fa-fa9f-4892-a286-2ea4285b715c true Deconstruct Arc Deconstruct Arc -10223 25960 114 64 -10183 25992 Arc or Circle to deconstruct 529321f5-1f11-489b-bde5-980b331ff94c true Arc Arc false d5661948-a11c-4cec-9937-41f81a0320a7 1 -10221 25962 23 60 -10208 25992 Base plane of arc or circle ebbcc1c9-9782-490f-b861-f72ed96729d6 true Base Plane Base Plane false 0 -10168 25962 57 20 -10138 25972 Radius of arc or circle 92506450-ea70-4a81-8ae0-f6c8094774d9 true Radius Radius false 0 -10168 25982 57 20 -10138 25992 Angle domain (in radians) of arc dc51218e-8e72-4e12-9e5c-8aa4b1fb9298 true Angle Angle false 0 -10168 26002 57 20 -10138 26012 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true 25f8ef07-5890-4a6e-93df-c40fa14cb9a7 true One Over X One Over X -10217 25472 100 28 -10168 25486 Input value 0907ef5d-0c17-44bf-8e8b-f104a422d4ce true Value Value false caa84d96-f583-479a-81ee-60953020e5a6 1 -10215 25474 32 24 -10197.5 25486 Output value 3bdafce4-196f-4d7b-b30d-a7ce3a37fa0b true Result Result false 0 -10153 25474 34 24 -10134.5 25486 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object f90295eb-99e8-4a80-a13c-999e99532b9e true Relay false 3bdafce4-196f-4d7b-b30d-a7ce3a37fa0b 1 -10191 25445 40 16 -10171 25453 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true b9f31a57-9540-4917-a8e6-18eaa5a83db2 true Expression Expression -10268 25838 194 28 -10168 25852 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 693d53c7-17ed-4ad9-bc1a-b646dfb1a469 true Variable O O true caa84d96-f583-479a-81ee-60953020e5a6 1 -10266 25840 14 24 -10257.5 25852 Result of expression 0f9473f9-3907-4069-90d8-80c33e68e5da true Result false 0 -10085 25840 9 24 -10079 25852 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 284b7739-106a-47b8-9c88-030d60937329 true Panel false 1 0f9473f9-3907-4069-90d8-80c33e68e5da 1 Double click to edit panel content… -10261 25560 185 271 0 0 0 -10260.59 25560.23 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 21551a57-e773-47f0-8220-7a72f7a746fa true Relay false 284b7739-106a-47b8-9c88-030d60937329 1 -10189 25518 40 16 -10169 25526 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object caa84d96-f583-479a-81ee-60953020e5a6 true Relay false 92506450-ea70-4a81-8ae0-f6c8094774d9 1 -10188 25885 40 16 -10168 25893 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 6b922c6a-cc70-4092-ae71-ade7d284d862 true Number Number false 0 -10178 26215 50 24 -10153.19 26227.02 1 1 {0} 1024 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 4387f3a9-9141-47dd-995a-483dc9b6b025 true Curve Curve false 3cc701d3-0f0b-42c8-8f89-b9159cf05c65 1 -10189 24492 50 24 -10164.91 24504.47 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 5 255;255;255;255 A group of Grasshopper objects 4387f3a9-9141-47dd-995a-483dc9b6b025 1 58a42877-bb06-47a3-a4f1-d98c96f28c1e Group f3230ecb-3631-4d6f-86f2-ef4b2ed37f45 Replace Nulls Replace nulls or invalid data with other data true 16209b7e-55fa-4b5c-92ba-5c1d1bd41dec true Replace Nulls Replace Nulls -9330 23274 136 44 -9244 23296 1 Items to test for null 27556072-7810-4253-95ac-a0ba6246d89a true Items Items false 2f47d230-2571-418d-80cf-6e8e5d31cb9e 1 -9328 23276 69 20 -9292 23286 1 Items to replace nulls with c09fe23f-1639-4f4d-8b43-a225c92e5359 true Replacements Replacements false 0 -9328 23296 69 20 -9292 23306 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 0 1 List without any nulls 09ead44e-3fee-4284-b1f9-0b3fc0c0b2dd true Items Items false 0 -9229 23276 33 20 -9211 23286 Number of items replaced 2f9274a6-5855-4a80-97e5-8fc8c21c15bd true Count Count false 0 -9229 23296 33 20 -9211 23306 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 819a2a51-f04e-4192-8c95-3fa161e7540c true Relay false 1f0b4fda-010b-4918-919d-181f286a2fc8 1 -9282 23190 40 16 -9262 23198 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 1538eb2e-e611-4f4c-b500-1df33502eff4 true Quick Graph Quick Graph false 0 dfe1b26e-b4a6-4bce-9c77-643d58fbc36d 1 -9337 22990 150 150 -9336.172 22990.44 -1 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object dfe1b26e-b4a6-4bce-9c77-643d58fbc36d true Relay false 819a2a51-f04e-4192-8c95-3fa161e7540c 1 -9282 23153 40 16 -9262 23161 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 85605b21-aef8-4f87-a515-10b78df9f610 true Expression Expression -9359 22902 194 28 -9259 22916 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable eac606dc-e7ae-44c7-8698-c340e65fc3d4 true Variable O O true 99f0b699-2a90-441f-b737-27aea108d33f 1 -9357 22904 14 24 -9348.5 22916 Result of expression e74ff48b-f7d1-4120-8791-22e0c92d9eaa true Result false 0 -9176 22904 9 24 -9170 22916 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 20f05475-7967-45b4-a63c-62a20fa8690b true Panel false 0 e74ff48b-f7d1-4120-8791-22e0c92d9eaa 1 Double click to edit panel content… -9362 22620 200 271 0 0 0 -9361.759 22620.42 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 8435fa98-38c7-45cb-8f29-4044d9a40f9c true Relay false 20f05475-7967-45b4-a63c-62a20fa8690b 1 -9282 22601 40 16 -9262 22609 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 99f0b699-2a90-441f-b737-27aea108d33f true Relay false dfe1b26e-b4a6-4bce-9c77-643d58fbc36d 1 -9282 22949 40 16 -9262 22957 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 85605b21-aef8-4f87-a515-10b78df9f610 20f05475-7967-45b4-a63c-62a20fa8690b 8435fa98-38c7-45cb-8f29-4044d9a40f9c 99f0b699-2a90-441f-b737-27aea108d33f 1538eb2e-e611-4f4c-b500-1df33502eff4 dfe1b26e-b4a6-4bce-9c77-643d58fbc36d 6 9c3ae34b-8ebd-4141-9330-6abe5cacb47e Group ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true dedce1f8-5c0b-4ad6-99a0-98dfdf02d373 true Multiplication Multiplication -9303 22368 82 44 -9272 22390 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication fb76361f-9802-4efe-a549-190dfc32faf7 true A A true 173a0b59-1c04-43db-a331-89a053d6fb16 1 -9301 22370 14 20 -9292.5 22380 Second item for multiplication 54804baa-4ab7-42ec-b403-8723283b336f true B B true 3f2dee01-ebed-4ecc-8d9a-cf8c8f386f33 1 -9301 22390 14 20 -9292.5 22400 Result of multiplication 8810b4a0-9f31-4eff-9363-f5750e8310f7 true Result Result false 0 -9257 22370 34 40 -9238.5 22390 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 462c2450-1262-4529-888f-d92602268217 true Curve Curve false 816b0be2-357e-40d1-b261-7bcf4333e662 1 -9287 21868 50 24 -9262 21880.39 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 256f333c-199f-4c9d-b6cd-360ee8130e4f true Relay false f3cab11a-e97b-45af-bb37-68a6b816c734 1 -9282 21745 40 16 -9262 21753 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true eddced5d-470a-4523-8c85-9ce09e106bd4 true Expression Expression -9359 21374 194 28 -9259 21388 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 9197b1a6-760b-4e7f-923d-eba765a405a0 true Variable O O true 825638de-2ab4-4773-89a4-115a142aa39f 1 -9357 21376 14 24 -9348.5 21388 Result of expression 8d0e2be3-5c98-4d4c-9625-864c4959fba8 true Result false 0 -9176 21376 9 24 -9170 21388 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 45c4a4df-7a0e-4c17-b315-c34cbb7fd959 true Panel false 0 8d0e2be3-5c98-4d4c-9625-864c4959fba8 1 Double click to edit panel content… -9359 21091 194 271 0 0 0 -9358.955 21091.98 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 2b4023ed-6e0a-4afe-bb9f-ecbb8113662b true Relay false 45c4a4df-7a0e-4c17-b315-c34cbb7fd959 1 -9282 21073 40 16 -9262 21081 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 825638de-2ab4-4773-89a4-115a142aa39f true Relay false 9c31c3ff-030e-4897-be1c-7b749e625208 1 -9282 21419 40 16 -9262 21427 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects eddced5d-470a-4523-8c85-9ce09e106bd4 45c4a4df-7a0e-4c17-b315-c34cbb7fd959 2b4023ed-6e0a-4afe-bb9f-ecbb8113662b 825638de-2ab4-4773-89a4-115a142aa39f 4 6ea1cc49-480d-44f3-bdb9-b3d927b1fe3d Group 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true ea922329-8796-47c0-8451-a5fd2cfbccad true Create Material Create Material -9334 18668 144 104 -9250 18720 Colour of the diffuse channel ff2afb80-c055-4530-b681-e12e8104f8e8 true Diffuse Diffuse false 0 -9332 18670 67 20 -9297 18680 1 1 {0} 255;207;207;207 Colour of the specular highlight a1968900-574e-46db-8477-c8f44233d954 true Specular Specular false 0 -9332 18690 67 20 -9297 18700 1 1 {0} 255;0;255;255 Emissive colour of the material cb40aba3-d010-4685-8b1d-b02313591af0 true Emission Emission false 0 -9332 18710 67 20 -9297 18720 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent f77f2cea-60f1-4b6c-9be6-ac5acd2e48aa true Transparency Transparency false 0 -9332 18730 67 20 -9297 18740 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 410a773b-e79d-4e73-aa7a-1bd1ff103953 true Shine Shine false 0 -9332 18750 67 20 -9297 18760 1 1 {0} 100 Resulting material 1882a458-7bc9-464e-ab90-6570ace22ba3 true Material Material false 0 -9235 18670 43 100 -9212 18720 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true c3ad1e45-4f5f-4553-acdd-858c3a4e0f41 true Custom Preview Custom Preview -9303 18605 82 44 -9235 18627 Geometry to preview true 341d4481-a90d-483c-b6ad-ec07a553025e true Geometry Geometry false c53594c6-7765-4edd-9143-ad1c5bb118d4 1 -9301 18607 51 20 -9274 18617 The material override d1d50497-9e30-467c-82a8-2d37ab921c91 true Material Material false 1882a458-7bc9-464e-ab90-6570ace22ba3 1 -9301 18627 51 20 -9274 18637 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object cdd90f4c-6009-4e4b-b819-b49fd5b7e2d2 true Relay false 86fc2dd8-2814-43bc-8aa6-998446a8e239 1 -9867 26440 40 16 -9847 26448 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers cbcfa187-ddf9-492d-89f7-d6ae71b5a4f0 true Digit Scroller false 0 12 11 256.0 -9387 26013 250 20 -9386.257 26013.69 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph f9b56b83-0126-4319-84c8-15c7ed86f831 true Quick Graph Quick Graph false 0 a0e42231-baad-49ec-8d9d-db63cae0997a 1 -9337 20263 150 150 -9336.654 20263.89 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 6d63313d-1e96-406b-8a05-33d5bb3f5c37 true Quick Graph Quick Graph false 0 5b8ecad7-0817-49e5-a03b-180d457fcf0e 1 -9337 20094 150 150 -9336.654 20094.89 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 191575b6-d18b-4bc4-a751-a71c3b22572c true Quick Graph Quick Graph false 0 78bccc4f-3dcd-4487-90dc-8628c3281cac 1 -9337 19927 150 150 -9336.654 19927.37 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 7ed372a1-ff72-4050-8dd8-49ddee401c65 true Quick Graph Quick Graph false 0 8441d80e-f14e-491c-b590-87e03b599ef3 1 -9337 19758 150 150 -9336.654 19758.37 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph d7cb1ca0-8832-4010-880c-2d2f4b9341bd true Quick Graph Quick Graph false 0 74acaba9-e83d-432c-8e4e-866392c3d1e5 1 -9337 19588 150 150 -9336.896 19588.64 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 629a4827-371f-4b44-b590-45c23fc93574 true Quick Graph Quick Graph false 0 619c36d7-96b7-4633-b71d-7acbefc65eab 1 -9337 19418 150 150 -9336.896 19418.87 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 9b66414e-8eef-4712-bc33-6df624d3786e true Quick Graph Quick Graph false 0 55aea648-06bd-4947-b96a-51225473ea2f 1 -9337 19250 150 150 -9336.896 19250.12 -1 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 23098590-a917-496b-a7fa-ab7fc86169d0 2 Curve Curve false 2c62e475-50df-4188-ac09-8024f05be84e 1 3935 7644 53 24 3971.334 7656.086 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 931b1327-0f41-42e6-b1eb-00468f33d6c8 Number Number false 11a52911-ee4b-4695-868f-5bf4c41520d5 1 3937 7685 50 24 3962.804 7697.199 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 193ea5e5-0782-4606-a720-e997392040f4 1 4da276be-89da-408b-8dc4-821f992e6a62 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 1984de07-4690-4d15-83ab-ca5ac7ba39c7 1 91242ca9-e406-47a2-893f-f68e4deecb2e Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 273aa071-b046-4c31-896d-6c812d648444 1 1984de07-4690-4d15-83ab-ca5ac7ba39c7 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 756d8dbe-1ffd-4616-8e58-093e60e39611 1 273aa071-b046-4c31-896d-6c812d648444 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 476b90b0-0b4b-464e-94a2-2d01dbc41bf2 1 756d8dbe-1ffd-4616-8e58-093e60e39611 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects a42c0e6d-d4e1-4d09-ac9c-1e0bddea41b9 1 476b90b0-0b4b-464e-94a2-2d01dbc41bf2 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects d6ce5ae8-4b3b-4dee-8441-52ee778febf0 1 a42c0e6d-d4e1-4d09-ac9c-1e0bddea41b9 Group d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 76a0ad3e-8ee8-48f0-beef-2e1ce81228b5 Curve Curve false 0 5286 11523 50 24 5311.573 11535.24 1 1 {0;0;0;0} -1 pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P 00000000-0000-0000-0000-000000000000 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 76a0ad3e-8ee8-48f0-beef-2e1ce81228b5 1 d6ce5ae8-4b3b-4dee-8441-52ee778febf0 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 18152b12-b828-4c2a-b1ed-119c6a76e5c2 1 14ccdfe7-041f-4ff7-b930-7473962ac27d Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 7c1a2569-b9d6-4ee6-a14e-357b1b128d42 38622d6e-1a4b-49a2-ae95-c398f56cbef4 b064badb-c636-4cdd-99a1-829a032c305b d6fb4439-46d5-46c4-ba9d-a5562dc2f6ca a75d9ecd-3e05-45c9-aba0-df2ef4da6b9d 61a87901-43ff-4f47-aae0-451d19806d9b 51a9cb88-e33f-4a56-bc83-f540c2b28374 241405ca-83b3-4478-94fc-fcce1c927c67 f7a69548-1486-4abf-af34-435335bc55eb ad832235-2f45-429e-88b4-71fdd54d3135 14ccdfe7-041f-4ff7-b930-7473962ac27d d6ce5ae8-4b3b-4dee-8441-52ee778febf0 f475cbf4-4912-4270-bdd1-e0af1c26774e c771f533-a7d0-49a4-810b-6fe9255e3606 a97ebc4a-f948-4909-84db-94415087a878 45abe2ff-547c-476b-b92c-442e9f8c2fd5 bcb09746-9364-4bb4-bb5b-e2a04f08d1be 4b2607bf-a75f-4c8b-9b95-c39f41cdbc26 c1c641d7-d0f1-405c-b761-3ea255249986 23c5e705-57eb-4fce-8c17-2e061dc9cfe5 20 0e6380b4-7593-419b-a389-4238dbe87854 Group dd8134c0-109b-4012-92be-51d843edfff7 Duplicate Data Duplicate data a predefined number of times. true 7c1a2569-b9d6-4ee6-a14e-357b1b128d42 Duplicate Data Duplicate Data 5257 12479 104 64 5316 12511 1 Data to duplicate fff9df0c-7db1-4b04-9eb1-231750f60f7b Data Data false e949ef6c-d2c4-49e0-a5f8-37fe80c18e0d 1 5259 12481 42 20 5281.5 12491 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 1 Number of duplicates 8cf64f52-7958-4603-b385-a825c3a9fecb Number Number false 9c84bca9-ef0d-4bf5-b059-22ce236bc0a6 1 5259 12501 42 20 5281.5 12511 1 1 {0} 500 Retain list order 80fc484f-7c2e-47b3-8811-b79bf1a5825b Order Order false 0 5259 12521 42 20 5281.5 12531 1 1 {0} true 1 Duplicated data 3f8340e1-b3b8-448e-9652-bf8fbacbec8f Data Data false 0 5331 12481 28 60 5346.5 12511 fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 DotNET VB Script (LEGACY) A VB.NET scriptable component true 38622d6e-1a4b-49a2-ae95-c398f56cbef4 DotNET VB Script (LEGACY) Turtle 0 Dim i As Integer Dim dir As New On3dVector(1, 0, 0) Dim pos As New On3dVector(0, 0, 0) Dim axis As New On3dVector(0, 0, 1) Dim pnts As New List(Of On3dVector) pnts.Add(pos) For i = 0 To Forward.Count() - 1 Dim P As New On3dVector dir.Rotate(Left(i), axis) P = dir * Forward(i) + pnts(i) pnts.Add(P) Next Points = pnts 5251 10881 116 44 5312 10903 1 1 2 Script Variable Forward Script Variable Left 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 true true Forward Left true true 2 Print, Reflect and Error streams Output parameter Points 3ede854e-c753-40eb-84cb-b48008f14fd4 8ec86459-bf01-4409-baee-174d0d2b13d0 true true Output Points false false 1 false Script Variable Forward 4097e575-065f-4c44-a6fb-71d3f8f23f7b Forward Forward true 1 true 3f8340e1-b3b8-448e-9652-bf8fbacbec8f 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 5253 10883 44 20 5276.5 10893 1 false Script Variable Left ce339337-8bf4-4cac-8461-6a6388cd026d Left Left true 1 true 895f8826-b56c-4051-9545-303c137982a1 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 5253 10903 44 20 5276.5 10913 Print, Reflect and Error streams f1df2877-63c0-4dd8-b3b2-917f2ab94a89 Output Output false 0 5327 10883 38 20 5347.5 10893 Output parameter Points d76ccfee-b053-4018-805a-96fc615c3b31 Points Points false 0 5327 10903 38 20 5347.5 10913 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true b064badb-c636-4cdd-99a1-829a032c305b Point Point false d76ccfee-b053-4018-805a-96fc615c3b31 1 5285 10499 50 24 5310.434 10511.72 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true d6fb4439-46d5-46c4-ba9d-a5562dc2f6ca Series Series 5262 11945 101 64 5312 11977 First number in the series 5d992285-1126-40d0-a669-64b2a37cfb74 Start Start false 0 5264 11947 33 20 5282 11957 1 1 {0} 0 Step size for each successive number a17f7499-85a8-4f6e-abb6-80641b772d17 Step Step false d60c0706-6576-4328-88c6-6acf5a73cfda 1 5264 11967 33 20 5282 11977 1 1 {0} 1 Number of values in the series 1f9ecacd-af54-46c5-87cb-f1eac63cc77e Count Count false 9c84bca9-ef0d-4bf5-b059-22ce236bc0a6 1 5264 11987 33 20 5282 11997 1 Series of numbers 4ab68874-69b8-4210-9a0a-3bfb3f089209 Series Series false 0 5327 11947 34 60 5345.5 11977 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values a75d9ecd-3e05-45c9-aba0-df2ef4da6b9d Number Slider false 0 5236 12658 150 20 5236.253 12658.59 0 1 0 65536 0 0 256 a4cd2751-414d-42ec-8916-476ebf62d7fe Radians Convert an angle specified in degrees to radians true 61a87901-43ff-4f47-aae0-451d19806d9b Radians Radians 5249 12147 120 28 5310 12161 Angle in degrees c2a44359-b5bd-4ff5-8f94-ca15caee4048 Degrees Degrees false 51a9cb88-e33f-4a56-bc83-f540c2b28374 1 5251 12149 44 24 5274.5 12161 Angle in radians 7767e6c0-533d-4b36-bba0-57a1f0bb96ca Radians Radians false 0 5325 12149 42 24 5347.5 12161 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 51a9cb88-e33f-4a56-bc83-f540c2b28374 Digit Scroller Digit Scroller false 0 12 Digit Scroller 1 0.00000020000 5185 12450 251 20 5185.965 12450.13 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true 241405ca-83b3-4478-94fc-fcce1c927c67 One Over X One Over X 5259 12561 100 28 5308 12575 Input value 6a884dc0-67f7-4605-b020-88147913f370 Value Value false 9c84bca9-ef0d-4bf5-b059-22ce236bc0a6 1 5261 12563 32 24 5278.5 12575 Output value e949ef6c-d2c4-49e0-a5f8-37fe80c18e0d Result Result false 0 5323 12563 34 24 5341.5 12575 75eb156d-d023-42f9-a85e-2f2456b8bcce Interpolate (t) Create an interpolated curve through a set of points with tangents. true ad832235-2f45-429e-88b4-71fdd54d3135 Interpolate (t) Interpolate (t) 5237 10393 144 84 5323 10435 1 Interpolation points 76147943-253f-46c2-904e-9a45bc7a7f3a Vertices Vertices false b064badb-c636-4cdd-99a1-829a032c305b 1 5239 10395 69 20 5275 10405 Tangent at start of curve 5079fc52-adc1-40db-8eb4-1d876df99c72 Tangent Start Tangent Start false 0 5239 10415 69 20 5275 10425 1 1 {0} 0.0625 0 0 Tangent at end of curve 67b03f3f-285d-4093-a766-dbf54ad03a2e Tangent End Tangent End false 0 5239 10435 69 20 5275 10445 1 1 {0} 0 0 0 Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 792c2deb-c300-44c0-ba4a-3b6213a66eeb KnotStyle KnotStyle false 0 5239 10455 69 20 5275 10465 1 1 {0} 2 Resulting nurbs curve b52e4cd9-6c86-4db6-87fa-0fd33fe04b37 Curve Curve false 0 5338 10395 41 26 5360 10408.33 Curve length a0752a31-f8c4-4a50-8f2c-3fc388f86d8c Length Length false 0 5338 10421 41 27 5360 10435 Curve domain 897dd66f-87f4-4b2e-b7e7-9590a4da7bcb Domain Domain false 0 5338 10448 41 27 5360 10461.67 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 7c1a2569-b9d6-4ee6-a14e-357b1b128d42 38622d6e-1a4b-49a2-ae95-c398f56cbef4 b064badb-c636-4cdd-99a1-829a032c305b d6fb4439-46d5-46c4-ba9d-a5562dc2f6ca a75d9ecd-3e05-45c9-aba0-df2ef4da6b9d 61a87901-43ff-4f47-aae0-451d19806d9b 51a9cb88-e33f-4a56-bc83-f540c2b28374 241405ca-83b3-4478-94fc-fcce1c927c67 8eed39b3-b8cf-4370-bb00-d39f6814dd82 d2b47dc8-db36-4d13-9e45-ddc2a7e3e223 eaacf0ad-c530-4f55-9eac-32e6212af5cb 17682d40-32c3-40f2-9c75-1551cfde5a93 f047974c-a1ba-466a-901b-34bae44155f3 13 f7a69548-1486-4abf-af34-435335bc55eb Group 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true b7dff3c8-6998-400a-86c1-93344a002f5b Evaluate Length Evaluate Length 5237 10225 144 64 5311 10257 Curve to evaluate 17620e95-7ed9-4444-b60f-6edd779e3693 Curve Curve false b52e4cd9-6c86-4db6-87fa-0fd33fe04b37 1 5239 10227 57 20 5269 10237 Length factor for curve evaluation d0da99e2-f16e-4f85-9e61-5a35a639a63a Length Length false 0 5239 10247 57 20 5269 10257 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) aa9bc4d5-a582-41d8-b58e-8160d3584df7 Normalized Normalized false 0 5239 10267 57 20 5269 10277 1 1 {0} true Point at the specified length d8917e23-b076-460f-9c72-2f6194ec485e Point Point false 0 5326 10227 53 20 5354 10237 Tangent vector at the specified length b7513de9-97d9-4344-85de-5bfde9a3e0c3 Tangent Tangent false 0 5326 10247 53 20 5354 10257 Curve parameter at the specified length b640caea-ede9-418a-92e1-5e498162f5b1 Parameter Parameter false 0 5326 10267 53 20 5354 10277 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true 7fba6d47-f327-4abc-8332-cb072b40575d Mirror Mirror 5240 10163 138 44 5308 10185 Base geometry 0d844b23-c00d-4bb0-b440-d430d6ce520e Geometry Geometry true b52e4cd9-6c86-4db6-87fa-0fd33fe04b37 1 5242 10165 51 20 5269 10175 Mirror plane 824f194f-c0df-43e5-8dd9-5734f42e4188 Plane Plane false 054fc075-e277-49c6-ab32-542c5f250daf 1 5242 10185 51 20 5269 10195 1 1 {0} 0 0 0 0 1 0 0 0 1 Mirrored geometry 90967d42-a4d2-4321-899c-10600fd256e8 Geometry Geometry false 0 5323 10165 53 20 5351 10175 Transformation data 0891eb83-5feb-4452-8f86-b00dfa66a265 Transform Transform false 0 5323 10185 53 20 5351 10195 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true dd328417-f2f6-43dd-9c6a-57016cf47aa9 Line SDL Line SDL 5256 10309 106 64 5320 10341 Line start point bac9085e-5737-4d1e-acaa-47008c652520 Start Start false d8917e23-b076-460f-9c72-2f6194ec485e 1 5258 10311 47 20 5283 10321 Line tangent (direction) eaa4b30b-96f5-4b5c-bb54-856afa48a347 Direction Direction false b7513de9-97d9-4344-85de-5bfde9a3e0c3 1 5258 10331 47 20 5283 10341 1 1 {0} 0 0 1 Line length 7278caa8-d2ac-4669-81d4-550972b38702 Length Length false 0 5258 10351 47 20 5283 10361 1 1 {0} 1 Line segment 054fc075-e277-49c6-ab32-542c5f250daf Line Line false 0 5335 10311 25 60 5349 10341 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true 8415c0ad-da98-495f-a1d8-521fbb923339 Join Curves Join Curves 5250 10101 118 44 5313 10123 1 Curves to join 59b3375e-4f37-4088-83d4-9b56a83fed78 Curves Curves false b52e4cd9-6c86-4db6-87fa-0fd33fe04b37 90967d42-a4d2-4321-899c-10600fd256e8 2 5252 10103 46 20 5276.5 10113 Preserve direction of input curves dcd9ebed-0392-44ce-81e0-0ae4750068ca Preserve Preserve false 0 5252 10123 46 20 5276.5 10133 1 1 {0} false 1 Joined curves and individual curves that could not be joined. aa6236b0-703c-4536-af36-24a0d5e6779f Curves Curves false 0 5328 10103 38 40 5348.5 10123 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 1f60e8a7-f805-4f31-bb22-c674c43c383a Evaluate Length Evaluate Length 5237 10017 144 64 5311 10049 Curve to evaluate c5b6dada-1bcd-4c82-8639-658309939f4b Curve Curve false aa6236b0-703c-4536-af36-24a0d5e6779f 1 5239 10019 57 20 5269 10029 Length factor for curve evaluation 25cc8cb7-16c0-461d-a151-d2e5f310d5e6 Length Length false 0 5239 10039 57 20 5269 10049 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 1745f072-df68-4e4a-805a-e5c121d5b633 Normalized Normalized false 0 5239 10059 57 20 5269 10069 1 1 {0} true Point at the specified length 512a8aa9-3d42-4a41-b558-a11d91f1a1f3 Point Point false 0 5326 10019 53 20 5354 10029 Tangent vector at the specified length 3b6ac5d5-f035-4712-bc93-09a515da55e8 Tangent Tangent false 0 5326 10039 53 20 5354 10049 Curve parameter at the specified length 83a588c3-71ae-46be-94c1-d7a785c2bfdd Parameter Parameter false 0 5326 10059 53 20 5354 10069 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 2c3a92e7-c8ad-4456-8ea8-baa10fb82052 Rotate Rotate 5240 9934 138 64 5308 9966 Base geometry 6bf2ddf2-b162-424d-b5fc-9387f65609ac Geometry Geometry true aa6236b0-703c-4536-af36-24a0d5e6779f 1 5242 9936 51 20 5269 9946 Rotation angle in radians 5b8be62b-7bad-4135-80a1-757a1b56bf01 Angle Angle false 0 false 5242 9956 51 20 5269 9966 1 1 {0} 3.1415926535897931 Rotation plane 16dcfec3-8c32-4a10-b77c-c39626a84122 Plane Plane false 512a8aa9-3d42-4a41-b558-a11d91f1a1f3 1 5242 9976 51 20 5269 9986 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 538505bc-6ba8-4791-a902-5a5b861777c4 Geometry Geometry false 0 5323 9936 53 30 5351 9951 Transformation data 64b3ff33-3122-4dc2-92bd-d34dc93337ba Transform Transform false 0 5323 9966 53 30 5351 9981 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true 74acc247-99e9-4190-8610-0d03e087bd07 Join Curves Join Curves 5250 9871 118 44 5313 9893 1 Curves to join 5d24399a-6fa0-41ce-bb56-5ac2c663a2f1 Curves Curves false aa6236b0-703c-4536-af36-24a0d5e6779f 538505bc-6ba8-4791-a902-5a5b861777c4 2 5252 9873 46 20 5276.5 9883 Preserve direction of input curves 224c198c-7c56-41bf-900f-510b9f139d46 Preserve Preserve false 0 5252 9893 46 20 5276.5 9903 1 1 {0} false 1 Joined curves and individual curves that could not be joined. e41d3792-a430-4a4a-a1f0-5df665a3bd54 Curves Curves false 0 5328 9873 38 40 5348.5 9893 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects ad832235-2f45-429e-88b4-71fdd54d3135 b7dff3c8-6998-400a-86c1-93344a002f5b 7fba6d47-f327-4abc-8332-cb072b40575d dd328417-f2f6-43dd-9c6a-57016cf47aa9 8415c0ad-da98-495f-a1d8-521fbb923339 1f60e8a7-f805-4f31-bb22-c674c43c383a 2c3a92e7-c8ad-4456-8ea8-baa10fb82052 74acc247-99e9-4190-8610-0d03e087bd07 30c9dafa-4bde-47dc-a1a3-deb5aa41fec3 9 18152b12-b828-4c2a-b1ed-119c6a76e5c2 Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 78edcb05-0f20-4b9a-9e9a-568887d9bff3 Panel false 0 75ff8eaf-db18-4de7-8968-47178e8313b3 1 Double click to edit panel content… 5237 12028 145 20 0 0 0 5237.993 12028.89 255;255;255;255 false false true false false true d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 30c9dafa-4bde-47dc-a1a3-deb5aa41fec3 Curve Curve false e41d3792-a430-4a4a-a1f0-5df665a3bd54 1 5286 9829 50 24 5311.573 9841.791 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 30c9dafa-4bde-47dc-a1a3-deb5aa41fec3 1 198e96ba-1b71-4ced-b09d-05b7949855ab Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values d2b47dc8-db36-4d13-9e45-ddc2a7e3e223 Panel false 0 0 0.35721403168191375/4/4 5091 12203 439 20 0 0 0 5091.554 12203.04 255;255;255;255 false false true false false true 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true cba88513-3c9b-4cd4-adc0-c0681dfb069a Evaluate Length Evaluate Length 5237 9745 144 64 5311 9777 Curve to evaluate 4861b0dd-51ef-4afa-b22b-0cf10ccb1e35 Curve Curve false e41d3792-a430-4a4a-a1f0-5df665a3bd54 1 5239 9747 57 20 5269 9757 Length factor for curve evaluation 13eb5a9d-5a2e-4346-9615-733b7b48be17 Length Length false 0 5239 9767 57 20 5269 9777 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 754c2c31-1cbd-46e4-b7db-232bd3f14762 Normalized Normalized false 0 5239 9787 57 20 5269 9797 1 1 {0} true Point at the specified length 476b255c-0016-4095-bc4e-2d9f36c738b9 Point Point false 0 5326 9747 53 20 5354 9757 Tangent vector at the specified length febfeeff-3efd-4fe6-8b8e-2a282b2341ff Tangent Tangent false 0 5326 9767 53 20 5354 9777 Curve parameter at the specified length 20b6cc0a-3939-4842-82ce-2e37db901f4f Parameter Parameter false 0 5326 9787 53 20 5354 9797 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 12a2eb83-f215-42e0-a529-0af180f3b656 Expression Expression 5212 9523 194 28 5312 9537 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 5013553a-bc7b-4cfd-b1b8-fada60024eb4 Variable O O true 53641a7c-715b-48db-883b-5a572404288d 1 5214 9525 14 24 5222.5 9537 Result of expression 103d5571-e337-4d1e-881f-940b82c4818d Result false 0 5395 9525 9 24 5401 9537 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 32ee87fd-809e-4d75-b802-d8cf14460d4a Deconstruct Deconstruct 5243 9657 132 64 5290 9689 Input point dd6407ef-febb-495d-8a08-6655425f1f45 Point Point false 476b255c-0016-4095-bc4e-2d9f36c738b9 1 5245 9659 30 60 5261.5 9689 Point {x} component 53641a7c-715b-48db-883b-5a572404288d X component X component false 0 5305 9659 68 20 5340.5 9669 Point {y} component 3a5ab34b-1f33-4236-afe7-a0d2fc58dbd2 Y component Y component false 0 5305 9679 68 20 5340.5 9689 Point {z} component c3172bee-344f-41e1-b91e-559e4cd5d129 Z component Z component false 0 5305 9699 68 20 5340.5 9709 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 02e70f58-d9ac-421f-9454-279371d479d9 Panel false 0 103d5571-e337-4d1e-881f-940b82c4818d 1 Double click to edit panel content… 5230 9495 160 20 0 0 0 5230.343 9495.369 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true ca5e1db8-8f38-4ca8-a9fd-8ae3bb30cefe Expression Expression 5212 9437 194 28 5312 9451 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 0374c787-e3f9-4194-a08e-f13573da09ef Variable O O true 3a5ab34b-1f33-4236-afe7-a0d2fc58dbd2 1 5214 9439 14 24 5222.5 9451 Result of expression f668507d-d9c8-49e5-9478-17dc55320113 Result false 0 5395 9439 9 24 5401 9451 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values b140a825-f831-4c75-b129-fd2aacab08a2 Panel false 0 f668507d-d9c8-49e5-9478-17dc55320113 1 Double click to edit panel content… 5230 9406 160 20 0 0 0 5230.343 9406.947 255;255;255;255 false false true false false true 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true c4af1fb1-2376-498f-97b1-8227cff3d55b Division Division 5268 9335 82 44 5299 9357 Item to divide (dividend) c76efc86-a2f8-4435-a17e-cd12ba7501cd A A false 02e70f58-d9ac-421f-9454-279371d479d9 1 5270 9337 14 20 5278.5 9347 Item to divide with (divisor) 0559d8af-8941-47d8-ada6-e6e6948a00d4 B B false b140a825-f831-4c75-b129-fd2aacab08a2 1 5270 9357 14 20 5278.5 9367 The result of the Division bf90aafe-093c-41fb-87b2-0cf1f3e35db7 Result Result false 0 5314 9337 34 40 5332.5 9357 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values d9fdc742-0047-44b5-940d-ede4925ef952 Panel false 0 75ff8eaf-db18-4de7-8968-47178e8313b3 1 Double click to edit panel content… 5230 9259 160 20 0 0 0 5230.583 9259.432 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true f603e053-8f5c-4e76-bd7f-e791aa0351ff Expression Expression 5212 9288 194 28 5312 9302 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable fc17d327-894b-4f47-aed4-6eb2707f7c41 Variable O O true bf90aafe-093c-41fb-87b2-0cf1f3e35db7 1 5214 9290 14 24 5222.5 9302 Result of expression 0310c540-2af7-4a34-a45e-24523c378a48 Result false 0 5395 9290 9 24 5401 9302 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 75ff8eaf-db18-4de7-8968-47178e8313b3 Relay false 0310c540-2af7-4a34-a45e-24523c378a48 1 5289 9213 40 16 5309 9221 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true b6174ffb-29ba-4234-a1df-b6fceaa7b08f Addition Addition 5268 9150 82 44 5299 9172 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition 59f2a389-2b18-4bde-bce8-a59fa8cbe61e A A true b140a825-f831-4c75-b129-fd2aacab08a2 1 5270 9152 14 20 5278.5 9162 Second item for addition 4fc583ca-8e51-4577-9609-87c707761e90 B B true 02e70f58-d9ac-421f-9454-279371d479d9 1 5270 9172 14 20 5278.5 9182 Result of addition 23303965-07bd-4979-86aa-8f6ffa2ba0d0 Result Result false 0 5314 9152 34 40 5332.5 9172 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 2a2995c1-9fcd-4d07-93c9-6fa3fb680b84 Division Division 5268 9000 82 44 5299 9022 Item to divide (dividend) 00fa129c-a139-4887-912b-1473e1d76198 A A false be07e18b-ee2b-425f-8717-647d2c0762de 1 5270 9002 14 20 5278.5 9012 Item to divide with (divisor) 080ffc48-4ef7-4e92-b3c0-d698d5552a96 B B false 0 5270 9022 14 20 5278.5 9032 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 The result of the Division 2f7596f4-7e68-4826-a9c2-388d8d15813a Result Result false 0 5314 9002 34 40 5332.5 9022 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true ceb1084b-0f2d-45ad-bde4-528181c70e9e Expression Expression 5212 8952 194 28 5312 8966 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable cf01cba5-9cd6-46a6-80e0-1463b80e2781 Variable O O true 2f7596f4-7e68-4826-a9c2-388d8d15813a 1 5214 8954 14 24 5222.5 8966 Result of expression e7d8e498-8af3-404c-a575-a2ecda9aee09 Result false 0 5395 8954 9 24 5401 8966 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values d75407d2-1b46-4319-b031-d0e0f8889e8c Panel false 0 e7d8e498-8af3-404c-a575-a2ecda9aee09 1 Double click to edit panel content… 5230 8923 160 20 0 0 0 5230.343 8923.289 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values be07e18b-ee2b-425f-8717-647d2c0762de Panel false 0 5566dc5a-b82a-47f9-b97f-83b6a2afee30 1 Double click to edit panel content… 5230 9075 160 20 0 0 0 5230.343 9075.199 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 253ffe5d-009c-4834-aad1-ffdc18d7364f Expression Expression 5212 9103 194 28 5312 9117 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 927c0abc-ae49-4f4e-b0ef-baecd449bf1e Variable O O true 23303965-07bd-4979-86aa-8f6ffa2ba0d0 1 5214 9105 14 24 5222.5 9117 Result of expression 5566dc5a-b82a-47f9-b97f-83b6a2afee30 Result false 0 5395 9105 9 24 5401 9117 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 910470c3-c24c-4e4c-a8a1-7ebf3ef4edb5 Scale Scale 5232 8829 154 64 5316 8861 Base geometry 7b11fa20-33d5-4dce-b35f-aa3a11c68cac Geometry Geometry true 30c9dafa-4bde-47dc-a1a3-deb5aa41fec3 1 5234 8831 67 20 5277 8841 Center of scaling ce4c6a3a-0d63-41a3-a852-5e62e55c30e6 Center Center false 0 5234 8851 67 20 5277 8861 1 1 {0} 0 0 0 Scaling factor a47fcdb3-0e1d-4d67-9b34-8de6f991d5d0 1/X Factor Factor false d75407d2-1b46-4319-b031-d0e0f8889e8c 1 5234 8871 67 20 5277 8881 1 1 {0} 0.5 Scaled geometry 275433f9-6a2b-4190-9934-6142225137c7 Geometry Geometry false 0 5331 8831 53 30 5359 8846 Transformation data 1be6ece1-1913-42e5-aeb1-f9eafd97d3f6 Transform Transform false 0 5331 8861 53 30 5359 8876 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 9d3e2fa0-f2f8-499c-b0d6-aea998d09756 Curve Curve false 275433f9-6a2b-4190-9934-6142225137c7 1 5284 8228 50 24 5309.323 8240.789 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true e4e439d5-2bfe-4a7a-99d5-72e4a4d936b5 Expression Expression 5212 9610 194 28 5312 9624 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable a00b22d7-f3bd-4512-82f8-d652239f3e0a Variable O O true c3172bee-344f-41e1-b91e-559e4cd5d129 1 5214 9612 14 24 5222.5 9624 Result of expression 23eb2366-3f39-4c32-be3d-725aaf7a7361 Result false 0 5395 9612 9 24 5401 9624 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 21745270-0d6d-4a43-af3b-acda9251102d Panel false 0 23eb2366-3f39-4c32-be3d-725aaf7a7361 1 Double click to edit panel content… 5231 9581 160 20 0 0 0 5231.213 9581.145 255;255;255;255 false false true false false true 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 33bc4610-c1e3-4eb2-b168-674aba0039e2 Evaluate Length Evaluate Length 5237 8619 144 64 5311 8651 Curve to evaluate 524a5b1c-0792-4345-ba3a-ee9896e7354e Curve Curve false 275433f9-6a2b-4190-9934-6142225137c7 1 5239 8621 57 20 5269 8631 Length factor for curve evaluation 0013eb0f-d06f-4bd4-8a4a-10028682c9c8 Length Length false 0 5239 8641 57 20 5269 8651 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 4fe73f91-c83b-4c34-a117-4a35be699e60 Normalized Normalized false 0 5239 8661 57 20 5269 8671 1 1 {0} true Point at the specified length e6d8f13d-4b7c-451f-bbc0-0207f1c34c17 Point Point false 0 5326 8621 53 20 5354 8631 Tangent vector at the specified length 64350032-f573-4806-b5bb-a4ee616996e6 Tangent Tangent false 0 5326 8641 53 20 5354 8651 Curve parameter at the specified length e99b3bd5-1f0a-472e-a98c-2e0eb73d893f Parameter Parameter false 0 5326 8661 53 20 5354 8671 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true b83103ca-a33b-468d-9406-a510d64596df Expression Expression 5212 8402 194 28 5312 8416 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 0c2f1e2a-e027-4ac4-af66-2111e39f6da0 Variable O O true 78d30f8e-c0b2-42bc-9aeb-c5f343be8dae 1 5214 8404 14 24 5222.5 8416 Result of expression 5a933785-66e0-44d6-a09c-7e595c2d2aa1 Result false 0 5395 8404 9 24 5401 8416 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true b4671e64-ccc0-47c3-b109-c46ed36fafb3 Deconstruct Deconstruct 5243 8536 132 64 5290 8568 Input point 97f3c419-c4a3-4577-9d24-20609e568565 Point Point false e6d8f13d-4b7c-451f-bbc0-0207f1c34c17 1 5245 8538 30 60 5261.5 8568 Point {x} component 78d30f8e-c0b2-42bc-9aeb-c5f343be8dae X component X component false 0 5305 8538 68 20 5340.5 8548 Point {y} component c3128390-7608-46b1-9517-66ca9cffe634 Y component Y component false 0 5305 8558 68 20 5340.5 8568 Point {z} component b0d8d435-2461-4fbd-8d38-80050cdce28b Z component Z component false 0 5305 8578 68 20 5340.5 8588 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 015d43a6-a11d-4625-9eab-b4277ad14e5d Panel false 0 5a933785-66e0-44d6-a09c-7e595c2d2aa1 1 Double click to edit panel content… 5230 8368 160 20 0 0 0 5230.593 8368.713 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true b3333154-b6fd-47c4-9adb-cca60594fda8 Expression Expression 5212 8316 194 28 5312 8330 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 12ef0ab8-41a7-4bb1-8d5f-9e56152e925e Variable O O true c3128390-7608-46b1-9517-66ca9cffe634 1 5214 8318 14 24 5222.5 8330 Result of expression 48d0679e-cf36-4b3e-8847-216ac5484c9c Result false 0 5395 8318 9 24 5401 8330 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values b9b4ea3a-3781-44e3-bec8-372e076bfc97 Panel false 0 48d0679e-cf36-4b3e-8847-216ac5484c9c 1 Double click to edit panel content… 5230 8283 160 20 0 0 0 5230.604 8283.084 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 9152e93e-fc06-473a-87de-817dd123dc69 Expression Expression 5212 8488 194 28 5312 8502 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 7303b1a0-75f7-49a7-a218-0335bb7d5799 Variable O O true b0d8d435-2461-4fbd-8d38-80050cdce28b 1 5214 8490 14 24 5222.5 8502 Result of expression db5a999f-c7f8-4ddd-8d2b-d1a6230efdca Result false 0 5395 8490 9 24 5401 8502 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values bd9b3b2e-928a-4927-9e9b-f7ec41b3fa13 Panel false 0 db5a999f-c7f8-4ddd-8d2b-d1a6230efdca 1 Double click to edit panel content… 5230 8454 160 20 0 0 0 5230.343 8454.926 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values eaacf0ad-c530-4f55-9eac-32e6212af5cb Panel false 0 0 1 16 0.35721403168191375 1 256 0.0014014999884235925 1 4096 5128 12285 379 104 0 0 0 5128.999 12285.51 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values c1c641d7-d0f1-405c-b761-3ea255249986 Panel false 0 978ac2a1-15af-4112-aebf-6a7013372f13 1 Double click to edit panel content… 5142 10541 337 276 0 0 0 5142.533 10541.32 255;255;255;255 true true true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 23c5e705-57eb-4fce-8c17-2e061dc9cfe5 Expression Expression 5212 10833 194 28 5312 10847 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable c88d5785-39f1-40d8-907c-cceccaa12e7d Variable O O true d76ccfee-b053-4018-805a-96fc615c3b31 1 5214 10835 14 24 5222.5 10847 Result of expression 978ac2a1-15af-4112-aebf-6a7013372f13 Result false 0 5395 10835 9 24 5401 10847 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 9c84bca9-ef0d-4bf5-b059-22ce236bc0a6 Number Number false 11a52911-ee4b-4695-868f-5bf4c41520d5 1 5286 12616 50 24 5311.304 12628.88 cae9fe53-6d63-44ed-9d6d-13180fbf6f89 1c9de8a1-315f-4c56-af06-8f69fee80a7a Curve Graph Mapper Remap values with a custom graph using input curves. true f475cbf4-4912-4270-bdd1-e0af1c26774e true Curve Graph Mapper Curve Graph Mapper 5140 11065 160 224 5208 11177 1 One or multiple graph curves to graph map values with 4bbef879-5014-4917-bb12-c957ef1216e5 true Curves Curves false 119cac2e-ad81-4b4f-82bf-658327a1f665 1 5142 11067 51 27 5169 11080.75 Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary 2c075fec-3c1b-45bb-a7f3-4db5ed3059dd true Rectangle Rectangle false de798cf4-0469-4658-a897-ee331c0ff449 1 5142 11094 51 28 5169 11108.25 1 1 {0;0;0;0;0} 0 0 0 1 0 0 0 1 0 0 1 0 1 1 Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis e9f8c544-3089-4e3a-a15e-f42d51af7a21 true Values Values false 4ab68874-69b8-4210-9a0a-3bfb3f089209 1 5142 11122 51 27 5169 11135.75 Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used) a88114c0-20f5-456a-95ec-91c00f74018a true X Axis X Axis true 0 5142 11149 51 28 5169 11163.25 Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used) 2d148370-d380-4fad-a69a-63288f00f142 true Y Axis Y Axis true 0 5142 11177 51 27 5169 11190.75 Flip the graphs X Axis from the bottom of the graph to the top of the graph 470a10c3-e8dc-45df-8dd3-ac2dba0d0ec1 true Flip Flip false 0 5142 11204 51 28 5169 11218.25 1 1 {0} false Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle 1ea64a6f-ac09-40a6-a7cf-f952d25bbb8b true Snap Snap false 0 5142 11232 51 27 5169 11245.75 1 1 {0} false Size of the graph labels 31835ed9-8e54-421b-81d1-ac25ffcf5d04 true Text Size Text Size false 0 5142 11259 51 28 5169 11273.25 1 1 {0} 0.015625 1 Resulting graph mapped values, mapped on the Y Axis 34f758c7-302d-4cdf-875c-cc3a4b3c5d6d true Mapped Mapped false 0 5223 11067 75 20 5262 11077 1 The graph curves inside the boundary of the graph 193adcf7-59a1-476e-a0c5-553a181cbc6b true Graph Curves Graph Curves false 0 5223 11087 75 20 5262 11097 1 The points on the graph curves where the X Axis input values intersected true 88b2e482-62d9-4cef-8db8-1c227eabb7e4 true Graph Points Graph Points false 0 5223 11107 75 20 5262 11117 1 The lines from the X Axis input values to the graph curves true 99ca6c79-e629-407b-bfb0-5b9fcf0b06e9 true Value Lines Value Lines false 0 5223 11127 75 20 5262 11137 1 The points plotted on the X Axis which represent the input values true 02412fbb-cb43-4504-96bb-c8220c62e926 true Value Points Value Points false 0 5223 11147 75 20 5262 11157 1 The lines from the graph curves to the Y Axis graph mapped values true 83a9a945-c7ee-4694-bf9d-ef964424b843 true Mapped Lines Mapped Lines false 0 5223 11167 75 20 5262 11177 1 The points mapped on the Y Axis which represent the graph mapped values true d5873f3c-3f56-44c0-8f1e-194203e1bad7 true Mapped Points Mapped Points false 0 5223 11187 75 20 5262 11197 The graph boundary background as a surface 79e40ecd-3a86-469d-8bce-93e89f6e25c4 true Boundary Boundary false 0 5223 11207 75 20 5262 11217 1 The graph labels as curve outlines 7a5e01c6-89ca-4640-972f-4f393497480a true Labels Labels false 0 5223 11227 75 20 5262 11237 1 True for input values outside of the X Axis domain bounds False for input values inside of the X Axis domain bounds 8568fd35-1bdc-4eb2-ad91-3997e0dde575 true Out Of Bounds Out Of Bounds false 0 5223 11247 75 20 5262 11257 1 True for input values on the X Axis which intersect a graph curve False for input values on the X Axis which do not intersect a graph curve d9fffb18-60fe-4d06-8308-92ba60902d94 true Intersected Intersected false 0 5223 11267 75 20 5262 11277 11bbd48b-bb0a-4f1b-8167-fa297590390d End Points Extract the end points of a curve. true c771f533-a7d0-49a4-810b-6fe9255e3606 End Points End Points 5261 11425 96 44 5311 11447 Curve to evaluate d1940baa-c354-4d55-90fd-d6ef4ac31488 Curve Curve false 119cac2e-ad81-4b4f-82bf-658327a1f665 1 5263 11427 33 40 5281 11447 Curve start point 9f6a519f-6fb2-4ac5-baeb-cc78fbf221e6 Start Start false 0 5326 11427 29 20 5342 11437 Curve end point 930a0e69-3097-472a-aa3d-b8e81f21601f End End false 0 5326 11447 29 20 5342 11457 575660b1-8c79-4b8d-9222-7ab4a6ddb359 Rectangle 2Pt Create a rectangle from a base plane and two points true a97ebc4a-f948-4909-84db-94415087a878 Rectangle 2Pt Rectangle 2Pt 5246 11323 126 84 5304 11365 Rectangle base plane 3ef6c0d3-2435-4768-a399-1cc67b751e34 Plane Plane false 0 5248 11325 41 20 5270 11335 1 1 {0} 0 0 0 1 0 0 0 1 0 First corner point. 3729b3bf-4d01-4604-a4ba-1f3a6ed38af6 Point A Point A false 9f6a519f-6fb2-4ac5-baeb-cc78fbf221e6 1 5248 11345 41 20 5270 11355 1 1 {0;0;0;0;0} 0 0 0 Second corner point. bfd762dc-9a5c-4d14-a239-290f7604de2c Point B Point B false 930a0e69-3097-472a-aa3d-b8e81f21601f 1 5248 11365 41 20 5270 11375 1 1 {0;0;0;0;0} 1 1 0 Rectangle corner fillet radius 4c04570c-c17a-40ee-aeda-04c1fa898c18 Radius Radius false 0 5248 11385 41 20 5270 11395 1 1 {0} 0 Rectangle defined by P, A and B de798cf4-0469-4658-a897-ee331c0ff449 Rectangle Rectangle false 0 5319 11325 51 40 5346 11345 Length of rectangle curve 61c645db-11bf-4ed3-9372-bb58724c0bd3 Length Length false 0 5319 11365 51 40 5346 11385 310f9597-267e-4471-a7d7-048725557528 08bdcae0-d034-48dd-a145-24a9fcf3d3ff GraphMapper+ External Graph mapper You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode. true 45abe2ff-547c-476b-b92c-442e9f8c2fd5 GraphMapper+ GraphMapper+ false 5300 11185 126 104 5367 11237 External curve as a graph 7f21ad81-7c52-4a10-9000-6dcaa25c189f Curve Curve false 119cac2e-ad81-4b4f-82bf-658327a1f665 1 5302 11187 50 20 5328.5 11197 Optional Rectangle boundary. If omitted the curve's would be landed 8f61bd01-bdec-4c9f-b33e-5f9f205f34fa Boundary Boundary true de798cf4-0469-4658-a897-ee331c0ff449 1 5302 11207 50 20 5328.5 11217 1 List of input numbers b383b0ac-4d57-4a46-af82-76d905bdb973 Numbers Numbers false 4ab68874-69b8-4210-9a0a-3bfb3f089209 1 5302 11227 50 20 5328.5 11237 1 9 {0} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 (Optional) Input Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode 278357c6-dcf9-4f6f-9a21-02fb32710529 Input Input true 3f2abc03-b291-447e-9605-4d1f6f977688 1 5302 11247 50 20 5328.5 11257 (Optional) Output Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode 402e1906-32cb-4776-a310-d8673e749dda Output Output true 3f2abc03-b291-447e-9605-4d1f6f977688 1 5302 11267 50 20 5328.5 11277 1 Output Numbers b6fb3191-c396-4624-b1d5-b0cc77ac0b42 Number Number false 0 5382 11187 42 100 5404.5 11237 eeafc956-268e-461d-8e73-ee05c6f72c01 Stream Filter Filters a collection of input streams true bcb09746-9364-4bb4-bb5b-e2a04f08d1be Stream Filter Stream Filter 5275 10982 89 64 5320 11014 3 2e3ab970-8545-46bb-836c-1c11e5610bce 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Index of Gate stream a88536e5-b903-488f-aedd-7f7ef14e523d Gate Gate false 4b2607bf-a75f-4c8b-9b95-c39f41cdbc26 1 5277 10984 28 20 5292.5 10994 1 1 {0} 0 2 Input stream at index 0 4ebd0332-74c7-4592-9393-52cf665fdb89 false Stream 0 0 true 34f758c7-302d-4cdf-875c-cc3a4b3c5d6d 1 5277 11004 28 20 5292.5 11014 2 Input stream at index 1 6bd60dd8-7332-4761-92dd-462b8f20ea42 false Stream 1 1 true b6fb3191-c396-4624-b1d5-b0cc77ac0b42 1 5277 11024 28 20 5292.5 11034 2 Filtered stream 895f8826-b56c-4051-9545-303c137982a1 false Stream S(1) false 0 5335 10984 27 60 5350 11014 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values 4b2607bf-a75f-4c8b-9b95-c39f41cdbc26 Number Slider false 0 5240 10952 150 20 5240.963 10952.92 0 1 0 1 0 0 1 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 17682d40-32c3-40f2-9c75-1551cfde5a93 Panel false 1 36d62001-6c16-4062-86a1-36d069cf8ca4 1 Double click to edit panel content… 5221 11611 185 271 0 0 0 5221.033 11611.94 255;255;255;255 true true true false false true f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true 8eed39b3-b8cf-4370-bb00-d39f6814dd82 Bounds Bounds 5250 11564 122 28 5314 11578 1 Numbers to include in Bounds f2158c28-1465-4301-8e5c-e91e83bf5e50 Numbers Numbers false 4ab68874-69b8-4210-9a0a-3bfb3f089209 1 5252 11566 47 24 5277 11578 Numeric Domain between the lowest and highest numbers in {N} 3f2abc03-b291-447e-9605-4d1f6f977688 Domain Domain false 0 5329 11566 41 24 5351 11578 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true f047974c-a1ba-466a-901b-34bae44155f3 true Expression Expression 5212 11900 194 28 5312 11914 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 77468d0c-8981-4e5d-87fe-f8a4d62f3de7 true Variable O O true 4ab68874-69b8-4210-9a0a-3bfb3f089209 1 5214 11902 14 24 5222.5 11914 Result of expression 36d62001-6c16-4062-86a1-36d069cf8ca4 true Result false 0 5395 11902 9 24 5401 11914 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:0.00000000000000000000}",O) true 30c4ac7c-f35d-4173-b361-906a0d951d01 Expression Expression 5126 12099 367 28 5312 12113 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable b69cee41-44ee-41f6-b31f-d21f21ab90ac Variable O O true 7767e6c0-533d-4b36-bba0-57a1f0bb96ca 1 5128 12101 14 24 5136.5 12113 Result of expression 0a5477a8-2ab6-4c0d-9969-cfc36106d584 Result false 0 5482 12101 9 24 5488 12113 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values d60c0706-6576-4328-88c6-6acf5a73cfda Panel false 0 0a5477a8-2ab6-4c0d-9969-cfc36106d584 1 Double click to edit panel content… 5221 12069 179 20 0 0 0 5221.173 12069.11 255;255;255;255 false false true false false true c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 9d3e2fa0-f2f8-499c-b0d6-aea998d09756 1 193ea5e5-0782-4606-a720-e997392040f4 Group 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true eab2df7a-df01-4295-a49f-d16252df0110 Scale Scale 5232 8744 154 64 5316 8776 Base geometry f69d5c24-d16f-4b6c-8e4f-672fc093a800 Geometry Geometry true b064badb-c636-4cdd-99a1-829a032c305b 1 5234 8746 67 20 5277 8756 Center of scaling 7467932c-074f-40ea-934d-79162167e1b0 Center Center false 0 5234 8766 67 20 5277 8776 1 1 {0} 0 0 0 Scaling factor 294584e7-dd7a-4042-845d-ea793e1e21e0 1/X Factor Factor false d75407d2-1b46-4319-b031-d0e0f8889e8c 1 5234 8786 67 20 5277 8796 1 1 {0} 0.5 Scaled geometry c0b4014a-1c32-4f4a-a1ee-bc34da763026 Geometry Geometry false 0 5331 8746 53 30 5359 8761 Transformation data ad56922f-2b56-45f9-b1b6-c57db589df33 Transform Transform false 0 5331 8776 53 30 5359 8791 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 4f9e4afc-4d5d-4f05-953b-9de13f68867e Point Point false c0b4014a-1c32-4f4a-a1ee-bc34da763026 1 5285 8706 50 24 5310.323 8718.959 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true 62725a2d-d086-480b-b59c-20d70e010c2a Mirror Mirror 5237 8086 138 44 5305 8108 Base geometry db6d572a-4389-4d7e-82e6-f0374d24cc57 Geometry Geometry true 9d3e2fa0-f2f8-499c-b0d6-aea998d09756 1 5239 8088 51 20 5266 8098 Mirror plane 33895c29-38c4-46dc-a677-477f990354c7 Plane Plane false 0 5239 8108 51 20 5266 8118 1 1 {0} 0 0 0 0 1 0 0 0 1 Mirrored geometry 73841cb5-53f4-4bde-aaed-d9a80260eaf6 Geometry Geometry false 0 5320 8088 53 20 5348 8098 Transformation data 223464e5-387b-41ff-a8aa-dfc376693399 Transform Transform false 0 5320 8108 53 20 5348 8118 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true c85b89ea-2c35-443e-b453-7c323d985667 Curve Curve false 7beac234-bc4b-4126-b4fc-44d942a3b3f0 1 5284 7979 50 24 5309.573 7991.978 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 119cac2e-ad81-4b4f-82bf-658327a1f665 Relay false c3dbaa5a-af2e-4cd2-834d-46ef90bfb446 1 5291 11492 40 16 5311 11500 11bbd48b-bb0a-4f1b-8167-fa297590390d End Points Extract the end points of a curve. true 5c657d50-874b-4b7c-bfa6-977edd05eb73 End Points End Points 4160 8576 96 44 4210 8598 Curve to evaluate ce027fcd-f068-4100-b412-b43344583358 Curve Curve false ee1588dc-b2af-4e66-a506-1886255dafb2 1 4162 8578 33 40 4180 8598 Curve start point fbb9d619-814f-4d51-a686-1d03902aec60 Start Start false 0 4225 8578 29 20 4241 8588 Curve end point 0484dc1c-e5c3-4e1c-84c0-199df4c8cae5 End End false 0 4225 8598 29 20 4241 8608 575660b1-8c79-4b8d-9222-7ab4a6ddb359 Rectangle 2Pt Create a rectangle from a base plane and two points true 61dcab79-7c48-48f0-be5e-255a897defa7 Rectangle 2Pt Rectangle 2Pt 4143 8473 126 84 4201 8515 Rectangle base plane 7b25d7a2-09c5-47ec-b6d2-cf584b999298 Plane Plane false 0 4145 8475 41 20 4167 8485 1 1 {0} 0 0 0 1 0 0 0 1 0 First corner point. 0b83c0d3-4571-4021-b870-b22cc3a5f312 Point A Point A false fbb9d619-814f-4d51-a686-1d03902aec60 1 4145 8495 41 20 4167 8505 1 1 {0} 0 0 0 Second corner point. db3e7170-14e8-4c92-b7d5-343b8df03aaa Point B Point B false 0484dc1c-e5c3-4e1c-84c0-199df4c8cae5 1 4145 8515 41 20 4167 8525 1 1 {0} 10 5 0 Rectangle corner fillet radius 6a763226-f5bf-4b50-b784-ecb2f913f963 Radius Radius false 0 4145 8535 41 20 4167 8545 1 1 {0} 0 Rectangle defined by P, A and B 54913e5c-b27b-4b2a-8224-9d03901945ac Rectangle Rectangle false 0 4216 8475 51 40 4243 8495 Length of rectangle curve d1bad1e8-c34b-418b-8e10-572c6fe01fbd Length Length false 0 4216 8515 51 40 4243 8535 e5c33a79-53d5-4f2b-9a97-d3d45c780edc Deconstuct Rectangle Retrieve the base plane and side intervals of a rectangle. true d000dafa-a884-41aa-84bd-f226d0fb2242 Deconstuct Rectangle Deconstuct Rectangle 4135 8390 142 64 4203 8422 Rectangle to deconstruct 19fdbe94-8cec-4f4c-b2aa-9c211b2025e9 Rectangle Rectangle false 54913e5c-b27b-4b2a-8224-9d03901945ac 1 4137 8392 51 60 4164 8422 Base plane of rectangle e6f44af8-9aa5-4773-a41d-f7d3e56299d2 Base Plane Base Plane false 0 4218 8392 57 20 4248 8402 Size interval along base plane X axis ada48293-7fe1-4243-ba73-a5e1913b61ae X Interval X Interval false 0 4218 8412 57 20 4248 8422 Size interval along base plane Y axis 11d33d32-3d1f-4224-9573-4aea87ab73a8 Y Interval Y Interval false 0 4218 8432 57 20 4248 8442 825ea536-aebb-41e9-af32-8baeb2ecb590 Deconstruct Domain Deconstruct a numeric domain into its component parts. true 142cb1d0-5029-47d3-9abe-9ca2baa774ad Deconstruct Domain Deconstruct Domain 4155 8263 104 44 4213 8285 Base domain b6a62bb3-0c1a-490e-8b7f-57434238a89c Domain Domain false 11d33d32-3d1f-4224-9573-4aea87ab73a8 1 4157 8265 41 40 4179 8285 Start of domain feb3d1a4-1436-4b3b-a572-50404bb4f9d3 Start Start false 0 4228 8265 29 20 4244 8275 End of domain 82b4448e-74b7-47e0-9587-187939136951 End End false 0 4228 8285 29 20 4244 8295 825ea536-aebb-41e9-af32-8baeb2ecb590 Deconstruct Domain Deconstruct a numeric domain into its component parts. true 956f7fc4-3e83-4d8e-98bc-de840fc19dd1 Deconstruct Domain Deconstruct Domain 4155 8325 104 44 4213 8347 Base domain 834636d2-74cd-4014-bf2c-e63e0c6c75ce Domain Domain false ada48293-7fe1-4243-ba73-a5e1913b61ae 1 4157 8327 41 40 4179 8347 Start of domain a8521fc5-d8df-4b63-9067-05b4bef00a5a Start Start false 0 4228 8327 29 20 4244 8337 End of domain a511784d-a55d-4fc7-ba41-496ff3fd5ce8 End End false 0 4228 8347 29 20 4244 8357 290f418a-65ee-406a-a9d0-35699815b512 Scale NU Scale an object with non-uniform factors. true 415e798a-75a5-4f4c-aafa-a1488e56b992 Scale NU Scale NU 4126 8140 154 104 4210 8192 Base geometry 0fad42ec-939c-4eb7-b839-69c72d946aec Geometry Geometry true 86fc2dd8-2814-43bc-8aa6-998446a8e239 1 4128 8142 67 20 4171 8152 Base plane 48bb0fe5-9324-4e46-9a4c-fb419731fa11 Plane Plane false 0 4128 8162 67 20 4171 8172 1 1 {0} 0 0 0 1 0 0 0 1 0 Scaling factor in {x} direction acd534f4-d9f1-4c8d-acc9-c03dc0df2d23 1/X Scale X Scale X false a511784d-a55d-4fc7-ba41-496ff3fd5ce8 1 4128 8182 67 20 4171 8192 1 1 {0} 1 Scaling factor in {y} direction 3f3fede3-e52d-4191-b84f-b7321ce0ccfc 1/X Scale Y Scale Y false 82b4448e-74b7-47e0-9587-187939136951 1 4128 8202 67 20 4171 8212 1 1 {0} 1 Scaling factor in {z} direction 513dcf67-d2f0-4a9d-be12-73ad63c6a810 Scale Z Scale Z false 0 4128 8222 67 20 4171 8232 1 1 {0} 1 Scaled geometry b2ec8e4e-81a6-49df-a84d-3ab783d83c68 Geometry Geometry false 0 4225 8142 53 50 4253 8167 Transformation data da0d7b16-ec63-485a-b633-4760f0c80f72 Transform Transform false 0 4225 8192 53 50 4253 8217 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 5c657d50-874b-4b7c-bfa6-977edd05eb73 61dcab79-7c48-48f0-be5e-255a897defa7 d000dafa-a884-41aa-84bd-f226d0fb2242 142cb1d0-5029-47d3-9abe-9ca2baa774ad 956f7fc4-3e83-4d8e-98bc-de840fc19dd1 415e798a-75a5-4f4c-aafa-a1488e56b992 ee1588dc-b2af-4e66-a506-1886255dafb2 a1876440-004e-43ee-9d8c-ba5831da3460 8 ad86dfb9-c51a-4a53-8134-845d176844e8 Group d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true ee1588dc-b2af-4e66-a506-1886255dafb2 Curve Curve false 86fc2dd8-2814-43bc-8aa6-998446a8e239 1 4193 8645 50 24 4218.758 8657.02 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true a1876440-004e-43ee-9d8c-ba5831da3460 Curve Curve false b2ec8e4e-81a6-49df-a84d-3ab783d83c68 1 4185 8116 50 24 4210 8128.89 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 6c39495f-795f-4f71-a0a0-33936dcdd541 Curve Curve false 86fc2dd8-2814-43bc-8aa6-998446a8e239 1 4833 11724 50 24 4858.573 11736.39 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true c3dbaa5a-af2e-4cd2-834d-46ef90bfb446 Curve Curve false 545386d9-ace5-461b-b7bf-af2d91c7c627 1 4833 11542 50 24 4858.669 11554.67 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 48ccf8eb-f98b-4b00-a1ab-4ec3179cce72 Scale Scale 4781 11583 154 64 4865 11615 Base geometry a0c722de-2a53-458e-b4a1-8cab4386fd33 Geometry Geometry true 6c39495f-795f-4f71-a0a0-33936dcdd541 1 4783 11585 67 20 4826 11595 Center of scaling b6e033f2-06f8-401e-85df-e9085a18a6d4 Center Center false 0 4783 11605 67 20 4826 11615 1 1 {0} 0 0 0 Scaling factor e058e124-1e02-45ad-871b-f0a0c0ba988b 2^X Factor Factor false 533dea91-bbd7-49dd-9058-482d72ea2499 1 4783 11625 67 20 4826 11635 1 1 {0} 1 Scaled geometry 545386d9-ace5-461b-b7bf-af2d91c7c627 Geometry Geometry false 0 4880 11585 53 30 4908 11600 Transformation data 966e1a5b-60d7-4d1f-8d16-52a3372755d0 Transform Transform false 0 4880 11615 53 30 4908 11630 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 6c39495f-795f-4f71-a0a0-33936dcdd541 c3dbaa5a-af2e-4cd2-834d-46ef90bfb446 48ccf8eb-f98b-4b00-a1ab-4ec3179cce72 27899f96-8899-44d3-a06c-50d23c4c5623 1a284eb8-9013-421a-b964-9344bb79dd7c 533dea91-bbd7-49dd-9058-482d72ea2499 9f2b8fbc-da80-49ce-be5e-1c21353c1388 7 9f1b02d7-b7b9-4414-8d5f-04f7eea4d11a Group e9eb1dcf-92f6-4d4d-84ae-96222d60f56b Move Translate (move) an object along a vector. true 83cd24a5-9dca-42f9-9595-2944c134e6f1 Move Move 5237 8022 138 44 5305 8044 Base geometry eec7180d-d201-4e2c-bc72-7746cbdf66ee Geometry Geometry true 9d3e2fa0-f2f8-499c-b0d6-aea998d09756 1 5239 8024 51 20 5266 8034 Translation vector 4210c6ee-3dba-4e7c-9987-169a94a0dac6 Motion Motion false 0 5239 8044 51 20 5266 8054 1 1 {0} 0 1 0 Translated geometry 7beac234-bc4b-4126-b4fc-44d942a3b3f0 Geometry Geometry false 0 5320 8024 53 20 5348 8034 Transformation data a9e489c0-f5eb-4770-9cb4-3a4ad7cadeda Transform Transform false 0 5320 8044 53 20 5348 8054 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 1a284eb8-9013-421a-b964-9344bb79dd7c Digit Scroller false 0 12 2 30.9312132004 4733 11704 250 20 4733.969 11704.03 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 533dea91-bbd7-49dd-9058-482d72ea2499 Panel false 0 0 30.93121320041889709 4787 11667 144 20 0 0 0 4787.136 11667.38 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values ba1a1a80-2ca7-4a73-8c0f-0ec9ae1d1d34 Panel false 0 0 0.0000000748925500000001421 3667 11226 270 20 0 0 0 3667.602 11226.88 255;255;255;255 false false true false false true dd17d442-3776-40b3-ad5b-5e188b56bd4c Relative Differences Compute relative differences for a list of data true 04f6dd45-a05e-4255-b431-1cf39447f2cb Relative Differences Relative Differences 4246 1495 128 28 4299 1509 1 List of data to operate on (numbers or points or vectors allowed) 8faedc3a-55c1-4a31-a7d2-d6c458cfebec Values Values false d4204f84-391f-45d9-b27d-4db0c38c8965 1 4248 1497 36 24 4267.5 1509 1 Differences between consecutive items f99ca82c-9c00-48e9-8c1a-2d37b681a8c0 Differenced Differenced false 0 4314 1497 58 24 4344.5 1509 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object bad1c978-837c-473b-b4f0-a58dfe6f997e Relay false f99ca82c-9c00-48e9-8c1a-2d37b681a8c0 1 4290 1461 40 16 4310 1469 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object d4204f84-391f-45d9-b27d-4db0c38c8965 Relay false ff2db1c1-6c13-43aa-8303-844eb49d3ae6 1 4290 1543 40 16 4310 1551 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 4836c153-f996-4137-982e-b59f019e6830 Relay false c61c2f63-af12-47bf-ac8f-3ed53b4c2ca9 1 4288 6334 40 16 4308 6342 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 8a2d2bc3-4a52-4743-b71a-fe728e225613 Relay false b81ec812-8ec8-4429-a6a9-685744f02fd4 1 4288 5433 40 16 4308 5441 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 76cb75e1-43cf-4e78-ae62-734915746e29 Relay false b81ec812-8ec8-4429-a6a9-685744f02fd4 1 4288 3458 40 16 4308 3466 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 7719845b-c4fb-40bb-aebe-71f18acb63b2 Line SDL Line SDL 4247 785 122 64 4327 817 Line start point baf5d8bf-5ab6-42c9-9a80-0a1d649ed7e1 Start Start false 61036b5a-8186-48eb-b8e1-970dd55c24f4 1 4249 787 63 20 4290 797 Line tangent (direction) d786e8b9-3e18-4971-bb0a-831bb60335d4 Direction Direction false ed9b8f84-205b-4c77-9d51-bd3196eb98a9 1 4249 807 63 20 4290 817 1 1 {0} 0 0 1 Line length ba2cdd92-54cb-442d-8f21-a8e3cf1f9fac ABS(X) Length Length false 10b0d55a-a9b1-453a-bc7d-e912f93c21c3 1 4249 827 63 20 4290 837 1 1 {0} 1 Line segment 576ac5dd-f1ae-451c-9e0e-3eafb1029af2 Line Line false 0 4342 787 25 60 4356 817 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object ed9b8f84-205b-4c77-9d51-bd3196eb98a9 Relay false 64fde29a-f76c-4fc1-b003-229851718aab 1 4288 867 40 16 4308 875 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values 20e239d4-cb33-4204-a2c2-5343e1abd3b3 Number Slider false 0 4236 1016 150 20 4236.223 1016.699 6 1 0 1 0 0 0.01573 2fcc2743-8339-4cdf-a046-a1f17439191d Remap Numbers Remap numbers into a new numeric domain true 4e2c6cf1-0fe3-48fd-ba3e-c18ad88efb7d Remap Numbers Remap Numbers 4250 1149 115 64 4305 1181 Value to remap d53305ef-d0c3-4ff6-a9b4-1541859b2105 Value Value false ae4cbbf6-df8f-41a7-a4be-fcc0b37593f8 1 4252 1151 38 20 4272.5 1161 Source domain 5b80ab5d-a5d9-4d38-8801-92352509f4a5 Source Source false a8a54385-53a1-465f-a2cf-86d5a3a868d0 1 4252 1171 38 20 4272.5 1181 1 1 {0} 0 1 Target domain f2d143b2-dc71-48a4-8d97-529b2fc801b2 Target Target false 0 4252 1191 38 20 4272.5 1201 1 1 {0} -1 1 Remapped number 8e7542bd-201e-46d9-b49e-a6548c8510dd Mapped Mapped false 0 4320 1151 43 30 4343 1166 Remapped and clipped number e52895c1-9fe6-4b5b-9452-be7674464509 Clipped Clipped false 0 4320 1181 43 30 4343 1196 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true b6b23334-d964-49d1-8bf0-e6c862f69bf1 Bounds Bounds 4247 1232 122 28 4311 1246 1 Numbers to include in Bounds d9272089-f878-4ddb-8eba-593fa2aeb7d6 Numbers Numbers false ae4cbbf6-df8f-41a7-a4be-fcc0b37593f8 1 4249 1234 47 24 4274 1246 Numeric Domain between the lowest and highest numbers in {N} a8a54385-53a1-465f-a2cf-86d5a3a868d0 Domain Domain false 0 4326 1234 41 24 4348 1246 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects f51f5f2d-941f-41ef-b98f-20f88c0f615c afc9108c-9db9-441a-9c43-d667d1c32b78 58b4763e-c14f-475c-bea3-43146b32e6bd 569a059d-e90a-4cb8-86b1-26bffb26bfcb 80033146-5b4f-404e-b6dc-65dc753db8a1 145eea6c-da47-45fb-84e7-715c62530022 22307018-81e5-47cd-acd7-460831a3214c 4e2c6cf1-0fe3-48fd-ba3e-c18ad88efb7d b6b23334-d964-49d1-8bf0-e6c862f69bf1 c3830b7d-0858-410d-89db-9af833da8bf5 10b0d55a-a9b1-453a-bc7d-e912f93c21c3 ae4cbbf6-df8f-41a7-a4be-fcc0b37593f8 20e239d4-cb33-4204-a2c2-5343e1abd3b3 e1a9b758-7cee-4396-b62f-58ea93311af9 14 e0a23baf-b2b5-496b-8de7-e4c471e49cc9 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object ae4cbbf6-df8f-41a7-a4be-fcc0b37593f8 Relay false bad1c978-837c-473b-b4f0-a58dfe6f997e 1 4288 1277 40 16 4308 1285 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 10b0d55a-a9b1-453a-bc7d-e912f93c21c3 Relay false ff316368-b604-4f3b-a02f-b3c6f3b43d11 1 4288 910 40 16 4308 918 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true e1a9b758-7cee-4396-b62f-58ea93311af9 Multiplication Multiplication 4267 949 82 44 4298 971 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication 6bb0dcbd-0c83-4582-9136-1d0384a24a55 A A true 0b02aa34-a613-4cd2-a8bb-71f5fd93a9af 1 4269 951 14 20 4277.5 961 Second item for multiplication 49c227ac-5ab2-42f0-b43e-4c0c84aec382 B B true 20e239d4-cb33-4204-a2c2-5343e1abd3b3 1 4269 971 14 20 4277.5 981 Result of multiplication ff316368-b604-4f3b-a02f-b3c6f3b43d11 Result Result false 0 4313 951 34 40 4331.5 971 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true d619928d-8087-4f94-9a55-02fd5b30666e Multiplication Multiplication 4267 1050 82 44 4298 1072 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication d9ed3ee2-b214-45f8-a76d-6fa18a27f6ba A A true 8e7542bd-201e-46d9-b49e-a6548c8510dd 1 4269 1052 14 20 4277.5 1062 Second item for multiplication f7b2679e-d671-4a3d-8263-4b5e1806103e B B true 99b73b36-7459-46d9-b1f0-3937348f98af 1 4269 1072 14 20 4277.5 1082 Result of multiplication 0b02aa34-a613-4cd2-a8bb-71f5fd93a9af Result Result false 0 4313 1052 34 40 4331.5 1072 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 99b73b36-7459-46d9-b1f0-3937348f98af Relay false b81ec812-8ec8-4429-a6a9-685744f02fd4 1 4288 1112 40 16 4308 1120 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects bad1c978-837c-473b-b4f0-a58dfe6f997e d4204f84-391f-45d9-b27d-4db0c38c8965 04f6dd45-a05e-4255-b431-1cf39447f2cb 3 2b983b05-b6d6-4399-9b66-2339c3acc21a Group 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 6ef43a54-6999-4ccc-a174-6fba07e915d7 Create Material Create Material 4236 661 144 104 4320 713 Colour of the diffuse channel b1c17811-509f-4ddf-8cb0-35a6d1f9d49f Diffuse Diffuse false 0 4238 663 67 20 4273 673 1 1 {0} 255;232;232;232 Colour of the specular highlight e57fdeec-5ed7-47d3-b3b2-e78c1a177b43 Specular Specular false 0 4238 683 67 20 4273 693 1 1 {0} 255;0;255;255 Emissive colour of the material 657457b0-8b9a-4f5b-b07f-0e95a68f150d Emission Emission false 0 4238 703 67 20 4273 713 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 3c1a32ba-f06d-4784-8b39-7f2e46f78022 Transparency Transparency false 0 4238 723 67 20 4273 733 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 9fe9e170-769d-458f-9844-b65385bfb531 Shine Shine false 0 4238 743 67 20 4273 753 1 1 {0} 100 Resulting material 4cef9ec8-7f01-4e78-96b5-3c362434fda9 Material Material false 0 4335 663 43 100 4358 713 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true cc8b95bb-4946-4823-ad8a-25ceaba8d32e Custom Preview Custom Preview 4267 599 82 44 4335 621 Geometry to preview true 47bde767-2124-4f17-b40f-65df697cb09d Geometry Geometry false 576ac5dd-f1ae-451c-9e0e-3eafb1029af2 1 4269 601 51 20 4296 611 The material override 3258c416-21bb-4414-a796-7d630ae916b5 Material Material false 4cef9ec8-7f01-4e78-96b5-3c362434fda9 1 4269 621 51 20 4296 631 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 70a003fd-4063-4183-a099-bb1e8ff9b09a Evaluate Length Evaluate Length 4236 516 144 64 4310 548 Curve to evaluate d1efc71a-9cab-4b6a-bb7f-768787ec79ec Curve Curve false 576ac5dd-f1ae-451c-9e0e-3eafb1029af2 1 4238 518 57 20 4268 528 Length factor for curve evaluation f2264c27-31a2-45b0-8895-1821961f4553 Length Length false 0 4238 538 57 20 4268 548 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 78b1da22-244e-4890-b961-39d4254f67db Normalized Normalized false 0 4238 558 57 20 4268 568 1 1 {0} true Point at the specified length f38aaa8d-3a3e-4388-b382-236a86074b2f Point Point false 0 4325 518 53 20 4353 528 Tangent vector at the specified length c2be8aae-ea90-4cd8-9453-5558d86140a1 Tangent Tangent false 0 4325 538 53 20 4353 548 Curve parameter at the specified length 195b38db-cf77-4757-a5c6-a08d7d632cbc Parameter Parameter false 0 4325 558 53 20 4353 568 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 784a1ba3-f468-4303-a0ee-270fe195e74f Interpolate Interpolate 4245 412 125 84 4312 454 1 Interpolation points bedc006b-d49e-4ddd-87b5-6cc69ec33495 Vertices Vertices false f38aaa8d-3a3e-4388-b382-236a86074b2f 1 4247 414 50 20 4273.5 424 Curve degree 24e4d63a-8ded-4206-b50a-f3ccc433c709 Degree Degree false 0 4247 434 50 20 4273.5 444 1 1 {0} 3 Periodic curve b53194a0-5069-4c32-a7d3-55e820752a6e Periodic Periodic false 0 4247 454 50 20 4273.5 464 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 7eb76da1-2db0-4f86-a92b-0b474ef5f9ad KnotStyle KnotStyle false 0 4247 474 50 20 4273.5 484 1 1 {0} 2 Resulting nurbs curve 0541bd04-b936-4c76-b805-13c6d5537fb7 Curve Curve false 0 4327 414 41 26 4349 427.3333 Curve length 1362cf92-70b6-4707-b74d-52edc2a22b0c Length Length false 0 4327 440 41 27 4349 454 Curve domain 6f9bf259-863a-4c0e-a8df-c03f7630fe15 Domain Domain false 0 4327 467 41 27 4349 480.6667 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 83802b83-02bd-494d-b870-ea094c68a146 Create Material Create Material 4236 288 144 104 4320 340 Colour of the diffuse channel a8be88a1-161d-4761-a481-b5f8849edb1c Diffuse Diffuse false 0 4238 290 67 20 4273 300 1 1 {0} 255;207;207;207 Colour of the specular highlight 52178d89-ce43-4b1d-94e7-bca031b64f05 Specular Specular false 0 4238 310 67 20 4273 320 1 1 {0} 255;0;255;255 Emissive colour of the material 1ea6382d-76c3-471a-9735-3ee98f2c8d02 Emission Emission false 0 4238 330 67 20 4273 340 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent b413006d-c848-4dd0-a880-eac72a40dcf4 Transparency Transparency false 0 4238 350 67 20 4273 360 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 816279be-fb43-4acf-9db7-90cac233f663 Shine Shine false 0 4238 370 67 20 4273 380 1 1 {0} 100 Resulting material da86212f-b319-44cf-9778-ee120445450a Material Material false 0 4335 290 43 100 4358 340 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true 05267ad3-2494-4a34-afff-4d362694e47c Custom Preview Custom Preview 4267 228 82 44 4335 250 Geometry to preview true ca7dd5f7-9267-4317-b1e2-2130fb997d3e Geometry Geometry false 0541bd04-b936-4c76-b805-13c6d5537fb7 1 4269 230 51 20 4296 240 The material override 08246481-c551-4286-a365-c4828efb3b2f Material Material false da86212f-b319-44cf-9778-ee120445450a 1 4269 250 51 20 4296 260 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 231a94e3-3b48-4943-adac-c96d778b2484 Digit Scroller Digit Scroller false 0 12 Digit Scroller 3 0.034450000 2668 5458 250 20 2668.177 5458.286 e9eb1dcf-92f6-4d4d-84ae-96222d60f56b Move Translate (move) an object along a vector. true af7b7c8d-309a-4b1f-b7d3-7aea131dc644 Move Move 2724 4890 138 44 2792 4912 Base geometry a3f099d9-4f98-4da3-8fff-872d17bde375 Geometry Geometry true 14114d11-a3cb-41ea-8397-075cb5e9d027 1 2726 4892 51 20 2753 4902 Translation vector c5bd7b52-6ac3-4007-8c76-534f3ced3ffd Motion Motion false 1003c01f-26a2-48c7-b9d1-51dcc928fa75 1 2726 4912 51 20 2753 4922 1 1 {0} 0 0 10 Translated geometry 4b682de7-9b79-46c1-8e2a-4fdbcc588751 Geometry Geometry false 0 2807 4892 53 20 2835 4902 Transformation data ec46117c-cf3f-4e76-ad28-6903dd1bacfa Transform Transform false 0 2807 4912 53 20 2835 4922 56b92eab-d121-43f7-94d3-6cd8f0ddead8 Vector XYZ Create a vector from {xyz} components. true c5ec0fcd-b093-4db4-a17e-e93eede44c55 Vector XYZ Vector XYZ 2715 4953 155 64 2816 4985 Vector {x} component 563c3747-9e5e-420b-893a-31c9fd5bf3af -X X component X component false 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b 1 2717 4955 84 20 2768.5 4965 1 1 {0} -1 Vector {y} component 1cce6b41-b341-4719-aa54-5c481c93a088 Y component Y component false 0 2717 4975 84 20 2768.5 4985 1 1 {0} 0 Vector {z} component b0832754-1c7d-477b-9fbe-f775f1f307e5 Z component Z component false 0 2717 4995 84 20 2768.5 5005 1 1 {0} 0 Vector construct 1003c01f-26a2-48c7-b9d1-51dcc928fa75 Vector Vector false 0 2831 4955 37 30 2851 4970 Vector length 5dc5c3f7-fe6a-46f8-befd-504cd419455f Length Length false 0 2831 4985 37 30 2851 5000 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true 078cfa5d-a810-4461-afe5-3c7c6eff34df Series Series 2734 5036 117 64 2784 5068 First number in the series d0f7239d-dd0a-43f1-844c-f1801c1ecb24 Start Start false 0 2736 5038 33 20 2754 5048 1 1 {0} 1 Step size for each successive number 0121716a-6b7a-4f84-b7da-22da86c02238 Step Step false 0 2736 5058 33 20 2754 5068 1 1 {0} 1 Number of values in the series acfb728a-7c66-4470-9c7d-63290608c6fa Count Count false 56534c49-1ea7-41c6-bf7c-258cabb3efce 1 2736 5078 33 20 2754 5088 1 1 {0} 10 1 Series of numbers 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b 2 Series Series false 0 2799 5038 50 60 2817.5 5068 1817fd29-20ae-4503-b542-f0fb651e67d7 List Length Measure the length of a list. true a1bef049-0c2f-4984-922a-a6675bf3c7b6 List Length List Length 2738 5219 109 28 2777 5233 1 Base list 8cb3cfa9-f186-444f-9ba1-bf4232f3ebad List List false 23098590-a917-496b-a7fa-ab7fc86169d0 1 2740 5221 22 24 2752.5 5233 Number of items in L 69eb57b9-6dde-4931-8c8d-a8c792f76175 1 Length Length false 0 2792 5221 53 24 2812 5233 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 56534c49-1ea7-41c6-bf7c-258cabb3efce Panel false 0 7415dfa4-dce2-4d2d-979a-97a046335867 1 Double click to edit panel content… 2768 5120 50 20 0 0 0 2768.99 5120.41 255;255;255;255 false false true false false true 5b850221-b527-4bd6-8c62-e94168cd6efa Mass Addition Perform mass addition of a list of items true 08894441-b02f-4060-97bc-c16752f15988 Mass Addition Mass Addition 2725 5157 135 44 2772 5179 1 Input values for mass addition. a42b93e8-b14c-46d7-be97-2ab804cb9f5b Input Input false 69eb57b9-6dde-4931-8c8d-a8c792f76175 1 2727 5159 30 40 2743.5 5179 Result of mass addition 7415dfa4-dce2-4d2d-979a-97a046335867 Result Result false 0 2787 5159 71 20 2824 5169 1 List of partial results 98ecaad7-8af1-428b-bef2-1180160fc1f0 Partial Results Partial Results false 0 2787 5179 71 20 2824 5189 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects af7b7c8d-309a-4b1f-b7d3-7aea131dc644 c5ec0fcd-b093-4db4-a17e-e93eede44c55 078cfa5d-a810-4461-afe5-3c7c6eff34df a1bef049-0c2f-4984-922a-a6675bf3c7b6 56534c49-1ea7-41c6-bf7c-258cabb3efce 08894441-b02f-4060-97bc-c16752f15988 d50bca7c-1830-4d3f-beea-c5f699b9cc56 ba7bf764-2896-4928-aa12-7eb4384bb962 2d610791-db23-4b32-8d5f-7acab4a83c30 0af17cec-270f-4e97-b701-db34056ae4c1 b268e0d3-c479-441e-9ab8-752e8081f7ee 11 37fb66b0-e790-4304-86c0-b0774e5826b8 Group 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 5d29b998-e767-4908-9bd2-1eb4bcb4b5b9 Quick Graph Quick Graph false 0 9f7d1187-713e-4c8f-8c68-69b4d351ce97 1 2718 6400 150 150 2718.338 6400.525 -1 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 323d251f-6e65-42e2-a0ed-7d56aeb82679 Line SDL Line SDL 2740 3207 106 64 2804 3239 Line start point 033ba4c7-c76f-4599-9c01-19bba34df740 Start Start false a2188ea9-a064-4c1e-9cb2-1eff68e42006 1 2742 3209 47 20 2767 3219 1 1 {0} 0 0 0 Line tangent (direction) 2ff90c21-1772-4e47-aaf4-ea115254e7f0 Direction Direction false 0 2742 3229 47 20 2767 3239 1 1 {0} 0 1 0 Line length 1cd86242-dbcf-4e63-8da6-4f919402f0b0 Length Length false d338e5bd-772c-41f3-a5f5-7918387c1c45 1 2742 3249 47 20 2767 3259 1 1 {0} 1 Line segment d3d486df-c034-40b3-92f5-d2cbc827ee61 Line Line false 0 2819 3209 25 60 2833 3239 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true a0bba763-0936-4c88-a047-e5512c2ce288 true Expression Expression 2696 3881 194 28 2796 3895 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable f49b0f3f-1a9e-4b0a-8ba4-1972b0dd6aa0 true Variable O O true b5bfeeda-dfe6-46de-93d1-b762b9bdcfef 1 2698 3883 14 24 2706.5 3895 Result of expression 472b6d60-4ab1-4635-80d5-f82deb8b31d1 true Result false 0 2879 3883 9 24 2885 3895 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values faab667e-5a31-446d-9df5-62d1fb98dd78 Panel false 1 472b6d60-4ab1-4635-80d5-f82deb8b31d1 1 Double click to edit panel content… 2686 3602 214 271 0 0 0 2686.37 3602.744 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object b96f97f9-1163-4f69-8493-078db94ec775 Relay false faab667e-5a31-446d-9df5-62d1fb98dd78 1 2773 3565 40 16 2793 3573 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object b5bfeeda-dfe6-46de-93d1-b762b9bdcfef Relay false 2b7eac1d-f600-4eff-90ef-3e3caed8387d 1 2773 3928 40 16 2793 3936 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 7292bcf1-8a62-4adc-8f64-9825c537d2d0 Quick Graph Quick Graph false 0 b5bfeeda-dfe6-46de-93d1-b762b9bdcfef 1 2718 3400 150 150 2718.469 3400.921 -1 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 2cc54b6b-6a27-4347-ba1d-ad81725a8522 Relay false 8942d533-358d-4c7c-8ea8-d0f51eda1186 1 2773 4207 40 16 2793 4215 dd17d442-3776-40b3-ad5b-5e188b56bd4c Relative Differences Compute relative differences for a list of data true 8aa897df-9fca-48aa-ba32-8aa452f7a4b4 Relative Differences Relative Differences 2729 4041 128 28 2782 4055 1 List of data to operate on (numbers or points or vectors allowed) 38be0e9d-f309-4b8f-af3e-b9d62a343f4b Values Values false a4dfcd0b-8729-4849-848c-1fc50ac8036a 1 2731 4043 36 24 2750.5 4055 1 Differences between consecutive items 61488cc3-2da0-4ac7-bc7f-fa1fbe09c96f Differenced Differenced false 0 2797 4043 58 24 2827.5 4055 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 2b7eac1d-f600-4eff-90ef-3e3caed8387d Relay false 61488cc3-2da0-4ac7-bc7f-fa1fbe09c96f 1 2773 4007 40 16 2793 4015 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 0430ac85-9cee-45ae-b7d9-c48cee3f94fd Relay false 2cc54b6b-6a27-4347-ba1d-ad81725a8522 1 2773 4148 40 16 2793 4156 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 2b7eac1d-f600-4eff-90ef-3e3caed8387d 0430ac85-9cee-45ae-b7d9-c48cee3f94fd 8aa897df-9fca-48aa-ba32-8aa452f7a4b4 d9082955-a981-4b4e-933c-24ee73910995 4 e536f346-c2a7-4f67-9e54-01f53d06d92f Group f3230ecb-3631-4d6f-86f2-ef4b2ed37f45 Replace Nulls Replace nulls or invalid data with other data true d9082955-a981-4b4e-933c-24ee73910995 Replace Nulls Replace Nulls 2725 4086 136 44 2811 4108 1 Items to test for null 2209e8f6-d29f-4898-b25f-75ad5ac6a4c1 Items Items false 0430ac85-9cee-45ae-b7d9-c48cee3f94fd 1 2727 4088 69 20 2763 4098 1 Items to replace nulls with 7c25248e-b563-4cbc-981d-3da4c896c520 Replacements Replacements false 0 2727 4108 69 20 2763 4118 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 0 1 List without any nulls a4dfcd0b-8729-4849-848c-1fc50ac8036a Items Items false 0 2826 4088 33 20 2844 4098 Number of items replaced 454d43e5-0da1-468a-8ff2-28b0c62cfef7 Count Count false 0 2826 4108 33 20 2844 4118 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true d0db6d1f-005c-4599-ad03-e5e1298ca9b1 Multiplication Multiplication 2752 3337 82 44 2783 3359 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication a7c0f6a4-a797-4838-87e6-82c06682c945 A A true b5bfeeda-dfe6-46de-93d1-b762b9bdcfef 1 2754 3339 14 20 2762.5 3349 Second item for multiplication b8274375-19f4-463b-b6af-b790219c7aa1 B B true 37850090-1f89-414f-a475-cd78f7946709 1 2754 3359 14 20 2762.5 3369 Result of multiplication d338e5bd-772c-41f3-a5f5-7918387c1c45 Result Result false 0 2798 3339 34 40 2816.5 3359 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 37850090-1f89-414f-a475-cd78f7946709 Digit Scroller Digit Scroller false 0 12 Digit Scroller 3 0.549001875 2668 3298 250 20 2668.448 3298.266 e9eb1dcf-92f6-4d4d-84ae-96222d60f56b Move Translate (move) an object along a vector. true 9530229d-2340-4f06-b2eb-2a75d4bc811f Move Move 2724 3057 138 44 2792 3079 Base geometry cbc04e82-0fa2-4edb-b00f-2e9b04180780 Geometry Geometry true d3d486df-c034-40b3-92f5-d2cbc827ee61 1 2726 3059 51 20 2753 3069 Translation vector ddb0748b-16b8-4fa9-ac0b-79f9589796f4 Motion Motion false 72da8a3b-f06f-4c67-a901-f3239a42f969 1 2726 3079 51 20 2753 3089 1 1 {0} 0 0 10 Translated geometry 4ec3c04c-6c11-40c7-b64f-2c1b38ff8091 Geometry Geometry false 0 2807 3059 53 20 2835 3069 Transformation data 8a18efe7-39ea-43e6-9bd4-52e7ed245761 Transform Transform false 0 2807 3079 53 20 2835 3089 56b92eab-d121-43f7-94d3-6cd8f0ddead8 Vector XYZ Create a vector from {xyz} components. true e2b00b73-8601-4e61-9b3e-f5f0b1508ee6 Vector XYZ Vector XYZ 2715 3122 155 64 2816 3154 Vector {x} component 34ca1d26-2261-4d5f-a3f5-aa565900151d -X X component X component false 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b 1 2717 3124 84 20 2768.5 3134 1 1 {0} -1 Vector {y} component db75ef34-bf52-428a-9d1b-9f5ea425b556 Y component Y component false 0 2717 3144 84 20 2768.5 3154 1 1 {0} 0.25 Vector {z} component 21c5928d-530c-4d29-9382-27c8ff957919 Z component Z component false 0 2717 3164 84 20 2768.5 3174 1 1 {0} 0 Vector construct 72da8a3b-f06f-4c67-a901-f3239a42f969 Vector Vector false 0 2831 3124 37 30 2851 3139 Vector length 027fab0b-cc90-4d8c-8d34-1ee90a8bef85 Length Length false 0 2831 3154 37 30 2851 3169 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true de44256a-dcc4-411d-ab8e-801e3e5b7f4c Line SDL Line SDL 2740 1314 106 64 2804 1346 Line start point 312b3f1e-5fcd-4186-b03e-c5cf7832cc4c Start Start false a2188ea9-a064-4c1e-9cb2-1eff68e42006 1 2742 1316 47 20 2767 1326 1 1 {0} 0 0 0 Line tangent (direction) 5e632b4d-7166-4fe9-a3f8-2181df0a605f Direction Direction false 0 2742 1336 47 20 2767 1346 1 1 {0} 0 1 0 Line length 8709268a-7baf-4253-8fa7-67fdd8931a49 Length Length false abec785b-b813-4eb1-9fbd-4f32d4913be4 1 2742 1356 47 20 2767 1366 1 1 {0} 1 Line segment 348e952f-1088-4682-886e-5d76f22ad3e5 Line Line false 0 2819 1316 25 60 2833 1346 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true d4ed5d4a-d298-4405-a775-4521ae76a432 true Expression Expression 2696 2071 194 28 2796 2085 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable ac0d8d5a-2964-49a0-a1af-b52396917f07 true Variable O O true 36ed1261-6cd4-4ab9-98e7-3351e9a6d7b9 1 2698 2073 14 24 2706.5 2085 Result of expression 808a3975-faae-4c1b-bdd1-f6d4d1d16c00 true Result false 0 2879 2073 9 24 2885 2085 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values c109ca9d-992f-4bd4-b924-0618e3965a91 Panel false 1 808a3975-faae-4c1b-bdd1-f6d4d1d16c00 1 Double click to edit panel content… 2686 1794 214 271 0 0 0 2686.01 1794.322 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object a5f4f2f3-0128-4d1e-b977-b0ea41c165d6 Relay false c109ca9d-992f-4bd4-b924-0618e3965a91 1 2773 1755 40 16 2793 1763 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 36ed1261-6cd4-4ab9-98e7-3351e9a6d7b9 Relay false 9ee72d91-37b8-41b1-8bca-bcd9e65ac134 1 2773 2118 40 16 2793 2126 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph e44c7642-1a03-40d7-a01a-4013a3aada4f Quick Graph Quick Graph false 0 36ed1261-6cd4-4ab9-98e7-3351e9a6d7b9 1 2718 1592 150 150 2718.11 1592.499 -1 dd17d442-3776-40b3-ad5b-5e188b56bd4c Relative Differences Compute relative differences for a list of data true 621ed192-65a5-47c2-bea7-bb49e62ca50f Relative Differences Relative Differences 2729 2231 128 28 2782 2245 1 List of data to operate on (numbers or points or vectors allowed) 0e2f12cb-ff26-486b-a009-a93a18b6d6f3 Values Values false 8e13dd26-c0ca-45f7-af32-418e4c287a28 1 2731 2233 36 24 2750.5 2245 1 Differences between consecutive items 84ee97f9-55ff-49bd-9ea6-2bc2f204db42 Differenced Differenced false 0 2797 2233 58 24 2827.5 2245 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 9ee72d91-37b8-41b1-8bca-bcd9e65ac134 Relay false 84ee97f9-55ff-49bd-9ea6-2bc2f204db42 1 2773 2197 40 16 2793 2205 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object bbbe02a5-84ef-4034-88e4-bf73e9c3e1d2 Relay false ab1fe5bd-0f07-4370-a4e5-ecdae8e17a33 1 2773 2338 40 16 2793 2346 f3230ecb-3631-4d6f-86f2-ef4b2ed37f45 Replace Nulls Replace nulls or invalid data with other data true 12b2226f-d9e4-480d-9339-4149780bb2b5 Replace Nulls Replace Nulls 2725 2276 136 44 2811 2298 1 Items to test for null f5116c1c-cf52-485e-9803-c0da8d951bab Items Items false bbbe02a5-84ef-4034-88e4-bf73e9c3e1d2 1 2727 2278 69 20 2763 2288 1 Items to replace nulls with 8f401a9e-65bd-4a4d-a4fd-4d2cf6f2e2a6 Replacements Replacements false 0 2727 2298 69 20 2763 2308 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 0 1 List without any nulls 8e13dd26-c0ca-45f7-af32-418e4c287a28 Items Items false 0 2826 2278 33 20 2844 2288 Number of items replaced 8fc680d8-2533-458d-b069-8e903a92498b Count Count false 0 2826 2298 33 20 2844 2308 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true ed0c152e-5762-43e2-bcf4-88122acfd185 Multiplication Multiplication 2752 1444 82 44 2783 1466 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication ffe09e8a-f4df-4de1-9eca-e9fea8e86970 A A true 36ed1261-6cd4-4ab9-98e7-3351e9a6d7b9 1 2754 1446 14 20 2762.5 1456 Second item for multiplication c96bc9a9-52f7-4c84-8216-cac380bf49ec B B true 33246638-2889-44a2-85e3-36355e49ba0b 1 2754 1466 14 20 2762.5 1476 Result of multiplication abec785b-b813-4eb1-9fbd-4f32d4913be4 Result Result false 0 2798 1446 34 40 2816.5 1466 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 33246638-2889-44a2-85e3-36355e49ba0b Digit Scroller Digit Scroller false 0 12 Digit Scroller 3 4.391891668 2668 1407 250 20 2668.09 1407.532 e9eb1dcf-92f6-4d4d-84ae-96222d60f56b Move Translate (move) an object along a vector. true 4e43ee84-cfc5-44e1-81d6-6e7393094915 Move Move 2724 1164 138 44 2792 1186 Base geometry 4e658f04-09ef-435c-91dc-3fa25bb00629 Geometry Geometry true 348e952f-1088-4682-886e-5d76f22ad3e5 1 2726 1166 51 20 2753 1176 Translation vector 59f061e6-7adb-47b6-9d64-5ae80914a824 Motion Motion false a2fe01bf-0dff-44d3-ac95-33827ee7c8cf 1 2726 1186 51 20 2753 1196 1 1 {0} 0 0 10 Translated geometry c17c1c53-7107-43f9-9a8e-a08dfe3a4373 Geometry Geometry false 0 2807 1166 53 20 2835 1176 Transformation data b3ffe856-107f-45ec-9f08-ce00d53ca948 Transform Transform false 0 2807 1186 53 20 2835 1196 56b92eab-d121-43f7-94d3-6cd8f0ddead8 Vector XYZ Create a vector from {xyz} components. true 16778078-54b1-49d7-90a1-c6d2c85b6093 Vector XYZ Vector XYZ 2715 1229 155 64 2816 1261 Vector {x} component e71b1d29-418c-4f3f-8568-920bd20b7c2f -X X component X component false 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b 1 2717 1231 84 20 2768.5 1241 1 1 {0} -1 Vector {y} component caa705d0-0011-4ad1-b68c-c7173a761c9a Y component Y component false 0 2717 1251 84 20 2768.5 1261 1 1 {0} 0.5 Vector {z} component 7e4224b6-da80-4634-ba6d-5bddd0fa8dcb Z component Z component false 0 2717 1271 84 20 2768.5 1281 1 1 {0} 0 Vector construct a2fe01bf-0dff-44d3-ac95-33827ee7c8cf Vector Vector false 0 2831 1231 37 30 2851 1246 Vector length 236f1ead-8220-4699-91a9-b2abe1591fee Length Length false 0 2831 1261 37 30 2851 1276 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects de44256a-dcc4-411d-ab8e-801e3e5b7f4c d4ed5d4a-d298-4405-a775-4521ae76a432 c109ca9d-992f-4bd4-b924-0618e3965a91 a5f4f2f3-0128-4d1e-b977-b0ea41c165d6 36ed1261-6cd4-4ab9-98e7-3351e9a6d7b9 e44c7642-1a03-40d7-a01a-4013a3aada4f 621ed192-65a5-47c2-bea7-bb49e62ca50f 9ee72d91-37b8-41b1-8bca-bcd9e65ac134 bbbe02a5-84ef-4034-88e4-bf73e9c3e1d2 12b2226f-d9e4-480d-9339-4149780bb2b5 ed0c152e-5762-43e2-bcf4-88122acfd185 33246638-2889-44a2-85e3-36355e49ba0b 4e43ee84-cfc5-44e1-81d6-6e7393094915 16778078-54b1-49d7-90a1-c6d2c85b6093 ab1fe5bd-0f07-4370-a4e5-ecdae8e17a33 4623917e-5a49-4baf-8eb9-fa37fd17663e c429e491-9b09-4e42-9cc3-89526febb81c ff0900a1-1fb0-4922-98be-668cd9586dfb 995c54b5-8333-4669-b219-8e80e6ca829d e8057930-398e-4baf-a355-345906fe0d96 a2c94e7d-3876-4f54-9250-0ae4fb156f8d 0e619394-c4fb-4962-a0e0-582190fafb60 562d0609-e0b8-4f53-b04a-a535ce8448d4 1c4bd00b-f41c-4877-89ae-c2cc8ba90668 24 a4496ffe-00c7-4579-8a81-071fc31557b7 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object ab1fe5bd-0f07-4370-a4e5-ecdae8e17a33 Relay false b5bfeeda-dfe6-46de-93d1-b762b9bdcfef 1 2773 2372 40 16 2793 2380 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true ea5caa74-120d-474d-aea9-fbf7579d4271 Line SDL Line SDL 2740 -447 106 64 2804 -415 Line start point 9e3099d4-7481-4cc0-94bd-855d77b041dd Start Start false a2188ea9-a064-4c1e-9cb2-1eff68e42006 1 2742 -445 47 20 2767 -435 1 1 {0} 0 0 0 Line tangent (direction) 4bb69cea-0cad-42d1-8134-d8929069fc11 Direction Direction false 0 2742 -425 47 20 2767 -415 1 1 {0} 0 1 0 Line length 9ae43c44-a660-4183-9af9-23b23be088b9 Length Length false 6a65bfbc-9d61-4294-afbe-2336556797d5 1 2742 -405 47 20 2767 -395 1 1 {0} 1 Line segment 6e1b434b-7cd7-40a0-bcd5-bb106afa461a Line Line false 0 2819 -445 25 60 2833 -415 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true c352aeb0-72b7-44d3-9c65-d0230dde1818 true Expression Expression 2696 242 194 28 2796 256 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 728c3793-a1d7-4ff1-9956-ffe24a720519 true Variable O O true d66c6650-7c28-4aa2-8d0d-8e6ce1f88a10 1 2698 244 14 24 2706.5 256 Result of expression 8687c6ac-5099-42a1-99d3-34a71276da26 true Result false 0 2879 244 9 24 2885 256 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values de9ed4d4-9093-4ffd-accf-2deca7d6a2be Panel false 1 8687c6ac-5099-42a1-99d3-34a71276da26 1 Double click to edit panel content… 2686 -48 214 271 0 0 0 2686.355 -47.07108 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 26b7312b-e23e-4e90-ba2f-dc480b730c2b Relay false de9ed4d4-9093-4ffd-accf-2deca7d6a2be 1 2773 -83 40 16 2793 -75 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object d66c6650-7c28-4aa2-8d0d-8e6ce1f88a10 Relay false a9a286a1-642d-4776-af84-5b5c374605b9 1 2773 295 40 16 2793 303 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 198dcd7a-2848-4df0-8964-fef8bf203990 Quick Graph Quick Graph false 0 d66c6650-7c28-4aa2-8d0d-8e6ce1f88a10 1 2718 -251 150 150 2718.454 -250.0285 -1 dd17d442-3776-40b3-ad5b-5e188b56bd4c Relative Differences Compute relative differences for a list of data true a02b12c1-3025-40de-8891-96c64383b375 Relative Differences Relative Differences 2729 387 128 28 2782 401 1 List of data to operate on (numbers or points or vectors allowed) 3465ba49-181a-4337-9f56-0e6335cef2d2 Values Values false a324469d-6158-4d46-bf90-c17a33c8b76e 1 2731 389 36 24 2750.5 401 1 Differences between consecutive items 3150bcc2-e4ad-4b93-8e8a-63d0a5041fbe Differenced Differenced false 0 2797 389 58 24 2827.5 401 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object a9a286a1-642d-4776-af84-5b5c374605b9 Relay false 3150bcc2-e4ad-4b93-8e8a-63d0a5041fbe 1 2773 353 40 16 2793 361 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 500bb6ff-1ced-4d7a-9a29-12a430c8c509 Relay false 81d1191d-5fef-4d57-a6d5-c38fb31431d5 1 2773 494 40 16 2793 502 f3230ecb-3631-4d6f-86f2-ef4b2ed37f45 Replace Nulls Replace nulls or invalid data with other data true 36dc356c-a96c-4272-a9f3-61912f8ef63d Replace Nulls Replace Nulls 2725 432 136 44 2811 454 1 Items to test for null 5e1d97e5-c3b3-42b3-a494-b51d49310864 Items Items false 500bb6ff-1ced-4d7a-9a29-12a430c8c509 1 2727 434 69 20 2763 444 1 Items to replace nulls with da81e744-8ff1-43af-b6df-9a7550ba5df9 Replacements Replacements false 0 2727 454 69 20 2763 464 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 0 1 List without any nulls a324469d-6158-4d46-bf90-c17a33c8b76e Items Items false 0 2826 434 33 20 2844 444 Number of items replaced b156dd6a-2a60-4811-b032-64052012b554 Count Count false 0 2826 454 33 20 2844 464 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 66341b02-cc62-4140-abc2-c4f684445f77 Multiplication Multiplication 2752 -317 82 44 2783 -295 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication d62e1f93-7cd8-4a14-8998-fc59ae1ba8e6 A A true d66c6650-7c28-4aa2-8d0d-8e6ce1f88a10 1 2754 -315 14 20 2762.5 -305 Second item for multiplication 3f570f87-9291-4d04-a4ca-afa74aa08ab6 B B true 25766c02-a999-4133-9620-798eca7d1ccb 1 2754 -295 14 20 2762.5 -285 Result of multiplication 6a65bfbc-9d61-4294-afbe-2336556797d5 Result Result false 0 2798 -315 34 40 2816.5 -295 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 25766c02-a999-4133-9620-798eca7d1ccb Digit Scroller Digit Scroller false 0 12 Digit Scroller 4 17.44940186 2668 -353 250 20 2668.434 -352.6825 e9eb1dcf-92f6-4d4d-84ae-96222d60f56b Move Translate (move) an object along a vector. true 73ca63a7-e915-43b1-ab74-fa5a54209040 Move Move 2724 -597 138 44 2792 -575 Base geometry 56ef4704-3753-48c5-90cc-01203b3dbdb3 Geometry Geometry true 6e1b434b-7cd7-40a0-bcd5-bb106afa461a 1 2726 -595 51 20 2753 -585 Translation vector 1811f9f7-70e1-4ff6-a60a-6e5e85119586 Motion Motion false 439e455b-11ca-4eb1-8de9-abe23f42f048 1 2726 -575 51 20 2753 -565 1 1 {0} 0 0 10 Translated geometry 4e9c218a-a4d8-4359-b2b4-e7fec76f23f3 Geometry Geometry false 0 2807 -595 53 20 2835 -585 Transformation data 3751f6ce-d48d-483e-ba22-45c2fb363b7f Transform Transform false 0 2807 -575 53 20 2835 -565 56b92eab-d121-43f7-94d3-6cd8f0ddead8 Vector XYZ Create a vector from {xyz} components. true b4772ea8-de98-46eb-ae5e-6fa11eb91958 Vector XYZ Vector XYZ 2715 -532 155 64 2816 -500 Vector {x} component 6cd90cdb-1ed2-4c23-ae2f-aae4797a6aae -X X component X component false 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b 1 2717 -530 84 20 2768.5 -520 1 1 {0} -1 Vector {y} component 8f07d941-f1d5-47bf-bbd9-df33017f53a5 Y component Y component false 0 2717 -510 84 20 2768.5 -500 1 1 {0} 0.75 Vector {z} component 6a064a39-03b9-4b4f-9409-38ab4f71eb62 Z component Z component false 0 2717 -490 84 20 2768.5 -480 1 1 {0} 0 Vector construct 439e455b-11ca-4eb1-8de9-abe23f42f048 Vector Vector false 0 2831 -530 37 30 2851 -515 Vector length daeb78c4-b065-45ae-a1b8-7177a6760522 Length Length false 0 2831 -500 37 30 2851 -485 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects ea5caa74-120d-474d-aea9-fbf7579d4271 c352aeb0-72b7-44d3-9c65-d0230dde1818 de9ed4d4-9093-4ffd-accf-2deca7d6a2be 26b7312b-e23e-4e90-ba2f-dc480b730c2b d66c6650-7c28-4aa2-8d0d-8e6ce1f88a10 198dcd7a-2848-4df0-8964-fef8bf203990 a02b12c1-3025-40de-8891-96c64383b375 a9a286a1-642d-4776-af84-5b5c374605b9 500bb6ff-1ced-4d7a-9a29-12a430c8c509 36dc356c-a96c-4272-a9f3-61912f8ef63d 66341b02-cc62-4140-abc2-c4f684445f77 25766c02-a999-4133-9620-798eca7d1ccb 73ca63a7-e915-43b1-ab74-fa5a54209040 b4772ea8-de98-46eb-ae5e-6fa11eb91958 81d1191d-5fef-4d57-a6d5-c38fb31431d5 24508471-4615-4a82-a43c-a3fb8ff2c93b 964343c3-3dda-4f08-a87d-9fdc0bc8aa38 df9156dc-99ad-49d2-9155-e2992efed591 7bf39698-e931-4e9d-b356-45343bde39ac 5e6a71c9-068b-4c80-8329-8dc78e13758c 71452f07-0445-4149-bae3-e638f6b09057 bf27f44e-23ad-4bc1-b47e-9f177aee7784 270675ac-b627-4eee-8542-de839b52b43a 23 2ba2f19d-b635-428c-b738-109500b35fdd Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 81d1191d-5fef-4d57-a6d5-c38fb31431d5 Relay false 36ed1261-6cd4-4ab9-98e7-3351e9a6d7b9 1 2773 528 40 16 2793 536 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 69e3754f-2f0c-4466-abfb-bec612231828 Line SDL Line SDL 2740 -2253 106 64 2804 -2221 Line start point 0c0efbaa-5ccf-41f8-ac51-ea41dd755d93 Start Start false a2188ea9-a064-4c1e-9cb2-1eff68e42006 1 2742 -2251 47 20 2767 -2241 1 1 {0} 0 0 0 Line tangent (direction) 36ebde8f-db11-47e8-a841-79022aff92ae Direction Direction false 0 2742 -2231 47 20 2767 -2221 1 1 {0} 0 1 0 Line length e48d810d-e480-46d6-929c-6d5f72e1586f Length Length false 8164ccfe-5683-4e07-8df6-5b8d6a418819 1 2742 -2211 47 20 2767 -2201 1 1 {0} 1 Line segment 18f9f56a-0610-49d9-b046-4d3ed4efc2fd Line Line false 0 2819 -2251 25 60 2833 -2221 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 6ad2f437-19bb-474f-9dea-bf46ef546f5a true Expression Expression 2696 -1560 194 28 2796 -1546 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 183bc78a-171a-47dd-a9d5-d7d2e9caacd6 true Variable O O true fd5f29c0-0d8b-438b-8946-5f1f2512c9e9 1 2698 -1558 14 24 2706.5 -1546 Result of expression 25aac5e9-f562-4d58-ae2e-11e4f61149af true Result false 0 2879 -1558 9 24 2885 -1546 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values e31dca17-1152-44b2-a6d6-ab0c5f9612ad Panel false 1 25aac5e9-f562-4d58-ae2e-11e4f61149af 1 Double click to edit panel content… 2686 -1852 214 271 0 0 0 2686.486 -1851.444 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 14a184fd-76f9-4fe1-81bb-7b4e96bef18a Relay false e31dca17-1152-44b2-a6d6-ab0c5f9612ad 1 2773 -1888 40 16 2793 -1880 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object fd5f29c0-0d8b-438b-8946-5f1f2512c9e9 Relay false 3793a471-f616-4c63-b134-a75a817ba78b 1 2773 -1514 40 16 2793 -1506 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph c73efde9-e927-40a1-ad03-a0504e6cc26b Quick Graph Quick Graph false 0 fd5f29c0-0d8b-438b-8946-5f1f2512c9e9 1 2718 -2054 150 150 2718.585 -2053.267 -1 dd17d442-3776-40b3-ad5b-5e188b56bd4c Relative Differences Compute relative differences for a list of data true d02275ae-85d6-4f5c-9eeb-9082172fbac7 Relative Differences Relative Differences 2729 -1419 128 28 2782 -1405 1 List of data to operate on (numbers or points or vectors allowed) 8e2c117e-9667-4950-80e0-61d10dcde25c Values Values false 05620456-096f-4f4a-a0ed-0d14f3ffcc7f 1 2731 -1417 36 24 2750.5 -1405 1 Differences between consecutive items 3fb980fe-48e3-43a8-beb7-ecd7326ec261 Differenced Differenced false 0 2797 -1417 58 24 2827.5 -1405 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 3793a471-f616-4c63-b134-a75a817ba78b Relay false 3fb980fe-48e3-43a8-beb7-ecd7326ec261 1 2773 -1453 40 16 2793 -1445 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 7b108ae5-e1c0-4ec0-97ef-fb38689ad176 Relay false c4ede6db-e8f3-457d-bc74-bf9c19ea9684 1 2773 -1312 40 16 2793 -1304 f3230ecb-3631-4d6f-86f2-ef4b2ed37f45 Replace Nulls Replace nulls or invalid data with other data true accbc758-db22-4a7f-8d0b-2f51ac729d98 Replace Nulls Replace Nulls 2725 -1374 136 44 2811 -1352 1 Items to test for null 66d94b7a-b015-4535-b344-c1a719e7e2bd Items Items false 7b108ae5-e1c0-4ec0-97ef-fb38689ad176 1 2727 -1372 69 20 2763 -1362 1 Items to replace nulls with a0bd88c6-ce2e-4a8a-b587-3d662fca1143 Replacements Replacements false 0 2727 -1352 69 20 2763 -1342 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 0 1 List without any nulls 05620456-096f-4f4a-a0ed-0d14f3ffcc7f Items Items false 0 2826 -1372 33 20 2844 -1362 Number of items replaced 15bd296c-19d9-4428-ab85-cb6807164166 Count Count false 0 2826 -1352 33 20 2844 -1342 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 01fce176-a5af-465a-a3a1-bd8b5669cedd Multiplication Multiplication 2752 -2123 82 44 2783 -2101 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication e1a4444f-ad78-487d-b643-022051c04990 A A true fd5f29c0-0d8b-438b-8946-5f1f2512c9e9 1 2754 -2121 14 20 2762.5 -2111 Second item for multiplication c974df28-e4a4-4799-9a9c-41662c7997fb B B true 5baf6a8d-c926-4a1e-98f2-6d8c1d7684f4 1 2754 -2101 14 20 2762.5 -2091 Result of multiplication 8164ccfe-5683-4e07-8df6-5b8d6a418819 Result Result false 0 2798 -2121 34 40 2816.5 -2101 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 5baf6a8d-c926-4a1e-98f2-6d8c1d7684f4 Digit Scroller Digit Scroller false 0 12 Digit Scroller 4 35.45025808 2668 -2156 250 20 2668.565 -2155.921 e9eb1dcf-92f6-4d4d-84ae-96222d60f56b Move Translate (move) an object along a vector. true e34b5c17-64c8-4402-bb93-4074d083a9ce Move Move 2724 -2403 138 44 2792 -2381 Base geometry f1446d15-38ce-4a36-968e-3821aca1a619 Geometry Geometry true 18f9f56a-0610-49d9-b046-4d3ed4efc2fd 1 2726 -2401 51 20 2753 -2391 Translation vector f85f23c7-18ff-463b-8bc1-80ad8cb7fe71 Motion Motion false 036265d3-49d9-4fb0-8167-6a39c2ed68bc 1 2726 -2381 51 20 2753 -2371 1 1 {0} 0 0 10 Translated geometry 96991c77-8125-4887-b56d-a51f89a5adc1 Geometry Geometry false 0 2807 -2401 53 20 2835 -2391 Transformation data e794370c-8cf5-47e8-be70-b43c98c359fb Transform Transform false 0 2807 -2381 53 20 2835 -2371 56b92eab-d121-43f7-94d3-6cd8f0ddead8 Vector XYZ Create a vector from {xyz} components. true 46d1d2b3-fbd8-4b4e-af01-a2448df76d38 Vector XYZ Vector XYZ 2715 -2338 155 64 2816 -2306 Vector {x} component c2e3da42-148c-4554-93cb-620f503a0de6 -X X component X component false 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b 1 2717 -2336 84 20 2768.5 -2326 1 1 {0} -1 Vector {y} component 38a6dc1b-643b-4aa4-ad42-0e9dbc93f48c Y component Y component false 0 2717 -2316 84 20 2768.5 -2306 1 1 {0} 1 Vector {z} component 3ec97b01-da22-48ae-9a2b-5a3e6d850532 Z component Z component false 0 2717 -2296 84 20 2768.5 -2286 1 1 {0} 0 Vector construct 036265d3-49d9-4fb0-8167-6a39c2ed68bc Vector Vector false 0 2831 -2336 37 30 2851 -2321 Vector length 89a3f73c-188f-460a-bc9b-dc529f0cefa6 Length Length false 0 2831 -2306 37 30 2851 -2291 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 69e3754f-2f0c-4466-abfb-bec612231828 6ad2f437-19bb-474f-9dea-bf46ef546f5a e31dca17-1152-44b2-a6d6-ab0c5f9612ad 14a184fd-76f9-4fe1-81bb-7b4e96bef18a fd5f29c0-0d8b-438b-8946-5f1f2512c9e9 c73efde9-e927-40a1-ad03-a0504e6cc26b d02275ae-85d6-4f5c-9eeb-9082172fbac7 3793a471-f616-4c63-b134-a75a817ba78b 7b108ae5-e1c0-4ec0-97ef-fb38689ad176 accbc758-db22-4a7f-8d0b-2f51ac729d98 01fce176-a5af-465a-a3a1-bd8b5669cedd 5baf6a8d-c926-4a1e-98f2-6d8c1d7684f4 e34b5c17-64c8-4402-bb93-4074d083a9ce 46d1d2b3-fbd8-4b4e-af01-a2448df76d38 c4ede6db-e8f3-457d-bc74-bf9c19ea9684 ee522ce1-b431-4566-add9-3979a9ab2672 cc822037-e998-40ef-b314-cebccaa58d0f 4e55916e-6a5a-44ec-b22f-43102b734bb9 fdd729ab-4118-45f2-8236-51dc69417454 a0a24f49-2328-4bff-a809-2b88c32a0d50 c1beb210-89f4-4872-a882-d3bea5edb540 ef73682f-b60c-48ce-82de-c7de410bb746 c01c4d44-05ec-478f-b965-a8feee784c17 23 b9d58bb5-d1d7-4428-8150-b68e594acdc9 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object c4ede6db-e8f3-457d-bc74-bf9c19ea9684 Relay false d66c6650-7c28-4aa2-8d0d-8e6ce1f88a10 1 2773 -1278 40 16 2793 -1270 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 4623917e-5a49-4baf-8eb9-fa37fd17663e Line SDL Line SDL 2740 1506 106 64 2804 1538 Line start point 08692694-8055-49ce-b8ec-1a58833659e8 Start Start false 0 2742 1508 47 20 2767 1518 1 1 {0} -2.12109391180815 1.99985794027194 0 Line tangent (direction) b5dcd30e-7f5c-437c-9329-cacd8e833e04 Direction Direction false 0 2742 1528 47 20 2767 1538 1 1 {0} 0.0625 0.0625 0 Line length c0f08e8a-bf3b-46ee-85e2-042ba29a4c7b Length Length false 0 2742 1548 47 20 2767 1558 1 1 {0} 1 Line segment e7c6e16c-7a82-45a2-88b1-613336294b93 Line Line false 0 2819 1508 25 60 2833 1538 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 0b7569f6-6472-469c-b692-3beefb2964f0 true Line SDL Line SDL 2749 -4121 106 64 2813 -4089 Line start point 7d260e58-958e-40bf-9918-29e621dc3053 true Start Start false a2188ea9-a064-4c1e-9cb2-1eff68e42006 1 2751 -4119 47 20 2776 -4109 1 1 {0} 0 0 0 Line tangent (direction) a8a29fbd-2889-4c20-b6e0-be8f223fdc67 true Direction Direction false 0 2751 -4099 47 20 2776 -4089 1 1 {0} 0 1 0 Line length ff4f7c04-e104-4830-b65c-1a52970fd429 true Length Length false bcb80bc7-39c2-4729-a165-aa32894f4984 1 2751 -4079 47 20 2776 -4069 1 1 {0} 1 Line segment aa9c616b-4bcb-41cb-a3af-bff4b028aa9e true Line Line false 0 2828 -4119 25 60 2842 -4089 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 8fd32b88-7efb-47fa-a8f4-a13f3b2189ac true Expression Expression 2705 -3428 194 28 2805 -3414 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 7f1b52f4-7289-41c3-abe3-f1a6a1934212 true Variable O O true 69f7f917-06e5-4873-bafd-ca04a7cd4193 1 2707 -3426 14 24 2715.5 -3414 Result of expression efaa5904-9182-4b75-98b4-7da29efb0601 true Result false 0 2888 -3426 9 24 2894 -3414 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 32df0578-4700-4cac-a4cf-d3274d7d0c94 Panel false 1 efaa5904-9182-4b75-98b4-7da29efb0601 1 Double click to edit panel content… 2695 -3721 214 271 0 0 0 2695.848 -3720.535 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object b5c795c2-b053-494a-b661-7cd6fadd688c Relay false 32df0578-4700-4cac-a4cf-d3274d7d0c94 1 2782 -3763 40 16 2802 -3755 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 69f7f917-06e5-4873-bafd-ca04a7cd4193 Relay false 0901752b-6236-4025-9090-370b7e8b948c 1 2782 -3400 40 16 2802 -3392 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 78c14f2d-a52b-46e7-be98-08a2a8589eca Quick Graph Quick Graph false 0 69f7f917-06e5-4873-bafd-ca04a7cd4193 1 2727 -3923 150 150 2727.947 -3922.359 -1 dd17d442-3776-40b3-ad5b-5e188b56bd4c Relative Differences Compute relative differences for a list of data true 257edb63-bf2a-40b1-9768-7cc6b893b2d3 Relative Differences Relative Differences 2738 -3287 128 28 2791 -3273 1 List of data to operate on (numbers or points or vectors allowed) c41e244c-25c2-4031-a43c-cb89184b6920 Values Values false 709189ce-92c5-40c3-8d8e-64649f3ef812 1 2740 -3285 36 24 2759.5 -3273 1 Differences between consecutive items 9a703ffe-a5ae-44e4-916f-2984dac10f0e Differenced Differenced false 0 2806 -3285 58 24 2836.5 -3273 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 0901752b-6236-4025-9090-370b7e8b948c Relay false 9a703ffe-a5ae-44e4-916f-2984dac10f0e 1 2782 -3321 40 16 2802 -3313 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 063e2f96-07ae-4f4d-828d-e224d4a7a6c5 Relay false 2e64d0f2-e994-4fbf-9700-36f985bd6ceb 1 2782 -3180 40 16 2802 -3172 f3230ecb-3631-4d6f-86f2-ef4b2ed37f45 Replace Nulls Replace nulls or invalid data with other data true 7614be02-621d-44df-bb26-739e96fe1b4e Replace Nulls Replace Nulls 2734 -3242 136 44 2820 -3220 1 Items to test for null 91400251-5f94-4de5-a43d-8ae01bfb2a3d Items Items false 063e2f96-07ae-4f4d-828d-e224d4a7a6c5 1 2736 -3240 69 20 2772 -3230 1 Items to replace nulls with e3af615b-407f-40ef-ba94-bd128a771b7c Replacements Replacements false 0 2736 -3220 69 20 2772 -3210 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 0 1 List without any nulls 709189ce-92c5-40c3-8d8e-64649f3ef812 Items Items false 0 2835 -3240 33 20 2853 -3230 Number of items replaced 0bb9cf33-e8c9-4f31-b1f8-96374152771c Count Count false 0 2835 -3220 33 20 2853 -3210 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 0f63c1a6-3d92-41e1-a707-b1e82dcd5a6d Multiplication Multiplication 2761 -3991 82 44 2792 -3969 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication ba85781a-0e27-4641-8864-f90e9871a584 A A true 69f7f917-06e5-4873-bafd-ca04a7cd4193 1 2763 -3989 14 20 2771.5 -3979 Second item for multiplication 7b090e1a-8677-48e5-bac8-7caeb701dd33 B B true 9aa7cd1c-c913-4fbc-882e-f2dd498f032e 1 2763 -3969 14 20 2771.5 -3959 Result of multiplication bcb80bc7-39c2-4729-a165-aa32894f4984 Result Result false 0 2807 -3989 34 40 2825.5 -3969 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 9aa7cd1c-c913-4fbc-882e-f2dd498f032e Digit Scroller Digit Scroller false 0 12 Digit Scroller 4 88.02530752 2675 -4037 250 20 2675.594 -4036.676 e9eb1dcf-92f6-4d4d-84ae-96222d60f56b Move Translate (move) an object along a vector. true 54af40f3-d3ff-4e72-99f9-e8791983ca7c Move Move 2733 -4269 138 44 2801 -4247 Base geometry 0993e88e-e926-4475-99f6-8a2a5ff4a3cd Geometry Geometry true aa9c616b-4bcb-41cb-a3af-bff4b028aa9e 1 2735 -4267 51 20 2762 -4257 Translation vector 34bac046-ba3e-4a26-a7b9-2eeccd59c4ca Motion Motion false d0af0b70-7a10-4efc-861e-f693970d649a 1 2735 -4247 51 20 2762 -4237 1 1 {0} 0 0 10 Translated geometry 531dc426-bfb6-4210-89d1-a169cc14774b Geometry Geometry false 0 2816 -4267 53 20 2844 -4257 Transformation data bc29425a-ebb6-4b3f-a320-a069c8375dcf Transform Transform false 0 2816 -4247 53 20 2844 -4237 56b92eab-d121-43f7-94d3-6cd8f0ddead8 Vector XYZ Create a vector from {xyz} components. true bb72c4af-6e6f-4387-a96f-c98c8a906b94 Vector XYZ Vector XYZ 2724 -4206 155 64 2825 -4174 Vector {x} component 708a922f-52df-441d-8de2-c8a563cf1e23 -X X component X component false 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b 1 2726 -4204 84 20 2777.5 -4194 1 1 {0} -1 Vector {y} component 8743cdb2-1944-4150-9408-e63ee018d7e0 Y component Y component false 0 2726 -4184 84 20 2777.5 -4174 1 1 {0} 1.25 Vector {z} component 752d1367-8a57-49c2-8510-3591e2d3aa61 Z component Z component false 0 2726 -4164 84 20 2777.5 -4154 1 1 {0} 0 Vector construct d0af0b70-7a10-4efc-861e-f693970d649a Vector Vector false 0 2840 -4204 37 30 2860 -4189 Vector length b4ab877f-ff21-4e50-ad68-aa393fc59fe3 Length Length false 0 2840 -4174 37 30 2860 -4159 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 0b7569f6-6472-469c-b692-3beefb2964f0 8fd32b88-7efb-47fa-a8f4-a13f3b2189ac 32df0578-4700-4cac-a4cf-d3274d7d0c94 b5c795c2-b053-494a-b661-7cd6fadd688c 69f7f917-06e5-4873-bafd-ca04a7cd4193 78c14f2d-a52b-46e7-be98-08a2a8589eca 257edb63-bf2a-40b1-9768-7cc6b893b2d3 0901752b-6236-4025-9090-370b7e8b948c 063e2f96-07ae-4f4d-828d-e224d4a7a6c5 7614be02-621d-44df-bb26-739e96fe1b4e 0f63c1a6-3d92-41e1-a707-b1e82dcd5a6d 9aa7cd1c-c913-4fbc-882e-f2dd498f032e 54af40f3-d3ff-4e72-99f9-e8791983ca7c bb72c4af-6e6f-4387-a96f-c98c8a906b94 2e64d0f2-e994-4fbf-9700-36f985bd6ceb b5df053c-cc37-42c3-ab32-579385c79137 3488d1f0-a79b-400e-a50b-1eddfbbd2e40 04bbc5bd-f892-4d59-b824-de2d4234e6ff d92f5405-c7c9-45d0-bee1-e1d4373026b9 86039917-a2e2-470f-8e07-bc4121e5e0ef 33763df5-c277-4f3a-9004-08657d703d20 21 16d222da-07fa-4d14-b211-71581a963f8e Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 2e64d0f2-e994-4fbf-9700-36f985bd6ceb Relay false fd5f29c0-0d8b-438b-8946-5f1f2512c9e9 1 2782 -3146 40 16 2802 -3138 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 2ea98e53-c291-4c32-9159-d5fb19a496f3 true Line SDL Line SDL 2749 -5946 106 64 2813 -5914 Line start point fd927f02-6649-4143-a0a6-4cede009e506 true Start Start false a2188ea9-a064-4c1e-9cb2-1eff68e42006 1 2751 -5944 47 20 2776 -5934 1 1 {0} 0 0 0 Line tangent (direction) 70bfd479-ba84-4bf4-8caf-56bcd3564272 true Direction Direction false 0 2751 -5924 47 20 2776 -5914 1 1 {0} 0 1 0 Line length 7777a8f5-9637-4868-86d2-74b674e1d008 true Length Length false f98e2b1a-9c52-4364-9b5f-33aca2d97c60 1 2751 -5904 47 20 2776 -5894 1 1 {0} 1 Line segment 5387c90a-e93b-4683-85c6-110d8c0fd21c true Line Line false 0 2828 -5944 25 60 2842 -5914 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 3c20f7f6-645e-4d00-a4a3-5b92d14cf4df true Expression Expression 2705 -5272 194 28 2805 -5258 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable dbc68b9d-3df2-4ee0-9187-332c53523136 true Variable O O true 46960412-a634-4758-89c5-b7aa91fe2f1f 1 2707 -5270 14 24 2715.5 -5258 Result of expression beba95fe-b88b-493c-906f-926cb6bb0ebe true Result false 0 2888 -5270 9 24 2894 -5258 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 4caaa2b5-d716-4901-a952-4099fa998e31 Panel false 1 beba95fe-b88b-493c-906f-926cb6bb0ebe 1 Double click to edit panel content… 2695 -5545 214 271 0 0 0 2695.714 -5544.797 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object fd0bd67e-68f9-46e9-a1b6-440c80b784a1 Relay false 4caaa2b5-d716-4901-a952-4099fa998e31 1 2782 -5588 40 16 2802 -5580 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 46960412-a634-4758-89c5-b7aa91fe2f1f Relay false 68ecc26b-e785-469e-8f81-f893c6e34388 1 2782 -5225 40 16 2802 -5217 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 44ffcdf8-7e14-4b7d-8ae7-6c1792cb2d9b Quick Graph Quick Graph false 0 46960412-a634-4758-89c5-b7aa91fe2f1f 1 2727 -5747 150 150 2727.813 -5746.62 -1 dd17d442-3776-40b3-ad5b-5e188b56bd4c Relative Differences Compute relative differences for a list of data true db144b0d-67c2-49f2-8698-55f8c4324b2d Relative Differences Relative Differences 2738 -5112 128 28 2791 -5098 1 List of data to operate on (numbers or points or vectors allowed) 8555fb39-7ed6-47e1-add4-7e7238451e56 Values Values false 02c9233a-7f33-41b1-ae91-57617cf359a4 1 2740 -5110 36 24 2759.5 -5098 1 Differences between consecutive items f774ddbc-82b5-4ccd-a768-6dc238642e79 Differenced Differenced false 0 2806 -5110 58 24 2836.5 -5098 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 68ecc26b-e785-469e-8f81-f893c6e34388 Relay false f774ddbc-82b5-4ccd-a768-6dc238642e79 1 2782 -5146 40 16 2802 -5138 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 5be0ac6f-f9f3-4951-9a53-8e1e6c323367 Relay false 56efe341-a041-43c7-a346-024f7fdd9345 1 2782 -5005 40 16 2802 -4997 f3230ecb-3631-4d6f-86f2-ef4b2ed37f45 Replace Nulls Replace nulls or invalid data with other data true b4441e4c-5cf2-4d1f-8249-265dd4e3c699 Replace Nulls Replace Nulls 2734 -5067 136 44 2820 -5045 1 Items to test for null b6181f63-983b-4ce5-a871-2783f34487d8 Items Items false 5be0ac6f-f9f3-4951-9a53-8e1e6c323367 1 2736 -5065 69 20 2772 -5055 1 Items to replace nulls with 36a778c6-6279-42a1-90b3-03616ce675ec Replacements Replacements false 0 2736 -5045 69 20 2772 -5035 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 0 1 List without any nulls 02c9233a-7f33-41b1-ae91-57617cf359a4 Items Items false 0 2835 -5065 33 20 2853 -5055 Number of items replaced 639ce92e-0221-46b4-8d8b-02235e648709 Count Count false 0 2835 -5045 33 20 2853 -5035 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 74628273-bd20-4e69-9208-3c3d3db2410f Multiplication Multiplication 2761 -5816 82 44 2792 -5794 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication 7f926712-7796-4427-81cd-6ac90dfcff1b A A true 46960412-a634-4758-89c5-b7aa91fe2f1f 1 2763 -5814 14 20 2771.5 -5804 Second item for multiplication e1ebd271-0fb0-42f7-b043-d8e59efe3ca1 B B true db159351-ffb4-4af4-8829-3bf865b80f02 1 2763 -5794 14 20 2771.5 -5784 Result of multiplication f98e2b1a-9c52-4364-9b5f-33aca2d97c60 Result Result false 0 2807 -5814 34 40 2825.5 -5794 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers db159351-ffb4-4af4-8829-3bf865b80f02 Digit Scroller Digit Scroller false 0 12 Digit Scroller 4 67.97875157 2677 -5850 250 20 2677.793 -5849.274 e9eb1dcf-92f6-4d4d-84ae-96222d60f56b Move Translate (move) an object along a vector. true d8eeb538-e690-4768-97ec-ea210cded1aa Move Move 2733 -6096 138 44 2801 -6074 Base geometry 11d16c71-e9d9-4f39-a044-0700f3d8be40 Geometry Geometry true 5387c90a-e93b-4683-85c6-110d8c0fd21c 1 2735 -6094 51 20 2762 -6084 Translation vector d9f49192-1c92-43ee-a648-d24e50903973 Motion Motion false 57a53346-46e7-41eb-9a05-24c197bddbe5 1 2735 -6074 51 20 2762 -6064 1 1 {0} 0 0 10 Translated geometry d18de3da-aab3-4b7a-b9a4-52cd5cd878a4 Geometry Geometry false 0 2816 -6094 53 20 2844 -6084 Transformation data 3ddf6361-880f-4bf8-a812-ead3c9640ea1 Transform Transform false 0 2816 -6074 53 20 2844 -6064 56b92eab-d121-43f7-94d3-6cd8f0ddead8 Vector XYZ Create a vector from {xyz} components. true 3472af28-ad0d-4d8e-a0b5-0927a1bd69ed Vector XYZ Vector XYZ 2724 -6031 155 64 2825 -5999 Vector {x} component 74f2d8c3-53e5-427e-b1ea-9ae639808fa6 -X X component X component false 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b 1 2726 -6029 84 20 2777.5 -6019 1 1 {0} -1 Vector {y} component 8e8b9f00-c65d-47c9-ba3c-380db4f7df9c Y component Y component false 0 2726 -6009 84 20 2777.5 -5999 1 1 {0} 1.5 Vector {z} component 46402e71-ad84-471b-ab62-4729e3e53879 Z component Z component false 0 2726 -5989 84 20 2777.5 -5979 1 1 {0} 0 Vector construct 57a53346-46e7-41eb-9a05-24c197bddbe5 Vector Vector false 0 2840 -6029 37 30 2860 -6014 Vector length 9c8b6e2f-8028-4334-a34c-db424f050998 Length Length false 0 2840 -5999 37 30 2860 -5984 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 2ea98e53-c291-4c32-9159-d5fb19a496f3 3c20f7f6-645e-4d00-a4a3-5b92d14cf4df 4caaa2b5-d716-4901-a952-4099fa998e31 fd0bd67e-68f9-46e9-a1b6-440c80b784a1 46960412-a634-4758-89c5-b7aa91fe2f1f 44ffcdf8-7e14-4b7d-8ae7-6c1792cb2d9b db144b0d-67c2-49f2-8698-55f8c4324b2d 68ecc26b-e785-469e-8f81-f893c6e34388 5be0ac6f-f9f3-4951-9a53-8e1e6c323367 b4441e4c-5cf2-4d1f-8249-265dd4e3c699 74628273-bd20-4e69-9208-3c3d3db2410f db159351-ffb4-4af4-8829-3bf865b80f02 d8eeb538-e690-4768-97ec-ea210cded1aa 3472af28-ad0d-4d8e-a0b5-0927a1bd69ed 56efe341-a041-43c7-a346-024f7fdd9345 15b071bd-fb1e-4d13-9447-ea48d8b6887a dd2eae53-7800-4633-ab1e-ad9bde980f71 1f282895-fd85-45c7-b97e-5e6a11c90567 527acc98-cb13-4557-838a-b79e4839fd1b 60fd7d67-f0e4-470f-95ec-9b2b668f5b90 408d5a9f-e526-42b5-8a06-5793bb3d562b 66a85b7a-0ae9-464a-a60d-bb8056fa5d88 c0fe9d62-dced-4912-b38a-a715c1f30baf 23 4467b7b9-3960-4346-952a-a40c17d19ce2 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 56efe341-a041-43c7-a346-024f7fdd9345 Relay false 69f7f917-06e5-4873-bafd-ca04a7cd4193 1 2782 -4971 40 16 2802 -4963 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true ebed5b16-2091-4597-ae3a-afe73ff6f921 true Line SDL Line SDL 2751 -7780 106 64 2815 -7748 Line start point d094dc46-8ea5-41d4-8318-2637bdbadd95 true Start Start false a2188ea9-a064-4c1e-9cb2-1eff68e42006 1 2753 -7778 47 20 2778 -7768 1 1 {0} 0 0 0 Line tangent (direction) 85024c7c-7f86-483c-8146-8b49c525ba2c true Direction Direction false 0 2753 -7758 47 20 2778 -7748 1 1 {0} 0 1 0 Line length d89279c0-8a91-4fb8-ab91-666088e2a413 true Length Length false b53cd100-dbbb-47d0-8a01-fc80bd336b51 1 2753 -7738 47 20 2778 -7728 1 1 {0} 1 Line segment 0b6fba51-ac8c-414e-92ea-2477b1e909b3 true Line Line false 0 2830 -7778 25 60 2844 -7748 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 22aa32f8-f449-492c-af96-1dcf1faed39e true Expression Expression 2707 -7082 194 28 2807 -7068 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable a67f09a2-5294-4688-8ce3-e1e78d81444d true Variable O O true 70cb3712-339c-4b20-8d14-5e32b70dc18a 1 2709 -7080 14 24 2717.5 -7068 Result of expression ab4fd991-9ff7-4187-8dc3-bc0be03c92ca true Result false 0 2890 -7080 9 24 2896 -7068 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values e530f6c3-5898-4915-9d8b-8e3d4239da7a Panel false 1 ab4fd991-9ff7-4187-8dc3-bc0be03c92ca 1 Double click to edit panel content… 2698 -7375 214 271 0 0 0 2698.867 -7374.67 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 945d06a3-9619-48fe-b07a-8bc7d8da9cb4 Relay false e530f6c3-5898-4915-9d8b-8e3d4239da7a 1 2784 -7422 40 16 2804 -7414 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 70cb3712-339c-4b20-8d14-5e32b70dc18a Relay false 120d4c72-3877-4bdc-af93-9b076d26afa6 1 2784 -7035 40 16 2804 -7027 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph f7a1c4a1-49fd-4afb-aa75-d863e30237bf Quick Graph Quick Graph false 0 70cb3712-339c-4b20-8d14-5e32b70dc18a 1 2729 -7577 150 150 2729.966 -7576.494 -1 dd17d442-3776-40b3-ad5b-5e188b56bd4c Relative Differences Compute relative differences for a list of data true 839e2903-8eee-4f9b-84d9-3fec81c11572 Relative Differences Relative Differences 2740 -6946 128 28 2793 -6932 1 List of data to operate on (numbers or points or vectors allowed) 74a591d4-7323-4feb-8069-283512573f7c Values Values false 447db57e-25d8-47a7-81bb-7b787a63cf1a 1 2742 -6944 36 24 2761.5 -6932 1 Differences between consecutive items bd522d28-4c33-49af-980f-5db1bf3d52e7 Differenced Differenced false 0 2808 -6944 58 24 2838.5 -6932 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 120d4c72-3877-4bdc-af93-9b076d26afa6 Relay false bd522d28-4c33-49af-980f-5db1bf3d52e7 1 2784 -6980 40 16 2804 -6972 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 06b09384-7e56-4bd1-921f-05bccd4f20b1 Relay false 694c877b-aba0-418b-a8a5-ce7e2f02c4dc 1 2784 -6839 40 16 2804 -6831 f3230ecb-3631-4d6f-86f2-ef4b2ed37f45 Replace Nulls Replace nulls or invalid data with other data true 24dbccab-9ffe-46d0-8671-9591d25252d7 Replace Nulls Replace Nulls 2736 -6901 136 44 2822 -6879 1 Items to test for null 307427a1-9c93-42fd-bedd-f63bc0ba08e7 Items Items false 06b09384-7e56-4bd1-921f-05bccd4f20b1 1 2738 -6899 69 20 2774 -6889 1 Items to replace nulls with 00140051-0c2c-424b-8da6-c7c22bbe4a82 Replacements Replacements false 0 2738 -6879 69 20 2774 -6869 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 0 1 List without any nulls 447db57e-25d8-47a7-81bb-7b787a63cf1a Items Items false 0 2837 -6899 33 20 2855 -6889 Number of items replaced 9bae0836-dd4b-417e-aa8b-efa3e7bae4c4 Count Count false 0 2837 -6879 33 20 2855 -6869 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true a66dc363-9a3b-44ab-a606-2d7a9359ab87 Multiplication Multiplication 2763 -7650 82 44 2794 -7628 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication afb195d4-b39c-4d89-a7d7-b34e58e16d0d A A true 70cb3712-339c-4b20-8d14-5e32b70dc18a 1 2765 -7648 14 20 2773.5 -7638 Second item for multiplication 4d79a1ec-fc43-48d4-98b2-19e4ee1bc702 B B true 38dc5cea-c3dd-4d83-8a2a-59f2cf985259 1 2765 -7628 14 20 2773.5 -7618 Result of multiplication b53cd100-dbbb-47d0-8a01-fc80bd336b51 Result Result false 0 2809 -7648 34 40 2827.5 -7628 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 38dc5cea-c3dd-4d83-8a2a-59f2cf985259 Digit Scroller Digit Scroller false 0 12 Digit Scroller 4 59.91624635 2679 -7680 250 20 2679.946 -7679.147 e9eb1dcf-92f6-4d4d-84ae-96222d60f56b Move Translate (move) an object along a vector. true ea87cf94-f8c6-489e-b372-2587ee849ef7 Move Move 2735 -7930 138 44 2803 -7908 Base geometry d71df55a-2a74-4143-86a2-4891aabbf3c9 Geometry Geometry true 0b6fba51-ac8c-414e-92ea-2477b1e909b3 1 2737 -7928 51 20 2764 -7918 Translation vector b471a2ef-088b-4e65-8916-4a8d1eca04c2 Motion Motion false 43240380-2b4a-4e6a-b93b-14aa24a63327 1 2737 -7908 51 20 2764 -7898 1 1 {0} 0 0 10 Translated geometry b1a63964-6d3e-4377-b10a-a030fc678908 Geometry Geometry false 0 2818 -7928 53 20 2846 -7918 Transformation data 7c5604a3-d4b8-470d-a22e-9df40b59c835 Transform Transform false 0 2818 -7908 53 20 2846 -7898 56b92eab-d121-43f7-94d3-6cd8f0ddead8 Vector XYZ Create a vector from {xyz} components. true e069f32d-fd2d-4c52-bd67-36bcf98ce239 Vector XYZ Vector XYZ 2726 -7865 155 64 2827 -7833 Vector {x} component ebeec815-4ca9-4668-8c9d-7995b13ec465 -X X component X component false 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b 1 2728 -7863 84 20 2779.5 -7853 1 1 {0} -1 Vector {y} component 834fb795-c854-475f-85a9-5d2a5ef16ebb Y component Y component false 0 2728 -7843 84 20 2779.5 -7833 1 1 {0} 1.75 Vector {z} component b07af9c5-51ba-458c-a254-5002b49df352 Z component Z component false 0 2728 -7823 84 20 2779.5 -7813 1 1 {0} 0 Vector construct 43240380-2b4a-4e6a-b93b-14aa24a63327 Vector Vector false 0 2842 -7863 37 30 2862 -7848 Vector length 41080777-6668-4419-b8b1-c00684dca526 Length Length false 0 2842 -7833 37 30 2862 -7818 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects ebed5b16-2091-4597-ae3a-afe73ff6f921 22aa32f8-f449-492c-af96-1dcf1faed39e e530f6c3-5898-4915-9d8b-8e3d4239da7a 945d06a3-9619-48fe-b07a-8bc7d8da9cb4 70cb3712-339c-4b20-8d14-5e32b70dc18a f7a1c4a1-49fd-4afb-aa75-d863e30237bf 839e2903-8eee-4f9b-84d9-3fec81c11572 120d4c72-3877-4bdc-af93-9b076d26afa6 06b09384-7e56-4bd1-921f-05bccd4f20b1 24dbccab-9ffe-46d0-8671-9591d25252d7 a66dc363-9a3b-44ab-a606-2d7a9359ab87 38dc5cea-c3dd-4d83-8a2a-59f2cf985259 ea87cf94-f8c6-489e-b372-2587ee849ef7 e069f32d-fd2d-4c52-bd67-36bcf98ce239 694c877b-aba0-418b-a8a5-ce7e2f02c4dc 402a49d3-b2e6-40f9-82fc-422424bbff74 e7fbf397-7767-41d5-9277-dd226bb201d2 d0a9e18d-a88c-408e-92c5-fe91cc6dd54e ac16c2b6-dcc6-40a0-a135-c8fdab057662 af940d6c-4295-4640-a34e-53f4c0fed0b4 acab807e-0bd7-41ce-8d23-5f50bbcc109b ac7e4b79-a15f-4747-88fc-835181cee777 769608b0-b6df-44d2-9130-42067c104fb2 23 73f370e0-57f5-4ade-b7d4-d59e303d8ef4 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 694c877b-aba0-418b-a8a5-ce7e2f02c4dc Relay false 46960412-a634-4758-89c5-b7aa91fe2f1f 1 2784 -6805 40 16 2804 -6797 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true b531acdb-f75e-46cc-956a-e1f6d0a5196d Create Material Create Material 2721 4767 144 104 2805 4819 Colour of the diffuse channel 8fbb853e-1231-4031-8eac-ee30bc342439 Diffuse Diffuse false 0 2723 4769 67 20 2758 4779 1 1 {0} 255;247;247;247 Colour of the specular highlight 8ffa9c33-c61e-4971-80da-f51c7caee2fd Specular Specular false 0 2723 4789 67 20 2758 4799 1 1 {0} 255;0;255;255 Emissive colour of the material 21c0d762-4f36-4f40-8c14-287bb33de68e Emission Emission false 0 2723 4809 67 20 2758 4819 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 9fe9fcd6-7416-4b1c-bf4e-9b3772328549 Transparency Transparency false 0 2723 4829 67 20 2758 4839 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine e2bc875a-baa9-4da2-a673-740384182c11 Shine Shine false 0 2723 4849 67 20 2758 4859 1 1 {0} 100 Resulting material 7a8c3b07-ac0d-429b-8553-0de25bd00632 Material Material false 0 2820 4769 43 100 2843 4819 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true db71bc1a-ac35-4ad0-9b1d-b2f2ec7c25f1 Custom Preview Custom Preview 2752 4705 82 44 2820 4727 Geometry to preview true c502cc30-5cd9-45a1-883f-8da587deeff9 Geometry Geometry false 4b682de7-9b79-46c1-8e2a-4fdbcc588751 1 2754 4707 51 20 2781 4717 The material override e7eb16b4-3f7f-4395-acbb-4ebab28159bf Material Material false 7a8c3b07-ac0d-429b-8553-0de25bd00632 1 2754 4727 51 20 2781 4737 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects b531acdb-f75e-46cc-956a-e1f6d0a5196d db71bc1a-ac35-4ad0-9b1d-b2f2ec7c25f1 2 d50bca7c-1830-4d3f-beea-c5f699b9cc56 Group 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true b4a4a92f-f13b-4445-b2dd-58356b29fa0e Create Material Create Material 2721 2931 144 104 2805 2983 Colour of the diffuse channel d9fe9c23-639c-47ce-812f-d467743e65be Diffuse Diffuse false 0 2723 2933 67 20 2758 2943 1 1 {0} 255;240;240;240 Colour of the specular highlight 9957deee-7e9a-432e-95cc-774372d2ec3d Specular Specular false 0 2723 2953 67 20 2758 2963 1 1 {0} 255;0;255;255 Emissive colour of the material 4482cd75-c4a0-465c-954a-2a788b1d2ef6 Emission Emission false 0 2723 2973 67 20 2758 2983 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent a5a67ccb-e722-4de2-9890-2f1bd271d268 Transparency Transparency false 0 2723 2993 67 20 2758 3003 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 71788a95-8d9a-4226-9f31-dcc30254429b Shine Shine false 0 2723 3013 67 20 2758 3023 1 1 {0} 100 Resulting material 5cf6cb07-d97e-4d4e-a365-437c95f2c443 Material Material false 0 2820 2933 43 100 2843 2983 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true 37878e6a-dc90-46a6-bfdd-572c29007bbc Custom Preview Custom Preview 2752 2869 82 44 2820 2891 Geometry to preview true 118a7f91-e7bc-4437-9797-527444ef5745 Geometry Geometry false 4ec3c04c-6c11-40c7-b64f-2c1b38ff8091 1 2754 2871 51 20 2781 2881 The material override 96ea4c9c-7ed7-4cb9-8711-61fa37a8e3ec Material Material false 5cf6cb07-d97e-4d4e-a365-437c95f2c443 1 2754 2891 51 20 2781 2901 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects b4a4a92f-f13b-4445-b2dd-58356b29fa0e 37878e6a-dc90-46a6-bfdd-572c29007bbc 2 f8342b6b-15c7-478d-88c8-5933a2ef1e09 Group 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true c429e491-9b09-4e42-9cc3-89526febb81c Create Material Create Material 2721 1042 144 104 2805 1094 Colour of the diffuse channel cb6e1e65-1a06-4cfc-bdcf-49c9d3828b1b Diffuse Diffuse false 0 2723 1044 67 20 2758 1054 1 1 {0} 255;232;232;232 Colour of the specular highlight ae15759f-7ec8-440b-9297-89f2c3207b00 Specular Specular false 0 2723 1064 67 20 2758 1074 1 1 {0} 255;0;255;255 Emissive colour of the material fe9db8f9-5aa1-4805-973a-88ad6472444e Emission Emission false 0 2723 1084 67 20 2758 1094 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent f74fa70d-a6ae-4b8b-8464-21d70a7ee244 Transparency Transparency false 0 2723 1104 67 20 2758 1114 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 6c686784-f313-4ef8-a131-73305e955b02 Shine Shine false 0 2723 1124 67 20 2758 1134 1 1 {0} 100 Resulting material 0aa8117e-5500-4682-a7b2-6e69dc862bb2 Material Material false 0 2820 1044 43 100 2843 1094 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true ff0900a1-1fb0-4922-98be-668cd9586dfb Custom Preview Custom Preview 2752 979 82 44 2820 1001 Geometry to preview true ef593733-3282-471f-beb3-43d83c4ab568 Geometry Geometry false c17c1c53-7107-43f9-9a8e-a08dfe3a4373 1 2754 981 51 20 2781 991 The material override 85702ae2-025c-4873-9ca9-f835b540a36f Material Material false 0aa8117e-5500-4682-a7b2-6e69dc862bb2 1 2754 1001 51 20 2781 1011 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects c429e491-9b09-4e42-9cc3-89526febb81c ff0900a1-1fb0-4922-98be-668cd9586dfb 2 995c54b5-8333-4669-b219-8e80e6ca829d Group 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 24508471-4615-4a82-a43c-a3fb8ff2c93b Create Material Create Material 2721 -721 144 104 2805 -669 Colour of the diffuse channel d91f31dd-ad52-4668-8af6-683641ef94e9 Diffuse Diffuse false 0 2723 -719 67 20 2758 -709 1 1 {0} 255;224;224;224 Colour of the specular highlight 7650dfc1-9e71-40a8-bed6-91d811c1e54b Specular Specular false 0 2723 -699 67 20 2758 -689 1 1 {0} 255;0;255;255 Emissive colour of the material 60e6f7a8-ba1a-4628-9f3e-8895020c6a17 Emission Emission false 0 2723 -679 67 20 2758 -669 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent a495f282-c09c-4b42-ad1f-0082704aeb2b Transparency Transparency false 0 2723 -659 67 20 2758 -649 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 9468a937-2ae5-4c2a-96fb-bd8442f93dfa Shine Shine false 0 2723 -639 67 20 2758 -629 1 1 {0} 100 Resulting material 0d1aba3d-3700-4807-bcbc-7e6c19037a4d Material Material false 0 2820 -719 43 100 2843 -669 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true 964343c3-3dda-4f08-a87d-9fdc0bc8aa38 Custom Preview Custom Preview 2752 -785 82 44 2820 -763 Geometry to preview true ec9a960e-06b0-4934-8085-9893c5fae862 Geometry Geometry false 4e9c218a-a4d8-4359-b2b4-e7fec76f23f3 1 2754 -783 51 20 2781 -773 The material override 4feeb8f2-bec8-4523-80c2-2c52cfd67122 Material Material false 0d1aba3d-3700-4807-bcbc-7e6c19037a4d 1 2754 -763 51 20 2781 -753 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 24508471-4615-4a82-a43c-a3fb8ff2c93b 964343c3-3dda-4f08-a87d-9fdc0bc8aa38 2 df9156dc-99ad-49d2-9155-e2992efed591 Group 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true ee522ce1-b431-4566-add9-3979a9ab2672 Create Material Create Material 2721 -2524 144 104 2805 -2472 Colour of the diffuse channel 0579e524-61b7-4321-8031-a7db94b4785d Diffuse Diffuse false 0 2723 -2522 67 20 2758 -2512 1 1 {0} 255;217;217;217 Colour of the specular highlight fe6d704f-1c98-4116-b0e5-c26fd690f94e Specular Specular false 0 2723 -2502 67 20 2758 -2492 1 1 {0} 255;0;255;255 Emissive colour of the material 2ae6b16e-de32-4ff2-8c0b-839f83f8bec1 Emission Emission false 0 2723 -2482 67 20 2758 -2472 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent f6f7c66e-d7bd-4880-9afe-7d920399185a Transparency Transparency false 0 2723 -2462 67 20 2758 -2452 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 8c439ec6-2d6e-4fc9-8acc-efa34c557acb Shine Shine false 0 2723 -2442 67 20 2758 -2432 1 1 {0} 100 Resulting material e4b503a3-ffc3-4b42-a0aa-5f5a0ce89615 Material Material false 0 2820 -2522 43 100 2843 -2472 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true cc822037-e998-40ef-b314-cebccaa58d0f Custom Preview Custom Preview 2752 -2586 82 44 2820 -2564 Geometry to preview true f774ba37-5130-42ab-bc8b-126e729e78e4 Geometry Geometry false 96991c77-8125-4887-b56d-a51f89a5adc1 1 2754 -2584 51 20 2781 -2574 The material override 344c0ca4-6070-4c09-8866-658ebcbbb7f3 Material Material false e4b503a3-ffc3-4b42-a0aa-5f5a0ce89615 1 2754 -2564 51 20 2781 -2554 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects ee522ce1-b431-4566-add9-3979a9ab2672 cc822037-e998-40ef-b314-cebccaa58d0f 2 4e55916e-6a5a-44ec-b22f-43102b734bb9 Group 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 623732df-0874-41e0-bcc5-ad204b8f8237 Create Material Create Material 2730 -4394 144 104 2814 -4342 Colour of the diffuse channel 0bdb779a-605c-437c-99c5-a511e1a7480c Diffuse Diffuse false 0 2732 -4392 67 20 2767 -4382 1 1 {0} 255;209;209;209 Colour of the specular highlight 02fc4475-5c16-4f47-acd9-ff2b83fa7f79 Specular Specular false 0 2732 -4372 67 20 2767 -4362 1 1 {0} 255;0;255;255 Emissive colour of the material 6e04b863-e771-49ac-9de1-ccd51456f174 Emission Emission false 0 2732 -4352 67 20 2767 -4342 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent c507bbc0-0144-4489-9ac7-5a5791eec69a Transparency Transparency false 0 2732 -4332 67 20 2767 -4322 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine db36a45f-8cbb-4893-b269-9278fd43cdea Shine Shine false 0 2732 -4312 67 20 2767 -4302 1 1 {0} 100 Resulting material d660293c-bb1b-4329-a1f9-259afd59c60c Material Material false 0 2829 -4392 43 100 2852 -4342 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true f1933e3a-3303-485e-a878-b7fdb74f5b34 Custom Preview Custom Preview 2761 -4456 82 44 2829 -4434 Geometry to preview true 0d2ce09b-c371-4148-8b77-d47d03e0df83 Geometry Geometry false 531dc426-bfb6-4210-89d1-a169cc14774b 1 2763 -4454 51 20 2790 -4444 The material override d13696d0-1b3c-43f4-ae5a-628991137c7c Material Material false d660293c-bb1b-4329-a1f9-259afd59c60c 1 2763 -4434 51 20 2790 -4424 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 623732df-0874-41e0-bcc5-ad204b8f8237 f1933e3a-3303-485e-a878-b7fdb74f5b34 2 b5df053c-cc37-42c3-ab32-579385c79137 Group 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 15b071bd-fb1e-4d13-9447-ea48d8b6887a Create Material Create Material 2730 -6220 144 104 2814 -6168 Colour of the diffuse channel 70323c2b-978e-46f6-94e5-1186699f32bb Diffuse Diffuse false 0 2732 -6218 67 20 2767 -6208 1 1 {0} 255;201;201;201 Colour of the specular highlight 85a159ae-5eb6-4657-848d-43d2fa82f3a5 Specular Specular false 0 2732 -6198 67 20 2767 -6188 1 1 {0} 255;0;255;255 Emissive colour of the material 09c60a3d-162e-4ae5-830d-897917636850 Emission Emission false 0 2732 -6178 67 20 2767 -6168 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent d16a523d-760c-4627-8a18-62633a0dbf84 Transparency Transparency false 0 2732 -6158 67 20 2767 -6148 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 465c8231-c842-46d9-975d-a162ac4e2833 Shine Shine false 0 2732 -6138 67 20 2767 -6128 1 1 {0} 100 Resulting material 0858165f-26f6-474b-9a5f-b9fe410f4982 Material Material false 0 2829 -6218 43 100 2852 -6168 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true dd2eae53-7800-4633-ab1e-ad9bde980f71 Custom Preview Custom Preview 2761 -6283 82 44 2829 -6261 Geometry to preview true 75cbbe0e-3e97-4af3-8ccc-7f753858a899 Geometry Geometry false d18de3da-aab3-4b7a-b9a4-52cd5cd878a4 1 2763 -6281 51 20 2790 -6271 The material override ba760006-1e3d-45d6-a729-e7274d2bc338 Material Material false 0858165f-26f6-474b-9a5f-b9fe410f4982 1 2763 -6261 51 20 2790 -6251 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 15b071bd-fb1e-4d13-9447-ea48d8b6887a dd2eae53-7800-4633-ab1e-ad9bde980f71 2 1f282895-fd85-45c7-b97e-5e6a11c90567 Group 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 402a49d3-b2e6-40f9-82fc-422424bbff74 Create Material Create Material 2732 -8089 144 104 2816 -8037 Colour of the diffuse channel 3cad861e-92f2-4301-9851-693f531f1900 Diffuse Diffuse false 0 2734 -8087 67 20 2769 -8077 1 1 {0} 255;194;194;194 Colour of the specular highlight a69114ad-54a2-4783-8d6d-af31b225d1d9 Specular Specular false 0 2734 -8067 67 20 2769 -8057 1 1 {0} 255;0;255;255 Emissive colour of the material 84efb86f-0f14-48c8-9483-fcac308f6fba Emission Emission false 0 2734 -8047 67 20 2769 -8037 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 98469eba-81de-4e63-8c28-ea5c5551b29b Transparency Transparency false 0 2734 -8027 67 20 2769 -8017 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine d58bf126-1f07-4cb5-8097-781a6f37211a Shine Shine false 0 2734 -8007 67 20 2769 -7997 1 1 {0} 100 Resulting material 17eb8a86-85c3-4f8e-8bec-096bc1289ad6 Material Material false 0 2831 -8087 43 100 2854 -8037 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true e7fbf397-7767-41d5-9277-dd226bb201d2 Custom Preview Custom Preview 2763 -8151 82 44 2831 -8129 Geometry to preview true 583763df-3559-4444-88db-18bcef58edc8 Geometry Geometry false b1a63964-6d3e-4377-b10a-a030fc678908 1 2765 -8149 51 20 2792 -8139 The material override 8bb0bc3c-def6-485c-aafa-f30bd73713f7 Material Material false 17eb8a86-85c3-4f8e-8bec-096bc1289ad6 1 2765 -8129 51 20 2792 -8119 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 402a49d3-b2e6-40f9-82fc-422424bbff74 e7fbf397-7767-41d5-9277-dd226bb201d2 2 d0a9e18d-a88c-408e-92c5-fe91cc6dd54e Group 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 468ae4a9-a114-4c06-bd0a-b3836112802a true Line SDL Line SDL 2755 -9631 106 64 2819 -9599 Line start point e172fa61-0887-4b0e-a15d-177fdd4b1e78 true Start Start false a2188ea9-a064-4c1e-9cb2-1eff68e42006 1 2757 -9629 47 20 2782 -9619 1 1 {0} 0 0 0 Line tangent (direction) 37e5c981-175b-429f-8341-8117dc435086 true Direction Direction false 0 2757 -9609 47 20 2782 -9599 1 1 {0} 0 1 0 Line length 948a685e-51da-4050-a315-c973e120bdd8 true Length Length false 11c032cd-0732-49b9-9916-5fecced7fec8 1 2757 -9589 47 20 2782 -9579 1 1 {0} 1 Line segment 20c1d600-a6cb-49c9-a8cf-3e8d2e94fb00 true Line Line false 0 2834 -9629 25 60 2848 -9599 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true e903fe97-952f-43db-8d4b-a67e4a1557e7 true Expression Expression 2711 -8934 194 28 2811 -8920 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 077bcd95-c1c5-4b9a-a788-c4fd671f2960 true Variable O O true 409dbe80-676f-47ee-9518-ac4b2c883eb7 1 2713 -8932 14 24 2721.5 -8920 Result of expression bf4df40d-6cc2-4e6c-9b7f-e60ed1c0d9eb true Result false 0 2894 -8932 9 24 2900 -8920 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 8308791e-0e09-4757-83c0-95807979f31d Panel false 1 bf4df40d-6cc2-4e6c-9b7f-e60ed1c0d9eb 1 Double click to edit panel content… 2702 -9227 214 271 0 0 0 2702.272 -9226.128 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 8bd3d38a-5034-43a4-a043-823b8e073d49 Relay false 8308791e-0e09-4757-83c0-95807979f31d 1 2788 -9273 40 16 2808 -9265 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 409dbe80-676f-47ee-9518-ac4b2c883eb7 Relay false c60879ce-6650-4dc9-8317-4e4f79fff49f 1 2788 -8886 40 16 2808 -8878 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph f543fe50-7d79-4c52-a224-c3c8f3b6102c Quick Graph Quick Graph false 0 409dbe80-676f-47ee-9518-ac4b2c883eb7 1 2734 -9428 150 150 2734.372 -9427.95 -1 dd17d442-3776-40b3-ad5b-5e188b56bd4c Relative Differences Compute relative differences for a list of data true 581cdc16-c05a-44ba-ac73-843c1af50781 Relative Differences Relative Differences 2744 -8797 128 28 2797 -8783 1 List of data to operate on (numbers or points or vectors allowed) 7dc74a02-86a1-4453-a403-4ab25340fcac Values Values false 28b836cd-5f50-4d76-ab53-228f2bc916fa 1 2746 -8795 36 24 2765.5 -8783 1 Differences between consecutive items ba76117c-26fa-47bb-afe0-59edfed7f1a7 Differenced Differenced false 0 2812 -8795 58 24 2842.5 -8783 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object c60879ce-6650-4dc9-8317-4e4f79fff49f Relay false ba76117c-26fa-47bb-afe0-59edfed7f1a7 1 2788 -8831 40 16 2808 -8823 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object ac56c0a4-9746-4e0d-a1dc-227ac817d4f0 Relay false 0be9cb07-b39d-49e7-b2c8-632937704d56 1 2788 -8690 40 16 2808 -8682 f3230ecb-3631-4d6f-86f2-ef4b2ed37f45 Replace Nulls Replace nulls or invalid data with other data true 10efd27a-e9e9-4ac7-9af3-eeca56f48949 Replace Nulls Replace Nulls 2740 -8752 136 44 2826 -8730 1 Items to test for null 52ad152c-d17c-4f8e-9ab4-3010f6a21504 Items Items false ac56c0a4-9746-4e0d-a1dc-227ac817d4f0 1 2742 -8750 69 20 2778 -8740 1 Items to replace nulls with c86d37e4-2e94-48d9-bd42-67f79793669f Replacements Replacements false 0 2742 -8730 69 20 2778 -8720 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 0 1 List without any nulls 28b836cd-5f50-4d76-ab53-228f2bc916fa Items Items false 0 2841 -8750 33 20 2859 -8740 Number of items replaced 0d7d2098-1040-4b77-a486-ee1a1935f9c5 Count Count false 0 2841 -8730 33 20 2859 -8720 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 8bfc7a14-3c71-455d-99df-4c73390ca167 Multiplication Multiplication 2767 -9501 82 44 2798 -9479 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication 3a0080fa-4d3f-4d56-881e-050abfb190c1 A A true 409dbe80-676f-47ee-9518-ac4b2c883eb7 1 2769 -9499 14 20 2777.5 -9489 Second item for multiplication db733313-bc37-41f8-8d04-d9e47453fb1e B B true 4ea36994-cd0b-4367-b931-94b822566e1d 1 2769 -9479 14 20 2777.5 -9469 Result of multiplication 11c032cd-0732-49b9-9916-5fecced7fec8 Result Result false 0 2813 -9499 34 40 2831.5 -9479 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 4ea36994-cd0b-4367-b931-94b822566e1d Digit Scroller Digit Scroller false 0 12 Digit Scroller 4 34.10949842 2684 -9531 250 20 2684.352 -9530.604 e9eb1dcf-92f6-4d4d-84ae-96222d60f56b Move Translate (move) an object along a vector. true 73800d77-1974-4f16-8960-6a81b85f893a Move Move 2739 -9781 138 44 2807 -9759 Base geometry 59d287da-879c-4352-a822-b1e5ca0c4bdb Geometry Geometry true 20c1d600-a6cb-49c9-a8cf-3e8d2e94fb00 1 2741 -9779 51 20 2768 -9769 Translation vector f98f7770-1e70-4d11-ae49-167071702ed6 Motion Motion false e7747a56-945b-49e0-b419-5e4f64ac1c52 1 2741 -9759 51 20 2768 -9749 1 1 {0} 0 0 10 Translated geometry 9122048b-5af8-459a-a9f2-1cb38d844e1f Geometry Geometry false 0 2822 -9779 53 20 2850 -9769 Transformation data c372b3e6-8111-49c1-8420-e35202c886bd Transform Transform false 0 2822 -9759 53 20 2850 -9749 56b92eab-d121-43f7-94d3-6cd8f0ddead8 Vector XYZ Create a vector from {xyz} components. true 6f8a577f-6f74-440b-80a5-f11b1b43d0b7 Vector XYZ Vector XYZ 2730 -9716 155 64 2831 -9684 Vector {x} component 2b8d7d6e-5fcb-4c7c-a660-73550a420277 -X X component X component false 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b 1 2732 -9714 84 20 2783.5 -9704 1 1 {0} -1 Vector {y} component fa9d85cd-5edf-46f2-a8f5-88387b68f613 Y component Y component false 0 2732 -9694 84 20 2783.5 -9684 1 1 {0} 2 Vector {z} component 02b47629-8d92-41a9-9f59-ce536683f1c4 Z component Z component false 0 2732 -9674 84 20 2783.5 -9664 1 1 {0} 0 Vector construct e7747a56-945b-49e0-b419-5e4f64ac1c52 Vector Vector false 0 2846 -9714 37 30 2866 -9699 Vector length 5d8645b7-bebd-416e-8e28-ce6e604f57ba Length Length false 0 2846 -9684 37 30 2866 -9669 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 468ae4a9-a114-4c06-bd0a-b3836112802a e903fe97-952f-43db-8d4b-a67e4a1557e7 8308791e-0e09-4757-83c0-95807979f31d 8bd3d38a-5034-43a4-a043-823b8e073d49 409dbe80-676f-47ee-9518-ac4b2c883eb7 f543fe50-7d79-4c52-a224-c3c8f3b6102c 581cdc16-c05a-44ba-ac73-843c1af50781 c60879ce-6650-4dc9-8317-4e4f79fff49f ac56c0a4-9746-4e0d-a1dc-227ac817d4f0 10efd27a-e9e9-4ac7-9af3-eeca56f48949 8bfc7a14-3c71-455d-99df-4c73390ca167 4ea36994-cd0b-4367-b931-94b822566e1d 73800d77-1974-4f16-8960-6a81b85f893a 6f8a577f-6f74-440b-80a5-f11b1b43d0b7 0be9cb07-b39d-49e7-b2c8-632937704d56 e3f27dc4-e294-4f6d-8ef1-dda577ad883f 8063ee14-fb75-4d25-b951-3c9472e14358 0ac08dcb-bda1-468f-9872-9b51c8058f72 8b4070e4-7dcf-409a-8978-2d9aa65cc7e9 1eb5bbdd-80c5-402d-a116-d1477654d742 1b7ce45e-efe0-4abb-b207-d21b466ff7f3 6769cdb3-9ea7-409e-b566-b5221866f156 402b11cc-e986-4056-8676-42eec6a89ccd 23 17c4cc8d-2b20-466c-8dac-434f7f2004bc Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 0be9cb07-b39d-49e7-b2c8-632937704d56 Relay false 70cb3712-339c-4b20-8d14-5e32b70dc18a 1 2788 -8656 40 16 2808 -8648 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true e3f27dc4-e294-4f6d-8ef1-dda577ad883f Create Material Create Material 2736 -9940 144 104 2820 -9888 Colour of the diffuse channel 6deacaf6-f059-41f8-9c62-7ccf2f8df45f Diffuse Diffuse false 0 2738 -9938 67 20 2773 -9928 1 1 {0} 255;186;186;186 Colour of the specular highlight c020c05b-a564-4cb8-8e6d-9c4ce6f45a10 Specular Specular false 0 2738 -9918 67 20 2773 -9908 1 1 {0} 255;0;255;255 Emissive colour of the material dd7c8a17-eaef-4e0c-a7fc-631f585ecf8d Emission Emission false 0 2738 -9898 67 20 2773 -9888 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 65212e32-4634-4b95-8734-c728a7c0a063 Transparency Transparency false 0 2738 -9878 67 20 2773 -9868 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine cb9667f9-ff64-48e6-9a27-24d8b9b420dd Shine Shine false 0 2738 -9858 67 20 2773 -9848 1 1 {0} 100 Resulting material e0d6b6f7-bd32-40d1-9a6e-ad2241b46061 Material Material false 0 2835 -9938 43 100 2858 -9888 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true 8063ee14-fb75-4d25-b951-3c9472e14358 Custom Preview Custom Preview 2767 -10002 82 44 2835 -9980 Geometry to preview true ce100a5d-1a83-49c5-8c75-acab3b06ab87 Geometry Geometry false 9122048b-5af8-459a-a9f2-1cb38d844e1f 1 2769 -10000 51 20 2796 -9990 The material override ae458828-c574-44cf-801f-ad1918b20fba Material Material false e0d6b6f7-bd32-40d1-9a6e-ad2241b46061 1 2769 -9980 51 20 2796 -9970 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects e3f27dc4-e294-4f6d-8ef1-dda577ad883f 8063ee14-fb75-4d25-b951-3c9472e14358 2 0ac08dcb-bda1-468f-9872-9b51c8058f72 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 3f532fe6-afb1-4b52-b66b-a2df9503a722 822e353b-fc97-4b6b-a360-c40fe047aba3 c17bf30a-d3fb-42bf-8a5c-8a85b4e571e6 6337fb45-9f2a-494e-8d9a-c43d901d4129 d111ccf2-d6ca-47ae-ab79-0c1bc58cc261 617390cd-2791-48d5-8977-2dd3e861404b 8f0cf2e8-11f5-4f6a-a3e0-f510ed7e25fa 7e7dff7b-031e-4250-9fb5-7aea1a3739b6 49256aa1-f1ff-4374-8512-d443a34bed35 c8c37092-da01-41e1-949e-8c86fb1078aa c0089638-9a13-4310-b39e-a8dac696daf8 04a9d7c0-d6e1-40a4-9806-5c417660d57b 68142d09-d48e-408c-bb7a-1784d9b6e17b 9124396a-6865-4877-967f-3b504dc2f8ce ecb0f980-fd26-448a-ad86-8786c6c9ed06 98273f40-7a23-4124-89b2-96776819dea1 a06d28e7-54d8-416c-bf64-1663ac6c8cc4 dc090530-b05e-44b1-809d-9d9622cca7b4 7a066a23-c87f-4cb6-9087-7461260a23bc 22196402-4f02-4c65-b946-79940c9ed86f 8990d9d5-32c4-4f6a-80f1-a8c19487ffab af046430-30ae-447d-a228-e389481e84e5 22 28604043-27e9-44c6-9dae-5aace902bfbe Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects d111ccf2-d6ca-47ae-ab79-0c1bc58cc261 617390cd-2791-48d5-8977-2dd3e861404b 8f0cf2e8-11f5-4f6a-a3e0-f510ed7e25fa 7e7dff7b-031e-4250-9fb5-7aea1a3739b6 49256aa1-f1ff-4374-8512-d443a34bed35 c8c37092-da01-41e1-949e-8c86fb1078aa c0089638-9a13-4310-b39e-a8dac696daf8 04a9d7c0-d6e1-40a4-9806-5c417660d57b 68142d09-d48e-408c-bb7a-1784d9b6e17b 9124396a-6865-4877-967f-3b504dc2f8ce ecb0f980-fd26-448a-ad86-8786c6c9ed06 da02d1d3-6ded-4a0b-ba9f-41d51c627b77 1a0014ae-7819-4c4e-8299-9532e4fdd989 13 3f532fe6-afb1-4b52-b66b-a2df9503a722 Group dd17d442-3776-40b3-ad5b-5e188b56bd4c Relative Differences Compute relative differences for a list of data true 822e353b-fc97-4b6b-a360-c40fe047aba3 Relative Differences Relative Differences 4247 115 128 28 4300 129 1 List of data to operate on (numbers or points or vectors allowed) a1d05e44-a43d-450e-8f36-fd12d1e53ac6 Values Values false 6337fb45-9f2a-494e-8d9a-c43d901d4129 1 4249 117 36 24 4268.5 129 1 Differences between consecutive items d73a85e4-607a-4ba4-81a9-f9ea19659c7a Differenced Differenced false 0 4315 117 58 24 4345.5 129 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object c17bf30a-d3fb-42bf-8a5c-8a85b4e571e6 Relay false d73a85e4-607a-4ba4-81a9-f9ea19659c7a 1 4291 81 40 16 4311 89 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 6337fb45-9f2a-494e-8d9a-c43d901d4129 Relay false bad1c978-837c-473b-b4f0-a58dfe6f997e 1 4291 163 40 16 4311 171 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true d111ccf2-d6ca-47ae-ab79-0c1bc58cc261 Line SDL Line SDL 4247 -612 122 64 4327 -580 Line start point 9cfe5b71-8f18-47ed-b0b8-dee80e19d37e Start Start false f38aaa8d-3a3e-4388-b382-236a86074b2f 1 4249 -610 63 20 4290 -600 Line tangent (direction) e714ca07-3ee9-4a27-93e8-0c7fd8e39930 Direction Direction false 617390cd-2791-48d5-8977-2dd3e861404b 1 4249 -590 63 20 4290 -580 1 1 {0} 0 0 1 Line length 3beb1df9-9cec-4833-8902-bb3582a41a09 ABS(X) Length Length false 04a9d7c0-d6e1-40a4-9806-5c417660d57b 1 4249 -570 63 20 4290 -560 1 1 {0} 1 Line segment 88bd0e53-3ee3-4c67-b5a0-f736eba8ff2d Line Line false 0 4342 -610 25 60 4356 -580 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 617390cd-2791-48d5-8977-2dd3e861404b Relay false 64fde29a-f76c-4fc1-b003-229851718aab 1 4288 -530 40 16 4308 -522 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values 8f0cf2e8-11f5-4f6a-a3e0-f510ed7e25fa Number Slider false 0 4236 -379 150 20 4236.272 -378.7855 6 1 0 1 0 0 0.0125 2fcc2743-8339-4cdf-a046-a1f17439191d Remap Numbers Remap numbers into a new numeric domain true 7e7dff7b-031e-4250-9fb5-7aea1a3739b6 Remap Numbers Remap Numbers 4250 -248 115 64 4305 -216 Value to remap 23b6f202-5297-4104-99cd-f8804c325e5b Value Value false c0089638-9a13-4310-b39e-a8dac696daf8 1 4252 -246 38 20 4272.5 -236 Source domain 9707a747-8dec-4fd3-805f-3bf06de61a2d Source Source false 46522074-9f13-4a0b-b6e1-1172ce2cbbbd 1 4252 -226 38 20 4272.5 -216 1 1 {0} 0 1 Target domain 79c7c187-e165-4951-ae16-53d86db1fe0b Target Target false 0 4252 -206 38 20 4272.5 -196 1 1 {0} -1 1 Remapped number 94e9a756-d400-4e22-9cda-8419ca7815f5 Mapped Mapped false 0 4320 -246 43 30 4343 -231 Remapped and clipped number 6160afcb-ccb5-498a-a3ff-1c72c9019242 Clipped Clipped false 0 4320 -216 43 30 4343 -201 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true 49256aa1-f1ff-4374-8512-d443a34bed35 Bounds Bounds 4247 -165 122 28 4311 -151 1 Numbers to include in Bounds c5fadf19-a9d3-48c3-b73e-420895589b05 Numbers Numbers false c0089638-9a13-4310-b39e-a8dac696daf8 1 4249 -163 47 24 4274 -151 Numeric Domain between the lowest and highest numbers in {N} 46522074-9f13-4a0b-b6e1-1172ce2cbbbd Domain Domain false 0 4326 -163 41 24 4348 -151 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects f51f5f2d-941f-41ef-b98f-20f88c0f615c afc9108c-9db9-441a-9c43-d667d1c32b78 58b4763e-c14f-475c-bea3-43146b32e6bd 569a059d-e90a-4cb8-86b1-26bffb26bfcb 80033146-5b4f-404e-b6dc-65dc753db8a1 145eea6c-da47-45fb-84e7-715c62530022 22307018-81e5-47cd-acd7-460831a3214c 7e7dff7b-031e-4250-9fb5-7aea1a3739b6 49256aa1-f1ff-4374-8512-d443a34bed35 c3830b7d-0858-410d-89db-9af833da8bf5 04a9d7c0-d6e1-40a4-9806-5c417660d57b c0089638-9a13-4310-b39e-a8dac696daf8 8f0cf2e8-11f5-4f6a-a3e0-f510ed7e25fa 68142d09-d48e-408c-bb7a-1784d9b6e17b 14 c8c37092-da01-41e1-949e-8c86fb1078aa Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object c0089638-9a13-4310-b39e-a8dac696daf8 Relay false c17bf30a-d3fb-42bf-8a5c-8a85b4e571e6 1 4288 -120 40 16 4308 -112 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 04a9d7c0-d6e1-40a4-9806-5c417660d57b Relay false b8ec6b45-edf2-4f33-9bf1-4ca4e1c9d2e9 1 4288 -487 40 16 4308 -479 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 68142d09-d48e-408c-bb7a-1784d9b6e17b Multiplication Multiplication 4267 -448 82 44 4298 -426 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication 66573326-0b0c-4738-b480-7aee48d7bed5 A A true d098c900-e789-49fb-86be-64619ee14281 1 4269 -446 14 20 4277.5 -436 Second item for multiplication 3da8b0a8-2cd7-4ee6-9676-c935b4ad77c5 B B true 8f0cf2e8-11f5-4f6a-a3e0-f510ed7e25fa 1 4269 -426 14 20 4277.5 -416 Result of multiplication b8ec6b45-edf2-4f33-9bf1-4ca4e1c9d2e9 Result Result false 0 4313 -446 34 40 4331.5 -426 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 9124396a-6865-4877-967f-3b504dc2f8ce Multiplication Multiplication 4267 -347 82 44 4298 -325 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication e52efa0a-3998-4ddb-8034-908d71be93ef A A true 94e9a756-d400-4e22-9cda-8419ca7815f5 1 4269 -345 14 20 4277.5 -335 Second item for multiplication 6c95a239-bd5e-4d1b-80de-567c740452e8 B B true ecb0f980-fd26-448a-ad86-8786c6c9ed06 1 4269 -325 14 20 4277.5 -315 Result of multiplication d098c900-e789-49fb-86be-64619ee14281 Result Result false 0 4313 -345 34 40 4331.5 -325 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object ecb0f980-fd26-448a-ad86-8786c6c9ed06 Relay false b81ec812-8ec8-4429-a6a9-685744f02fd4 1 4288 -285 40 16 4308 -277 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects c17bf30a-d3fb-42bf-8a5c-8a85b4e571e6 6337fb45-9f2a-494e-8d9a-c43d901d4129 822e353b-fc97-4b6b-a360-c40fe047aba3 3 98273f40-7a23-4124-89b2-96776819dea1 Group 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true a06d28e7-54d8-416c-bf64-1663ac6c8cc4 Create Material Create Material 4236 -736 144 104 4320 -684 Colour of the diffuse channel 260a597b-750f-48a9-a996-7ebe1d3297c2 Diffuse Diffuse false 0 4238 -734 67 20 4273 -724 1 1 {0} 255;224;224;224 Colour of the specular highlight f33fee0d-c6a9-488b-a69f-2563a37f5202 Specular Specular false 0 4238 -714 67 20 4273 -704 1 1 {0} 255;0;255;255 Emissive colour of the material 35e0718f-39b2-4782-8e23-d82425fcc5d9 Emission Emission false 0 4238 -694 67 20 4273 -684 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 669b6da3-7c37-4a36-811e-cf9d92f97500 Transparency Transparency false 0 4238 -674 67 20 4273 -664 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 49081706-d297-4187-9eed-998028e62a07 Shine Shine false 0 4238 -654 67 20 4273 -644 1 1 {0} 100 Resulting material 685dd4e9-1f79-4c80-8a5d-869db39c3434 Material Material false 0 4335 -734 43 100 4358 -684 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true dc090530-b05e-44b1-809d-9d9622cca7b4 Custom Preview Custom Preview 4267 -798 82 44 4335 -776 Geometry to preview true 952b2f42-9906-45ca-b6b7-0aa3ef80a01c Geometry Geometry false 88bd0e53-3ee3-4c67-b5a0-f736eba8ff2d 1 4269 -796 51 20 4296 -786 The material override f33ed52b-4d5a-42ce-8b61-1a9e2f20fb62 Material Material false 685dd4e9-1f79-4c80-8a5d-869db39c3434 1 4269 -776 51 20 4296 -766 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 7a066a23-c87f-4cb6-9087-7461260a23bc Evaluate Length Evaluate Length 4236 -881 144 64 4310 -849 Curve to evaluate 58c643fe-30c7-42b3-a4fc-051675d50556 Curve Curve false 88bd0e53-3ee3-4c67-b5a0-f736eba8ff2d 1 4238 -879 57 20 4268 -869 Length factor for curve evaluation 50ad2b79-9f85-4d11-92ef-fafcc6e9cc86 Length Length false 0 4238 -859 57 20 4268 -849 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) ffce908d-2a6d-4692-ad29-c0f949e4b68d Normalized Normalized false 0 4238 -839 57 20 4268 -829 1 1 {0} true Point at the specified length 070664db-079f-4d57-9c66-06f9a828502b Point Point false 0 4325 -879 53 20 4353 -869 Tangent vector at the specified length f6ae4427-9808-457a-bea8-bb2ba3d45ca3 Tangent Tangent false 0 4325 -859 53 20 4353 -849 Curve parameter at the specified length 5c2bb764-9644-47d4-abd6-f5d29df9926e Parameter Parameter false 0 4325 -839 53 20 4353 -829 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 22196402-4f02-4c65-b946-79940c9ed86f Interpolate Interpolate 4245 -985 125 84 4312 -943 1 Interpolation points 13075939-c608-495f-b245-210191903f8a Vertices Vertices false 070664db-079f-4d57-9c66-06f9a828502b 1 4247 -983 50 20 4273.5 -973 Curve degree b0d1ba82-efed-4841-8e76-85e28a689321 Degree Degree false 0 4247 -963 50 20 4273.5 -953 1 1 {0} 3 Periodic curve f0d639c2-55c7-44cb-be47-b1805776060a Periodic Periodic false 0 4247 -943 50 20 4273.5 -933 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 25b64c5c-a442-4dcf-9321-b72dec9066b2 KnotStyle KnotStyle false 0 4247 -923 50 20 4273.5 -913 1 1 {0} 2 Resulting nurbs curve 6c228f65-d09c-466a-bb7a-3e1a228bf38f Curve Curve false 0 4327 -983 41 26 4349 -969.6667 Curve length 226e86f4-b238-40dd-89a3-70958162a005 Length Length false 0 4327 -957 41 27 4349 -943 Curve domain ee600a74-63c9-4e48-aa24-971bd994cca8 Domain Domain false 0 4327 -930 41 27 4349 -916.3334 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 8990d9d5-32c4-4f6a-80f1-a8c19487ffab Create Material Create Material 4236 -1109 144 104 4320 -1057 Colour of the diffuse channel 8a558bc9-af84-488f-b24c-8bfa6f67505e Diffuse Diffuse false 0 4238 -1107 67 20 4273 -1097 1 1 {0} 255;199;199;199 Colour of the specular highlight b51dac09-fb85-4a16-baae-55e111c48a14 Specular Specular false 0 4238 -1087 67 20 4273 -1077 1 1 {0} 255;0;255;255 Emissive colour of the material dadf41ad-84ce-4fc2-8728-ed9dc0315862 Emission Emission false 0 4238 -1067 67 20 4273 -1057 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent ae046813-eb66-441e-91e0-30d39cba1a96 Transparency Transparency false 0 4238 -1047 67 20 4273 -1037 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine af37db95-6d0a-4db9-a705-6f59f9d62f63 Shine Shine false 0 4238 -1027 67 20 4273 -1017 1 1 {0} 100 Resulting material 0ce720bd-95db-413a-9411-322070163430 Material Material false 0 4335 -1107 43 100 4358 -1057 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true af046430-30ae-447d-a228-e389481e84e5 Custom Preview Custom Preview 4267 -1169 82 44 4335 -1147 Geometry to preview true e80e237d-e959-40d5-ae7e-9d30dca05802 Geometry Geometry false 6c228f65-d09c-466a-bb7a-3e1a228bf38f 1 4269 -1167 51 20 4296 -1157 The material override 2ddad691-8637-4cc2-9005-53dcb7df5869 Material Material false 0ce720bd-95db-413a-9411-322070163430 1 4269 -1147 51 20 4296 -1137 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 79a32c99-cc85-43d8-92c6-5a6a2d4e661d 481934d5-e5b9-4163-81dc-d02287b0a16e f011379a-ace5-42cd-9bf6-03a6a430b537 2c37bcc8-1830-4dff-85f9-38b2de540fb3 af4abf65-fe15-4571-bfac-a433fbc620b2 adc681a9-796a-436f-8372-b9faebb29bd2 7a372be2-540a-4b8c-b985-ea311cfef976 49820c57-6bf9-485c-ad4e-d9453a698a97 656a41d7-19de-4214-b3de-2a5b0082fe7a dc6c6011-3ef5-40b4-bb9c-f92ccc4e0a73 c651fff0-37e1-49d7-b397-0b8266b5a95f d289bebe-b878-4fbb-84a8-8a519345390a 85130a20-ec2b-4b21-b962-404f2d9600ec 0e05c649-199e-4019-be99-d45cac16b337 467103cb-dcdd-45ff-a343-768a56d00580 da02d1d3-6ded-4a0b-ba9f-41d51c627b77 7a68601a-91a8-4247-ad9e-5e0a983742d3 4d99301f-3934-4a25-abcd-c1e0f420df9f 2e8b22db-aadc-46e5-ad66-b72ea3883775 eabb2a23-2877-4239-b7f0-861e35a9fbba 4a27400f-3607-4680-8b22-72118b31c7c1 1eb64fe7-33f0-4f11-909a-15e428a5b048 22 4cc0d15d-8183-441a-8dcd-8e6a3b583203 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects af4abf65-fe15-4571-bfac-a433fbc620b2 adc681a9-796a-436f-8372-b9faebb29bd2 7a372be2-540a-4b8c-b985-ea311cfef976 49820c57-6bf9-485c-ad4e-d9453a698a97 656a41d7-19de-4214-b3de-2a5b0082fe7a dc6c6011-3ef5-40b4-bb9c-f92ccc4e0a73 c651fff0-37e1-49d7-b397-0b8266b5a95f d289bebe-b878-4fbb-84a8-8a519345390a 85130a20-ec2b-4b21-b962-404f2d9600ec 0e05c649-199e-4019-be99-d45cac16b337 467103cb-dcdd-45ff-a343-768a56d00580 23d7a889-8f34-4d35-aefb-2c83b8e62cac 12 79a32c99-cc85-43d8-92c6-5a6a2d4e661d Group dd17d442-3776-40b3-ad5b-5e188b56bd4c Relative Differences Compute relative differences for a list of data true 481934d5-e5b9-4163-81dc-d02287b0a16e Relative Differences Relative Differences 4245 -1294 128 28 4298 -1280 1 List of data to operate on (numbers or points or vectors allowed) fca83345-0ffe-472d-8a41-aa597ff75796 Values Values false 2c37bcc8-1830-4dff-85f9-38b2de540fb3 1 4247 -1292 36 24 4266.5 -1280 1 Differences between consecutive items 3897efeb-1fd1-4616-a621-0f1c40968327 Differenced Differenced false 0 4313 -1292 58 24 4343.5 -1280 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object f011379a-ace5-42cd-9bf6-03a6a430b537 Relay false 3897efeb-1fd1-4616-a621-0f1c40968327 1 4289 -1328 40 16 4309 -1320 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 2c37bcc8-1830-4dff-85f9-38b2de540fb3 Relay false c17bf30a-d3fb-42bf-8a5c-8a85b4e571e6 1 4289 -1246 40 16 4309 -1238 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true af4abf65-fe15-4571-bfac-a433fbc620b2 Line SDL Line SDL 4247 -2023 122 64 4327 -1991 Line start point b0c96d14-fd3e-4cbd-acae-f762215f81b4 Start Start false 070664db-079f-4d57-9c66-06f9a828502b 1 4249 -2021 63 20 4290 -2011 Line tangent (direction) 8fa5abe4-d5fa-4d32-96ed-fef22da4714a Direction Direction false adc681a9-796a-436f-8372-b9faebb29bd2 1 4249 -2001 63 20 4290 -1991 1 1 {0} 0 0 1 Line length 2382fcd4-67cf-41c4-8c30-f96861ceb865 ABS(X) Length Length false d289bebe-b878-4fbb-84a8-8a519345390a 1 4249 -1981 63 20 4290 -1971 1 1 {0} 1 Line segment bdedc3f7-076a-4eaf-a8f3-2ba90ab6bff1 Line Line false 0 4342 -2021 25 60 4356 -1991 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object adc681a9-796a-436f-8372-b9faebb29bd2 Relay false 64fde29a-f76c-4fc1-b003-229851718aab 1 4288 -1941 40 16 4308 -1933 2fcc2743-8339-4cdf-a046-a1f17439191d Remap Numbers Remap numbers into a new numeric domain true 49820c57-6bf9-485c-ad4e-d9453a698a97 Remap Numbers Remap Numbers 4250 -1659 115 64 4305 -1627 Value to remap 52869c96-8da8-4bc3-918e-c287d7d26a1c Value Value false c651fff0-37e1-49d7-b397-0b8266b5a95f 1 4252 -1657 38 20 4272.5 -1647 Source domain 01f4f5bc-18ff-41d8-8774-f5624cba8ebb Source Source false bde223be-4434-46c9-83ad-f097db3ddb91 1 4252 -1637 38 20 4272.5 -1627 1 1 {0} 0 1 Target domain cbf64630-d715-4846-b7c7-b840d96c584f Target Target false 0 4252 -1617 38 20 4272.5 -1607 1 1 {0} -1 1 Remapped number 141fa2c9-105f-4a65-b60b-7ea21aa79f46 Mapped Mapped false 0 4320 -1657 43 30 4343 -1642 Remapped and clipped number b6dbaf2c-3396-47b7-9716-a150f1ef4bdf Clipped Clipped false 0 4320 -1627 43 30 4343 -1612 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true 656a41d7-19de-4214-b3de-2a5b0082fe7a Bounds Bounds 4247 -1576 122 28 4311 -1562 1 Numbers to include in Bounds dc006dab-0aaf-4238-aa4d-289647eeaacc Numbers Numbers false c651fff0-37e1-49d7-b397-0b8266b5a95f 1 4249 -1574 47 24 4274 -1562 Numeric Domain between the lowest and highest numbers in {N} bde223be-4434-46c9-83ad-f097db3ddb91 Domain Domain false 0 4326 -1574 41 24 4348 -1562 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects f51f5f2d-941f-41ef-b98f-20f88c0f615c afc9108c-9db9-441a-9c43-d667d1c32b78 58b4763e-c14f-475c-bea3-43146b32e6bd 569a059d-e90a-4cb8-86b1-26bffb26bfcb 80033146-5b4f-404e-b6dc-65dc753db8a1 145eea6c-da47-45fb-84e7-715c62530022 22307018-81e5-47cd-acd7-460831a3214c 49820c57-6bf9-485c-ad4e-d9453a698a97 656a41d7-19de-4214-b3de-2a5b0082fe7a c3830b7d-0858-410d-89db-9af833da8bf5 d289bebe-b878-4fbb-84a8-8a519345390a c651fff0-37e1-49d7-b397-0b8266b5a95f 7a372be2-540a-4b8c-b985-ea311cfef976 85130a20-ec2b-4b21-b962-404f2d9600ec 38af291c-fdb3-4110-91d3-58dd6b570756 15 dc6c6011-3ef5-40b4-bb9c-f92ccc4e0a73 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object c651fff0-37e1-49d7-b397-0b8266b5a95f Relay false f011379a-ace5-42cd-9bf6-03a6a430b537 1 4288 -1531 40 16 4308 -1523 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object d289bebe-b878-4fbb-84a8-8a519345390a Relay false 1ffda5bd-d65f-406b-bf53-0026b4898a5e 1 4288 -1898 40 16 4308 -1890 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 85130a20-ec2b-4b21-b962-404f2d9600ec Multiplication Multiplication 4267 -1859 82 44 4298 -1837 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication 29353703-ffaf-442e-b5ef-1eed79d4af2e A A true a19eae16-a754-407b-b6c0-37208376cf5c 1 4269 -1857 14 20 4277.5 -1847 Second item for multiplication fa6f8abf-cd41-4ffa-b5a0-f8de8d1df2a7 B B true 38af291c-fdb3-4110-91d3-58dd6b570756 1 4269 -1837 14 20 4277.5 -1827 Result of multiplication 1ffda5bd-d65f-406b-bf53-0026b4898a5e Result Result false 0 4313 -1857 34 40 4331.5 -1837 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 0e05c649-199e-4019-be99-d45cac16b337 Multiplication Multiplication 4267 -1758 82 44 4298 -1736 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication 5a32c9bd-d5ea-42ef-9396-f26739ea17d5 A A true 141fa2c9-105f-4a65-b60b-7ea21aa79f46 1 4269 -1756 14 20 4277.5 -1746 Second item for multiplication 709b0cbd-8c12-451d-a368-9e21e3b5c8ab B B true 467103cb-dcdd-45ff-a343-768a56d00580 1 4269 -1736 14 20 4277.5 -1726 Result of multiplication a19eae16-a754-407b-b6c0-37208376cf5c Result Result false 0 4313 -1756 34 40 4331.5 -1736 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 467103cb-dcdd-45ff-a343-768a56d00580 Relay false b81ec812-8ec8-4429-a6a9-685744f02fd4 1 4288 -1696 40 16 4308 -1688 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects f011379a-ace5-42cd-9bf6-03a6a430b537 2c37bcc8-1830-4dff-85f9-38b2de540fb3 481934d5-e5b9-4163-81dc-d02287b0a16e 3 da02d1d3-6ded-4a0b-ba9f-41d51c627b77 Group 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 7a68601a-91a8-4247-ad9e-5e0a983742d3 Create Material Create Material 4236 -2147 144 104 4320 -2095 Colour of the diffuse channel a601f12c-d614-4147-89ed-692e27cdc775 Diffuse Diffuse false 0 4238 -2145 67 20 4273 -2135 1 1 {0} 255;217;217;217 Colour of the specular highlight 3f2093e9-bb06-4416-bfaa-6e2fcd4f6609 Specular Specular false 0 4238 -2125 67 20 4273 -2115 1 1 {0} 255;0;255;255 Emissive colour of the material c5a478f4-64e8-4451-b1ea-32abaf310ad4 Emission Emission false 0 4238 -2105 67 20 4273 -2095 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 35f7185b-e6b5-4508-9ea1-9535201c077f Transparency Transparency false 0 4238 -2085 67 20 4273 -2075 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine d359583f-8960-4198-a4a2-a1fee8f2684e Shine Shine false 0 4238 -2065 67 20 4273 -2055 1 1 {0} 100 Resulting material 81b24c83-c2c3-4f8a-a7db-7d0d494d32e3 Material Material false 0 4335 -2145 43 100 4358 -2095 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true 4d99301f-3934-4a25-abcd-c1e0f420df9f Custom Preview Custom Preview 4267 -2209 82 44 4335 -2187 Geometry to preview true 4de99eed-9d22-4880-a003-7024e676780b Geometry Geometry false bdedc3f7-076a-4eaf-a8f3-2ba90ab6bff1 1 4269 -2207 51 20 4296 -2197 The material override aeb8d83c-ade0-47da-a475-acee523319eb Material Material false 81b24c83-c2c3-4f8a-a7db-7d0d494d32e3 1 4269 -2187 51 20 4296 -2177 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 2e8b22db-aadc-46e5-ad66-b72ea3883775 Evaluate Length Evaluate Length 4236 -2292 144 64 4310 -2260 Curve to evaluate d8d30e09-adef-4043-b8f5-f83652e5d7a6 Curve Curve false bdedc3f7-076a-4eaf-a8f3-2ba90ab6bff1 1 4238 -2290 57 20 4268 -2280 Length factor for curve evaluation 01455e05-2998-442f-8054-3c86ccfbbda6 Length Length false 0 4238 -2270 57 20 4268 -2260 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 2ae49ff3-bf7b-47b7-854a-cc9b25030823 Normalized Normalized false 0 4238 -2250 57 20 4268 -2240 1 1 {0} true Point at the specified length 6563e8d4-1b46-407e-9fc5-2d92351f7187 Point Point false 0 4325 -2290 53 20 4353 -2280 Tangent vector at the specified length c8fef1b9-34cb-48ca-b2c2-6893b1d35f34 Tangent Tangent false 0 4325 -2270 53 20 4353 -2260 Curve parameter at the specified length ece9a1dc-1117-4abd-8359-53adb62b7fdc Parameter Parameter false 0 4325 -2250 53 20 4353 -2240 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true eabb2a23-2877-4239-b7f0-861e35a9fbba Interpolate Interpolate 4245 -2396 125 84 4312 -2354 1 Interpolation points 3c7585e2-a47b-4e4b-9f84-9b81d1c377a5 Vertices Vertices false 6563e8d4-1b46-407e-9fc5-2d92351f7187 1 4247 -2394 50 20 4273.5 -2384 Curve degree 205c3340-b408-43dc-92ff-5108bfb703ee Degree Degree false 0 4247 -2374 50 20 4273.5 -2364 1 1 {0} 3 Periodic curve 95af83b4-d6a4-4bda-b584-dacd84373a2b Periodic Periodic false 0 4247 -2354 50 20 4273.5 -2344 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 068001a0-3f8f-400f-bc7c-8f54481c9a68 KnotStyle KnotStyle false 0 4247 -2334 50 20 4273.5 -2324 1 1 {0} 2 Resulting nurbs curve 225650fb-215c-4398-9f6f-49f6df1d9b0f Curve Curve false 0 4327 -2394 41 26 4349 -2380.667 Curve length 6629412b-67a5-4861-8a2c-c2b023b0f80c Length Length false 0 4327 -2368 41 27 4349 -2354 Curve domain d0097689-83fa-4496-a4de-3a3e5275ab21 Domain Domain false 0 4327 -2341 41 27 4349 -2327.333 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 4a27400f-3607-4680-8b22-72118b31c7c1 Create Material Create Material 4236 -2520 144 104 4320 -2468 Colour of the diffuse channel cc1d7e8f-c986-4125-8690-8ef36e71ae07 Diffuse Diffuse false 0 4238 -2518 67 20 4273 -2508 1 1 {0} 255;191;191;191 Colour of the specular highlight 28681372-3789-4a19-b6df-3827b37b5f55 Specular Specular false 0 4238 -2498 67 20 4273 -2488 1 1 {0} 255;0;255;255 Emissive colour of the material e0842db1-9c52-4d77-9b6f-a640a61a7255 Emission Emission false 0 4238 -2478 67 20 4273 -2468 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 1a7171ad-0c94-4af5-ba94-4a6b957b73f1 Transparency Transparency false 0 4238 -2458 67 20 4273 -2448 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 246ca8ea-2ff2-4029-91d6-7b2261833c53 Shine Shine false 0 4238 -2438 67 20 4273 -2428 1 1 {0} 100 Resulting material 5c056271-4eb9-4538-9eda-285f349a7b1c Material Material false 0 4335 -2518 43 100 4358 -2468 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true 1eb64fe7-33f0-4f11-909a-15e428a5b048 Custom Preview Custom Preview 4267 -2580 82 44 4335 -2558 Geometry to preview true ddd061c4-000c-496d-b505-a12a87a3da90 Geometry Geometry false 225650fb-215c-4398-9f6f-49f6df1d9b0f 1 4269 -2578 51 20 4296 -2568 The material override f19b55e1-0610-43b4-af33-a039c11bb9bb Material Material false 5c056271-4eb9-4538-9eda-285f349a7b1c 1 4269 -2558 51 20 4296 -2548 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 9f2b8fbc-da80-49ce-be5e-1c21353c1388 Curve Curve false 0 4833 11499 50 24 4858.669 11511.67 1 1 {0;0;0;0} -1 zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw== 00000000-0000-0000-0000-000000000000 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 1c76bd8b-7b0d-40ae-bebf-5c90056352d4 Curve Curve false 0 4833 11765 50 24 4858.669 11777.32 1 1 {0;0;0;0} -1 zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc= 00000000-0000-0000-0000-000000000000 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 1e0236dd-831d-4c6f-851b-07eb4c0d0291 79c9977f-bedf-4d3f-a9cd-1626b6427e12 6fe36a9a-28ae-446f-a517-d7ee2b35ff87 70018804-928a-4a0a-b3a0-6cf6787cc765 4e018cf9-d01b-4143-b27e-c7c71892da73 ec0c0969-25ed-4468-8b7f-97c7cfd7612e 307ecbe8-ac9f-493d-9e5e-37683ca8f186 90ea485d-5822-4301-b8d7-3837c9f71b75 ba7c29f2-ada2-46da-95ea-3d209cb82cb2 244cd09e-0cea-4e71-8685-91e9e48efa68 327b7b52-9eff-4bf2-a9c5-75cd21d64fdf cc0117fa-06c6-4ee2-ac32-215ffcc1f7c1 ea9f713d-7b4a-4702-ae93-e2f26543a470 1c42ccde-b5d6-45a8-a974-714cb902e77d 18385e25-6a94-455a-be4e-b27bf9f8a78b f0dbb644-afb2-4d37-b8da-af2a320309e3 362fbf21-a639-42aa-a89e-3dc72c2ddeeb 9a6fe024-1e92-4b5a-902b-8bba9c0ab6e7 f3fbce53-da50-4d10-9971-2000f45194c2 a224f62f-3e78-4c89-8dc6-05859c5cb9a2 a53f94e7-0cbf-425b-aa63-9fd23c1bbb5c 1fb45101-b21f-459a-8956-9a72bc0dbf87 bb44ce47-8c13-43d9-ba60-4d124b4e5ae4 36030219-d497-477c-9184-bddd915cb05a 6aa23a1f-b6fb-45ea-94fa-0374fb92263c 66e55e71-4652-406a-a923-26d98f307e97 4fd5d7e5-f617-4916-93e2-3b30cb2c13c7 1c84b5ad-23aa-4185-a64b-d5acc7fd1568 55679b5f-d32f-4897-8d09-66821c619faa 11be1e7d-7998-4fac-a7b7-e2b0c8d10aad da59584f-4738-4ca0-8ce9-548460a7fee9 86e3682e-ce67-42cf-911e-eeed3dfbdefd 13714ab0-7f04-4a58-ad9e-ceaca3d95e36 68ad2a0c-397b-4405-9621-0ab234f51099 28d55d12-e680-4e3e-acfd-841b2c9faf0c 2c163af6-af7f-4ed8-b4ef-e3131f6a7ca8 cba42b54-7a1c-4c98-be03-e59d379a2894 6155b25a-afbd-4573-9b48-355b0a14ae8e acfa39f7-965f-4387-ab5b-b54436656577 7ee1539d-a236-4d59-9694-2c09386d9551 b27973c5-f333-4dbe-8bb2-158cf4a7844d 6ac57fde-7d22-4cca-8c5a-5d0a28c884e9 e5cf712a-df3f-4476-b30b-d3463accfb6a 9bba076a-7d74-4e01-a334-4d931ed033f3 b0cf56cb-6cfe-4df5-b194-07f997d0bd20 b72a6b06-3be2-45e2-989c-7e7a51ec35c1 e3cd8122-c2ff-49a6-9ecb-b989cbee30a9 26d27076-c008-4e64-974c-ce9aac18da2e 7293b84d-dfbd-4d3e-82cd-4df8f844e0e6 16217803-b1a6-4c82-ad92-b14787f609b6 e7cf9320-68c8-4707-9aba-558332338382 39a4ff0f-6c72-4497-8065-1a6228469a0b 62d2f4a5-bc18-4426-a766-5a836b470190 aeed149a-1b87-40f8-a80e-0fba6229c1c5 0cb431c1-66b6-4421-91e6-f722e8290783 bfb14711-271e-42bd-86cc-51360d92fafe 5a795dd5-5846-4052-8d76-f8ff84b0c76e 565c2487-e6b1-4b0d-9b60-b4ef035b1ad5 4e5e9256-4923-4d63-8f79-f0c3f0d1a7a7 8e8065a3-aa82-4a92-aa35-315c5e80cce6 c6104625-7012-4837-b3d8-85aef833c461 39257d34-da6a-4970-b14d-1a29dcf9555b 8afb042b-575f-4d86-9b32-b8978003ece0 d79f9f60-4bc4-4e68-9e2c-8ae9afcc755f cb62e43a-ed84-4f5d-a866-c537c0a027d7 0ed6d593-dc44-48c3-a39c-00dc0f7ee04a 48566625-50c4-4225-807c-177433e91f71 3bb8e3dd-969f-41ec-8805-4c84b5f09d23 39eb9c8b-5e6b-46b6-b25d-1eeb46ffbedb 3e9c3eb4-71ed-413d-bb22-ad7c3af5313d d714c48a-2a73-4d1a-a30b-d7da2b936496 07d98ecc-da14-47d2-b356-5c6e4c8c2c60 a4958a9c-5813-47b6-aa2c-ab9e636f97c4 fa049596-2965-4c5d-97a7-5e19cffbc796 9686459f-3b8c-4236-a424-b61a61b59f38 e010c8fd-840c-4166-9529-3087fe2d17d8 246ecf84-d14b-4307-a633-35f573840f33 8d0f4434-7d6e-4068-b183-c84afb4b8204 da4f27ab-934b-48b2-89e3-f39463e6853c 1d29bbdb-cefa-4e66-99ed-d43b60d5b83f b24604d6-b572-4cd1-a024-27c751a205bb 08fa1a46-6440-41a4-bbbf-53c0c4624266 a28c8f0e-96c2-457b-825c-02f5a78e0a9e 83 d9fcfc9c-526c-47e4-b0e4-4af2192c2cbf Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 79c9977f-bedf-4d3f-a9cd-1626b6427e12 6fe36a9a-28ae-446f-a517-d7ee2b35ff87 70018804-928a-4a0a-b3a0-6cf6787cc765 4e018cf9-d01b-4143-b27e-c7c71892da73 ec0c0969-25ed-4468-8b7f-97c7cfd7612e 307ecbe8-ac9f-493d-9e5e-37683ca8f186 90ea485d-5822-4301-b8d7-3837c9f71b75 ba7c29f2-ada2-46da-95ea-3d209cb82cb2 244cd09e-0cea-4e71-8685-91e9e48efa68 327b7b52-9eff-4bf2-a9c5-75cd21d64fdf cc0117fa-06c6-4ee2-ac32-215ffcc1f7c1 ea9f713d-7b4a-4702-ae93-e2f26543a470 1c42ccde-b5d6-45a8-a974-714cb902e77d 18385e25-6a94-455a-be4e-b27bf9f8a78b f0dbb644-afb2-4d37-b8da-af2a320309e3 362fbf21-a639-42aa-a89e-3dc72c2ddeeb 9a6fe024-1e92-4b5a-902b-8bba9c0ab6e7 f3fbce53-da50-4d10-9971-2000f45194c2 a224f62f-3e78-4c89-8dc6-05859c5cb9a2 a53f94e7-0cbf-425b-aa63-9fd23c1bbb5c 1fb45101-b21f-459a-8956-9a72bc0dbf87 bb44ce47-8c13-43d9-ba60-4d124b4e5ae4 36030219-d497-477c-9184-bddd915cb05a 6aa23a1f-b6fb-45ea-94fa-0374fb92263c 66e55e71-4652-406a-a923-26d98f307e97 4fd5d7e5-f617-4916-93e2-3b30cb2c13c7 1c84b5ad-23aa-4185-a64b-d5acc7fd1568 55679b5f-d32f-4897-8d09-66821c619faa 11be1e7d-7998-4fac-a7b7-e2b0c8d10aad da59584f-4738-4ca0-8ce9-548460a7fee9 86e3682e-ce67-42cf-911e-eeed3dfbdefd 13714ab0-7f04-4a58-ad9e-ceaca3d95e36 68ad2a0c-397b-4405-9621-0ab234f51099 28d55d12-e680-4e3e-acfd-841b2c9faf0c 2c163af6-af7f-4ed8-b4ef-e3131f6a7ca8 cba42b54-7a1c-4c98-be03-e59d379a2894 6155b25a-afbd-4573-9b48-355b0a14ae8e acfa39f7-965f-4387-ab5b-b54436656577 7ee1539d-a236-4d59-9694-2c09386d9551 b27973c5-f333-4dbe-8bb2-158cf4a7844d 6ac57fde-7d22-4cca-8c5a-5d0a28c884e9 e5cf712a-df3f-4476-b30b-d3463accfb6a 9bba076a-7d74-4e01-a334-4d931ed033f3 b0cf56cb-6cfe-4df5-b194-07f997d0bd20 b72a6b06-3be2-45e2-989c-7e7a51ec35c1 e3cd8122-c2ff-49a6-9ecb-b989cbee30a9 26d27076-c008-4e64-974c-ce9aac18da2e 7293b84d-dfbd-4d3e-82cd-4df8f844e0e6 16217803-b1a6-4c82-ad92-b14787f609b6 e7cf9320-68c8-4707-9aba-558332338382 39a4ff0f-6c72-4497-8065-1a6228469a0b 62d2f4a5-bc18-4426-a766-5a836b470190 aeed149a-1b87-40f8-a80e-0fba6229c1c5 0cb431c1-66b6-4421-91e6-f722e8290783 bfb14711-271e-42bd-86cc-51360d92fafe 5a795dd5-5846-4052-8d76-f8ff84b0c76e 565c2487-e6b1-4b0d-9b60-b4ef035b1ad5 4e5e9256-4923-4d63-8f79-f0c3f0d1a7a7 8e8065a3-aa82-4a92-aa35-315c5e80cce6 c6104625-7012-4837-b3d8-85aef833c461 39257d34-da6a-4970-b14d-1a29dcf9555b 8afb042b-575f-4d86-9b32-b8978003ece0 d79f9f60-4bc4-4e68-9e2c-8ae9afcc755f cb62e43a-ed84-4f5d-a866-c537c0a027d7 0ed6d593-dc44-48c3-a39c-00dc0f7ee04a 48566625-50c4-4225-807c-177433e91f71 3bb8e3dd-969f-41ec-8805-4c84b5f09d23 39eb9c8b-5e6b-46b6-b25d-1eeb46ffbedb 3e9c3eb4-71ed-413d-bb22-ad7c3af5313d d714c48a-2a73-4d1a-a30b-d7da2b936496 07d98ecc-da14-47d2-b356-5c6e4c8c2c60 a4958a9c-5813-47b6-aa2c-ab9e636f97c4 fa049596-2965-4c5d-97a7-5e19cffbc796 9686459f-3b8c-4236-a424-b61a61b59f38 e010c8fd-840c-4166-9529-3087fe2d17d8 246ecf84-d14b-4307-a633-35f573840f33 8d0f4434-7d6e-4068-b183-c84afb4b8204 da4f27ab-934b-48b2-89e3-f39463e6853c 1d29bbdb-cefa-4e66-99ed-d43b60d5b83f 79 1e0236dd-831d-4c6f-851b-07eb4c0d0291 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 8d0f4434-7d6e-4068-b183-c84afb4b8204 1 79c9977f-bedf-4d3f-a9cd-1626b6427e12 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 70018804-928a-4a0a-b3a0-6cf6787cc765 1 6fe36a9a-28ae-446f-a517-d7ee2b35ff87 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 4e018cf9-d01b-4143-b27e-c7c71892da73 1 70018804-928a-4a0a-b3a0-6cf6787cc765 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects ec0c0969-25ed-4468-8b7f-97c7cfd7612e 1 4e018cf9-d01b-4143-b27e-c7c71892da73 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 307ecbe8-ac9f-493d-9e5e-37683ca8f186 1 ec0c0969-25ed-4468-8b7f-97c7cfd7612e Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 90ea485d-5822-4301-b8d7-3837c9f71b75 1 307ecbe8-ac9f-493d-9e5e-37683ca8f186 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 244cd09e-0cea-4e71-8685-91e9e48efa68 1 90ea485d-5822-4301-b8d7-3837c9f71b75 Group d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true ba7c29f2-ada2-46da-95ea-3d209cb82cb2 Curve Curve false 0 7412 11447 50 24 7437.876 11459.63 1 1 {0;0;0;0} -1 pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P 00000000-0000-0000-0000-000000000000 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects ba7c29f2-ada2-46da-95ea-3d209cb82cb2 1 244cd09e-0cea-4e71-8685-91e9e48efa68 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 11be1e7d-7998-4fac-a7b7-e2b0c8d10aad 1 327b7b52-9eff-4bf2-a9c5-75cd21d64fdf Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects ea9f713d-7b4a-4702-ae93-e2f26543a470 1c42ccde-b5d6-45a8-a974-714cb902e77d 18385e25-6a94-455a-be4e-b27bf9f8a78b f0dbb644-afb2-4d37-b8da-af2a320309e3 362fbf21-a639-42aa-a89e-3dc72c2ddeeb 9a6fe024-1e92-4b5a-902b-8bba9c0ab6e7 f3fbce53-da50-4d10-9971-2000f45194c2 a224f62f-3e78-4c89-8dc6-05859c5cb9a2 1fb45101-b21f-459a-8956-9a72bc0dbf87 a53f94e7-0cbf-425b-aa63-9fd23c1bbb5c 327b7b52-9eff-4bf2-a9c5-75cd21d64fdf 244cd09e-0cea-4e71-8685-91e9e48efa68 48566625-50c4-4225-807c-177433e91f71 3bb8e3dd-969f-41ec-8805-4c84b5f09d23 39eb9c8b-5e6b-46b6-b25d-1eeb46ffbedb 3e9c3eb4-71ed-413d-bb22-ad7c3af5313d d714c48a-2a73-4d1a-a30b-d7da2b936496 07d98ecc-da14-47d2-b356-5c6e4c8c2c60 d79f9f60-4bc4-4e68-9e2c-8ae9afcc755f cb62e43a-ed84-4f5d-a866-c537c0a027d7 20 cc0117fa-06c6-4ee2-ac32-215ffcc1f7c1 Group dd8134c0-109b-4012-92be-51d843edfff7 Duplicate Data Duplicate data a predefined number of times. true ea9f713d-7b4a-4702-ae93-e2f26543a470 Duplicate Data Duplicate Data 7382 12402 104 64 7441 12434 1 Data to duplicate 25bde98d-6e88-4a4f-8d32-6d0e0fc43bd9 Data Data false c230e71e-52b1-4221-b24a-9f856bf4138a 1 7384 12404 42 20 7406.5 12414 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 1 Number of duplicates 69491634-13e0-4bdf-8004-1cadf50c3737 Number Number false 0ed6d593-dc44-48c3-a39c-00dc0f7ee04a 1 7384 12424 42 20 7406.5 12434 1 1 {0} 500 Retain list order 693f8738-7e40-4339-b7b2-c9c0566826d6 Order Order false 0 7384 12444 42 20 7406.5 12454 1 1 {0} true 1 Duplicated data 7160dbc6-9a1f-44f3-bffd-d90b169afbc3 Data Data false 0 7456 12404 28 60 7471.5 12434 fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 DotNET VB Script (LEGACY) A VB.NET scriptable component true 1c42ccde-b5d6-45a8-a974-714cb902e77d DotNET VB Script (LEGACY) Turtle 0 Dim i As Integer Dim dir As New On3dVector(1, 0, 0) Dim pos As New On3dVector(0, 0, 0) Dim axis As New On3dVector(0, 0, 1) Dim pnts As New List(Of On3dVector) pnts.Add(pos) For i = 0 To Forward.Count() - 1 Dim P As New On3dVector dir.Rotate(Left(i), axis) P = dir * Forward(i) + pnts(i) pnts.Add(P) Next Points = pnts 7376 10804 116 44 7437 10826 1 1 2 Script Variable Forward Script Variable Left 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 true true Forward Left true true 2 Print, Reflect and Error streams Output parameter Points 3ede854e-c753-40eb-84cb-b48008f14fd4 8ec86459-bf01-4409-baee-174d0d2b13d0 true true Output Points false false 1 false Script Variable Forward a4fb5349-603c-419c-8a84-297e1c750345 Forward Forward true 1 true 7160dbc6-9a1f-44f3-bffd-d90b169afbc3 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 7378 10806 44 20 7401.5 10816 1 false Script Variable Left a22c4ecb-e43f-4541-8ee5-475aab61f58d Left Left true 1 true 99d6efab-9b89-4f22-8a8d-df1094258fe6 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 7378 10826 44 20 7401.5 10836 Print, Reflect and Error streams 7478478d-097e-4f4a-87e9-13beaa2ec019 Output Output false 0 7452 10806 38 20 7472.5 10816 Output parameter Points 1ce1b2e3-7315-41ec-8e7d-3d48e5ae6c61 Points Points false 0 7452 10826 38 20 7472.5 10836 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 18385e25-6a94-455a-be4e-b27bf9f8a78b Point Point false 1ce1b2e3-7315-41ec-8e7d-3d48e5ae6c61 1 7411 10424 50 24 7436.737 10436.11 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true f0dbb644-afb2-4d37-b8da-af2a320309e3 Series Series 7387 11868 101 64 7437 11900 First number in the series 5d2b0328-eb43-4499-93f1-6ea47fd04264 Start Start false 0 7389 11870 33 20 7407 11880 1 1 {0} 0 Step size for each successive number 9847c1ed-fa76-4bb6-8cb0-48ef03a53a38 Step Step false 246ecf84-d14b-4307-a633-35f573840f33 1 7389 11890 33 20 7407 11900 1 1 {0} 1 Number of values in the series c1b2876b-ec57-4900-9006-a432cd6b6242 Count Count false 0ed6d593-dc44-48c3-a39c-00dc0f7ee04a 1 7389 11910 33 20 7407 11920 1 Series of numbers d31ac591-fd5d-4c73-a76f-9bc43174b558 Series Series false 0 7452 11870 34 60 7470.5 11900 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values 362fbf21-a639-42aa-a89e-3dc72c2ddeeb Number Slider false 0 7362 12582 150 20 7362.556 12582.98 0 1 0 65536 0 0 256 a4cd2751-414d-42ec-8916-476ebf62d7fe Radians Convert an angle specified in degrees to radians true 9a6fe024-1e92-4b5a-902b-8bba9c0ab6e7 Radians Radians 7374 12070 120 28 7435 12084 Angle in degrees 1bff327f-f678-4200-942f-aac96923ec3b Degrees Degrees false f3fbce53-da50-4d10-9971-2000f45194c2 1 7376 12072 44 24 7399.5 12084 Angle in radians 9f541762-9b0d-4322-9575-67e4ca64397e Radians Radians false 0 7450 12072 42 24 7472.5 12084 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers f3fbce53-da50-4d10-9971-2000f45194c2 Digit Scroller Digit Scroller false 0 12 Digit Scroller 1 0.00000081000 7304 12123 251 20 7304.872 12123.34 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true a224f62f-3e78-4c89-8dc6-05859c5cb9a2 One Over X One Over X 7384 12484 100 28 7433 12498 Input value ce2fccb6-1c9e-4b06-8c33-410ad0c3aa96 Value Value false 0ed6d593-dc44-48c3-a39c-00dc0f7ee04a 1 7386 12486 32 24 7403.5 12498 Output value c230e71e-52b1-4221-b24a-9f856bf4138a Result Result false 0 7448 12486 34 24 7466.5 12498 75eb156d-d023-42f9-a85e-2f2456b8bcce Interpolate (t) Create an interpolated curve through a set of points with tangents. true a53f94e7-0cbf-425b-aa63-9fd23c1bbb5c Interpolate (t) Interpolate (t) 7362 10316 144 84 7448 10358 1 Interpolation points 4c454c0c-eeb8-4ab3-a1f5-f2f12b9b0ae3 Vertices Vertices false 18385e25-6a94-455a-be4e-b27bf9f8a78b 1 7364 10318 69 20 7400 10328 Tangent at start of curve e2b04cb7-00f0-4136-b9b2-5024ead32dff Tangent Start Tangent Start false 0 7364 10338 69 20 7400 10348 1 1 {0} 0.0625 0 0 Tangent at end of curve 65a66bff-1f56-4c99-8601-fd83a5dc8c49 Tangent End Tangent End false 0 7364 10358 69 20 7400 10368 1 1 {0} 0 0 0 Knot spacing (0=uniform, 1=chord, 2=sqrtchord) a6ce9c4a-15ad-45d0-9ac4-15a8ca13a924 KnotStyle KnotStyle false 0 7364 10378 69 20 7400 10388 1 1 {0} 2 Resulting nurbs curve f63ca26d-b109-4c46-adbc-3d493af44fb8 Curve Curve false 0 7463 10318 41 26 7485 10331.33 Curve length 9f90a40c-c257-4d71-8c5b-18be41b60955 Length Length false 0 7463 10344 41 27 7485 10358 Curve domain 30361471-1adb-443d-9dfd-25209d4559b2 Domain Domain false 0 7463 10371 41 27 7485 10384.67 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects ea9f713d-7b4a-4702-ae93-e2f26543a470 1c42ccde-b5d6-45a8-a974-714cb902e77d 18385e25-6a94-455a-be4e-b27bf9f8a78b f0dbb644-afb2-4d37-b8da-af2a320309e3 362fbf21-a639-42aa-a89e-3dc72c2ddeeb 9a6fe024-1e92-4b5a-902b-8bba9c0ab6e7 f3fbce53-da50-4d10-9971-2000f45194c2 a224f62f-3e78-4c89-8dc6-05859c5cb9a2 fa049596-2965-4c5d-97a7-5e19cffbc796 68ad2a0c-397b-4405-9621-0ab234f51099 8afb042b-575f-4d86-9b32-b8978003ece0 a4958a9c-5813-47b6-aa2c-ab9e636f97c4 9686459f-3b8c-4236-a424-b61a61b59f38 13 1fb45101-b21f-459a-8956-9a72bc0dbf87 Group 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true bb44ce47-8c13-43d9-ba60-4d124b4e5ae4 Evaluate Length Evaluate Length 7362 10148 144 64 7436 10180 Curve to evaluate f45d6459-7a69-4336-9a0f-f303a66e6f9b Curve Curve false f63ca26d-b109-4c46-adbc-3d493af44fb8 1 7364 10150 57 20 7394 10160 Length factor for curve evaluation c32904d9-ec9d-4e35-a159-6e945fdf3573 Length Length false 0 7364 10170 57 20 7394 10180 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) eeacbdef-a418-4bf8-8c1e-8b73574ea767 Normalized Normalized false 0 7364 10190 57 20 7394 10200 1 1 {0} true Point at the specified length acc26bb6-07d5-48b9-a41b-c12fe3f90623 Point Point false 0 7451 10150 53 20 7479 10160 Tangent vector at the specified length c0a772ca-2999-43eb-aa17-f4b17c123e24 Tangent Tangent false 0 7451 10170 53 20 7479 10180 Curve parameter at the specified length d6a55696-a75c-451e-b35f-70c64fa66845 Parameter Parameter false 0 7451 10190 53 20 7479 10200 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true 36030219-d497-477c-9184-bddd915cb05a Mirror Mirror 7365 10086 138 44 7433 10108 Base geometry a769b693-5049-4972-8dbd-2ec16d354de1 Geometry Geometry true f63ca26d-b109-4c46-adbc-3d493af44fb8 1 7367 10088 51 20 7394 10098 Mirror plane e084362e-735d-477a-a8b6-06064dccfe58 Plane Plane false 8d49aabc-a0e1-4ac6-83ac-458984d9b471 1 7367 10108 51 20 7394 10118 1 1 {0} 0 0 0 0 1 0 0 0 1 Mirrored geometry 3534c2cf-99e1-4869-ad4f-524d14175343 Geometry Geometry false 0 7448 10088 53 20 7476 10098 Transformation data 1325b2c8-5671-46b5-af5a-dcb1ab91054b Transform Transform false 0 7448 10108 53 20 7476 10118 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 6aa23a1f-b6fb-45ea-94fa-0374fb92263c Line SDL Line SDL 7381 10232 106 64 7445 10264 Line start point 724bebbb-3922-421b-ac9b-c2f86dac8ecc Start Start false acc26bb6-07d5-48b9-a41b-c12fe3f90623 1 7383 10234 47 20 7408 10244 Line tangent (direction) 9b6beccb-e661-42bc-b9af-8523c94f1c7f Direction Direction false c0a772ca-2999-43eb-aa17-f4b17c123e24 1 7383 10254 47 20 7408 10264 1 1 {0} 0 0 1 Line length fae46770-d36f-481c-b9ed-9e58cfd17656 Length Length false 0 7383 10274 47 20 7408 10284 1 1 {0} 1 Line segment 8d49aabc-a0e1-4ac6-83ac-458984d9b471 Line Line false 0 7460 10234 25 60 7474 10264 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true 66e55e71-4652-406a-a923-26d98f307e97 Join Curves Join Curves 7375 10024 118 44 7438 10046 1 Curves to join ec5d5c9a-98bf-4002-ab10-07e19f8b076c Curves Curves false f63ca26d-b109-4c46-adbc-3d493af44fb8 3534c2cf-99e1-4869-ad4f-524d14175343 2 7377 10026 46 20 7401.5 10036 Preserve direction of input curves 431f0ff7-d5ec-46c6-8807-77d0c0c14cfc Preserve Preserve false 0 7377 10046 46 20 7401.5 10056 1 1 {0} false 1 Joined curves and individual curves that could not be joined. 269d2e6a-a947-48d9-8280-5a411d776654 Curves Curves false 0 7453 10026 38 40 7473.5 10046 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 4fd5d7e5-f617-4916-93e2-3b30cb2c13c7 Evaluate Length Evaluate Length 7362 9940 144 64 7436 9972 Curve to evaluate 96ac2f33-8537-4550-926e-6d4c232f7e3e Curve Curve false 269d2e6a-a947-48d9-8280-5a411d776654 1 7364 9942 57 20 7394 9952 Length factor for curve evaluation ab6faa20-eae7-4c64-9b91-fa5d3f7999e1 Length Length false 0 7364 9962 57 20 7394 9972 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) ae70072f-6d8f-47b8-9945-319cbf77bb2d Normalized Normalized false 0 7364 9982 57 20 7394 9992 1 1 {0} true Point at the specified length 0b992063-da80-42db-8744-bb7339f15b5a Point Point false 0 7451 9942 53 20 7479 9952 Tangent vector at the specified length 50a23b28-6ae1-49dc-92ec-6c6effb01f31 Tangent Tangent false 0 7451 9962 53 20 7479 9972 Curve parameter at the specified length 97ef9e01-07a0-4dc8-8865-ad2e08e71d35 Parameter Parameter false 0 7451 9982 53 20 7479 9992 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 1c84b5ad-23aa-4185-a64b-d5acc7fd1568 Rotate Rotate 7365 9857 138 64 7433 9889 Base geometry 1a6a4176-286e-459f-9245-5610628a54b8 Geometry Geometry true 269d2e6a-a947-48d9-8280-5a411d776654 1 7367 9859 51 20 7394 9869 Rotation angle in radians a6a11437-24b0-4c2a-9e11-5bfb58cd96ff Angle Angle false 0 false 7367 9879 51 20 7394 9889 1 1 {0} 3.1415926535897931 Rotation plane 8b79a124-0a88-4af6-9d49-36492585cfbb Plane Plane false 0b992063-da80-42db-8744-bb7339f15b5a 1 7367 9899 51 20 7394 9909 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 8ab60d56-fd88-4c50-be69-b0d98cc7b877 Geometry Geometry false 0 7448 9859 53 30 7476 9874 Transformation data f796343e-847c-4232-baaa-15c2567e65f6 Transform Transform false 0 7448 9889 53 30 7476 9904 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true 55679b5f-d32f-4897-8d09-66821c619faa Join Curves Join Curves 7375 9794 118 44 7438 9816 1 Curves to join 6f3d265a-f9d6-4177-8520-40e231d76a85 Curves Curves false 269d2e6a-a947-48d9-8280-5a411d776654 8ab60d56-fd88-4c50-be69-b0d98cc7b877 2 7377 9796 46 20 7401.5 9806 Preserve direction of input curves 11da559c-5662-48c9-bf9f-aac1dc456755 Preserve Preserve false 0 7377 9816 46 20 7401.5 9826 1 1 {0} false 1 Joined curves and individual curves that could not be joined. e86d700e-e3ce-4fd8-8b00-a47921cea996 Curves Curves false 0 7453 9796 38 40 7473.5 9816 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects a53f94e7-0cbf-425b-aa63-9fd23c1bbb5c bb44ce47-8c13-43d9-ba60-4d124b4e5ae4 36030219-d497-477c-9184-bddd915cb05a 6aa23a1f-b6fb-45ea-94fa-0374fb92263c 66e55e71-4652-406a-a923-26d98f307e97 4fd5d7e5-f617-4916-93e2-3b30cb2c13c7 1c84b5ad-23aa-4185-a64b-d5acc7fd1568 55679b5f-d32f-4897-8d09-66821c619faa 86e3682e-ce67-42cf-911e-eeed3dfbdefd 9 11be1e7d-7998-4fac-a7b7-e2b0c8d10aad Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values da59584f-4738-4ca0-8ce9-548460a7fee9 Panel false 0 9bba076a-7d74-4e01-a334-4d931ed033f3 1 Double click to edit panel content… 7364 11953 145 20 0 0 0 7364.296 11953.28 255;255;255;255 false false true false false true d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 86e3682e-ce67-42cf-911e-eeed3dfbdefd Curve Curve false e86d700e-e3ce-4fd8-8b00-a47921cea996 1 7412 9754 50 24 7437.876 9766.178 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 86e3682e-ce67-42cf-911e-eeed3dfbdefd 1 13714ab0-7f04-4a58-ad9e-ceaca3d95e36 Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 68ad2a0c-397b-4405-9621-0ab234f51099 Panel false 0 0 0.35721403168191375/4/4 7202 12158 439 104 0 0 0 7202.833 12158.72 255;255;255;255 false false true false false true 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 28d55d12-e680-4e3e-acfd-841b2c9faf0c Evaluate Length Evaluate Length 7362 9668 144 64 7436 9700 Curve to evaluate e4360e65-4310-468d-9d00-af15304d972d Curve Curve false e86d700e-e3ce-4fd8-8b00-a47921cea996 1 7364 9670 57 20 7394 9680 Length factor for curve evaluation 4e474e29-39a4-452e-8e09-9b1750b70444 Length Length false 0 7364 9690 57 20 7394 9700 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 1480cb1d-403f-4cd6-8633-840144faf64f Normalized Normalized false 0 7364 9710 57 20 7394 9720 1 1 {0} true Point at the specified length d9995322-bc2b-4dbf-8034-8b8ec397ecb0 Point Point false 0 7451 9670 53 20 7479 9680 Tangent vector at the specified length 21d7c51c-f4e7-41fb-a7d0-c25be1206b8d Tangent Tangent false 0 7451 9690 53 20 7479 9700 Curve parameter at the specified length a667fcc8-2269-4bc5-8ebc-aeb8a652bef7 Parameter Parameter false 0 7451 9710 53 20 7479 9720 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 2c163af6-af7f-4ed8-b4ef-e3131f6a7ca8 Expression Expression 7337 9446 194 28 7437 9460 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable d92e69fc-cd2d-478d-948d-9679244780ef Variable O O true bd22478a-070c-4698-b8ec-1ac45f61330f 1 7339 9448 14 24 7347.5 9460 Result of expression 60e8e68d-9faa-4b17-906f-c4cf2570040c Result false 0 7520 9448 9 24 7526 9460 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true cba42b54-7a1c-4c98-be03-e59d379a2894 Deconstruct Deconstruct 7368 9580 132 64 7415 9612 Input point 0f9297ed-1dce-4bec-be5a-5717262699dc Point Point false d9995322-bc2b-4dbf-8034-8b8ec397ecb0 1 7370 9582 30 60 7386.5 9612 Point {x} component bd22478a-070c-4698-b8ec-1ac45f61330f X component X component false 0 7430 9582 68 20 7465.5 9592 Point {y} component c35fc7ae-a712-4019-b3c2-64ad03d94741 Y component Y component false 0 7430 9602 68 20 7465.5 9612 Point {z} component 8bc58f3d-03b6-4e66-8ae9-eb0c56de5c85 Z component Z component false 0 7430 9622 68 20 7465.5 9632 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 6155b25a-afbd-4573-9b48-355b0a14ae8e Panel false 0 60e8e68d-9faa-4b17-906f-c4cf2570040c 1 Double click to edit panel content… 7356 9419 160 20 0 0 0 7356.646 9419.756 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true acfa39f7-965f-4387-ab5b-b54436656577 Expression Expression 7337 9360 194 28 7437 9374 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 440b494e-189f-419c-9d25-98ea3ee74b40 Variable O O true c35fc7ae-a712-4019-b3c2-64ad03d94741 1 7339 9362 14 24 7347.5 9374 Result of expression 1652b985-4977-4475-8356-b3f05380211f Result false 0 7520 9362 9 24 7526 9374 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 7ee1539d-a236-4d59-9694-2c09386d9551 Panel false 0 1652b985-4977-4475-8356-b3f05380211f 1 Double click to edit panel content… 7356 9331 160 20 0 0 0 7356.646 9331.334 255;255;255;255 false false true false false true 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true b27973c5-f333-4dbe-8bb2-158cf4a7844d Division Division 7393 9258 82 44 7424 9280 Item to divide (dividend) ba9f662a-2c26-435d-b557-447f27bce1bd A A false 6155b25a-afbd-4573-9b48-355b0a14ae8e 1 7395 9260 14 20 7403.5 9270 Item to divide with (divisor) 2c9f5b7d-fa3e-4865-a5e4-708e76439c37 B B false 7ee1539d-a236-4d59-9694-2c09386d9551 1 7395 9280 14 20 7403.5 9290 The result of the Division c9752055-9b95-4bda-afbc-27f9821e45b5 Result Result false 0 7439 9260 34 40 7457.5 9280 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 6ac57fde-7d22-4cca-8c5a-5d0a28c884e9 Panel false 0 9bba076a-7d74-4e01-a334-4d931ed033f3 1 Double click to edit panel content… 7356 9183 160 20 0 0 0 7356.886 9183.818 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true e5cf712a-df3f-4476-b30b-d3463accfb6a Expression Expression 7337 9211 194 28 7437 9225 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 0a427237-d801-44a4-bd15-38ae1b5291ce Variable O O true c9752055-9b95-4bda-afbc-27f9821e45b5 1 7339 9213 14 24 7347.5 9225 Result of expression 03a7abca-faa3-4559-92f4-3eb0e2a6efd5 Result false 0 7520 9213 9 24 7526 9225 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 9bba076a-7d74-4e01-a334-4d931ed033f3 Relay false 03a7abca-faa3-4559-92f4-3eb0e2a6efd5 1 7414 9136 40 16 7434 9144 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true b0cf56cb-6cfe-4df5-b194-07f997d0bd20 Addition Addition 7393 9073 82 44 7424 9095 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition fe2279c0-bb12-4688-ac72-55ac902ff85b A A true 7ee1539d-a236-4d59-9694-2c09386d9551 1 7395 9075 14 20 7403.5 9085 Second item for addition f82d6230-b37b-47e0-baca-1643ad87b6e7 B B true 6155b25a-afbd-4573-9b48-355b0a14ae8e 1 7395 9095 14 20 7403.5 9105 Result of addition 51374bf6-d4e0-47f7-80e4-e6dcb4d27373 Result Result false 0 7439 9075 34 40 7457.5 9095 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true b72a6b06-3be2-45e2-989c-7e7a51ec35c1 Division Division 7393 8923 82 44 7424 8945 Item to divide (dividend) b49a5793-3e41-4d52-a9ae-aac065be056d A A false 7293b84d-dfbd-4d3e-82cd-4df8f844e0e6 1 7395 8925 14 20 7403.5 8935 Item to divide with (divisor) 634dcbdd-da50-49c4-aa33-5ddf25cc7406 B B false 0 7395 8945 14 20 7403.5 8955 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 The result of the Division 4d1cd714-cc5e-4409-97a9-288b7ec48bad Result Result false 0 7439 8925 34 40 7457.5 8945 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true e3cd8122-c2ff-49a6-9ecb-b989cbee30a9 Expression Expression 7337 8875 194 28 7437 8889 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable c804277e-2152-4030-9d0e-fd03a7076117 Variable O O true 4d1cd714-cc5e-4409-97a9-288b7ec48bad 1 7339 8877 14 24 7347.5 8889 Result of expression 40024b9b-686c-4859-818b-451582e239ba Result false 0 7520 8877 9 24 7526 8889 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 26d27076-c008-4e64-974c-ce9aac18da2e Panel false 0 40024b9b-686c-4859-818b-451582e239ba 1 Double click to edit panel content… 7356 8847 160 20 0 0 0 7356.646 8847.676 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 7293b84d-dfbd-4d3e-82cd-4df8f844e0e6 Panel false 0 898c1521-d90e-4bb3-bbb1-dd4aae54e783 1 Double click to edit panel content… 7356 8999 160 20 0 0 0 7356.646 8999.586 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 16217803-b1a6-4c82-ad92-b14787f609b6 Expression Expression 7337 9026 194 28 7437 9040 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 3f469995-c493-4f85-b00b-b5eb8ae54ee6 Variable O O true 51374bf6-d4e0-47f7-80e4-e6dcb4d27373 1 7339 9028 14 24 7347.5 9040 Result of expression 898c1521-d90e-4bb3-bbb1-dd4aae54e783 Result false 0 7520 9028 9 24 7526 9040 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true e7cf9320-68c8-4707-9aba-558332338382 Scale Scale 7357 8752 154 64 7441 8784 Base geometry b02b0c23-5d5c-40c6-a723-626cc3303a35 Geometry Geometry true 86e3682e-ce67-42cf-911e-eeed3dfbdefd 1 7359 8754 67 20 7402 8764 Center of scaling c562a668-af86-44f5-8764-103e50f1775f Center Center false 0 7359 8774 67 20 7402 8784 1 1 {0} 0 0 0 Scaling factor b4b22b27-82c6-49b5-a252-ce531d854511 1/X Factor Factor false 26d27076-c008-4e64-974c-ce9aac18da2e 1 7359 8794 67 20 7402 8804 1 1 {0} 0.5 Scaled geometry 9455c6bd-f20f-429c-a40a-28d3d946b5f3 Geometry Geometry false 0 7456 8754 53 30 7484 8769 Transformation data d6d1df42-8dd2-48e2-acb5-0c3c2d67c3d7 Transform Transform false 0 7456 8784 53 30 7484 8799 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 39a4ff0f-6c72-4497-8065-1a6228469a0b Curve Curve false 9455c6bd-f20f-429c-a40a-28d3d946b5f3 1 7411 8164 50 24 7436.626 8176.176 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 62d2f4a5-bc18-4426-a766-5a836b470190 Expression Expression 7337 9533 194 28 7437 9547 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 3b2ef984-5f7f-496d-9148-d73b41766cbf Variable O O true 8bc58f3d-03b6-4e66-8ae9-eb0c56de5c85 1 7339 9535 14 24 7347.5 9547 Result of expression 4ff8ec27-bdc7-4441-a956-d96b47043a79 Result false 0 7520 9535 9 24 7526 9547 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values aeed149a-1b87-40f8-a80e-0fba6229c1c5 Panel false 0 4ff8ec27-bdc7-4441-a956-d96b47043a79 1 Double click to edit panel content… 7357 9505 160 20 0 0 0 7357.516 9505.531 255;255;255;255 false false true false false true 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 0cb431c1-66b6-4421-91e6-f722e8290783 Evaluate Length Evaluate Length 7362 8542 144 64 7436 8574 Curve to evaluate 60139b50-4d59-4941-aee6-dac0019aef43 Curve Curve false 9455c6bd-f20f-429c-a40a-28d3d946b5f3 1 7364 8544 57 20 7394 8554 Length factor for curve evaluation d9487d48-8902-4f93-89a8-3e3d4ec9db95 Length Length false 0 7364 8564 57 20 7394 8574 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) cd7139f8-b22f-4434-8ddc-1f89e519eed6 Normalized Normalized false 0 7364 8584 57 20 7394 8594 1 1 {0} true Point at the specified length 60820267-ecf9-4c5c-8c67-9cc51c88dbfb Point Point false 0 7451 8544 53 20 7479 8554 Tangent vector at the specified length 04d5f013-de76-443d-92fb-6a1d7589f822 Tangent Tangent false 0 7451 8564 53 20 7479 8574 Curve parameter at the specified length 28381474-d048-4a0a-9925-40bad877ff97 Parameter Parameter false 0 7451 8584 53 20 7479 8594 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true bfb14711-271e-42bd-86cc-51360d92fafe Expression Expression 7337 8325 194 28 7437 8339 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable d574427d-9cc1-4f86-81a0-444f0b7d6976 Variable O O true 9e0dd512-e99d-4113-a6e1-011b80d097b7 1 7339 8327 14 24 7347.5 8339 Result of expression e151f82d-a8c0-49f5-a749-270c496fb892 Result false 0 7520 8327 9 24 7526 8339 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 5a795dd5-5846-4052-8d76-f8ff84b0c76e Deconstruct Deconstruct 7368 8459 132 64 7415 8491 Input point 88e93d28-0d0e-43df-a990-9e3935f3608d Point Point false 60820267-ecf9-4c5c-8c67-9cc51c88dbfb 1 7370 8461 30 60 7386.5 8491 Point {x} component 9e0dd512-e99d-4113-a6e1-011b80d097b7 X component X component false 0 7430 8461 68 20 7465.5 8471 Point {y} component 67feb21d-3048-412b-980c-46061bef55b8 Y component Y component false 0 7430 8481 68 20 7465.5 8491 Point {z} component 3d6cc2b1-8ed0-4943-8e9b-2c5b4c2fa030 Z component Z component false 0 7430 8501 68 20 7465.5 8511 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 565c2487-e6b1-4b0d-9b60-b4ef035b1ad5 Panel false 0 e151f82d-a8c0-49f5-a749-270c496fb892 1 Double click to edit panel content… 7356 8293 160 20 0 0 0 7356.896 8293.1 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 4e5e9256-4923-4d63-8f79-f0c3f0d1a7a7 Expression Expression 7337 8239 194 28 7437 8253 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 07ffc84b-08d9-47df-b37d-a4b35cd31d43 Variable O O true 67feb21d-3048-412b-980c-46061bef55b8 1 7339 8241 14 24 7347.5 8253 Result of expression 3da1fac0-7665-418e-802a-18010ec60bc2 Result false 0 7520 8241 9 24 7526 8253 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 8e8065a3-aa82-4a92-aa35-315c5e80cce6 Panel false 0 3da1fac0-7665-418e-802a-18010ec60bc2 1 Double click to edit panel content… 7356 8207 160 20 0 0 0 7356.907 8207.471 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true c6104625-7012-4837-b3d8-85aef833c461 Expression Expression 7337 8411 194 28 7437 8425 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 6f39ab6d-15be-4f6f-93ef-7c8fa4ebb3e6 Variable O O true 3d6cc2b1-8ed0-4943-8e9b-2c5b4c2fa030 1 7339 8413 14 24 7347.5 8425 Result of expression 8032f945-4137-4355-86bd-d52fd398f955 Result false 0 7520 8413 9 24 7526 8425 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 39257d34-da6a-4970-b14d-1a29dcf9555b Panel false 0 8032f945-4137-4355-86bd-d52fd398f955 1 Double click to edit panel content… 7356 8379 160 20 0 0 0 7356.646 8379.313 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 8afb042b-575f-4d86-9b32-b8978003ece0 Panel false 0 0 1 16 0.35721403168191375 1 256 0.0014014999884235925 1 4096 7251 12280 379 104 0 0 0 7251.086 12280.73 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values d79f9f60-4bc4-4e68-9e2c-8ae9afcc755f Panel false 0 b94e92f9-bb56-4bc2-bda4-673f75829ae0 1 Double click to edit panel content… 7268 10465 337 276 0 0 0 7268.836 10465.71 255;255;255;255 true true true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true cb62e43a-ed84-4f5d-a866-c537c0a027d7 Expression Expression 7337 10756 194 28 7437 10770 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 5c31adb9-af1b-46cb-8849-9634784dd7e3 Variable O O true 1ce1b2e3-7315-41ec-8e7d-3d48e5ae6c61 1 7339 10758 14 24 7347.5 10770 Result of expression b94e92f9-bb56-4bc2-bda4-673f75829ae0 Result false 0 7520 10758 9 24 7526 10770 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 0ed6d593-dc44-48c3-a39c-00dc0f7ee04a Number Number false 11a52911-ee4b-4695-868f-5bf4c41520d5 1 7412 12541 50 24 7437.606 12553.27 cae9fe53-6d63-44ed-9d6d-13180fbf6f89 1c9de8a1-315f-4c56-af06-8f69fee80a7a Curve Graph Mapper Remap values with a custom graph using input curves. true 48566625-50c4-4225-807c-177433e91f71 true Curve Graph Mapper Curve Graph Mapper 7265 11004 160 224 7333 11116 1 One or multiple graph curves to graph map values with 991f3f39-5f51-4479-a612-c4a4e8021acf true Curves Curves false 4bbb5169-d548-4f2d-9dc0-0d023e3bd679 1 7267 11006 51 27 7294 11019.75 Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary 2e5b80fd-6cff-47a8-9ee2-a1ad85d8ceab true Rectangle Rectangle false 7607a20d-9fe0-4e7a-82cb-6531a310f70a 1 7267 11033 51 28 7294 11047.25 1 1 {0;0;0;0;0} 0 0 0 1 0 0 0 1 0 0 1 0 1 1 Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis cac38927-ce52-47cf-bf61-8cd150bf7de5 true Values Values false d31ac591-fd5d-4c73-a76f-9bc43174b558 1 7267 11061 51 27 7294 11074.75 Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used) 4ba80bd4-fc21-4195-9ff5-16fa8588edb9 true X Axis X Axis true 0 7267 11088 51 28 7294 11102.25 Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used) e9a0c782-0ebb-4c1a-9fb4-409bf1caf305 true Y Axis Y Axis true 0 7267 11116 51 27 7294 11129.75 Flip the graphs X Axis from the bottom of the graph to the top of the graph fba04f56-a6ec-4b52-a04b-7712b5cbecbe true Flip Flip false 0 7267 11143 51 28 7294 11157.25 1 1 {0} false Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle 15dd574b-0701-4c13-9d1e-9bb131f271a9 true Snap Snap false 0 7267 11171 51 27 7294 11184.75 1 1 {0} true Size of the graph labels 6276aa36-ee58-4a76-bda5-9c3ac3c69808 true Text Size Text Size false 0 7267 11198 51 28 7294 11212.25 1 1 {0} 0.015625 1 Resulting graph mapped values, mapped on the Y Axis cb558f5d-99ca-4ea7-a1ca-06a72dc5a3de true Mapped Mapped false 0 7348 11006 75 20 7387 11016 1 The graph curves inside the boundary of the graph 0f7d7316-4546-415e-b39b-e4ea785b9333 true Graph Curves Graph Curves false 0 7348 11026 75 20 7387 11036 1 The points on the graph curves where the X Axis input values intersected true d7695b33-6762-475d-aa82-d84becea8067 true Graph Points Graph Points false 0 7348 11046 75 20 7387 11056 1 The lines from the X Axis input values to the graph curves true ba604453-17d5-4e88-a886-67f58a075302 true Value Lines Value Lines false 0 7348 11066 75 20 7387 11076 1 The points plotted on the X Axis which represent the input values true 1016cfaf-6e87-4e04-aed7-bddabadf4e0e true Value Points Value Points false 0 7348 11086 75 20 7387 11096 1 The lines from the graph curves to the Y Axis graph mapped values true 59a77ac4-373d-4baf-b7b5-7eaa50ae930d true Mapped Lines Mapped Lines false 0 7348 11106 75 20 7387 11116 1 The points mapped on the Y Axis which represent the graph mapped values true 3e4366ac-8e4e-4ffd-8b11-58fd62429ee5 true Mapped Points Mapped Points false 0 7348 11126 75 20 7387 11136 The graph boundary background as a surface 60aaab7e-c91b-44df-b173-e78cd27501d8 true Boundary Boundary false 0 7348 11146 75 20 7387 11156 1 The graph labels as curve outlines 966e8c01-c1cf-4f95-bb55-df0a51ecdcc5 true Labels Labels false 0 7348 11166 75 20 7387 11176 1 True for input values outside of the X Axis domain bounds False for input values inside of the X Axis domain bounds 8a8f8401-942f-4c26-9bd9-af3e8ee47787 true Out Of Bounds Out Of Bounds false 0 7348 11186 75 20 7387 11196 1 True for input values on the X Axis which intersect a graph curve False for input values on the X Axis which do not intersect a graph curve a2e1539d-eaaf-4da7-9160-b7c7f2b03d52 true Intersected Intersected false 0 7348 11206 75 20 7387 11216 11bbd48b-bb0a-4f1b-8167-fa297590390d End Points Extract the end points of a curve. true 3bb8e3dd-969f-41ec-8805-4c84b5f09d23 End Points End Points 7386 11348 96 44 7436 11370 Curve to evaluate 35bdc6f8-03f2-43d4-a84a-c33e68be258a Curve Curve false 4bbb5169-d548-4f2d-9dc0-0d023e3bd679 1 7388 11350 33 40 7406 11370 Curve start point e2304843-55b5-4b30-9f54-a0b003188b20 Start Start false 0 7451 11350 29 20 7467 11360 Curve end point e628eea1-217d-44f3-bc34-69e652fc09a4 End End false 0 7451 11370 29 20 7467 11380 575660b1-8c79-4b8d-9222-7ab4a6ddb359 Rectangle 2Pt Create a rectangle from a base plane and two points true 39eb9c8b-5e6b-46b6-b25d-1eeb46ffbedb Rectangle 2Pt Rectangle 2Pt 7371 11246 126 84 7429 11288 Rectangle base plane 8c316192-edcf-4a4e-b484-ade0b9371757 Plane Plane false 0 7373 11248 41 20 7395 11258 1 1 {0} 0 0 0 1 0 0 0 1 0 First corner point. 34774a14-b2b7-4b80-a525-9cd9782ec215 Point A Point A false e2304843-55b5-4b30-9f54-a0b003188b20 1 7373 11268 41 20 7395 11278 1 1 {0;0;0;0;0} 0 0 0 Second corner point. a8bf6d84-bbf6-417b-b1e0-535c4450d6e6 Point B Point B false e628eea1-217d-44f3-bc34-69e652fc09a4 1 7373 11288 41 20 7395 11298 1 1 {0;0;0;0;0} 1 1 0 Rectangle corner fillet radius a6a3bbc4-8700-419d-9ce8-23603023cf87 Radius Radius false 0 7373 11308 41 20 7395 11318 1 1 {0} 0 Rectangle defined by P, A and B 7607a20d-9fe0-4e7a-82cb-6531a310f70a Rectangle Rectangle false 0 7444 11248 51 40 7471 11268 Length of rectangle curve d0104b95-de0d-468d-ae13-acb82d42c281 Length Length false 0 7444 11288 51 40 7471 11308 310f9597-267e-4471-a7d7-048725557528 08bdcae0-d034-48dd-a145-24a9fcf3d3ff GraphMapper+ External Graph mapper You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode. true 3e9c3eb4-71ed-413d-bb22-ad7c3af5313d GraphMapper+ GraphMapper+ false 7425 11108 126 104 7492 11160 External curve as a graph c21b41ea-0a42-4675-afbd-99e3bc1860d5 Curve Curve false 4bbb5169-d548-4f2d-9dc0-0d023e3bd679 1 7427 11110 50 20 7453.5 11120 Optional Rectangle boundary. If omitted the curve's would be landed e7b25ada-6900-4e29-9960-0cd15d06559a Boundary Boundary true 7607a20d-9fe0-4e7a-82cb-6531a310f70a 1 7427 11130 50 20 7453.5 11140 1 List of input numbers 8982eb96-12c9-4947-91b1-99422d9ad115 Numbers Numbers false d31ac591-fd5d-4c73-a76f-9bc43174b558 1 7427 11150 50 20 7453.5 11160 1 9 {0} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 (Optional) Input Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode 920da66d-a2c0-452d-8275-ba47e5c0edf4 Input Input true b9250ab8-e82a-49e8-b30d-35bbe735aaec 1 7427 11170 50 20 7453.5 11180 (Optional) Output Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode 71cf0cbc-78fc-467d-ae1c-94b925c47308 Output Output true b9250ab8-e82a-49e8-b30d-35bbe735aaec 1 7427 11190 50 20 7453.5 11200 1 Output Numbers 73af29cd-fccc-43c7-b426-93d4192a145e Number Number false 0 7507 11110 42 100 7529.5 11160 eeafc956-268e-461d-8e73-ee05c6f72c01 Stream Filter Filters a collection of input streams true d714c48a-2a73-4d1a-a30b-d7da2b936496 Stream Filter Stream Filter 7403 10916 89 64 7448 10948 3 2e3ab970-8545-46bb-836c-1c11e5610bce 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Index of Gate stream 47c4ed78-be55-49d4-a15d-0ce864e157a4 Gate Gate false 07d98ecc-da14-47d2-b356-5c6e4c8c2c60 1 7405 10918 28 20 7420.5 10928 1 1 {0} 0 2 Input stream at index 0 5c73ff89-0eed-4f90-b572-d321c7661338 false Stream 0 0 true cb558f5d-99ca-4ea7-a1ca-06a72dc5a3de 1 7405 10938 28 20 7420.5 10948 2 Input stream at index 1 ac2f48dd-4e33-4d5e-b0e0-a836bc7a545f false Stream 1 1 true 73af29cd-fccc-43c7-b426-93d4192a145e 1 7405 10958 28 20 7420.5 10968 2 Filtered stream 99d6efab-9b89-4f22-8a8d-df1094258fe6 false Stream S(1) false 0 7463 10918 27 60 7478 10948 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values 07d98ecc-da14-47d2-b356-5c6e4c8c2c60 Number Slider false 0 7367 10877 150 20 7367.266 10877.31 0 1 0 1 0 0 1 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values a4958a9c-5813-47b6-aa2c-ab9e636f97c4 Panel false 1 556b5a1d-8726-40a1-99db-421437d0822e 1 Double click to edit panel content… 7344 11535 185 271 0 0 0 7344.336 11535.73 255;255;255;255 true true true false false true f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true fa049596-2965-4c5d-97a7-5e19cffbc796 Bounds Bounds 7375 11487 122 28 7439 11501 1 Numbers to include in Bounds 8e81429f-2437-493d-b2d7-f6f4e17345cb Numbers Numbers false d31ac591-fd5d-4c73-a76f-9bc43174b558 1 7377 11489 47 24 7402 11501 Numeric Domain between the lowest and highest numbers in {N} b9250ab8-e82a-49e8-b30d-35bbe735aaec Domain Domain false 0 7454 11489 41 24 7476 11501 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 9686459f-3b8c-4236-a424-b61a61b59f38 true Expression Expression 7337 11825 194 28 7437 11839 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 7806ace1-1ef5-42e5-abb6-1b8a8a24be47 true Variable O O true d31ac591-fd5d-4c73-a76f-9bc43174b558 1 7339 11827 14 24 7347.5 11839 Result of expression 556b5a1d-8726-40a1-99db-421437d0822e true Result false 0 7520 11827 9 24 7526 11839 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:0.00000000000000000000}",O) true e010c8fd-840c-4166-9529-3087fe2d17d8 Expression Expression 7251 12022 367 28 7437 12036 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable a37aced0-5706-4c6b-aac6-1e6cc2d3da3e Variable O O true 9f541762-9b0d-4322-9575-67e4ca64397e 1 7253 12024 14 24 7261.5 12036 Result of expression 60577dce-0b71-4c05-8a6b-57f0b26165db Result false 0 7607 12024 9 24 7613 12036 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 246ecf84-d14b-4307-a633-35f573840f33 Panel false 0 60577dce-0b71-4c05-8a6b-57f0b26165db 1 Double click to edit panel content… 7347 11993 179 20 0 0 0 7347.476 11993.5 255;255;255;255 false false true false false true c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 39a4ff0f-6c72-4497-8065-1a6228469a0b 1 8d0f4434-7d6e-4068-b183-c84afb4b8204 Group 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true da4f27ab-934b-48b2-89e3-f39463e6853c Scale Scale 7357 8667 154 64 7441 8699 Base geometry 8070f65b-03d5-457d-9f4d-edd4cf35b1ae Geometry Geometry true 18385e25-6a94-455a-be4e-b27bf9f8a78b 1 7359 8669 67 20 7402 8679 Center of scaling f4241aff-6994-4f0f-9e80-e20d6a3710c8 Center Center false 0 7359 8689 67 20 7402 8699 1 1 {0} 0 0 0 Scaling factor fc8cb567-4e08-42e1-a556-aa0895b73b46 1/X Factor Factor false 26d27076-c008-4e64-974c-ce9aac18da2e 1 7359 8709 67 20 7402 8719 1 1 {0} 0.5 Scaled geometry ed3d47b1-03ef-4563-8bb9-aba7771522d9 Geometry Geometry false 0 7456 8669 53 30 7484 8684 Transformation data be5c094e-d169-4415-93f1-bd4a51684c43 Transform Transform false 0 7456 8699 53 30 7484 8714 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 1d29bbdb-cefa-4e66-99ed-d43b60d5b83f Point Point false ed3d47b1-03ef-4563-8bb9-aba7771522d9 1 7411 8631 50 24 7436.626 8643.346 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true b24604d6-b572-4cd1-a024-27c751a205bb Mirror Mirror 7362 8009 138 44 7430 8031 Base geometry 5f1908af-662b-40bb-877b-7208acaa9a63 Geometry Geometry true 39a4ff0f-6c72-4497-8065-1a6228469a0b 1 7364 8011 51 20 7391 8021 Mirror plane 4e9f9000-7623-40a6-9e43-85a0fd2071d8 Plane Plane false 0 7364 8031 51 20 7391 8041 1 1 {0} 0 0 0 0 1 0 0 0 1 Mirrored geometry df20d617-fa24-4d16-a080-8aff328c52fa Geometry Geometry false 0 7445 8011 53 20 7473 8021 Transformation data e484123a-f9c3-4ca9-898c-8eddecede392 Transform Transform false 0 7445 8031 53 20 7473 8041 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 08fa1a46-6440-41a4-bbbf-53c0c4624266 Curve Curve false 8567a5f2-3fa6-4629-9c0e-3d232d59b359 1 7410 7904 50 24 7435.876 7916.365 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 4bbb5169-d548-4f2d-9dc0-0d023e3bd679 Relay false 8e3663a4-add2-4ebe-b7ae-f14464daabda 1 7416 11415 40 16 7436 11423 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 89dd68e3-dd85-445d-8ea6-7e9cb2ef225a Curve Curve false 9d3e2fa0-f2f8-499c-b0d6-aea998d09756 1 6937 11668 50 24 6962.876 11680.08 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 8e3663a4-add2-4ebe-b7ae-f14464daabda Curve Curve false 6d152cb1-13d0-4666-8fae-d6707709623b 1 6937 11464 50 24 6962.972 11476.06 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 391ff5a2-0e3c-42ff-9c0a-bbe63d6c5c50 Scale Scale 6885 11506 154 64 6969 11538 Base geometry 1c04b82b-711a-4123-8582-768e5c28c86b Geometry Geometry true 89dd68e3-dd85-445d-8ea6-7e9cb2ef225a 1 6887 11508 67 20 6930 11518 Center of scaling 10ac10bb-2e9b-412f-b5ab-ea08a4e6032c Center Center false 0 6887 11528 67 20 6930 11538 1 1 {0} 0 0 0 Scaling factor 209e3826-2f57-4b42-b6df-ff5b1e1526f2 2^X Factor Factor false 5f674530-1280-4673-8eb1-6afa37fdffb3 1 6887 11548 67 20 6930 11558 1 1 {0} 1 Scaled geometry 6d152cb1-13d0-4666-8fae-d6707709623b Geometry Geometry false 0 6984 11508 53 30 7012 11523 Transformation data c94a99bd-0658-4981-82d5-bd331a3b4dec Transform Transform false 0 6984 11538 53 30 7012 11553 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 89dd68e3-dd85-445d-8ea6-7e9cb2ef225a 8e3663a4-add2-4ebe-b7ae-f14464daabda 391ff5a2-0e3c-42ff-9c0a-bbe63d6c5c50 27899f96-8899-44d3-a06c-50d23c4c5623 96bdb03e-d8e7-4859-a629-16af01c642d6 5f674530-1280-4673-8eb1-6afa37fdffb3 beb16079-3864-4233-9af9-59f099bc7bc0 7 ffd279bd-b5c2-4346-96b3-be5f5da45424 Group e9eb1dcf-92f6-4d4d-84ae-96222d60f56b Move Translate (move) an object along a vector. true a28c8f0e-96c2-457b-825c-02f5a78e0a9e Move Move 7362 7945 138 44 7430 7967 Base geometry 99dd87f0-9e27-4f1b-a0fc-3ffb41110e47 Geometry Geometry true 39a4ff0f-6c72-4497-8065-1a6228469a0b 1 7364 7947 51 20 7391 7957 Translation vector 7b8a8092-4788-4742-a198-58b78fbf6466 Motion Motion false 0 7364 7967 51 20 7391 7977 1 1 {0} 0 2 0 Translated geometry 8567a5f2-3fa6-4629-9c0e-3d232d59b359 Geometry Geometry false 0 7445 7947 53 20 7473 7957 Transformation data c0cd3384-de31-4ac7-8d57-f835b8523656 Transform Transform false 0 7445 7967 53 20 7473 7977 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 96bdb03e-d8e7-4859-a629-16af01c642d6 Digit Scroller false 0 12 2 20.9312132004 6837 11631 250 20 6837.646 11631.56 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 5f674530-1280-4673-8eb1-6afa37fdffb3 Panel false 0 0 30.93121320041998779 6885 11590 154 20 0 0 0 6885.247 11590.97 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 9a0c2082-f5ff-4dd4-8279-f086336e49b9 Panel false 0 0 0.00137956207 5091 12249 439 20 0 0 0 5091.554 12249.04 255;255;255;255 false false true false false true d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 4ea9782b-b84c-454e-83f5-3a41a370b0c9 Curve Curve false 0 6937 11715 50 24 6962.696 11727.73 1 1 {0;0;0;0;0;0;0} -1 zPxpPFVvG/D/b2OGTJXIXIaklCEylGMrlWYiNFOISjQoGjdS0kRJ0mQolIpKRaadKZEyD5m2eWabaeDne32Pa5397+t1P/k/uj3wbn3WWvs899rLsjZe0ThoNNrk1Mc//vMxnXPqk/VWJ+cjrqtcXVxcjyxSsHI4dtzZ9ciKZYs1tRdraWov1Zv6h4aG5iKFVe6HT7gfc1hxxMH9xDG7w4sUzNz3HXbev8HB09L1kMORFTo6Wlp6mg76y/Yv09HR0dbg+WcUyf88+OK1Dq4uDieOeS42cz3sucr92EkH7qmV007+O5iA3bH9Ts4nHbTtXfhd3RyOHHE/tu84t73dCbt/NuLj4+P8Z56i82k0rSlv/xaczs819Q+Rfz6VXaTROH9e4KR9ufjvc/o1yUmbhc+PVVqxeW1HiVh6C03Uh2Me+/mwmt/vqfWBuK0oN+3//GDD/6R/e/r/WXj+ZxsN+r/SUVPUjP7PBP8o/O8E54jF7TEXLBVLn/h3guulPCX+mWA2bivKhRv+M1Gu/75s//9M9n/2/T8/4vGxmGguWoiWopVoDcpCG9FmtBVtRzvRbrQX/n+fQz86gA6iQ+gwOoKOomPoOPoT/YX+Rv+gE+jkf48d/T+fGSiNA5dRGicuozQuXEZp3LiM0nhwGaXx4jJKm4bLKI0Pl1EaPy6jNAFcRmmCuIzSpuMyShPCZZQmjMsoTQSXUZrov9JRBspEaWK4HmWgTJQ2A9ejDJSJ0mbiepSBMlHaLFyPMlAmShPH9SgDZaK02bgeZaBMlCaB61EGykRpkrgeZaBMlDYH16MMlInSpHA9ykCZKE0a16MMlInSZHA9ykCZKE0W16MMlInS5HA9ykCZKE0e16MMlInSFP5VAaWjtigDDUOZKAulzcX9UTpqizLQMJSJslDaPNwfpaO2KAMNQ5koC6Up4v4oHbVFGWgYykRZKE0J90fpqC3KQMNQJspCacq4P0pHbVEGGoYyURZKU8H9UTpqizLQMJSJslDafNwfpaO2KAMNQ5koC6Wp4v4oHbVFGWgYykRZKG0B7o/SUVuUgYahTJSF0tRwf5SO2qIMNAxloiyUthD3R+moLcpAw1AmykJpi3B/lI7aogw0DGWiLJSmjvujdNQWZaBhKBNlobTFuD9KR21RBhqGMlEWSluC+6N01BZloGEoE2Wh1E0L8X/vM8jHxU/uO49vX/k/9x1rIjT41S/thI7z8lLTjGev+G9f959+CIRuVuu2emin/rcneDbnhD85AXJ39bPLZm39P7Y/A+p1+XZra92o7Q87pCnXaHuBxxW2wNCpm9T27/7zOBfhjdAHuQ27XlLbT1wXcDog7gdzePjq8u3zqe1N/vP4V0G1+NgLpm8/1Q+/t3o+MHIDfB8H7m2L5jP6b1f4z7iBoGh+aI6EqTTVQ4+Yjxh13wJaXG6W1RY1qguc+mc+QSBnsdvggdIyqm89d+ou9+5g0K07/nSCfxXVj174Z54hcKhPRmffp01U5z39UC+v4B7obhP232JuRfV7B/6Z/30Ye+hPC1xiS/U3kFl10+gh/Jp5NNGrxJHqt4a3TT2vRyABk6ksF1eqbzI8kfrcOgwWeSh01Gm6U32WZerU8w0HRY3HD+kzz1KdocV7Q0g0AhjbXcpVNnlTnS9189RxiICj32JFrl+6TPX5RcF73HIjQbd5beHJmutUH6fXTR2fJzBdwa04KuUW1ZcXKi0pYTyFEP3FO9+vvkv1Yo2DU8ctCgZ4nltHRTyguv/Ey0kd/Wj4s293+6FT4VTX+dh34IB4DPzcmGwwqPiU6k2ZiwtD+mNgSevAmnrHZ1TXtjw4dZyfgd7vHye3m7+i+sUT4WG/nj2HR/TkpOafr6kuPlLMp34pFviHVUTY2u+o/vXAH7c9+16Agbb9avO6RKpfFpCfel1ewqkTGWcMeFKp3pepY/xJ6hXEpHQfXfeDSbYXgWcDI6/gZ5aU/PmzmVTP7FkmplQSB0JZXgu7XXOo/tjpRspz63gY2b/HODr5C9XTsk64ZWbHQ5K583XVAwVUf31no1KN9mtYdyQ4TTW1kOpnfs2oHAp/DVqaL40+TBRTXelh1lUh0TewKV2k5sHZMqrfD9kNKuffQNup1I4jhpVUn360asCo+w2wbuVa/4Zqqmv+0oqy3vEW/mgzZmy5WUf1P2vtt7vlvoUTCgXxVhINVOe+7jj9im4CBJ96FVkg1kT1LAGt9PAnCTAx0dTXo99C9bvs1KMfZ7yD+zl1e5NutVFd0oimVMJ4B6N08edb5TupXhfeU9bV+w6qte4qTDR2U91um+dl7t3vQd0q3HZeQx/VG4aD9GTz3wPXVkmvJzf6qT68XaNDR/8DKD/Ii7y5aZDqHfv1722O/gAX7LwdDZcMU31D4X3TA+KJ8GLpbJlInVGq59CMRy/4JMK4VMNg6b5xqv/MEHka0p8IJyL9zQcSf1G9Z0a3+eu9SVAZ/11Jw2CC6npV7/98KUiCZfaRYYdO0Kjr9Oonm2IaDT+C/7k5OyOaOKj+cpe/+a9nH2HbsPDM4UNcVLceWjk+UzIZJt6Fi0QL81BdQnTd40WXkkGt212Pt4CX6uaxzqtWDyXDkmKpNYdi+Kj+8/3hlt37UqBeabJSP0KA6qcSZ/meLEyBVR5Ja1nJ06nuuF9u3k2jVDji8+JExYgw1ScW01OiX6TC5q5KM/PnolRvaV1gwZRKA7knyhEHusSovn7ZxdZKvzSQT644fBpmUp2xlO3eP5IGvpGuu3dEzyLzrOXlEHBIBznuXWM1irOpnvrA5vK8knRYlcB5seadBNXv79G9+FCBCUaLvgws2zOH6hbHWJ+eWTMh57xMQbGsNNXH6Pa/391gwsAXD+k7wzJUnyV7UjsjmwmFEm5mh1rlqG4Wk+X47TcTlm61mRPpoUD1vb5jd35ofwI58N1//epcqudMS2C2HvwEhoYGskdfzKP6jYZbrQPhn6BYja/1a7Ui1ce/LZg2WfkJvJXu7pwrpUx1TTrvPEHRDNicFi3cf0CF6tM4XulKrM2Ass6ZHszs+VQvr3tkong+A7bYfu8RX7qA6lc3bt6w5F0GjHi33fV8q0aOA/eC9YbdGSD21dvB3WQROd9ib9HXKmbCQFQ9x502dapvONiibrEjE8ZStn5xeLiE6tqBR8X2BmZCneW8vYZvNajOp3Gu82BuJoxcloAX4ZpUr3u9KvHkZCZIXNx4f3OoFtXb3Yc9vXWzQOEo/6bDD7Wp7nzgw+IbLlmQGBLSuSV2KdWXB0WU3XuSBTtuZH4yydKh+tmMTJen1VkQM7ylOLhdl9wf8UiPxM/IBt2mM7m3JPWo/nvzfZeUddkwrdRz1NdSn+pfedVKPjOywUqv2yLtgQF5XiGPlEs+ZEPAddsj/v2G5Pznzthf15sNy7nzXPQtVlB9zqnN1zqUc0Do1S9+6Qwjqu8s7H04tCsH9CXFMkGeTnVbA6O7k7dzQOPso7KdzaSXv/98UiA/B6rdN9j5xxuT60Acj6E452fwXi9vOuRD7gdZPnaN8vqfQaopLSpjzyqq68lqH1Jz+wwPrWOK5IxNqL77NLNkafRnyNY6slVr4Wqy/coVUlD3GWIODzSryK6huqBl3vJ14rnwWyr8hIrEWjJPG3d9i425sKfs+Zydc0ypbrNNT3i3Ty4kfjWa3ae4jurZy8cTHT/mgn1QVsn0Zeupfv7ilWVu/blw/744q27rBqp/SXx62VP1Cxy2ed9589RGqj+eMRzlvfcLOEiJZKx/uonqBcL8t68GfwHBqCdmBjWbqX6Bd/e6oIIvUDZdtcBE2Izqi75s+/yAOw+UfybXaL4l/ZCescBTwzzIjp3bO77LnOpdzdtEXh7LA4NIdtgbwa3kOhz3piThWR5Mr/90/2g66bn791imsPJgPMHg6kYPC6ovPL72RqZEPhRb88hv17WkemDOqvN5m/Nh28cdPC/HSfdYJzq3yDcfdC8v7N6dsY1cfy6bHa9IyQc7w0yGV4AVuc6Y3DhaO5gPb4e6XdXtrcn5Ka0v2aT2FULVgh1OrbChuj1H1P52u69g/31EyF1mO9WfqouY9YR8hR26UmLLOXZQPajtdlX/969wwbFcpLGLdB8jvd/DvAXwdVdZxNmanVTnzG9+O76iAHw+iG6fW7KL6sNHHX//PlEAksrH37d83031bwuPFE3GFkC6n6tWffEechy+ByzmbCqAae9DdRVr9lJ9VcMaEW6pbzCgGnGjyd2W6okO3Ud4zL/B/aZpkmyaHdXzE5mmvH7f4LjfmhLjm6TLOrfe5U3/BnPeO21tUthH9VqJ/da8I9/AcmyabP070kV3y3vzqH+H1Xz34mDzfnL9j2+dwW3/Heo5Ek+LdJKeaX2Am/P+d/C5eaLR5oo9+b5po2U+WfQdRIQerVBZ5ED1kg+14+e4C+F0pEiZVzHp/ZcXDf6SLwTDPb8b3c86Ur1aIyLQ07AQEgwNb01XO0D1+qcbi0esCkHP4PafLdWkR8LCN8ePFcL7fdOWrA9wIt/vshcvZl8vhMHiefI865ypnuehv+rws0LwyjVJ8Oc5SPXpyvK9bVmFIPeq+1NzNunXNZ4u3M8qBCd1Xj5Z/0NUT3vtPVb7qxB41+hordh6mOpcl23NbSSKoODwvIrNci5U9z9apVWsVQRtb3NO7ewl/aD26XsbNhfBtYkP5w9nHCGvV/wnryznInhp7A5XQ12p/mzW3PblvkXAcbDqtK2hG9U7R3/lJoQVQegBi31XY0nnuB6jsCilCJQz1KrzZI+S/s21K6KiCIo5XXcr3iLd/dV15TmDRbDKvsniHt8xqruaaebfEC4GfY2n0ppepG9Yca6SS60YHBYWc/X9Ij0t/PI6j9XFsF90yaYKj+NUP3l9h1S3bTFoSn9b0DtKur3u0Jq9Z4tBJ+pdyjLPE1R3g7X5RXeLQfHHpTmJv0n/zWkYueptMfAfUzI57u1O9R+s2LyEb8VwO2i7hovASapLBxxaodxZDBJZjE/Pgkg/csJ4NIinBFxb1fIWzT1Fntdo5yDX3BIQdswR/BlH+pdm6SXHlpcA02WNrrixB/n6/Xr+Sb311Pb0vDavUtI/2L/bsvF4Ccx6YfJi1UFPqv8aslmUeKME3ocp/tnNeZrqMek/dRSfl0Bl/Si99AHprceUnK5nl0BWsUz+M/0z5Hx7YJM2wioBAy/b6oZK0svkZi7d+7sE3r2IfXjh9FlyXY3/kpUjUQrJIs8XXJI7R/Uim+5D6tqlIPLlmPdYFumX2C1KtzeXgk+1RnCVy3ny/e6FTNeocylckP+6YtGcC1TfGjWQtNO3FH6bBy4fzCH9q3POtbSwUpCQ63scYsigevHVwT0KKaXw8/Ve16Eg0pP5SxZ6VZRCEYhsutFHut7t5F7WQCnM/Rp45MAGL/L1XsERCcJlYHs4e4IRQ/qp72OrHi4oA5mUCdkaXm9yn8w38HXcpAy2spc2ejqS7ta5Qn+bbRmsEVpsvfMz6Udoiy7GnSmDtdKx570W+FB9wFDwGd/dMjDfH2TWc430ej21SNs3ZVAcr5z8uJ/03+crXD4UlIHwPanIe9YXqR72yY5bqKMMtnz+0VSdRnqNrOQ+O+5ymNwUteXAfF+qu1it906QLwfe35/ilgeSLi28zpbXsBxmv4/M2vWb9J+TDqNWVuVQUCK3JtfpEtVDdIZWRh0thz8XApoulJNub2hqNHStHFqkp5tcXH2Z6glbE5vpMeXA9fQyb/k70pvDH2heyyyHMRm+DPf5flRX27dFobyuHDYPFvDYh5JuLaj+Qu5nOZx289oeLnyF6rrnggodxCtgfO7eFYsvkt6k0uYXq1EBHWvs1QR/kX514ZXCvg0VULv8zC294/5kXN+GCK0DFbCjO5r1vpv0l0o7fh33roDCpUs9Lx24Su6LRGzL3j6sgL3WNUnRTaT/Prt/0UBiBeja/hqXsrtG9dNdFb8Wl07N5/oHf1Y96bUGS+FgXwWEv1/8YWzvdfI6pg30RwpUwo7nEVn7G0hvNwsUqVGuBIFbTwfm2t8g1+G9gbdnGFeC1oY1Z7TbST/785Tn2l2VsCZ9+e0Ql5tU/1hbkHL6VCUU6M4+aD5EupSH/PYXtyrhbYmG+BKjAHJ/wv69ruZlJeye6Dlb7016xIKf/gJfKuGN+rff+rmk16a9kljWXAkcSxQijYQDqX6M+32X3WQlvFSefrbHkvRYWhznVakqqI94FrjmAemi9stt3uhUgXOSePe6ZtLbznO3V5hVQZbQlcDRRbeoXqH9+uWvQ1XQ0uByactJ0mXa+57IXq6CNJmTBeZM0jvcjn5ZEVEFKpteH5gQuE311RMds3elVsHP6AjLbVak07nErnhUVsEeDutbVhGk75IOl749WAXhzNOynH2kX+qxzosV/gF931z7rZcHUR2mjwRkLPgBJoz9fDb+pM8uMTpUYfIDgk7a7+SsIv2N8Zhl594fcPyCR6OV6h1yf1LSue7X6R9g7PwmaJsH6eusG1YLBP+AvB9rnSZySTdNjTGReP0DBLmit5pLBVPdoV9k5byvP2Bp2jXTzYdJr7nWpr+w7QcotEgaDaeRbsjNqarFWQ3WFh0qa2bcpbrKpCbfMtlqWMeUHqE7kq6ktaVcX68aShnZj1o+kj7WKn/DwKIahN49nblUNITc160sCdd3qIamrPe6F9eRXvVcqUjvSDVsGzEIMHUk3f3JlrzJC5yM/y7/P/SHEP/7i49/R0IVUA2UjpqhtqgbykAD0DA0HmWihSgLZf93fE0cH1VANVA6aobaom4oAw1Aw9B4lIkWoiyUjdK0cHxUAdVA6agZaou6oQw0AA1D41EmWoiyUDZK08bxUQVUA6WjZqgt6oYy0AA0DI1HmWghykLZKG0pjo8qoBooHTVDbVE3lIEGoGFoPMpEC1EWykZpOjg+qoBqoHTUDLVF3VAGGoCGofEoEy1EWSgbpeni+KgCqoHSUTPUFnVDGWgAGobGo0y0EGWhbJS2DMdHFVANlI6aobaoG8pAA9AwNB5looUoC2WjND0cH1VANVA6aobaom4oAw1Aw9B4lIkWoiyUjdL0cXxUAdVA6agZaou6oQw0AA1D41EmWoiyUDZKM8DxUQVUA6WjZqgt6oYy0AA0DI1HmWghykLZKM0Qx0cVUA2UjpqhtqgbykAD0DA0HmWihSgLZaO05Tg+qoBqoHTUDLVF3VAGGoCGofEoEy1EWSgbpa3A8VEFVAOlo2aoLeqGMtAANAyNR5loIcpC2SjNCMdHFVANlI6aobaoG8pAA9AwNB5looUoC2WjNMDxUQVUA6WjZqgt6oYy0AA0DI1HmWghykLZKPVXm8R/7jP+bzc2FTNO0vROVUP6/PSO6T6k19Jcn+tcqQbjudMWf0shnX+/B6/Gk2rILTiXOGfWParvznhsqJpeDaICSj+ED5Me/OfFarkf1TBtk4HvyyzSG+acVpgxXA0Gt2ReDMuGUt0xquYzl2gNGPDTjNtOkS4j8XLZoFoNZO+I0PEuJv2yafYh1uoasM9ccSZH/T7VBc04bPNta+CC/lHOhCukd78G0YQzNZBSujB5fSvp+Zl2HqHBNTBgdzfIf9UD8safd2PQ+dc1MLmc69zxcNIrLrXutf1aA61K3+14aA+p/ni5bAW01YCanNUS+l7SVxxlDctw1sLyvVWFiumkb1ZWThyVqYWJtYc04uUfUX3J6ZY5hctqYfv+H7otDNJF5eZKRG2tBVf3B/kZjaQf/Fgb6+lSC5xBSaWmqx9Tfb7D/NL1frWQtP6D7qkY0q1niV2bE1kL2S3GnSq8YeSN9qx331tSa0HoTvxaRz3S2xk69+Mqa0F1q1Pk+EHSR9NTOk8O1kLNT6Nu1kPSBWnnPxoK18GuXeKiMkWkWyW+451QrYOAjq+/nnOHU/31wuf5qavqgMdjxf3reqQP9MTynNlTB384F1ZlHib986HZr3U862Cnu+HjTeGkz3A3y+u5PfX4nt1lauWkR375uinyVR3kmV2x3ykYQd6YxAjoWX2pg+E4Bc16OunT7YJ9eZvr4OCT0wrvT5JOa+fXTpiogyPnhWezXpBeeFhoxd459bA7c2xwVxPpVQPWYdOW1kOOcn/oIqlI8gOc7rjtLzfXQ6QvvXOzOelzK7sczJzrYdbI+/RMP9I9WQOf2D71sC8/fNSfSXrhudSDNx7Vg0Lcp8NPxki/JWW1e0FSPRQn08dENJ9Q3SmpKvhTST2sfxxztMCZ9NGHHrOse+vhYlblq5oI0uPOJHec4GZBv89vnxU1pF/PCW5PEWNB6E6vzD7xp+QNr66vL5c8C96qCxkNbiF9fqFpuukiFkReOpGx1p901a5XQdf0WdDRES/bk0X654AA7u9rWLBCpUKqaZL0JWXFQqKWLFgdL+SzwDCK6huWHojbYscCQR4fWeZJ0ml9G9qvH2FB2Az7uKg3pFs5X/uQd4YFndHFv2p6SQ+9YizDe4UFL7uqM/ctjKa6luQtcXowCwKrjuQscyLdReFthEckC5g5W5k7n5LOs7U9Iy6eBS7dsoe/NZJ+dv9F95ZUFviML/S+qRBDjo97R9KcfBbMfx6U+GgP6cLuV25urGSBpeO8zF8PSLf0aR0+18IC9VZTi6hq0v2sb3e/HGBBXrW05COpZ1TXj9I+XjPJgusxq9Mat5Ned/nsFX6hBthHm+g7fo90y7qlS3SkGuByH22beRXpsZ907PfObwBXv4u3Ts95Tt5Qfz+o6re0Afa8WLqhbzvpVSrFZ+KMG6Bdmy4fF0q6kcPZPWWbG2DbJvsXSdWkF0ZdKxzf2QCNm8auC8vGUv3ZBb1iGecG4Ns5vuvlHtIPDn/eb3SyATbMnh1/J4z0gJN3fPf4NMBvo4/SnxtJr/oupHcuoAH8N0lpGSu/IPOXjz8T+rAB9KeBD5cT6c9yhczfP28APQGxh0KxpL/em5dY+KEBlLfaC+7tJT36/v23HVkNcCSBy2ZU8yV5HPq6lRzFDfDTMkWg3J10b4GXDhL1DXBzhvOzn0mkz7/zRm5RdwPIdP35YD9B+sZV1kdgvAHuWd9OnLnqFdXXKD7fZs7bCJcfH104zY90/uL8MruZjdCsKHPTqID007t6+9wUGuFV+C7bpBlxVG+R2/b0vHojHDu0WeqUDenZEZaj/gaN4BLqrHvq0V/99Na2O2sb4bbujUVJzaRLyWaffGzZCHyxl/UficdTXTpFOzrarhHy5uwFmj7pS2R1T7860gjVD0/bee8ifd6RE/1vzzRChV+RjRKD9DTJaOFEv0ZYl/28tiWS9NKg4JKPdxqhY0tEdM5n0uP1pFemRDSC44tXLjldpPdNk92VEtcIbttUWptFXpMffDFuKyanNIKnanbO3KWkNxzwDU380gilX19nnbUh3eUWX2ZCeSPQZ/sEDZ8lXT7O+HFcUyOo7V/deTWcdCshe81n7EaYP3LBE3JIF93/+kz4n0Yw3mAwLNJF+vZAT0aIQBM8cOIQ/SPyhuo7DkitvCHRBJ/Ues7w6pAuaz+Z4a3UBHevPe1cuIP02pPhPCc1m6C084CQywXSFdMuTXcyaoKVq6bf+fKE9BurV/6w2dAEz10FtIzzSN+WcfyoqU0THNl1Iaikj/QHmz+X6jo0wWxDrcMM8bdU91cc5lU61gTe8fec1hqSbrj1k4DohSZQmWTpqdqR7nPmV+PPq02gpN5zdd5l0qMvnb/VHNIEB1T2ieq+JL3ZSkOm4GkTlP2IPrGvhHQuBodPwpsm8LLpc4weJ714vPtLaHoT6Dcuu8OtkED1J8Wjgxe+NoEEp+VLzzWk17I0uO2rmiAipHcXrwvpl47H/1nT2gQjbTfNn98mfYwjpEl1sAnUHkToOXwkPf2HWBI/rRn8CzzSdRtIVysy8+qY3gwX+c1vy/G9o3p9103IndMMtlo77WSWkF4mOGP0qUoz7OlILV9iRXpa7NxYb+1mSGi+F2ZzjnRfuujePfRm2Mshfjj4yV/dSme2/qZmyIs52NqeT/rJV70lM3Y0w4R6W8qWQdIlxMPudzk2w/nq9gd5Uu+pPmvrW7fM482QLVWvvX0l6X6Td61CGc3Az9iw5Jcz6Y3RmWZu15vhj0rq8vhA0lVY8ftWhzbDMoEGfo8k0q9G1N2cE90MLr+vmWxtIF2fr7C6+20z+DRnhBrxfyDXvQ7B9enMZmBMe/9xuSbpH71k6gIKmqEj4/vWjdtJH5a4ed/uRzMsOJQg5uJFuuujQV/NtmYolDWNevSM9FCbmjDaUDM0Bb1NZxWRPvt8bd83WgswR52EtH+SXl977eQDoRYIea4Kd+YlUn2pl5ees1QLnJLh5Zm2gfQ9my30dea3QMftwyJ+x0nXjA09S1vaAmY/FUUkH5B+Rp7Nk09vAdmobe/eZ5G+brSrMmhTC3AqBb7d30O6aIvy+O4dLcAzWZgsNzuJ6gWRSw+qHGiB1ssXGG1GpIvde7mk93gLhN4/k5B6gHThU0qb3jFaYIGzrGB4AOlhdWo5Z663wG9dQ73AJNLtOMweGYe2QNj8xezrjaTnrlKo4o1uAaOJ8rZgwY9k+3ql0/lvW+BlY0Rp7FLSJX2bLt5ktoCjcsDhr7tJj52s/b21oAUsuLQdxy6Rrlce2CL+owUeOX/0WBJPOkffqZWVrS1wMWlo59Eq0vdqcUuEDraA6zXL3FTOZHL9V3/quJPWCos8hk/OWkT6qw+ZS2WEWuFKSdhc922ka97KuFgzpxVszxR7158nfVRkYvsDlVbgCUndZhFDesuH/A87tVvh1H5zq8Ii0pM6PMOl6K0w3LfC2OoX6Y3eW6SqNrbCjb6xkmalFKo/97mqfHd7K5idzfh6ZjPp6Qn2OZaOrbC74VmnlAfpypv4aTOOtwK/w62eT+Gke4Y8Kvt2oRXyZuoFu+WT/vohff3Va62w69rSKJVh0pflcNitvdcKv79ysZrkUql+wbdThiuqFXI4+KfFmJLOzzHOSHvTCjssb9cfO0Z6WaJCgGd6KzBTGhebPCB9h8b6TUu/tsKbkkXJ0jmkt9/dmtxb2QoGUeEbxvtIv3dSsDamZepx/N1iauakkdfL0uDdvoFWCBz9Gpq9ivQzjiFrZCZboXPHYPdbF9LLlhXfLhNsg0tD6gej75I+Yn358Q3JNsiOr6p7/In0CZ71h9cqt4EzzyHJh12kN9c++j2p2Qad34+1PBJPp/of399bE43a4KxO5NS7KdL5d+cfddvQBsyLpZ5xzqRnqzrsVLVpgwZJgebU26RPZM2awbJvg5Nwan5hKun7S8RD7h6dGlf6omRrG+lih4L6Np9vA5nNzjmTfEyqP8l/IcV7tQ28QsPVheVIv8dzSDr1bht4Lv+jLqdNuv2M/MHjT9ogTmVJwhJT0tVnJT1Ve90G/pJ+L1fuJv3odTHthtQ2MJAYmmZ9jPQX98Mf3s1rA9mi0deHL5PepTm/bVNFG6zgexXq84D0hZbmYtzNbSD5O+v1/deka1swZT+y2yCz9ExbQg7pw3y8wm5/2iBdOGzR92rS3cSjmpQF2uFlm/+xTjbpPDKzw6pnt0N2vlwsL+8nqhtzpJkEKrbDeGZWrqI06dMXjBWv0WiH6mbnNGMN0te9E9v4e3k7SKadvWC7mvT0rPWvX69rh/t5nZMXdpB+5k051wGrdjBskF0a5kr6vm01JjL72+HX03HRTxdJ16KfdC9ybYf8X5VXG++RnsTxNvjS2XZIPnk1lDuO9B0Od54ZXmmH+G9btednkV70dlYc+047nN7K2ri+inT9IZmYpxHtYLFza51LL+nL1W/e2RHXDu+ZmvWBXBnk+3WUsYdISjs82Oi69r0k6WfUaOZZue0wvMROpFqd9JK11xQ8y9rB9xRzCW0V6Rm3H7apN7YDmxEVrmxDOnd3Q1RjbztIu/nv2eBCunzSnz13f03N54mR7VFv0r9oXBPdyNcBYhq9YXfvkn4kRD6FJj7VN0hJp70g/etl433v5naA7de7X5o/kf5i4XGug4s7IOPRtWjBCtLj/dTD5Aw7IGiZS7xWN+nL0xr0StZ2gKPQz/rtHJlUP7huvOCyZQdkCq/Q8ppNurhp+d7ldh0wbc7lyJiFpPcll/SyXTrAxtVFo5BO+suC1Weenu6At5qfy0a3ka4leppnx+UOECx9HiB/iPTSzA/XhYM64NKdQ3vWMkgPm0OflRnWAQmjwctd75D+4uTme6dedkCfzoDq3eekH/ogKbvoYwfEp5yam55Ousjx749ZOR0wEWap1FZKervRo7l3SjqgVqJ1iUjnX/Ppj41Yx+qAgp73K5dNkh7eJqU40d0BGyfO7tw7K4vcb5vwR74Z7wCL2NmelxeQfl0vcN4B3k74bekXGmdEuviqL+HSMzuBWTieVmFBusrJLIVC+U5Qb3zbMulE+q6Ptx5fXNQJq17JCqueJz1R1FhOX78TKld+XGZ2m3TTmqoHPas7QaxEeZ9HDOmPhR2kI7Z2QprgrOthqX/N51P7Pau9nSBusT4xt5j0lXpOkoKHO6Fn5bMmdhvpb4vag9M9OqFw0x/hOX9I3y3rLH7CtxO4TSwNjGdkk/vMcx23VW91QvvR5w7O80nPrnSeUfuoEz6W0QIDl5OecyjdcVt0J7xIvGnzYj3pSjqdAYGxneCy0DolyZz0485PeP4f/UOI//3Fx3/gQ0VRSVQBVUU1UD2UjpqiZqgNaos6oW6oB8pA/dAANAQNQ2PQeDQRZaK5aCFaibLQdpSNjv33+Rv/Kx8qikqiCqgqqoHqoXTUFDVDbVBb1Al1Qz1QBuqHBqAhaBgag8ajiSgTzUUL0UqUhbajbHQMpa38Vz5UFJVEFVBVVAPVQ+moKWqG2qC2qBPqhnqgDNQPDUBD0DA0Bo1HE1EmmosWopUoC21H2egYSlv1r3yoKCqJKqCqqAaqh9JRU9QMtUFtUSfUDfVAGagfGoCGoGFoDBqPJqJMNBctRCtRFtqOstExlGbyr3yoKCqJKqCqqAaqh9JRU9QMtUFtUSfUDfVAGagfGoCGoGFoDBqPJqJMNBctRCtRFtqOstExlLb6X/lQUVQSVUBVUQ1UD6WjpqgZaoPaok6oG+qBMlA/NAANQcPQGDQeTUSZaC5aiFaiLLQdZaNjKG3Nv/KhoqgkqoCqohqoHkpHTVEz1Aa1RZ1QN9QDZaB+aAAagoahMWg8mogy0Vy0EK1EWWg7ykbHUNraf+VDRVFJVAFVRTVQPZSOmqJmqA1qizqhbqgHykD90AA0BA1DY9B4NBFlorloIVqJstB2lI2OodR/W0X85z7j/3Zj4zUxK7kgrhMWP5JT+GxDunfgQZE1iZ2g4PWyrcGRdKfuzus/szphoJlrpsBZ0js3HpoeV9QJ5TN2GGkFkh4U0uW/v64TBPhfO++IIp1H6zC/ZFcn9M7kueOdTLrWs67LX0c7IZvLnvm8kPRnO115vbi7QHZDaFdxC+m0Gz8v6oh1wRcfv9m/fpIesP02V6dsF3DNGqIriuZQvTvO2PuRWhfcjQk4uEGZ9HlDIhwWy7rg5Ymft44bkK49X5AxzaQLpC8lJN3fQnqy5qrJZLMuqONQqcu0Jz1DOf+82+4uuBx7d7LLk/Ro76QJpYNdcMNGU3bWTdJPeKheqDrZBULOozrLn5Buu1CXdsOnC/4Y5ZraJ5GuP8rtvTKgC2rfbbe89o30mjfJ3KMPukAtVNc6oYn0+4O+frHPuqBLIWVLzdhf8zELErJ93wUqeyWWcwt/JvOJkgmaldkFlp9WSi1SJH32jh0yX753wXdvrnYLPdJDH9yIOlfTBarKbRFnNpG+/RVNW6ujC7zb6KaR+0jXnjfxqXW4C0pWzC/LO0V6jUK1xX3ObpAwPbpm4Brpgi8G2reIdMOJdQkhcyJID2mI8uKW6Ya18sa59A+kPzCyk0tS7QbJxLlFB76SfrrxVrqLTjec9p8dd6OB9KqiBId5K7vhi2DQ7ncjpJ/XNxWr2DzVVZgV1YK5VF/wujzj6s5uUHrjKsk5l3ST8wOn6U7dwGxVlFLVJf1Sua7B8Ilu6CybVrFpA+kn5plyPPfqBqv6HtPjtqQXQGnhnhvd0KKyyTnEnfSUzFvPZt7vBiMB0Ez1J336itXXcqOn5hN89l7DY9KFT37wPJfQDZd/7QzleUf6yffpx7Q+dYMd97eFC/JI7+UGj7aCblDz27l6Yz3pN53mXn3woxsUWPPqjgyRLqG254V5WzeI7CzrDuD/QvWWWWM1vEPdUB+fcOCNHOkFH/7IptB64LF7gEmJNulXnl5xOyrUA3At02PQlPTJhIwyFakeyAjRHJ+xh3RD45rNNSo9MHnU5KPmcdJ5nWfXBmr3QMOtjrgtfqSv3JzmtZbeA+JXbxYcfkh6heVioz8be0DdVZH3yhvSze2+zXy7vQekTYU3PvlMurjELG5nxx6Q9NYKTKshXWa2j6j88R7I3NGRU9FP+m69lwZlF3rg4WZaXR9vHjk/v2ldvHqtB9J83+fwypBeUZPRa3yvB8Lgo5uMJulSVtJnx572gJmRSr7GGtKbrfkXx73pgYUaF7JW7ST9lb0zr2N6D9hJvV6/zY30yEfzp8l+7YHtKdM3OPiSrjsJWqWVU/PhW/3meCjpTcFpV6629ECL6eHDjDjS1z9NF1k10APyHwbsr2aR7mPsmvNzogcOrn92KaiKdBDij38j2AunZ2Ul3+8lfWNzxbeDkr0gk1LTE8aVT3WHazrKisq90NI7xPNEkvR19v7vqjV7QaXUo/uJOulbZ2zyDjLqBY/zxlciV5J+XIvzxqYNvXB3193Mx9akF3Atr+a16QWHZ0u97x0m/Z546GGmfS/MqF4bG+BFevxgrsnpo71wRuykkm8w6bbFXo5Lz/dCik9t8clY0nv1/Ut7/XuBo0fivgPzr/m8fhv47O7UcRhbbmdeRjo4V4fZP+mFly+a+Qw6Sc9t7uBWeN0LY2UL3OUnSRd9UsysTu2FXW4v/DhmfaV68NfbFXfzeiFWNEiZpUr6tyKdjZYVvTC88ZZ68grSFWXz54o194KVUovXra2k+71z3fmN3QsLHbdzOR4g/VGr6e+rf3rhjeSmWzpnSXdouzhtvUAfzKx/LcwRSPpNxg4Gn0QfsPaI2OQ+JX3fG76DnxX7QP6p76arH0k331H++ZJGH1T6fy9Y95108Uqxh2tW9IHanNUfuJpJv/9GtId3fR/M7qltSxwj/cDyJcmfrfogO1R7hbNQAflB3LJCgSv7+yBC9GLQrHmkrz2zq369Wx9I/nyb91GXdNGglcuFzvWB4DzzlJ0bSH94cESp8EofaJYFrR7dS/riFvaD28F9oGriuPL6CdJb/eOirSP7wKdl1w3ZK6QzVBJMZeL7ILkigzvmIeltThd9GlL6QGDVXcaiN6RHX322M/pLH+xMDqh5nkO6wWBcqUt5H6yOkB+cV036siKVgaVNfSB8xe1RUB/pZ3Ief/jd1wdtt44kTnJ9I9v7vlLN/t0H2yuypewlSb+gf0LpMzcbKrNaHn1aRPoB5QGhRYJsKPDhkpM0Jv1q/YOtgWJseLtd5uiBbaQPX6cPjUiwoXX6mFucM+n+J54N7ZJjQ5jpwpG+c6QvzYnclqnEhhscUlWqt0ifc/KXpNpCNvz8Md6/PYr0Cr6z9EBNNjhfK5X0+Uh6jwO7YGwZGwbW+is/+Ub6gmfzMm2N2LBmbmlfSiPpa4eq534xYYOj+5otBSOkP6Y3d2luYIO0hYV0mcB3qk/T5FS8b86Ge80bF5bKkV7X9DOX24YNkZUHrPK0SBfLDqw/socNaUWpxz+sIV3bzs+pyp4NuzK37Li/g3RbnUcOJofYUBbM1+B+hHSpawGVcUfZ4PElrW6NN+n31KQypT2m5tmhryYcTHpH7YCK33k2VKcbhOY/I73xynee4YtscOf05LmQSnrDrH12+66yYVF55ErVItJX791uWBjIBoa9nernZtL1l9jdMQqZ2n7flus7x0hfCvOOvnw0Nf89tCcDPIVUv/nVuFDmKRumd3hLvBEhPXutXcK1WDYIjHlMPzyH9PlL5eT/vGbDvouLjygokm73S2zGkUQ2uGkOzv++iPR3WUU36tPYYOIrreyhS3rxht5g82w2tKlxmkvTSTdMHFyYlc+Gei3+u4nrSJ/n7rxlWTEbNm2737jFgvTX/MWcsZVs+LBUXb5hF+lF/c/XytezoSTcSO+wI+n7Th2WD2phgxJr55x+V9J5r125yt/Nhiddcq9cPUnfG+l6/cLA1LjpGo1t3qSXXb+kMjLGhugH68O3XyN93ELDxmWSDeaWyyqy7pC+e8YXxRaefvC+Weq64DHpM8qj/HdP74eHUrOsL8f8ddw859won9EPiRp/POpekz7b5+ASszn9YJr78tPiZNJPcdS65sn3Qyprp6xH1l/98Euz1Sr9sKbIyuNjAekPfMRKmIumxg3hSx8uJ91jsd7Ycu1+aFIfrV3AIj1o97pPSfr9EFmc/cmqg/SeLocly+j9UOuga312gHRtr+hV79b0g16i2tXQX6Snn1CY1N7UD1sanq5/zV1E9UWvq/e9tegHseACb6YQ6V9Daly1d/SDBaNLIXc26R875eYn2PbD8btHZuTKk54dE3xF50A/SJ/uNmGqkj5zYknIB5d+WPZlXlS8JunXVL5bGJzohxGfMcV7BqTPtjZLTT3dD7/sL7zwXEX63ajLZcZe/RBLH1bfupH0T6P0hzmX++G+fXbwvG2kZzSB+MYb/aAwdqWsczfpr5+CUXFQP0zsFqp67kh6G++g5Pb7U/O8uyFgnyvp8hu5o1jh/dAfdbxTzIN0hqJ4q1NMP5wdbS9PZJB+/nZaVf+rfjjNNFltfYX0gM4ArzPv+kHgiLVyTyDpTXEz63hSpo4bv9qB06Gkfw/K7gvI6IeCsMmfExGkmx+Q+SDzpR/qE6yKTseSvoHHd+mz7/2gGt75o+ftX49jtt9Jt7wfVATe8dmkkK6rPMMiq6YfLq3v25CURfqyTU1DW5v6IaVhZrBYAek1nvKbGzv64XpTfaVtGemuBrx7j7H74YmTJW90LelmwwXzuUb7YTotUbS5hfSUhsiYoD/98HpuSKdEL+m+nC8aVLgHICM879LKEdI/zOUoSRIYgH4l18r9E3/NvyDh7CaxAWi4wy4+w1tM9c2W3+saJAZgbyjvQX9h0n9mbxk/KTcAZ4U+BN6cTbpO/8Kv05UHwPaQtdFVOdKn7TOzjlw4ALtO3rA/p0K67ZWwUAOtARiKsxh3WEz66cGRO8V6AxAt3Ntvokv6w9PK6w7BAETUDaySMiI94PTwW+41A6AabNLSspp0Ry7V8kcbB2DFC7Gv0ZtInzv9ZJy+xQDUu5T07t1Ges+TACjbPgDBxRtNhHeTLrhg7qWjtgNgaHYl84096dZuX7yFDwzA2Mvq/ZsOk+5JU9J54TIAruU1MnXHSX+yIuvB+hMDMOfZwVb7M6RPhOomdZwegPy8qMQGb9Kv5dH8r3gNgIP78FVLf9KZ3eHCan4D8HTNb5vUwL+OQ/qtNfk3BkBDOFxS5h7pYgWrNV3uDMC9UL4stzDS4+7N/ybyYAA++N6xTI4mvbbokczbiAH4Odma+esV6RtPTZexfjYAfaEVglrvSY8S+pr/K24AamacVdmTSnpejvbC8PcDcFFinjAji/QLr4L016YOwODMLal380mPLzMY6ckcgCvDaYufFpPOe87F9k7eAHAM7NsdU0W6DLieWlE0AM832pqEs0jnMzhv0FoxAElSIvU320g/olcac7NuABJ4x1VP9JLOror6pN8yAJwzK2U3D5OulDz/YnPXADzeeSdJ9jfpDQ8u9t0cmDp/yteONXKWkPPkahvn8vGp111cu/whP+nJnKdS2ycHwJIjZ8tmUdLrJazkgnkHwfDBPbuh2aRrhT5RMhEahE8prnwBsqRH61/4PjBzEITyNY3nKpG+7PmkbITUILic7eOLUSNd+PNyka1zpx7/Ru0uJU3S575bH8GpOgiNFywNgpeRrsJjWP528SDM2Pj90Z8VpHeUyjx30BkE1bmdl3eY/PV82b9lJJcPQr6k3eCL9X+Ny25Rz185CO96heuHzEiv3smqPr9uEDLed5lqWZN+JWdAWdtsENRvCS5x2E364565gu1WgzDb/uHN6/tJDyl383+4exCW+XY4xTqTXtjFirCwH4Sek2ZJaa6kl0kesxA4NAied9Zd+OxO+p+Wefc/HR0E/y92SdlnSD9ym+3h6TEI8voGjklepLtrV3RpXhiEh6OXLkZcJl0zq2ig03cQNr8Tmul1nfRnpj+uPbk2CHOPPBHddvuv49/Qkbjn9iCUSWiclbtHOmfTmPuc0KnntSXSsvYR6bv7JjJKw6bOB54/IYFPSPcXHHwUED0IVWprTQ2fkx77Kp9v06tBWLfvjt2PONLThs9P8r+bmv8lruYj70i/ZsLp/Tl5EL52Jnwb+0i6nczGm74ZgxCw+buCB5P0nhObVUy+DML2pJNV3dl/Hbf4rwGZBYMwoJfc4/flry4QvourcBCmnbXQ3pZPuqxYwbH/R/8Q4n9/8fEf+FBRVBJVQFVRDVQPpaOmqBlqg9qiTqgb6oEyUD80AA1Bw9AYNB5NRJloLlqIVqIstB1lo2P/ff7r/pUPFUUlUQVUFdVA9VA6aoqaoTaoLeqEuqEeKAP1QwPQEDQMjUHj0USUieaihWglykLbUTY6htLW/ysfKopKogqoKqqB6qF01BQ1Q21QW9QJdUM9UAbqhwagIWgYGoPGo4koE81FC9FKlIW2o2x0DKVt+Fc+VBSVRBVQVVQD1UPpqClqhtqgtqgT6oZ6oAzUDw1AQ9AwNAaNRxNRJpqLFqKVKAttR9noGErb+K98qCgqiSqgqqgGqofSUVPUDLVBbVEn1A31QBmoHxqAhqBhaAwajyaiTDQXLUQrURbajrLRMZS26V/5UFFUElVAVVENVA+lo6aoGWqD2qJOqBvqgTJQPzQADUHD0Bg0Hk1EmWguWohWoiy0HWWjYyht87/yoaKoJKqAqqIaqB5KR01RM9QGtUWdUDfUA2WgfmgAGoKGoTFoPJqIMtFctBCtRFloO8pGx1Daln/lQ0VRSVQBVUU1UD2UjpqiZqgNaos6oW6oB8pA/dAANAQNQ2PQeDQRZaK5aCFaibLQdpSNjqE0s//xn/uM/9uNjYu9u+qq4qkbyPQuj7kFpDsY7uvJKB8EmUKZM+8LSb/vZCXtUzsItiUH9wmWk77zXe23Vc2D4Ow6/GJbNeniCR28PF2DoBfcvv0Oi/Ruc7eMnP5BkH7o7pTXQnqeniPtytjUje7ebxVDnaQX8zDTN0wOworkRdGz2KRvrT86Kcw7BMyXxWULhv+60WW4phVPH4Iq7un7l/4k/YPSi1/BM4fgZOSSzUsnSd/DkHq/U2oIuJrDghdwl1J91psX3Qpzh8B5sNBwFj/pGfqWj1rnD8H5xfQVQ0Kkb+rlyHuxeAj2X7gQ+mUG6RZDT48c1xkC62RNiyAJ0m+9W3LVYPkQ9NCEDljKkN5ZeV2Oc9UQ3J9dU8Y/l3RZw1fz89YNQfiXC48TlElf3H7u6S2zIdiyiZ1pqUb6QfGO4J3WQxAYarSqczHpCjLVP5X2DEHF9zuy7tqkj58wKuy1HwIIXG4xvIx0voTf4kmHhmCmc3DzweWkH/adyPM5NgTnVJWLy+ikpzxf2LvZcwhumfrL6K4mnT128LwUYwj8NvhlXV331/OyjjjdemkINOW488s3kf4+9X3Dm+tD8N6TV1NiK+m+utfeXAgaguOrU0c3WpG+tpane+P9IZg1flbBY8dfx5PFc10qYghqJz69CNnz9/xdgtpjhkBqttajV/tId1GR5fgQNwRJ7x6OJDmSvsZgqMj3/RBMHOFI/HiQ9OZtRTzbUofgkNnl5vgjpKtp3rqvlDUEb0z9zj849tdxjp15ayhvCD5fue537iTpVSWa7VlFQyDYbc5jeZp0487PD+5UDsEl88xR+fOkHzoU/8qxfgh0+bn3N3iRXi6eLaPXOgR7tA6vD/ElffNAXQt/zxB0yF99bXKF9Hu7yvlqBoegOFn1Qes10mOn+1x89XMIfDvXCJ8PIP2UQoq1F8cwrO6dN10wiPQNKjZelnzDcCNPN/T6XdLT5qvTVEWGwSXaIJXnPunK70RLfokPw/elKqePPyL9YX/F2HeZYUgR0iovDyfd77G12xPFYbguXVW+5CnpL9Tt9TzVhuHPWJXX+RjSk7OKtmzWHAbtbXq1GbGk22878U5RbxieWhn1/X5FeneUvNO40TC0/TmXtugN6fMdox2/rx4GC79i863v/vq60KmPe7pxGG4X28W7JP41z4+hK89aDANX8sOG88mki759KWuxYxi6fFb3+Kb9dV5xdIOa3TBc0zlQ7f2J9I3pC2I4nIZBgGaX4J5FupWZ4baqI8Mg9LCRsecz6e+ODa9+7T4Mrq97163II33JVnXPK2eHoVa9RnJGAemvQxN77HyG4dwb69Ga76TfvOoSYeA/DMqt9n0Pi0nnEVAMnhk4DOyfewW3lZHOmRT/ufvuMEwemNjGWUl6n1yfTs6jYVhnu+nH0x+kt+R+qH/8dBgW+8RHQi3pR1xaMj1fDMPHs6zU7/WkKwpbNli8HQanZx1LrRr/ur5JNugu/jgM8xLVxEuaSdf3PZTJ92kYejdYHFrT9te4oyW+TZ+HofPBPpP4DtJHq3+fTfs2DKmSUS9Fu/+6/nvnRd8rmzpvORMTDvSSPmCoyONeMwzvxc4feMcm3fxU322zpmEoE1MtHR/46zypnGOxqHMYSi4s5tcZ/uu6Z37TmK9/GHarmosfGCW9dznsaR4dBunsO9MCxkl3OCEdw5yYOm/vremL+0W6qYOk3EOeEeAR7a/O+UP61fnq6Z7TR6DU0r62dJL0nEALf6uZI0AbjOP6wVFGzp+Nfue1pUZgkeu8veVcpBe15IWKzh0BZuNaWh4P6XwNsnU980fgRXD7aMI00i9/ubQ2f/EI1DycZn2Xn/RIY+HyGJ0R2OfasPioIOlNYky/S8tHwIHRGbBSiHS1ZbF77FeNwPfaghuCIqSP9zVYrVw/AtnZhwy+ipLenevppmA+Ap30yqcXZ5C+Lubq8wnrEXBL3t60dBbpGZXa3LV7po7bowM8teKk759562yywwjcbo2ROydBeoLflxmhh0eggTlgLD6HdI4OWo7H8RGYIb/W+6kU6axD++5Ynx4Bsa0lA+oypA+USzN0vaaOT3hv1CtZ0r/67PEV9xuBzy2Sb+bLk27osPfJ0I0RiJEZn39PgfQXgtY1JXdGYJx7lwzXPNJ7YrwWvX0wAiMJWpEOiqTPnykfdCtyBF5rBRYylUhf8vnYjGPPR0Bl+svEWSqkS3dmRpm/HgGLvmpXu/mkL1y/20wzcQQ2r7wlEK1K+oy914XF0kfAOdnuYcsC0r3XRbHY2SOwa3x0uexC0lWL/2QXfh2Bc9KyE5sWkU5z6kmNLxkBjh1vhk+pky4gV/w54MfU4zyK17u/mHSXmOlNbg0jECU9v+bDEtJ/2XCImLePgEyb/nCBBulLpSU3aPaNwIcAhXu1mqQ/d00JFhsZgeZkpdpWLdJbHHf39/8eAdPEsPIObdIz77vsKOYahfdSE6GtS0m3UN9f9EZgFMSsEqBWh3TNxA/bbouNAu+2tT8KdEl329LeelxyFJaJrWEkLiN97IT7RUv5UXi0dN3ah3qkfxJrUtdRGYWVd/pNzuqT7ns4sVFcfRQ8jdpubDP46/VSYkSMaI+CllO5wQJD0ocX5h6uMBiF1smDe0b/6uYpc40TjUfhbaG5CHM56elr5srfMx2F2Sp6+31WkB7rtIf39JZRSGLnuxobkW5Qf3xkh9Uo3HBOXv/zr37ZY7LXcPco5Bm8538FpM8WjuiTsR+FT/zOGbvopE+emRz9c3AUjrue9uc1Jt0yKG1a/dFRsOPyPxX7V18/84oc02MUpKoWP96wkvTCW4LLwy+MAktxZHbbX13w/PBe70ujYFxoN3RuFelB3ONX9l8fhccKbRtFTUi/KpSfZBI0CorrenQe/dU91RT7lO+PwrTpX7Pmryad3z95wbSIUeCyyhN++VeP7DRzbo8ZhfofMgsWryG99lrEyy9xU+fDm2bV2L96pfKxkefvR8FiSF1RaS3p54p8Vl1LnZq/de+ie3/1GO5HQS5Zo/Arn2ungCnpxheudGzOH4Vcae2MU3/1dUZiKzWKR+GNr8qphr96hQvnI7GqUViy6/CNtetIl9y56M9A/Sg0RLjLPP+rGzva7i1tHQWvF0E6/Ov/et2Hjma96xmF7sRfPfZ/dcV9uovuDo3C+tvJ21P/6uuHLgZ7/BqFvRoZ12ZsIN0kX5drB+cYjG2sCrX/q18sVTlmyD8G7tOf/n/t2/9Xj2ccx/E2fRBjIjFis5IPUWq+bGPeiSkhUuurCYlSmy+FaDVSskpf1uRbhUQqKvKlPsI0sWaa7bOzYqNQO6EOEa7rrtU6Zzun9+fsL9g5r8dv9/OH677u67rPuX+5r91FrP9aav3ApJ+gNbszUztYT7s/0a3dWFCsxjzPYW5Xn+ww4HrNMEH20YsaElhfuT1v+mUzQYYPZyz9hfWGi/dKMi0EzfUoVA+Yx54rcd97UTaC4vzsnZ1Z/+v10ny/DwRVL/uyKZ712zHjLOxtBQ18LePNq6yX1FQdU9sLCn1ytqKN9SijI6N6OQkaEJY7ztqpq6cEbsl+7Coo3NJsni/rsz3d1De8BUWu3ftBCuvd1hvl5i8T9FTtoH+Z9eGf5YxNChC0wW3ixUbWZ7bqF65dI2hHsUWo8Xz2XaseNMFloyD/VRq7aaxbnNYWT4gQNDLqPcvlrIeaWUwzjhZUrsl13MH6kIOGV17FCfLVa8nOZT1ybZjjra8FBZplfnKddf0Tn/6s2SvoXrDK9xHrt8zzPdIOCjrqOaamx4KuviDAtzY8W9Dt9qpqU9Y98kL8ffIF2T1OWDyN9ZnXbj21PSPoxJGYCHfW/7CO2/RuqaBg15OzVrNe0Lz1df3vBDV/WnglmvUzqefi6is698vgjmo/6xNszAdeuyno7jC7QQWsNzl9n3GsSpDB9v2qMtbTHu5Rx94VlNnkekfLxw9IORVYLyjEd0duHeuf7yuaOq9RUKrSFtrCumnWi6uWzwVdWDnStZtzV7+rcnPupwjyyR9ub8i6Z+LPvzfrSXr5df6i4azXevmt0PaQdGjhzANjWE+61rf5dF9JC82VwZNYfxF8PSx1oCTLPalaW9Zb3t/bPdREkl39zmpH1geN3JDsaSqpwbubtSvrb4cuMZkyRpLR+R/qF7H+Z4Zbtom1JN/kgI7lrEdZudu0T5Y0I23w9iDWy+uXXKiZJumNUeVbg1mvPLDO4fLHkixW9Vc2sd7dO06bOVcSPfJ6+SXrdta5i6NcOsevOhkezfoQt8qHfl6SCgPrUmNZ32j0KsR+qaQjc8IcEll3+dFUb7S/pH515/eksJ711CWu12pJ2oqcnbtZX6OKMW5cL6lpcM9x+1kfkFF66MYXkrK0Xl9ksL7Pu2VswbbO+Uxv2HKI9YWPxxUnxUpaPF9DWawHqQJmrEuW9G3jgQtHWa8IPFLpskdSVZBlxzHWqxvue048IKmkrqxnHr+v04h646OSLsZuu3uc9bPrl6wRxyUdH7g0Kp/17KkHW28VSaodOri9gHX9mNrt5zWSNq6zmX+S9ZtTR/RPvywpPL5n2CnW62cvS4/4vvM9uV0WVcR6cPph9ZKfJB0e5b36NOtbRtcXTf9NUntb+kdnWI+8b06mdyQlt1k84111yf8H/TpJiXZhiWf5ep7L/eTPR5KMr1QPOse6VXlj7bVmSUvzA3bynv7AMihHSHpePvYZ75l9176K7ZCkKW+1L2bdZEZRZFB3hWZdjE/ifV/Eiz5OfRR6HBJ8g/eplybvtTJS6GnZu3olrCd222xmOFQhTUvTaN63OZYWPBuh0Et1r7m8z05p//BXtUIVBYkreXe6Y3v1jJVCzQFh4byPVG9z3j1JobZRhQm8RweX/xH6kUJBBmJ/ic48e/h7zVTowe+qo7yb93Z8PmWOQi6bN5zg3dI9PmLYQoWGjv3lFO/2hysNOjwU8tFPOMt7wJN+u2p9FPrGtk+JzjpMcXmnbEXnPHMyNbyfi9mVd/gzhWwak8/zXqOtmhQdotAqI8NS3nu+M6RsRZhCPTbN1unjgxbNc4jsXM/fvHS6Z3FG9eivFDph5abTt+rf8+2dpND9z911eu4C0yeNqQp5vKXbtWl+myvTFZozXre3NmSrCrMUMhij2wOvRiyblaP8e0Cyq/9zcPK/3aK1OJ7/COFemODDr3vrAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/B/8DQ== 00000000-0000-0000-0000-000000000000 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 831fb1ed-bca2-460b-9223-b0d4218a4644 f5c8d8eb-f8f4-4c54-ac8c-993b13e65dfb bd41549a-5c39-43b1-a411-b1275b839e38 40eac4ad-7078-4163-b708-b36a2698768b 218991e2-0c0a-4b63-8e9d-193b4573ffc7 471cb8c6-32db-454e-864b-8adb99bbc48f 2a17f8f3-05cd-4fbd-b87b-a16ec3f03605 c42e40fb-8c64-4bda-ba32-1d4cabc706d6 ba2ae3f1-8d36-439d-b50e-48c32b868a28 0e9dc657-67ca-4879-a93f-198157e47dab f84bab2a-2406-49cd-840e-c9d1d567fed4 5bebb14e-1b81-44ae-b476-74f247dcde9d 010a45aa-8a98-46cc-8544-11b7211e61f7 3636ea32-146e-4759-a9fd-af8fbb7b12e3 e5ed4677-9e75-4bc2-b101-1b318d50d0b2 739e8cb3-fe77-437a-93c7-aea5934e50c0 7250e532-c3f4-4cae-b363-6ebcf7fd30fc 5ffb1801-aa82-4055-be4f-9288101423b3 b0f336eb-1067-4fc5-90ac-2ded2a3006dd 10c187e1-9d92-4ae1-a4a6-8535e84ec48c 30b33e94-865e-41d8-b722-89524f727cc3 de174455-c6e0-4d69-a9d6-f767a499f0f0 22 28ce963a-9220-4b87-82a4-79b43eb97fc3 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 218991e2-0c0a-4b63-8e9d-193b4573ffc7 471cb8c6-32db-454e-864b-8adb99bbc48f 2a17f8f3-05cd-4fbd-b87b-a16ec3f03605 c42e40fb-8c64-4bda-ba32-1d4cabc706d6 ba2ae3f1-8d36-439d-b50e-48c32b868a28 0e9dc657-67ca-4879-a93f-198157e47dab f84bab2a-2406-49cd-840e-c9d1d567fed4 5bebb14e-1b81-44ae-b476-74f247dcde9d 010a45aa-8a98-46cc-8544-11b7211e61f7 3636ea32-146e-4759-a9fd-af8fbb7b12e3 e5ed4677-9e75-4bc2-b101-1b318d50d0b2 5af1d85f-5880-46e4-ab73-4082b5287d29 12 831fb1ed-bca2-460b-9223-b0d4218a4644 Group dd17d442-3776-40b3-ad5b-5e188b56bd4c Relative Differences Compute relative differences for a list of data true f5c8d8eb-f8f4-4c54-ac8c-993b13e65dfb Relative Differences Relative Differences 4244 -2690 128 28 4297 -2676 1 List of data to operate on (numbers or points or vectors allowed) c5b891bb-ddfc-4b8a-822c-736299b76bfb Values Values false 40eac4ad-7078-4163-b708-b36a2698768b 1 4246 -2688 36 24 4265.5 -2676 1 Differences between consecutive items 03c98abb-0c2f-4d66-9a59-d81563ff7d7e Differenced Differenced false 0 4312 -2688 58 24 4342.5 -2676 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object bd41549a-5c39-43b1-a411-b1275b839e38 Relay false 03c98abb-0c2f-4d66-9a59-d81563ff7d7e 1 4288 -2724 40 16 4308 -2716 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 40eac4ad-7078-4163-b708-b36a2698768b Relay false f011379a-ace5-42cd-9bf6-03a6a430b537 1 4288 -2642 40 16 4308 -2634 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 218991e2-0c0a-4b63-8e9d-193b4573ffc7 true Line SDL Line SDL 4247 -3420 122 64 4327 -3388 Line start point a7350e94-7702-449c-ae97-3b99e5a445b8 true Start Start false 6563e8d4-1b46-407e-9fc5-2d92351f7187 1 4249 -3418 63 20 4290 -3408 Line tangent (direction) 39042e5d-984e-4e69-b030-0ab575d85afa true Direction Direction false 471cb8c6-32db-454e-864b-8adb99bbc48f 1 4249 -3398 63 20 4290 -3388 1 1 {0} 0 0 1 Line length 7116cce7-9303-45c9-8657-ba06a2511353 ABS(X) true Length Length false 5bebb14e-1b81-44ae-b476-74f247dcde9d 1 4249 -3378 63 20 4290 -3368 1 1 {0} 1 Line segment 5ca442f3-b05e-4eef-831a-92d889443926 true Line Line false 0 4342 -3418 25 60 4356 -3388 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 471cb8c6-32db-454e-864b-8adb99bbc48f Relay false 64fde29a-f76c-4fc1-b003-229851718aab 1 4288 -3338 40 16 4308 -3330 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values 2a17f8f3-05cd-4fbd-b87b-a16ec3f03605 Number Slider false 0 4233 -3185 150 20 4233.479 -3184.632 6 1 0 1 0 0 0.015625 2fcc2743-8339-4cdf-a046-a1f17439191d Remap Numbers Remap numbers into a new numeric domain true c42e40fb-8c64-4bda-ba32-1d4cabc706d6 Remap Numbers Remap Numbers 4250 -3056 115 64 4305 -3024 Value to remap 95b83f88-b274-434b-90d3-0be7eb7dfd56 Value Value false f84bab2a-2406-49cd-840e-c9d1d567fed4 1 4252 -3054 38 20 4272.5 -3044 Source domain ff7e1fd5-a53b-4276-b607-32c8cedc4e58 Source Source false b7fe0666-5876-4d33-9f74-d239cc35e35a 1 4252 -3034 38 20 4272.5 -3024 1 1 {0} 0 1 Target domain 3d913b0b-7288-4936-ba09-9b74c45e359c Target Target false 0 4252 -3014 38 20 4272.5 -3004 1 1 {0} -1 1 Remapped number 4895a690-54af-49e4-83e7-c773ec123c8a Mapped Mapped false 0 4320 -3054 43 30 4343 -3039 Remapped and clipped number 1f36692a-c659-4f1d-8f0c-fd01f37505e4 Clipped Clipped false 0 4320 -3024 43 30 4343 -3009 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true ba2ae3f1-8d36-439d-b50e-48c32b868a28 Bounds Bounds 4247 -2973 122 28 4311 -2959 1 Numbers to include in Bounds 869d5645-836f-4dfe-9e46-62031fb05e28 Numbers Numbers false f84bab2a-2406-49cd-840e-c9d1d567fed4 1 4249 -2971 47 24 4274 -2959 Numeric Domain between the lowest and highest numbers in {N} b7fe0666-5876-4d33-9f74-d239cc35e35a Domain Domain false 0 4326 -2971 41 24 4348 -2959 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects f51f5f2d-941f-41ef-b98f-20f88c0f615c afc9108c-9db9-441a-9c43-d667d1c32b78 58b4763e-c14f-475c-bea3-43146b32e6bd 569a059d-e90a-4cb8-86b1-26bffb26bfcb 80033146-5b4f-404e-b6dc-65dc753db8a1 145eea6c-da47-45fb-84e7-715c62530022 22307018-81e5-47cd-acd7-460831a3214c c42e40fb-8c64-4bda-ba32-1d4cabc706d6 ba2ae3f1-8d36-439d-b50e-48c32b868a28 c3830b7d-0858-410d-89db-9af833da8bf5 5bebb14e-1b81-44ae-b476-74f247dcde9d f84bab2a-2406-49cd-840e-c9d1d567fed4 2a17f8f3-05cd-4fbd-b87b-a16ec3f03605 010a45aa-8a98-46cc-8544-11b7211e61f7 14 0e9dc657-67ca-4879-a93f-198157e47dab Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object f84bab2a-2406-49cd-840e-c9d1d567fed4 Relay false bd41549a-5c39-43b1-a411-b1275b839e38 1 4288 -2928 40 16 4308 -2920 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 5bebb14e-1b81-44ae-b476-74f247dcde9d Relay false 25c55284-2562-4619-9114-dd1d4ccbf631 1 4288 -3295 40 16 4308 -3287 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 010a45aa-8a98-46cc-8544-11b7211e61f7 Multiplication Multiplication 4267 -3256 82 44 4298 -3234 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication 8899dc6e-7565-4568-af20-7147959ab569 A A true e4e6d17d-d12b-4600-bef5-e481dfb6d432 1 4269 -3254 14 20 4277.5 -3244 Second item for multiplication 42a254f9-7392-4585-b408-ec34da821f92 B B true 2a17f8f3-05cd-4fbd-b87b-a16ec3f03605 1 4269 -3234 14 20 4277.5 -3224 Result of multiplication 25c55284-2562-4619-9114-dd1d4ccbf631 Result Result false 0 4313 -3254 34 40 4331.5 -3234 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 3636ea32-146e-4759-a9fd-af8fbb7b12e3 Multiplication Multiplication 4267 -3155 82 44 4298 -3133 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication c69109b7-3ba9-4068-863d-7c83a4b4b4e8 A A true 4895a690-54af-49e4-83e7-c773ec123c8a 1 4269 -3153 14 20 4277.5 -3143 Second item for multiplication cabff216-962d-435f-acf8-0299749575b1 B B true e5ed4677-9e75-4bc2-b101-1b318d50d0b2 1 4269 -3133 14 20 4277.5 -3123 Result of multiplication e4e6d17d-d12b-4600-bef5-e481dfb6d432 Result Result false 0 4313 -3153 34 40 4331.5 -3133 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object e5ed4677-9e75-4bc2-b101-1b318d50d0b2 Relay false b81ec812-8ec8-4429-a6a9-685744f02fd4 1 4288 -3093 40 16 4308 -3085 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects bd41549a-5c39-43b1-a411-b1275b839e38 40eac4ad-7078-4163-b708-b36a2698768b f5c8d8eb-f8f4-4c54-ac8c-993b13e65dfb 3 739e8cb3-fe77-437a-93c7-aea5934e50c0 Group 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 7250e532-c3f4-4cae-b363-6ebcf7fd30fc Create Material Create Material 4236 -3544 144 104 4320 -3492 Colour of the diffuse channel ae7452b5-ecf2-4c63-b210-d4fc0ba9c40d Diffuse Diffuse false 0 4238 -3542 67 20 4273 -3532 1 1 {0} 255;209;209;209 Colour of the specular highlight 2affdddb-9368-4661-bd79-3c14b97db3b9 Specular Specular false 0 4238 -3522 67 20 4273 -3512 1 1 {0} 255;0;255;255 Emissive colour of the material 409c01da-189e-4a27-9f22-9fe40d0174d2 Emission Emission false 0 4238 -3502 67 20 4273 -3492 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent c2176a11-27df-4703-aae7-86713624994d Transparency Transparency false 0 4238 -3482 67 20 4273 -3472 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 32e2d235-58d8-47e5-8658-b5eb24ea2edb Shine Shine false 0 4238 -3462 67 20 4273 -3452 1 1 {0} 100 Resulting material 0d729313-6f8d-4ef7-b344-a8729e0e1bc4 Material Material false 0 4335 -3542 43 100 4358 -3492 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true 5ffb1801-aa82-4055-be4f-9288101423b3 Custom Preview Custom Preview 4267 -3606 82 44 4335 -3584 Geometry to preview true 934b00bb-669b-4d5b-82e7-23dcba2305ac Geometry Geometry false 5ca442f3-b05e-4eef-831a-92d889443926 1 4269 -3604 51 20 4296 -3594 The material override 9624fde8-561c-4b80-80de-a71585f42ddb Material Material false 0d729313-6f8d-4ef7-b344-a8729e0e1bc4 1 4269 -3584 51 20 4296 -3574 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true b0f336eb-1067-4fc5-90ac-2ded2a3006dd Evaluate Length Evaluate Length 4236 -3689 144 64 4310 -3657 Curve to evaluate 196149cf-42f7-47da-99d3-b0dd8cb6e28a Curve Curve false 5ca442f3-b05e-4eef-831a-92d889443926 1 4238 -3687 57 20 4268 -3677 Length factor for curve evaluation 88bbc8b2-2cb0-4868-a2f0-1cca2894de2a Length Length false 0 4238 -3667 57 20 4268 -3657 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 6c03d27d-a872-4a54-8425-13e2b12e8b9a Normalized Normalized false 0 4238 -3647 57 20 4268 -3637 1 1 {0} true Point at the specified length eec198eb-ba36-4323-bfe5-713f7913588f Point Point false 0 4325 -3687 53 20 4353 -3677 Tangent vector at the specified length 3e20a737-5c55-4ac1-b7a7-391af93ba700 Tangent Tangent false 0 4325 -3667 53 20 4353 -3657 Curve parameter at the specified length f75d93a2-1bae-4b5b-9c22-3466f60c0b8a Parameter Parameter false 0 4325 -3647 53 20 4353 -3637 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 10c187e1-9d92-4ae1-a4a6-8535e84ec48c Interpolate Interpolate 4245 -3793 125 84 4312 -3751 1 Interpolation points 6d4fa8df-24ca-4b31-8ece-83979648a089 Vertices Vertices false eec198eb-ba36-4323-bfe5-713f7913588f 1 4247 -3791 50 20 4273.5 -3781 Curve degree 4c48499b-c894-492c-af06-3023103df28b Degree Degree false 0 4247 -3771 50 20 4273.5 -3761 1 1 {0} 3 Periodic curve 456fa94d-8502-49e8-8ee6-d9ca528992ed Periodic Periodic false 0 4247 -3751 50 20 4273.5 -3741 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) e0fa0643-599c-49c9-89b1-28226c7e5cac KnotStyle KnotStyle false 0 4247 -3731 50 20 4273.5 -3721 1 1 {0} 2 Resulting nurbs curve 2b205cc5-03e6-4c4b-af45-5b4e3f418914 Curve Curve false 0 4327 -3791 41 26 4349 -3777.667 Curve length 67c59508-4dfe-4a2c-9624-0e181fa1dda2 Length Length false 0 4327 -3765 41 27 4349 -3751 Curve domain 891ca47e-2548-448e-8f38-93ccca22533a Domain Domain false 0 4327 -3738 41 27 4349 -3724.333 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 30b33e94-865e-41d8-b722-89524f727cc3 Create Material Create Material 4236 -3917 144 104 4320 -3865 Colour of the diffuse channel fc41b861-80d2-467e-b164-4b6087424ab6 Diffuse Diffuse false 0 4238 -3915 67 20 4273 -3905 1 1 {0} 255;184;184;184 Colour of the specular highlight 11ba94b7-ed53-4b01-b449-bddd25d9c86b Specular Specular false 0 4238 -3895 67 20 4273 -3885 1 1 {0} 255;0;255;255 Emissive colour of the material 13edbd0a-ee43-4cc1-accb-1b7a920ea45c Emission Emission false 0 4238 -3875 67 20 4273 -3865 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 35dbc12d-3249-471d-a08a-cfd6302f7261 Transparency Transparency false 0 4238 -3855 67 20 4273 -3845 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 3ce21713-e392-483b-b8ce-b2e85ddbf1fc Shine Shine false 0 4238 -3835 67 20 4273 -3825 1 1 {0} 100 Resulting material de52d37f-0e5a-42ea-9a04-64f0327d3aa8 Material Material false 0 4335 -3915 43 100 4358 -3865 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true de174455-c6e0-4d69-a9d6-f767a499f0f0 Custom Preview Custom Preview 4267 -3977 82 44 4335 -3955 Geometry to preview true 31a5fb3f-de8d-42fc-9bfc-63f35458bc1e Geometry Geometry false 2b205cc5-03e6-4c4b-af45-5b4e3f418914 1 4269 -3975 51 20 4296 -3965 The material override 1515cb0c-ff79-4bbc-a951-4f5f87787761 Material Material false de52d37f-0e5a-42ea-9a04-64f0327d3aa8 1 4269 -3955 51 20 4296 -3945 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 11bbd48b-bb0a-4f1b-8167-fa297590390d End Points Extract the end points of a curve. true d45392a9-2c67-49bb-9632-d7c25c34f964 End Points End Points 5668 8664 96 44 5718 8686 Curve to evaluate f8f3928b-5c19-40be-8780-5598d7519fde Curve Curve false e7fadd8c-4300-4367-8fd8-f0f55afdfb22 1 5670 8666 33 40 5688 8686 Curve start point 52acba9d-09b0-42b9-bed9-51af2ea45c07 Start Start false 0 5733 8666 29 20 5749 8676 Curve end point ef824423-d787-45f7-80e2-55bd7b0a6011 End End false 0 5733 8686 29 20 5749 8696 575660b1-8c79-4b8d-9222-7ab4a6ddb359 Rectangle 2Pt Create a rectangle from a base plane and two points true 6fca89f9-08e8-4e31-ad0d-7c4a72820329 Rectangle 2Pt Rectangle 2Pt 5653 8561 126 84 5711 8603 Rectangle base plane e18cd78f-5bd6-4cee-a422-95f2930444d5 Plane Plane false 0 5655 8563 41 20 5677 8573 1 1 {0} 0 0 0 1 0 0 0 1 0 First corner point. fbb3ca0f-212d-49ce-9f00-06ac359501db Point A Point A false 52acba9d-09b0-42b9-bed9-51af2ea45c07 1 5655 8583 41 20 5677 8593 1 1 {0} 0 0 0 Second corner point. 04c879c9-4917-4d17-b79a-5ca9282b32d0 Point B Point B false ef824423-d787-45f7-80e2-55bd7b0a6011 1 5655 8603 41 20 5677 8613 1 1 {0} 10 5 0 Rectangle corner fillet radius 2428e751-3f0c-46a2-80af-ad11ceece86c Radius Radius false 0 5655 8623 41 20 5677 8633 1 1 {0} 0 Rectangle defined by P, A and B 21c4b84f-80b5-4674-8067-643610c3746a Rectangle Rectangle false 0 5726 8563 51 40 5753 8583 Length of rectangle curve eb5dc92f-3c26-47f5-a600-ae09f696724c Length Length false 0 5726 8603 51 40 5753 8623 e5c33a79-53d5-4f2b-9a97-d3d45c780edc Deconstuct Rectangle Retrieve the base plane and side intervals of a rectangle. true a3dcf827-f89c-428c-a5fb-9587948ef6af Deconstuct Rectangle Deconstuct Rectangle 5645 8478 142 64 5713 8510 Rectangle to deconstruct f71d2a1b-f901-4a94-9043-565ed44e3aa7 Rectangle Rectangle false 21c4b84f-80b5-4674-8067-643610c3746a 1 5647 8480 51 60 5674 8510 Base plane of rectangle 2992851d-ac21-492c-a421-9631a8c637aa Base Plane Base Plane false 0 5728 8480 57 20 5758 8490 Size interval along base plane X axis 29fb13dc-aaeb-4e1b-9117-1a43f75d8fd1 X Interval X Interval false 0 5728 8500 57 20 5758 8510 Size interval along base plane Y axis c8e729e4-7719-4655-b113-50959647a762 Y Interval Y Interval false 0 5728 8520 57 20 5758 8530 825ea536-aebb-41e9-af32-8baeb2ecb590 Deconstruct Domain Deconstruct a numeric domain into its component parts. true ede39cbf-d394-4ec0-be86-dba7660963d6 Deconstruct Domain Deconstruct Domain 5664 8351 104 44 5722 8373 Base domain afe4ac56-9c3e-49ba-83df-203b801113dd Domain Domain false c8e729e4-7719-4655-b113-50959647a762 1 5666 8353 41 40 5688 8373 Start of domain 35b6df5d-dda7-4663-8fe2-1331c49034b9 Start Start false 0 5737 8353 29 20 5753 8363 End of domain f12f0c15-aec4-44e1-a2fc-6f1e9664acee End End false 0 5737 8373 29 20 5753 8383 825ea536-aebb-41e9-af32-8baeb2ecb590 Deconstruct Domain Deconstruct a numeric domain into its component parts. true eb20b084-5baa-48fd-b97d-c5e06ffb514d Deconstruct Domain Deconstruct Domain 5664 8413 104 44 5722 8435 Base domain 9e2cae52-f1f7-46ce-9dec-8092479ddb7a Domain Domain false 29fb13dc-aaeb-4e1b-9117-1a43f75d8fd1 1 5666 8415 41 40 5688 8435 Start of domain 14781933-0399-4359-a8ee-7ac04c1751c2 Start Start false 0 5737 8415 29 20 5753 8425 End of domain e1f473e7-b042-4685-a493-5d14c0a082cd End End false 0 5737 8435 29 20 5753 8445 290f418a-65ee-406a-a9d0-35699815b512 Scale NU Scale an object with non-uniform factors. true 74a42586-82b3-455e-af49-d293c8c2bd8e Scale NU Scale NU 5639 8228 154 104 5723 8280 Base geometry a4b189cf-b3fc-4763-b74e-09e820e97398 Geometry Geometry true 9d3e2fa0-f2f8-499c-b0d6-aea998d09756 1 5641 8230 67 20 5684 8240 Base plane 5df548c3-ab82-4ae8-ae12-8318c3702ac7 Plane Plane false 0 5641 8250 67 20 5684 8260 1 1 {0} 0 0 0 1 0 0 0 1 0 Scaling factor in {x} direction 2bfacf10-5841-44e3-91f6-6b8db0484731 1/X Scale X Scale X false e1f473e7-b042-4685-a493-5d14c0a082cd 1 5641 8270 67 20 5684 8280 1 1 {0} 1 Scaling factor in {y} direction 7594202e-f347-41c4-8ed8-fe125dba0755 1/X Scale Y Scale Y false f12f0c15-aec4-44e1-a2fc-6f1e9664acee 1 5641 8290 67 20 5684 8300 1 1 {0} 1 Scaling factor in {z} direction 1fed9d52-b39b-47f4-805a-c3545dc5589d Scale Z Scale Z false 0 5641 8310 67 20 5684 8320 1 1 {0} 1 Scaled geometry d52560ad-66dd-480c-ac41-e591b6f7c8eb Geometry Geometry false 0 5738 8230 53 50 5766 8255 Transformation data c4254bf7-3ef4-4823-8705-a3cc4fdc69aa Transform Transform false 0 5738 8280 53 50 5766 8305 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects d45392a9-2c67-49bb-9632-d7c25c34f964 6fca89f9-08e8-4e31-ad0d-7c4a72820329 a3dcf827-f89c-428c-a5fb-9587948ef6af ede39cbf-d394-4ec0-be86-dba7660963d6 eb20b084-5baa-48fd-b97d-c5e06ffb514d 74a42586-82b3-455e-af49-d293c8c2bd8e e7fadd8c-4300-4367-8fd8-f0f55afdfb22 d7fc7b4a-a6f9-46d9-9e34-5b3e2c812ef7 fed621b3-d6ab-4119-a526-7e2d99a3d87d 71756bb0-5606-4694-9818-f4875b6cc3cb 10 7c45d051-b843-43fe-b1da-3ce009a295da Group d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true e7fadd8c-4300-4367-8fd8-f0f55afdfb22 Curve Curve false 9d3e2fa0-f2f8-499c-b0d6-aea998d09756 1 5691 8733 50 24 5716.885 8745.13 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true d7fc7b4a-a6f9-46d9-9e34-5b3e2c812ef7 Curve Curve false d52560ad-66dd-480c-ac41-e591b6f7c8eb 1 5691 8205 50 24 5716.127 8217 e9eb1dcf-92f6-4d4d-84ae-96222d60f56b Move Translate (move) an object along a vector. true fed621b3-d6ab-4119-a526-7e2d99a3d87d Move Move 5647 8086 138 44 5715 8108 Base geometry a55f87df-8ff9-4ca3-adf5-0016bae461c7 Geometry Geometry true d7fc7b4a-a6f9-46d9-9e34-5b3e2c812ef7 1 5649 8088 51 20 5676 8098 Translation vector 86fda69d-1d19-425e-bb6d-186a9bdda216 Motion Motion false 0 5649 8108 51 20 5676 8118 1 1 {0} 0 1 0 Translated geometry b048b7fa-6e52-4408-acc0-c1da61efe9cd Geometry Geometry false 0 5730 8088 53 20 5758 8098 Transformation data 0cfcd4c0-5d33-4cd7-89a7-878d09f4043f Transform Transform false 0 5730 8108 53 20 5758 8118 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 71756bb0-5606-4694-9818-f4875b6cc3cb Curve Curve false b048b7fa-6e52-4408-acc0-c1da61efe9cd 1 5691 8032 50 24 5716 8044 c9785b8e-2f30-4f90-8ee3-cca710f82402 Entwine Flatten and combine a collection of data streams false true de550c82-0bee-4b44-952e-cde7b76dd275 Entwine Entwine 9500 7377 97 144 9546 7449 7 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data to entwine 85a74a8f-421b-4483-a544-08a81ac15829 false Branch {0;x} {0;x} true 86fc2dd8-2814-43bc-8aa6-998446a8e239 1 9502 7379 29 20 9518 7389 2 Data to entwine 0631177f-e7d0-49b4-8b85-d7867032c1b8 false Branch {1;x} {1;x} true a1876440-004e-43ee-9d8c-ba5831da3460 1 9502 7399 29 20 9518 7409 2 Data to entwine 3ba0d2aa-a377-473b-ae18-b3b2958d2ae1 false Branch {2;x} {2;x} true c85b89ea-2c35-443e-b453-7c323d985667 1 9502 7419 29 20 9518 7429 2 Data to entwine 77fbe3f6-88ca-4416-b66c-fc90c9902e61 false Branch {3;x} {3;x} true 71756bb0-5606-4694-9818-f4875b6cc3cb 1 9502 7439 29 20 9518 7449 2 Data to entwine 34c5482e-3ec7-4b30-a711-e3bfe970b21b false Branch {4;x} {4;x} true 08fa1a46-6440-41a4-bbbf-53c0c4624266 1 9502 7459 29 20 9518 7469 2 Data to entwine 26809eb4-8f22-4492-b1e6-5eb158df93ff false Branch {5;x} {5;x} true 2c62e475-50df-4188-ac09-8024f05be84e 1 9502 7479 29 20 9518 7489 2 Data to entwine 0078b338-4766-476a-837b-170551336aa9 false Branch {6;x} {6;x} true 0 9502 7499 29 20 9518 7509 Entwined result a287f2ea-0502-4e9a-8e7e-91409f894305 Result Result false 0 9561 7379 34 140 9579.5 7449 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects e0426985-a777-472e-bc53-a3f4b4019958 bbe94d9c-e4c6-4037-9976-a3654d010398 360c6c93-8a1a-4c1a-8ca0-14558d3886b8 3dd84939-fef0-4fe5-895d-e5d0f6b5f634 9158377e-e8df-41ed-a00e-2e20a740dfc0 bf4d4cd3-02fd-49ed-a2e2-2d08ddaa9baa 9fd3ac18-ac69-40cc-8d33-e6ac98aa72aa c8fc03bc-cd7b-483b-aca4-96406747e2db d67f22e1-4e07-4fc3-92d5-ef495cb60a19 da24dcdf-c792-4539-a64b-bff7739e1004 406435ef-9b58-4f5e-ab07-17abf4496a82 90b98f52-1a1b-4238-8870-f354b417fc0f 87af4e66-6c0a-4b25-98cd-3ee39a1875f7 da9b532f-9e04-4530-8eb5-98708e2940b2 00787e40-ac00-46c8-8832-9aa703ca68f4 1f672548-43bc-48f6-b7b2-4c9775c63ba2 0cd6c03a-0f18-46dc-88df-de683058512a eb948ae9-6d8c-403c-97d5-61b21404b30f 7dd45ce5-fba5-4d28-8de3-bb6eb762e731 3874e512-924d-4fee-87fe-188bc3264016 875f743f-d94f-4dea-a9db-2a06e2d3b7c9 ef0c7b3c-50df-483d-9cf5-b1fcdd19543a c186c036-4618-4834-bcf8-2c05e94b3f7a 17d896da-81f8-4aaa-8350-4102e0b4bb21 68cb288b-0a8f-4db5-a3d9-1cb5c0c45d3d 3caea3e6-851d-40e1-a27d-9f18fc72290c f3ed8657-e13f-41b8-abe8-07ddbc156a68 3314e4e8-4ed7-4d75-993e-8d377ac71aa6 088b8295-7e61-45f6-bfc3-6300031c81d8 eaa08f1a-c88d-4744-8c3d-badf7109383e 6508cd50-7fa0-4a0a-8f33-6d63a6f826f2 392db8a2-77d3-4ae9-9004-c5af94a603b3 b6535c3a-913d-4b28-9211-8046f187f684 fc51b201-a5a7-4ccc-b69d-90228e8fbac7 05aeb047-062c-4e1d-902c-f881bed2c33c 8b92f141-cdba-456a-b092-74a1fa769a3f 519c18b1-61ea-45fa-8f46-0c0cdea35bbb bd79bef6-8525-4a7f-9c89-fe7bb7354d65 9b404974-02c6-41f0-8def-ed8d7b180a7e 3706a4c4-bd57-42dc-b5d7-ddc151f907e5 8fb91838-0d66-409c-a635-3d531bf4fd91 7ec258a8-9a08-4c79-96b6-7275894f1a5f 03f1ad9c-8968-40c4-85a5-948230bca1c0 efd39231-4327-4053-9697-9cf17d83d334 62160ebc-246f-486e-8eed-514a9af54294 705017b6-d3a3-4d54-a7f8-0cd3ad651424 98836f2d-b183-4e94-8fc8-52869d681103 e2349130-aa0f-401d-b935-da39728890df 6ccf0750-f393-44b1-bf35-bb9fd1ca54f5 4393b257-c536-4aef-874d-6bab76d9ce85 52941396-e63d-4fb3-8d85-39801e12ac6b 72093452-ecdf-459b-8976-35063c92dd1f 31391e3a-7904-4f5c-b1db-52b3e836ad2a 3df1b866-1b15-4218-a165-b765587088cb 64067a04-3ea5-46dd-b49a-2b2563f5e79c 0cfb72b3-43f4-40de-a786-66eaa4094193 f14181d1-ed30-464f-8ae1-ed2dc450e9b4 376e0bb0-4a5d-4c78-93c9-01676bc7d38d 5a519f7d-386e-4d99-8458-36c93149b93b b7c3598c-bd9d-46e5-be6c-1208ea7a229a 4b838834-98d5-46d8-ac65-3a689ff35100 de17b964-bc3d-4ec6-8ade-50a4a3428b36 fb85528b-23a4-4373-a926-da03e1a3ae73 d8c7b5da-d8a8-4ab5-a7af-503d84ee4cc8 a4623c86-3cfa-4f1d-93e5-717436d5670e d0279667-2f4d-431e-83b5-14073b8b768f ddefeb6c-3530-47ce-8cff-6ec098f56b3e e15f93e5-d2a5-4974-b773-d890edc53168 a87095d8-ee9c-4a93-a96a-3226697bb5b3 cfa44e8d-871d-41ab-aee6-3ae62234dae3 7e94f1b4-ec36-40dd-8e75-57956c016ac7 49fab78e-1866-45ec-a4d2-1cc8e991dd29 e8362145-cfe3-4e30-86dd-9927043c7dc3 82e084bd-57e0-4bd8-b709-3fdf93bf0bb9 12778daf-90ca-4b93-91c2-6db757685f91 cb0da986-aa09-4e79-8899-9f8593f49c79 1a233394-d800-45e3-bc4e-3e115b150a13 d46a743d-5164-4b58-95b3-c812010e916d bc453bfa-c615-43b6-806b-a25b6d136fde 40d1fb3a-4c8a-4cd8-897e-f93423e452e4 6ba0ca13-3163-433b-bdcf-cbb6eb2e32a1 2c62e475-50df-4188-ac09-8024f05be84e 87a9a300-1939-4978-bea9-829655d2c198 83 ac67210a-1fc9-4b2e-a45b-0d3b39abf1b0 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects bbe94d9c-e4c6-4037-9976-a3654d010398 360c6c93-8a1a-4c1a-8ca0-14558d3886b8 3dd84939-fef0-4fe5-895d-e5d0f6b5f634 9158377e-e8df-41ed-a00e-2e20a740dfc0 bf4d4cd3-02fd-49ed-a2e2-2d08ddaa9baa 9fd3ac18-ac69-40cc-8d33-e6ac98aa72aa c8fc03bc-cd7b-483b-aca4-96406747e2db d67f22e1-4e07-4fc3-92d5-ef495cb60a19 da24dcdf-c792-4539-a64b-bff7739e1004 406435ef-9b58-4f5e-ab07-17abf4496a82 90b98f52-1a1b-4238-8870-f354b417fc0f 87af4e66-6c0a-4b25-98cd-3ee39a1875f7 da9b532f-9e04-4530-8eb5-98708e2940b2 00787e40-ac00-46c8-8832-9aa703ca68f4 1f672548-43bc-48f6-b7b2-4c9775c63ba2 0cd6c03a-0f18-46dc-88df-de683058512a eb948ae9-6d8c-403c-97d5-61b21404b30f 7dd45ce5-fba5-4d28-8de3-bb6eb762e731 3874e512-924d-4fee-87fe-188bc3264016 875f743f-d94f-4dea-a9db-2a06e2d3b7c9 ef0c7b3c-50df-483d-9cf5-b1fcdd19543a c186c036-4618-4834-bcf8-2c05e94b3f7a 17d896da-81f8-4aaa-8350-4102e0b4bb21 68cb288b-0a8f-4db5-a3d9-1cb5c0c45d3d 3caea3e6-851d-40e1-a27d-9f18fc72290c f3ed8657-e13f-41b8-abe8-07ddbc156a68 3314e4e8-4ed7-4d75-993e-8d377ac71aa6 088b8295-7e61-45f6-bfc3-6300031c81d8 eaa08f1a-c88d-4744-8c3d-badf7109383e 6508cd50-7fa0-4a0a-8f33-6d63a6f826f2 392db8a2-77d3-4ae9-9004-c5af94a603b3 b6535c3a-913d-4b28-9211-8046f187f684 fc51b201-a5a7-4ccc-b69d-90228e8fbac7 05aeb047-062c-4e1d-902c-f881bed2c33c 8b92f141-cdba-456a-b092-74a1fa769a3f 519c18b1-61ea-45fa-8f46-0c0cdea35bbb bd79bef6-8525-4a7f-9c89-fe7bb7354d65 9b404974-02c6-41f0-8def-ed8d7b180a7e 3706a4c4-bd57-42dc-b5d7-ddc151f907e5 8fb91838-0d66-409c-a635-3d531bf4fd91 7ec258a8-9a08-4c79-96b6-7275894f1a5f 03f1ad9c-8968-40c4-85a5-948230bca1c0 efd39231-4327-4053-9697-9cf17d83d334 62160ebc-246f-486e-8eed-514a9af54294 705017b6-d3a3-4d54-a7f8-0cd3ad651424 98836f2d-b183-4e94-8fc8-52869d681103 e2349130-aa0f-401d-b935-da39728890df 6ccf0750-f393-44b1-bf35-bb9fd1ca54f5 4393b257-c536-4aef-874d-6bab76d9ce85 52941396-e63d-4fb3-8d85-39801e12ac6b 72093452-ecdf-459b-8976-35063c92dd1f 31391e3a-7904-4f5c-b1db-52b3e836ad2a 3df1b866-1b15-4218-a165-b765587088cb 64067a04-3ea5-46dd-b49a-2b2563f5e79c 0cfb72b3-43f4-40de-a786-66eaa4094193 f14181d1-ed30-464f-8ae1-ed2dc450e9b4 376e0bb0-4a5d-4c78-93c9-01676bc7d38d 5a519f7d-386e-4d99-8458-36c93149b93b b7c3598c-bd9d-46e5-be6c-1208ea7a229a 4b838834-98d5-46d8-ac65-3a689ff35100 de17b964-bc3d-4ec6-8ade-50a4a3428b36 fb85528b-23a4-4373-a926-da03e1a3ae73 d8c7b5da-d8a8-4ab5-a7af-503d84ee4cc8 a4623c86-3cfa-4f1d-93e5-717436d5670e d0279667-2f4d-431e-83b5-14073b8b768f ddefeb6c-3530-47ce-8cff-6ec098f56b3e e15f93e5-d2a5-4974-b773-d890edc53168 a87095d8-ee9c-4a93-a96a-3226697bb5b3 cfa44e8d-871d-41ab-aee6-3ae62234dae3 7e94f1b4-ec36-40dd-8e75-57956c016ac7 49fab78e-1866-45ec-a4d2-1cc8e991dd29 e8362145-cfe3-4e30-86dd-9927043c7dc3 82e084bd-57e0-4bd8-b709-3fdf93bf0bb9 12778daf-90ca-4b93-91c2-6db757685f91 cb0da986-aa09-4e79-8899-9f8593f49c79 1a233394-d800-45e3-bc4e-3e115b150a13 d46a743d-5164-4b58-95b3-c812010e916d bc453bfa-c615-43b6-806b-a25b6d136fde 40d1fb3a-4c8a-4cd8-897e-f93423e452e4 a4369984-93e4-477a-9ffe-885dcfa33ab8 80 e0426985-a777-472e-bc53-a3f4b4019958 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects d46a743d-5164-4b58-95b3-c812010e916d 1 bbe94d9c-e4c6-4037-9976-a3654d010398 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 3dd84939-fef0-4fe5-895d-e5d0f6b5f634 1 360c6c93-8a1a-4c1a-8ca0-14558d3886b8 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 9158377e-e8df-41ed-a00e-2e20a740dfc0 1 3dd84939-fef0-4fe5-895d-e5d0f6b5f634 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects bf4d4cd3-02fd-49ed-a2e2-2d08ddaa9baa 1 9158377e-e8df-41ed-a00e-2e20a740dfc0 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 9fd3ac18-ac69-40cc-8d33-e6ac98aa72aa 1 bf4d4cd3-02fd-49ed-a2e2-2d08ddaa9baa Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects c8fc03bc-cd7b-483b-aca4-96406747e2db 1 9fd3ac18-ac69-40cc-8d33-e6ac98aa72aa Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects da24dcdf-c792-4539-a64b-bff7739e1004 1 c8fc03bc-cd7b-483b-aca4-96406747e2db Group d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true d67f22e1-4e07-4fc3-92d5-ef495cb60a19 Curve Curve false 0 9402 11397 50 24 9427.876 11409.63 1 1 {0;0;0;0} -1 pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P 00000000-0000-0000-0000-000000000000 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects d67f22e1-4e07-4fc3-92d5-ef495cb60a19 1 da24dcdf-c792-4539-a64b-bff7739e1004 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects eaa08f1a-c88d-4744-8c3d-badf7109383e 1 406435ef-9b58-4f5e-ab07-17abf4496a82 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 87af4e66-6c0a-4b25-98cd-3ee39a1875f7 da9b532f-9e04-4530-8eb5-98708e2940b2 00787e40-ac00-46c8-8832-9aa703ca68f4 1f672548-43bc-48f6-b7b2-4c9775c63ba2 0cd6c03a-0f18-46dc-88df-de683058512a eb948ae9-6d8c-403c-97d5-61b21404b30f 7dd45ce5-fba5-4d28-8de3-bb6eb762e731 3874e512-924d-4fee-87fe-188bc3264016 ef0c7b3c-50df-483d-9cf5-b1fcdd19543a 875f743f-d94f-4dea-a9db-2a06e2d3b7c9 406435ef-9b58-4f5e-ab07-17abf4496a82 da24dcdf-c792-4539-a64b-bff7739e1004 ddefeb6c-3530-47ce-8cff-6ec098f56b3e e15f93e5-d2a5-4974-b773-d890edc53168 a87095d8-ee9c-4a93-a96a-3226697bb5b3 cfa44e8d-871d-41ab-aee6-3ae62234dae3 7e94f1b4-ec36-40dd-8e75-57956c016ac7 49fab78e-1866-45ec-a4d2-1cc8e991dd29 d8c7b5da-d8a8-4ab5-a7af-503d84ee4cc8 a4623c86-3cfa-4f1d-93e5-717436d5670e 20 90b98f52-1a1b-4238-8870-f354b417fc0f Group dd8134c0-109b-4012-92be-51d843edfff7 Duplicate Data Duplicate data a predefined number of times. true 87af4e66-6c0a-4b25-98cd-3ee39a1875f7 Duplicate Data Duplicate Data 9372 12352 104 64 9431 12384 1 Data to duplicate 4522e823-a841-4906-9319-ecf36f545414 Data Data false e2c42fe9-336e-438e-956d-699761ff3513 1 9374 12354 42 20 9396.5 12364 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 1 Number of duplicates a43dd440-e1bd-4d4d-b53f-e864ebd6a4ff Number Number false d0279667-2f4d-431e-83b5-14073b8b768f 1 9374 12374 42 20 9396.5 12384 1 1 {0} 500 Retain list order ab570a36-6ba8-4171-845b-55c298e33b64 Order Order false 0 9374 12394 42 20 9396.5 12404 1 1 {0} true 1 Duplicated data 23e0ec39-8c07-4095-b306-988df4b2b689 Data Data false 0 9446 12354 28 60 9461.5 12384 fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 DotNET VB Script (LEGACY) A VB.NET scriptable component true da9b532f-9e04-4530-8eb5-98708e2940b2 DotNET VB Script (LEGACY) Turtle 0 Dim i As Integer Dim dir As New On3dVector(1, 0, 0) Dim pos As New On3dVector(0, 0, 0) Dim axis As New On3dVector(0, 0, 1) Dim pnts As New List(Of On3dVector) pnts.Add(pos) For i = 0 To Forward.Count() - 1 Dim P As New On3dVector dir.Rotate(Left(i), axis) P = dir * Forward(i) + pnts(i) pnts.Add(P) Next Points = pnts 9366 10754 116 44 9427 10776 1 1 2 Script Variable Forward Script Variable Left 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 true true Forward Left true true 2 Print, Reflect and Error streams Output parameter Points 3ede854e-c753-40eb-84cb-b48008f14fd4 8ec86459-bf01-4409-baee-174d0d2b13d0 true true Output Points false false 1 false Script Variable Forward 1358f131-aa90-4201-b901-01a1bb231e7f Forward Forward true 1 true 23e0ec39-8c07-4095-b306-988df4b2b689 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 9368 10756 44 20 9391.5 10766 1 false Script Variable Left af0359ef-ddb8-487c-a7ba-81197387378c Left Left true 1 true c36571fc-6acb-4d60-b373-bd2cc71c6c16 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 9368 10776 44 20 9391.5 10786 Print, Reflect and Error streams 90f9d674-c6b8-438f-82aa-4ddeae7a6a6b Output Output false 0 9442 10756 38 20 9462.5 10766 Output parameter Points 511f630a-f12b-41a2-bb58-9bfcc923b89b Points Points false 0 9442 10776 38 20 9462.5 10786 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 00787e40-ac00-46c8-8832-9aa703ca68f4 Point Point false 511f630a-f12b-41a2-bb58-9bfcc923b89b 1 9401 10374 50 24 9426.736 10386.11 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true 1f672548-43bc-48f6-b7b2-4c9775c63ba2 Series Series 9377 11818 101 64 9427 11850 First number in the series 794028b5-8254-448c-84c6-58c24da3fe9b Start Start false 0 9379 11820 33 20 9397 11830 1 1 {0} 0 Step size for each successive number 5644b944-2801-4d42-ab18-41ec14d10039 Step Step false 1a233394-d800-45e3-bc4e-3e115b150a13 1 9379 11840 33 20 9397 11850 1 1 {0} 1 Number of values in the series 3386f05c-fb90-438b-a3ad-52fc8b3cdd70 Count Count false d0279667-2f4d-431e-83b5-14073b8b768f 1 9379 11860 33 20 9397 11870 1 Series of numbers 598f8d8f-eddd-44dd-be6b-b9cd5383c5f5 Series Series false 0 9442 11820 34 60 9460.5 11850 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values 0cd6c03a-0f18-46dc-88df-de683058512a Number Slider false 0 9352 12532 150 20 9352.557 12532.98 0 1 0 65536 0 0 256 a4cd2751-414d-42ec-8916-476ebf62d7fe Radians Convert an angle specified in degrees to radians true eb948ae9-6d8c-403c-97d5-61b21404b30f Radians Radians 9364 12020 120 28 9425 12034 Angle in degrees 22b729d0-2e16-4027-8ad9-186a8485fa33 Degrees Degrees false fc51b201-a5a7-4ccc-b69d-90228e8fbac7 1 9366 12022 44 24 9389.5 12034 Angle in radians 09c7b0c3-e11c-4173-acc1-d8323a4a5346 Radians Radians false 0 9440 12022 42 24 9462.5 12034 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 7dd45ce5-fba5-4d28-8de3-bb6eb762e731 Digit Scroller Digit Scroller false 0 12 Digit Scroller 1 0.00137331209 9302 12324 251 20 9302.268 12324.52 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true 3874e512-924d-4fee-87fe-188bc3264016 One Over X One Over X 9374 12434 100 28 9423 12448 Input value b1acf54c-efc7-42d9-abd1-0eb6ed40817e Value Value false d0279667-2f4d-431e-83b5-14073b8b768f 1 9376 12436 32 24 9393.5 12448 Output value e2c42fe9-336e-438e-956d-699761ff3513 Result Result false 0 9438 12436 34 24 9456.5 12448 75eb156d-d023-42f9-a85e-2f2456b8bcce Interpolate (t) Create an interpolated curve through a set of points with tangents. true 875f743f-d94f-4dea-a9db-2a06e2d3b7c9 Interpolate (t) Interpolate (t) 9352 10266 144 84 9438 10308 1 Interpolation points 6ef86177-ee18-4802-8e85-efe8aa7f7ce4 Vertices Vertices false 00787e40-ac00-46c8-8832-9aa703ca68f4 1 9354 10268 69 20 9390 10278 Tangent at start of curve f1ffee6f-9abe-4e64-a71b-fb07055e3c06 Tangent Start Tangent Start false 0 9354 10288 69 20 9390 10298 1 1 {0} 1 0 0 Tangent at end of curve b4b5fb0d-6c00-46d0-b897-d1a50fd5f3f1 Tangent End Tangent End false 0 9354 10308 69 20 9390 10318 1 1 {0} 0 0 0 Knot spacing (0=uniform, 1=chord, 2=sqrtchord) c782a1cc-188c-4b9c-9eea-5c1ba8258b3c KnotStyle KnotStyle false 0 9354 10328 69 20 9390 10338 1 1 {0} 2 Resulting nurbs curve 5e4df801-67a9-4c5d-99b6-b74cf5953f5e Curve Curve false 0 9453 10268 41 26 9475 10281.33 Curve length c31fd0b5-f382-44ee-8f4e-dfa40ccb7258 Length Length false 0 9453 10294 41 27 9475 10308 Curve domain d5049e1b-36e2-4261-b48b-102b721420d8 Domain Domain false 0 9453 10321 41 27 9475 10334.67 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 87af4e66-6c0a-4b25-98cd-3ee39a1875f7 da9b532f-9e04-4530-8eb5-98708e2940b2 00787e40-ac00-46c8-8832-9aa703ca68f4 1f672548-43bc-48f6-b7b2-4c9775c63ba2 0cd6c03a-0f18-46dc-88df-de683058512a eb948ae9-6d8c-403c-97d5-61b21404b30f 7dd45ce5-fba5-4d28-8de3-bb6eb762e731 3874e512-924d-4fee-87fe-188bc3264016 82e084bd-57e0-4bd8-b709-3fdf93bf0bb9 fc51b201-a5a7-4ccc-b69d-90228e8fbac7 fb85528b-23a4-4373-a926-da03e1a3ae73 e8362145-cfe3-4e30-86dd-9927043c7dc3 12778daf-90ca-4b93-91c2-6db757685f91 13 ef0c7b3c-50df-483d-9cf5-b1fcdd19543a Group 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true c186c036-4618-4834-bcf8-2c05e94b3f7a Evaluate Length Evaluate Length 9352 10098 144 64 9426 10130 Curve to evaluate 1efbcab2-c978-49e9-9a30-0a0b9039955f Curve Curve false 5e4df801-67a9-4c5d-99b6-b74cf5953f5e 1 9354 10100 57 20 9384 10110 Length factor for curve evaluation defcebb8-e8ed-440c-90ed-68c09b4c31bf Length Length false 0 9354 10120 57 20 9384 10130 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 4ef3845f-77d8-4a9d-a24d-b252840263c6 Normalized Normalized false 0 9354 10140 57 20 9384 10150 1 1 {0} true Point at the specified length 8529f841-a39b-48ad-bd57-733103802a8b Point Point false 0 9441 10100 53 20 9469 10110 Tangent vector at the specified length 61c4e0c1-c8a3-49a9-867c-9520c384cf19 Tangent Tangent false 0 9441 10120 53 20 9469 10130 Curve parameter at the specified length 32ff5255-a166-42ba-a9fa-0404f3806bb6 Parameter Parameter false 0 9441 10140 53 20 9469 10150 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true 17d896da-81f8-4aaa-8350-4102e0b4bb21 Mirror Mirror 9355 10036 138 44 9423 10058 Base geometry 2ea6146a-6969-4442-b2b4-8ca4ac65de99 Geometry Geometry true 5e4df801-67a9-4c5d-99b6-b74cf5953f5e 1 9357 10038 51 20 9384 10048 Mirror plane c4f39446-27a0-45c0-99f6-481152c6ba04 Plane Plane false 0a7f8983-e284-4df5-9b85-b74f0fc5e2e9 1 9357 10058 51 20 9384 10068 1 1 {0} 0 0 0 0 1 0 0 0 1 Mirrored geometry 976061ec-463a-4b63-a574-be14d8892f85 Geometry Geometry false 0 9438 10038 53 20 9466 10048 Transformation data 18b7406f-d419-4764-b978-b2384903ea8b Transform Transform false 0 9438 10058 53 20 9466 10068 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 68cb288b-0a8f-4db5-a3d9-1cb5c0c45d3d Line SDL Line SDL 9371 10182 106 64 9435 10214 Line start point 8cdc7a17-e85e-437a-857c-ec992f6d7ece Start Start false 8529f841-a39b-48ad-bd57-733103802a8b 1 9373 10184 47 20 9398 10194 Line tangent (direction) 712e79cb-a5fb-4400-8b6d-ff519a5100cd Direction Direction false 61c4e0c1-c8a3-49a9-867c-9520c384cf19 1 9373 10204 47 20 9398 10214 1 1 {0} 0 0 1 Line length 4c3e431b-1f25-4e76-adbf-c45846e9f163 Length Length false 0 9373 10224 47 20 9398 10234 1 1 {0} 1 Line segment 0a7f8983-e284-4df5-9b85-b74f0fc5e2e9 Line Line false 0 9450 10184 25 60 9464 10214 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true 3caea3e6-851d-40e1-a27d-9f18fc72290c Join Curves Join Curves 9365 9974 118 44 9428 9996 1 Curves to join eb48120d-4378-4a62-81f9-1bd20b56c335 Curves Curves false 5e4df801-67a9-4c5d-99b6-b74cf5953f5e 976061ec-463a-4b63-a574-be14d8892f85 2 9367 9976 46 20 9391.5 9986 Preserve direction of input curves 3dd97a44-6283-477e-8df3-ee323984b637 Preserve Preserve false 0 9367 9996 46 20 9391.5 10006 1 1 {0} false 1 Joined curves and individual curves that could not be joined. d535ac5d-daad-442a-bcdd-d4e9e82e9cf2 Curves Curves false 0 9443 9976 38 40 9463.5 9996 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true f3ed8657-e13f-41b8-abe8-07ddbc156a68 Evaluate Length Evaluate Length 9352 9890 144 64 9426 9922 Curve to evaluate 2fbd3dfd-acfd-4c01-a176-961ac1758a5b Curve Curve false d535ac5d-daad-442a-bcdd-d4e9e82e9cf2 1 9354 9892 57 20 9384 9902 Length factor for curve evaluation 1d0ecd68-5afd-45b3-ae4a-5077bf54a67b Length Length false 0 9354 9912 57 20 9384 9922 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 778775c4-2dcd-4d6a-9c0b-004dc0cdb432 Normalized Normalized false 0 9354 9932 57 20 9384 9942 1 1 {0} true Point at the specified length 2f438f98-2122-484a-bc35-7d194cd8b98e Point Point false 0 9441 9892 53 20 9469 9902 Tangent vector at the specified length 75a9b08b-7f00-4818-966c-a36601052a76 Tangent Tangent false 0 9441 9912 53 20 9469 9922 Curve parameter at the specified length 68f3cc02-f6f4-4795-8ccd-404e018c9569 Parameter Parameter false 0 9441 9932 53 20 9469 9942 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 3314e4e8-4ed7-4d75-993e-8d377ac71aa6 Rotate Rotate 9355 9807 138 64 9423 9839 Base geometry 47ac88d6-cc73-4e67-a141-4df53abc254d Geometry Geometry true d535ac5d-daad-442a-bcdd-d4e9e82e9cf2 1 9357 9809 51 20 9384 9819 Rotation angle in radians f4bfabb3-773b-45aa-a60b-170cb0a2fbb9 Angle Angle false 0 false 9357 9829 51 20 9384 9839 1 1 {0} 3.1415926535897931 Rotation plane 8b9f508c-a4ca-47d9-b558-a4d940548ead Plane Plane false 2f438f98-2122-484a-bc35-7d194cd8b98e 1 9357 9849 51 20 9384 9859 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry cdedb42b-61d8-4c05-b0ee-608ef03a7477 Geometry Geometry false 0 9438 9809 53 30 9466 9824 Transformation data 0d06190f-d253-47a9-b1df-bdd9f63c065e Transform Transform false 0 9438 9839 53 30 9466 9854 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true 088b8295-7e61-45f6-bfc3-6300031c81d8 Join Curves Join Curves 9365 9744 118 44 9428 9766 1 Curves to join 13ade5a8-a94f-467c-8a14-5b72899caf5c Curves Curves false d535ac5d-daad-442a-bcdd-d4e9e82e9cf2 cdedb42b-61d8-4c05-b0ee-608ef03a7477 2 9367 9746 46 20 9391.5 9756 Preserve direction of input curves 05c5415a-f82f-4c2d-85cd-e1b1fa5e6971 Preserve Preserve false 0 9367 9766 46 20 9391.5 9776 1 1 {0} false 1 Joined curves and individual curves that could not be joined. f368b528-5b43-45e2-bb01-3ce653ce9f99 Curves Curves false 0 9443 9746 38 40 9463.5 9766 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 875f743f-d94f-4dea-a9db-2a06e2d3b7c9 c186c036-4618-4834-bcf8-2c05e94b3f7a 17d896da-81f8-4aaa-8350-4102e0b4bb21 68cb288b-0a8f-4db5-a3d9-1cb5c0c45d3d 3caea3e6-851d-40e1-a27d-9f18fc72290c f3ed8657-e13f-41b8-abe8-07ddbc156a68 3314e4e8-4ed7-4d75-993e-8d377ac71aa6 088b8295-7e61-45f6-bfc3-6300031c81d8 392db8a2-77d3-4ae9-9004-c5af94a603b3 9 eaa08f1a-c88d-4744-8c3d-badf7109383e Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 6508cd50-7fa0-4a0a-8f33-6d63a6f826f2 Panel false 0 efd39231-4327-4053-9697-9cf17d83d334 1 Double click to edit panel content… 9354 11903 145 20 0 0 0 9354.296 11903.28 255;255;255;255 false false true false false true d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 392db8a2-77d3-4ae9-9004-c5af94a603b3 Curve Curve false f368b528-5b43-45e2-bb01-3ce653ce9f99 1 9402 9704 50 24 9427.876 9716.178 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 392db8a2-77d3-4ae9-9004-c5af94a603b3 1 b6535c3a-913d-4b28-9211-8046f187f684 Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values fc51b201-a5a7-4ccc-b69d-90228e8fbac7 Panel false 0 0 0.001373312092932693349 9207 12077 439 104 0 0 0 9207.857 12077.6 255;255;255;255 false false true false false true 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 05aeb047-062c-4e1d-902c-f881bed2c33c Evaluate Length Evaluate Length 9352 9618 144 64 9426 9650 Curve to evaluate 4e23d158-444f-485f-bba1-636d2b917426 Curve Curve false f368b528-5b43-45e2-bb01-3ce653ce9f99 1 9354 9620 57 20 9384 9630 Length factor for curve evaluation 7ff888fc-9cf7-4f09-85f3-295766af1547 Length Length false 0 9354 9640 57 20 9384 9650 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) c8f04f7b-233c-41db-ba7b-a7c0f6b7e2b7 Normalized Normalized false 0 9354 9660 57 20 9384 9670 1 1 {0} true Point at the specified length 0d0e9c20-fe10-4ced-ac9b-eb01438e49f2 Point Point false 0 9441 9620 53 20 9469 9630 Tangent vector at the specified length 70a4aabd-7373-4179-9aac-6de8069a3bec Tangent Tangent false 0 9441 9640 53 20 9469 9650 Curve parameter at the specified length 012f49b2-35a0-4f9d-8b43-185430e6f17a Parameter Parameter false 0 9441 9660 53 20 9469 9670 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 8b92f141-cdba-456a-b092-74a1fa769a3f Expression Expression 9327 9396 194 28 9427 9410 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 87d62ba2-b9bf-4f46-ad96-f9b79d0e36da Variable O O true 6f8278f9-3ab7-4fa5-a71a-d58dcd403d58 1 9329 9398 14 24 9337.5 9410 Result of expression bebaa5b7-1cfc-4292-b446-b7f61718c088 Result false 0 9510 9398 9 24 9516 9410 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 519c18b1-61ea-45fa-8f46-0c0cdea35bbb Deconstruct Deconstruct 9358 9530 132 64 9405 9562 Input point e4e1986a-4511-4f6e-b7fd-e792bb5b15cb Point Point false 0d0e9c20-fe10-4ced-ac9b-eb01438e49f2 1 9360 9532 30 60 9376.5 9562 Point {x} component 6f8278f9-3ab7-4fa5-a71a-d58dcd403d58 X component X component false 0 9420 9532 68 20 9455.5 9542 Point {y} component 6febb93f-bf7b-447c-b75c-b40f30d21f8b Y component Y component false 0 9420 9552 68 20 9455.5 9562 Point {z} component 1d6740d7-b0d9-465e-a464-f7a77cb50ad7 Z component Z component false 0 9420 9572 68 20 9455.5 9582 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values bd79bef6-8525-4a7f-9c89-fe7bb7354d65 Panel false 0 bebaa5b7-1cfc-4292-b446-b7f61718c088 1 Double click to edit panel content… 9346 9369 160 20 0 0 0 9346.646 9369.756 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 9b404974-02c6-41f0-8def-ed8d7b180a7e Expression Expression 9327 9310 194 28 9427 9324 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 39078e96-fb4c-487b-bcf5-c7a852b2aebe Variable O O true 6febb93f-bf7b-447c-b75c-b40f30d21f8b 1 9329 9312 14 24 9337.5 9324 Result of expression 3b9b0372-016f-4a6e-bd05-7f5673a6c6c0 Result false 0 9510 9312 9 24 9516 9324 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 3706a4c4-bd57-42dc-b5d7-ddc151f907e5 Panel false 0 3b9b0372-016f-4a6e-bd05-7f5673a6c6c0 1 Double click to edit panel content… 9346 9281 160 20 0 0 0 9346.646 9281.334 255;255;255;255 false false true false false true 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 8fb91838-0d66-409c-a635-3d531bf4fd91 Division Division 9383 9208 82 44 9414 9230 Item to divide (dividend) 01c84af9-1d51-4d09-91a0-ed7ba38f6845 A A false bd79bef6-8525-4a7f-9c89-fe7bb7354d65 1 9385 9210 14 20 9393.5 9220 Item to divide with (divisor) 26457ab2-5a8e-41ac-a111-ecdffd8957a2 B B false 3706a4c4-bd57-42dc-b5d7-ddc151f907e5 1 9385 9230 14 20 9393.5 9240 The result of the Division 7875e435-e934-4786-8f64-6f29875a9f96 Result Result false 0 9429 9210 34 40 9447.5 9230 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 7ec258a8-9a08-4c79-96b6-7275894f1a5f Panel false 0 efd39231-4327-4053-9697-9cf17d83d334 1 Double click to edit panel content… 9346 9133 160 20 0 0 0 9346.887 9133.818 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 03f1ad9c-8968-40c4-85a5-948230bca1c0 Expression Expression 9327 9161 194 28 9427 9175 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 5c8ae456-baa8-48b2-b090-3dbc02f5d56b Variable O O true 7875e435-e934-4786-8f64-6f29875a9f96 1 9329 9163 14 24 9337.5 9175 Result of expression d79d616f-89eb-4992-9153-cb1f57c2b279 Result false 0 9510 9163 9 24 9516 9175 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object efd39231-4327-4053-9697-9cf17d83d334 Relay false d79d616f-89eb-4992-9153-cb1f57c2b279 1 9407 9117 40 16 9427 9125 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true 62160ebc-246f-486e-8eed-514a9af54294 Addition Addition 9396 9056 82 44 9427 9078 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition 72751cb0-bd7f-4ac2-a720-dc94ea6b8619 A A true 3706a4c4-bd57-42dc-b5d7-ddc151f907e5 1 9398 9058 14 20 9406.5 9068 Second item for addition 97b4efa4-d9ee-4a8a-9723-f82f5dee8812 B B true bd79bef6-8525-4a7f-9c89-fe7bb7354d65 1 9398 9078 14 20 9406.5 9088 Result of addition 60689ceb-d75b-48fa-a831-0e95b46db6d7 Result Result false 0 9442 9058 34 40 9460.5 9078 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 705017b6-d3a3-4d54-a7f8-0cd3ad651424 Division Division 9396 8922 82 44 9427 8944 Item to divide (dividend) 0484a284-41eb-4c3a-87cd-ee5e522cabdf A A false 6ccf0750-f393-44b1-bf35-bb9fd1ca54f5 1 9398 8924 14 20 9406.5 8934 Item to divide with (divisor) 022d1ab7-5a0a-4583-9463-18894323b4c3 B B false 0 9398 8944 14 20 9406.5 8954 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 The result of the Division f4edbb16-bb45-499b-b7f5-4c497d52e3cb Result Result false 0 9442 8924 34 40 9460.5 8944 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 98836f2d-b183-4e94-8fc8-52869d681103 Expression Expression 9327 8882 194 28 9427 8896 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 9611d918-9a3e-4823-855b-d78c7970c9e0 Variable O O true f4edbb16-bb45-499b-b7f5-4c497d52e3cb 1 9329 8884 14 24 9337.5 8896 Result of expression 09762547-3e60-42b1-887c-2ed391a46974 Result false 0 9510 8884 9 24 9516 8896 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values e2349130-aa0f-401d-b935-da39728890df Panel false 0 09762547-3e60-42b1-887c-2ed391a46974 1 Double click to edit panel content… 9347 8841 160 20 0 0 0 9347.646 8841.676 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 6ccf0750-f393-44b1-bf35-bb9fd1ca54f5 Panel false 0 a00b277b-ad2e-4ce0-9fc8-647cf67d1e14 1 Double click to edit panel content… 9359 8982 160 20 0 0 0 9359.646 8982.586 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 4393b257-c536-4aef-874d-6bab76d9ce85 Expression Expression 9340 9009 194 28 9440 9023 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable ee00b529-05b1-45e6-a1dc-e2e882d8a9b3 Variable O O true 60689ceb-d75b-48fa-a831-0e95b46db6d7 1 9342 9011 14 24 9350.5 9023 Result of expression a00b277b-ad2e-4ce0-9fc8-647cf67d1e14 Result false 0 9523 9011 9 24 9529 9023 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 52941396-e63d-4fb3-8d85-39801e12ac6b Scale Scale 9346 8758 154 64 9430 8790 Base geometry a797d5d5-9af4-4571-9ba5-ef1f0ec10f1f Geometry Geometry true 392db8a2-77d3-4ae9-9004-c5af94a603b3 1 9348 8760 67 20 9391 8770 Center of scaling 209585a1-09cd-4857-b09a-d91430f2ab60 Center Center false 0 9348 8780 67 20 9391 8790 1 1 {0} 0 0 0 Scaling factor f3099c28-3aec-4994-ae86-e2ac434a386e 1/X Factor Factor false e2349130-aa0f-401d-b935-da39728890df 1 9348 8800 67 20 9391 8810 1 1 {0} 0.5 Scaled geometry 6d882079-b357-4a45-bac6-e703795b9255 Geometry Geometry false 0 9445 8760 53 30 9473 8775 Transformation data 3f1fc5a3-9990-4e80-9795-aace930b64e0 Transform Transform false 0 9445 8790 53 30 9473 8805 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 72093452-ecdf-459b-8976-35063c92dd1f Curve Curve false 6d882079-b357-4a45-bac6-e703795b9255 1 9401 8114 50 24 9426.626 8126.176 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 31391e3a-7904-4f5c-b1db-52b3e836ad2a Expression Expression 9327 9483 194 28 9427 9497 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable b2b045d7-f53d-4877-9b0d-e97d212f5d87 Variable O O true 1d6740d7-b0d9-465e-a464-f7a77cb50ad7 1 9329 9485 14 24 9337.5 9497 Result of expression 0ae0c192-a397-4e28-b3a6-2ddd9d8c82d5 Result false 0 9510 9485 9 24 9516 9497 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 3df1b866-1b15-4218-a165-b765587088cb Panel false 0 0ae0c192-a397-4e28-b3a6-2ddd9d8c82d5 1 Double click to edit panel content… 9347 9455 160 20 0 0 0 9347.516 9455.531 255;255;255;255 false false true false false true 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 64067a04-3ea5-46dd-b49a-2b2563f5e79c Evaluate Length Evaluate Length 9352 8492 144 64 9426 8524 Curve to evaluate 00a76e2a-57df-4705-8425-10985235ad9d Curve Curve false 6d882079-b357-4a45-bac6-e703795b9255 1 9354 8494 57 20 9384 8504 Length factor for curve evaluation d1fc9e5d-1ff3-43b6-8613-72a0845b013c Length Length false 0 9354 8514 57 20 9384 8524 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 413414dd-0b45-4018-a969-b4e76ec6a5d1 Normalized Normalized false 0 9354 8534 57 20 9384 8544 1 1 {0} true Point at the specified length 7459805c-7134-4c91-b4f8-921206352ed7 Point Point false 0 9441 8494 53 20 9469 8504 Tangent vector at the specified length 59560f60-31d5-4749-88df-93a11889f101 Tangent Tangent false 0 9441 8514 53 20 9469 8524 Curve parameter at the specified length dcea70aa-a076-479f-a441-5700938188ca Parameter Parameter false 0 9441 8534 53 20 9469 8544 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 0cfb72b3-43f4-40de-a786-66eaa4094193 Expression Expression 9327 8275 194 28 9427 8289 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 7bb3e352-1abc-4da6-94de-73edf3c511f1 Variable O O true 05a3bf08-48b9-495e-a5ac-4b2d1146064f 1 9329 8277 14 24 9337.5 8289 Result of expression f39b2295-5bf0-4e67-90cc-def940a23bd7 Result false 0 9510 8277 9 24 9516 8289 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true f14181d1-ed30-464f-8ae1-ed2dc450e9b4 Deconstruct Deconstruct 9358 8409 132 64 9405 8441 Input point 7cffe4e9-361c-4cfd-b6bf-9d8419133439 Point Point false 7459805c-7134-4c91-b4f8-921206352ed7 1 9360 8411 30 60 9376.5 8441 Point {x} component 05a3bf08-48b9-495e-a5ac-4b2d1146064f X component X component false 0 9420 8411 68 20 9455.5 8421 Point {y} component c80e0c76-7a8d-4906-95e0-c99fdb5bbadd Y component Y component false 0 9420 8431 68 20 9455.5 8441 Point {z} component 7980f24e-f439-478d-9f8a-f226f6ccd2e0 Z component Z component false 0 9420 8451 68 20 9455.5 8461 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 376e0bb0-4a5d-4c78-93c9-01676bc7d38d Panel false 0 f39b2295-5bf0-4e67-90cc-def940a23bd7 1 Double click to edit panel content… 9346 8243 160 20 0 0 0 9346.896 8243.1 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 5a519f7d-386e-4d99-8458-36c93149b93b Expression Expression 9327 8189 194 28 9427 8203 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable e830dbf6-4ad8-4c98-a55a-f920944107b5 Variable O O true c80e0c76-7a8d-4906-95e0-c99fdb5bbadd 1 9329 8191 14 24 9337.5 8203 Result of expression 0a425b09-4348-490f-a08b-55a914080ddd Result false 0 9510 8191 9 24 9516 8203 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values b7c3598c-bd9d-46e5-be6c-1208ea7a229a Panel false 0 0a425b09-4348-490f-a08b-55a914080ddd 1 Double click to edit panel content… 9346 8157 160 20 0 0 0 9346.907 8157.471 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 4b838834-98d5-46d8-ac65-3a689ff35100 Expression Expression 9327 8361 194 28 9427 8375 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 8b0c44fe-b24d-4831-b8cb-7f88b380694a Variable O O true 7980f24e-f439-478d-9f8a-f226f6ccd2e0 1 9329 8363 14 24 9337.5 8375 Result of expression 9593909d-5219-48e7-92f6-94938de106ac Result false 0 9510 8363 9 24 9516 8375 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values de17b964-bc3d-4ec6-8ade-50a4a3428b36 Panel false 0 9593909d-5219-48e7-92f6-94938de106ac 1 Double click to edit panel content… 9346 8329 160 20 0 0 0 9346.646 8329.313 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values fb85528b-23a4-4373-a926-da03e1a3ae73 Panel false 0 0 3 16 3 256 0.001373312092932693349 3 4096 9241 12200 379 104 0 0 0 9241.086 12200.61 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values d8c7b5da-d8a8-4ab5-a7af-503d84ee4cc8 Panel false 0 0f624141-42b4-4810-82f3-62bc78bd2f13 1 Double click to edit panel content… 9258 10415 337 276 0 0 0 9258.836 10415.71 255;255;255;255 true true true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true a4623c86-3cfa-4f1d-93e5-717436d5670e Expression Expression 9327 10706 194 28 9427 10720 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable dc0f5ccc-7a56-4e24-bed6-02b3a7b2e412 Variable O O true 511f630a-f12b-41a2-bb58-9bfcc923b89b 1 9329 10708 14 24 9337.5 10720 Result of expression 0f624141-42b4-4810-82f3-62bc78bd2f13 Result false 0 9510 10708 9 24 9516 10720 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers d0279667-2f4d-431e-83b5-14073b8b768f Number Number false 11a52911-ee4b-4695-868f-5bf4c41520d5 1 9402 12491 50 24 9427.605 12503.27 cae9fe53-6d63-44ed-9d6d-13180fbf6f89 1c9de8a1-315f-4c56-af06-8f69fee80a7a Curve Graph Mapper Remap values with a custom graph using input curves. true ddefeb6c-3530-47ce-8cff-6ec098f56b3e true Curve Graph Mapper Curve Graph Mapper 9255 10954 160 224 9323 11066 1 One or multiple graph curves to graph map values with 4225ec91-55f4-41b2-8874-c1e960ff891e true Curves Curves false f210c96f-2d80-44cf-9628-9361c422e064 1 9257 10956 51 27 9284 10969.75 Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary ef5f2020-a80e-403e-94dd-c58905fc2bde true Rectangle Rectangle false cdf246b3-6ac1-4fb0-8f64-58e0ca5b116d 1 9257 10983 51 28 9284 10997.25 1 1 {0;0;0;0;0} 0 0 0 1 0 0 0 1 0 0 1 0 1 1 Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis aaf1737e-0a15-45ad-af48-92662552d453 true Values Values false 598f8d8f-eddd-44dd-be6b-b9cd5383c5f5 1 9257 11011 51 27 9284 11024.75 Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used) ffd6b3b0-20bb-4b26-8e85-92c21b3fcb31 true X Axis X Axis true 0 9257 11038 51 28 9284 11052.25 Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used) f3cddab3-109a-42d5-a7a5-24509bbf5cb5 true Y Axis Y Axis true 0 9257 11066 51 27 9284 11079.75 Flip the graphs X Axis from the bottom of the graph to the top of the graph cc20a071-5121-4039-b7f2-ff5a0884976e true Flip Flip false 0 9257 11093 51 28 9284 11107.25 1 1 {0} false Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle a0345499-fce4-442d-8e17-53902f76db28 true Snap Snap false 0 9257 11121 51 27 9284 11134.75 1 1 {0} true Size of the graph labels bcd1bf24-1aa1-4916-9f6f-bf8add1fd5c3 true Text Size Text Size false 0 9257 11148 51 28 9284 11162.25 1 1 {0} 0.015625 1 Resulting graph mapped values, mapped on the Y Axis ed5584cf-af95-416f-b6f5-9a6ba0570055 true Mapped Mapped false 0 9338 10956 75 20 9377 10966 1 The graph curves inside the boundary of the graph afad9727-ff17-449d-a0ba-552b9e52f258 true Graph Curves Graph Curves false 0 9338 10976 75 20 9377 10986 1 The points on the graph curves where the X Axis input values intersected true d5cd14a6-7317-4cd6-abf7-5fbdea12dc94 true Graph Points Graph Points false 0 9338 10996 75 20 9377 11006 1 The lines from the X Axis input values to the graph curves true 698078ed-4746-4fe7-9d5a-47311fcc0029 true Value Lines Value Lines false 0 9338 11016 75 20 9377 11026 1 The points plotted on the X Axis which represent the input values true f631cdb1-7d00-4240-88a2-8560ed8c7d77 true Value Points Value Points false 0 9338 11036 75 20 9377 11046 1 The lines from the graph curves to the Y Axis graph mapped values true 6fd3a627-d45d-40f1-9181-1f15c0b7a194 true Mapped Lines Mapped Lines false 0 9338 11056 75 20 9377 11066 1 The points mapped on the Y Axis which represent the graph mapped values true f8dc3ad8-22bd-4e54-a422-570fbfb6c562 true Mapped Points Mapped Points false 0 9338 11076 75 20 9377 11086 The graph boundary background as a surface 909a6a8e-2038-4c01-8120-dbc96c7700eb true Boundary Boundary false 0 9338 11096 75 20 9377 11106 1 The graph labels as curve outlines b3e993dd-22c8-4b9e-a640-e041231fed21 true Labels Labels false 0 9338 11116 75 20 9377 11126 1 True for input values outside of the X Axis domain bounds False for input values inside of the X Axis domain bounds 7e55523f-071e-4e57-a714-1aa45c98c9cc true Out Of Bounds Out Of Bounds false 0 9338 11136 75 20 9377 11146 1 True for input values on the X Axis which intersect a graph curve False for input values on the X Axis which do not intersect a graph curve 396706d2-9bfb-4cf1-a025-1e0b75fb7a1e true Intersected Intersected false 0 9338 11156 75 20 9377 11166 11bbd48b-bb0a-4f1b-8167-fa297590390d End Points Extract the end points of a curve. true e15f93e5-d2a5-4974-b773-d890edc53168 End Points End Points 9376 11298 96 44 9426 11320 Curve to evaluate 6cef1f9c-d80b-44f0-bd14-51c285a7f88a Curve Curve false f210c96f-2d80-44cf-9628-9361c422e064 1 9378 11300 33 40 9396 11320 Curve start point 2dfa1494-079f-46a4-9f91-2d317b6a306d Start Start false 0 9441 11300 29 20 9457 11310 Curve end point 116ad9b9-5337-497b-8869-a7284e0b02ee End End false 0 9441 11320 29 20 9457 11330 575660b1-8c79-4b8d-9222-7ab4a6ddb359 Rectangle 2Pt Create a rectangle from a base plane and two points true a87095d8-ee9c-4a93-a96a-3226697bb5b3 Rectangle 2Pt Rectangle 2Pt 9361 11196 126 84 9419 11238 Rectangle base plane 2441b92c-2092-4365-bbaa-55c30031be6c Plane Plane false 0 9363 11198 41 20 9385 11208 1 1 {0} 0 0 0 1 0 0 0 1 0 First corner point. d1f6871e-4532-48fa-b53c-a6e1c428b647 Point A Point A false 2dfa1494-079f-46a4-9f91-2d317b6a306d 1 9363 11218 41 20 9385 11228 1 1 {0;0;0;0;0} 0 0 0 Second corner point. 534fae89-eeaf-4f13-b642-26d33d584155 Point B Point B false 116ad9b9-5337-497b-8869-a7284e0b02ee 1 9363 11238 41 20 9385 11248 1 1 {0;0;0;0;0} 1 1 0 Rectangle corner fillet radius 0d3d6f92-6db5-4e2f-8606-adb2c675a5ae Radius Radius false 0 9363 11258 41 20 9385 11268 1 1 {0} 0 Rectangle defined by P, A and B cdf246b3-6ac1-4fb0-8f64-58e0ca5b116d Rectangle Rectangle false 0 9434 11198 51 40 9461 11218 Length of rectangle curve 1982cc62-e976-4ce5-a040-76d4d99f7d89 Length Length false 0 9434 11238 51 40 9461 11258 310f9597-267e-4471-a7d7-048725557528 08bdcae0-d034-48dd-a145-24a9fcf3d3ff GraphMapper+ External Graph mapper You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode. true cfa44e8d-871d-41ab-aee6-3ae62234dae3 GraphMapper+ GraphMapper+ false 9415 11058 126 104 9482 11110 External curve as a graph 12db67c7-57cf-447c-b6e0-9861f0b311c0 Curve Curve false f210c96f-2d80-44cf-9628-9361c422e064 1 9417 11060 50 20 9443.5 11070 Optional Rectangle boundary. If omitted the curve's would be landed a1b59776-090d-4c75-8855-ec1a724e5f87 Boundary Boundary true cdf246b3-6ac1-4fb0-8f64-58e0ca5b116d 1 9417 11080 50 20 9443.5 11090 1 List of input numbers 28ee4971-d457-4243-9033-da28f9e037af Numbers Numbers false 598f8d8f-eddd-44dd-be6b-b9cd5383c5f5 1 9417 11100 50 20 9443.5 11110 1 9 {0} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 (Optional) Input Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode 1f1ae6a9-c0bf-4d65-b5c9-3bfe4262c237 Input Input true 372ad6b1-7699-4f27-b13f-c78368bcb69d 1 9417 11120 50 20 9443.5 11130 (Optional) Output Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode e36b6f7a-aef9-4a0d-a917-b565748dfbd8 Output Output true 372ad6b1-7699-4f27-b13f-c78368bcb69d 1 9417 11140 50 20 9443.5 11150 1 Output Numbers 27c846e4-0455-45cd-a3d5-042b0aff2707 Number Number false 0 9497 11060 42 100 9519.5 11110 eeafc956-268e-461d-8e73-ee05c6f72c01 Stream Filter Filters a collection of input streams true 7e94f1b4-ec36-40dd-8e75-57956c016ac7 Stream Filter Stream Filter 9393 10866 89 64 9438 10898 3 2e3ab970-8545-46bb-836c-1c11e5610bce 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Index of Gate stream d28f3372-e599-45d5-922e-404c6d2134ce Gate Gate false 49fab78e-1866-45ec-a4d2-1cc8e991dd29 1 9395 10868 28 20 9410.5 10878 1 1 {0} 0 2 Input stream at index 0 61408404-63d7-4f68-bb4b-25acff295b4c false Stream 0 0 true ed5584cf-af95-416f-b6f5-9a6ba0570055 1 9395 10888 28 20 9410.5 10898 2 Input stream at index 1 6e4bfdab-5cf1-4e6a-8af8-06e342e989cf false Stream 1 1 true 27c846e4-0455-45cd-a3d5-042b0aff2707 1 9395 10908 28 20 9410.5 10918 2 Filtered stream c36571fc-6acb-4d60-b373-bd2cc71c6c16 false Stream S(1) false 0 9453 10868 27 60 9468 10898 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values 49fab78e-1866-45ec-a4d2-1cc8e991dd29 Number Slider false 0 9357 10827 150 20 9357.266 10827.31 0 1 0 1 0 0 1 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values e8362145-cfe3-4e30-86dd-9927043c7dc3 Panel false 1 7bdda42d-d96c-431a-827a-b575626920d5 1 Double click to edit panel content… 9334 11485 185 271 0 0 0 9334.336 11485.73 255;255;255;255 true true true false false true f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true 82e084bd-57e0-4bd8-b709-3fdf93bf0bb9 Bounds Bounds 9365 11437 122 28 9429 11451 1 Numbers to include in Bounds 780a11b3-80f4-4811-be32-fc506a27aec2 Numbers Numbers false 598f8d8f-eddd-44dd-be6b-b9cd5383c5f5 1 9367 11439 47 24 9392 11451 Numeric Domain between the lowest and highest numbers in {N} 372ad6b1-7699-4f27-b13f-c78368bcb69d Domain Domain false 0 9444 11439 41 24 9466 11451 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 12778daf-90ca-4b93-91c2-6db757685f91 true Expression Expression 9327 11775 194 28 9427 11789 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 6247def0-a1a7-4d5b-b0d8-15481a3bf41c true Variable O O true 598f8d8f-eddd-44dd-be6b-b9cd5383c5f5 1 9329 11777 14 24 9337.5 11789 Result of expression 7bdda42d-d96c-431a-827a-b575626920d5 true Result false 0 9510 11777 9 24 9516 11789 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:0.00000000000000000000}",O) true cb0da986-aa09-4e79-8899-9f8593f49c79 Expression Expression 9241 11972 367 28 9427 11986 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 2c224d09-53fb-4dfb-aa50-c92bb3f8153d Variable O O true 09c7b0c3-e11c-4173-acc1-d8323a4a5346 1 9243 11974 14 24 9251.5 11986 Result of expression ac68597c-b34c-47b4-8f17-a8a21b5c3bfb Result false 0 9597 11974 9 24 9603 11986 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 1a233394-d800-45e3-bc4e-3e115b150a13 Panel false 0 ac68597c-b34c-47b4-8f17-a8a21b5c3bfb 1 Double click to edit panel content… 9337 11943 179 20 0 0 0 9337.477 11943.5 255;255;255;255 false false true false false true c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 72093452-ecdf-459b-8976-35063c92dd1f 1 d46a743d-5164-4b58-95b3-c812010e916d Group 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true bc453bfa-c615-43b6-806b-a25b6d136fde Scale Scale 9347 8676 154 64 9431 8708 Base geometry 76dbb710-ba16-4294-91a8-7a40635a4156 Geometry Geometry true 00787e40-ac00-46c8-8832-9aa703ca68f4 1 9349 8678 67 20 9392 8688 Center of scaling 8a75b6d3-8be6-4a15-bde5-d37b6d8139e1 Center Center false 0 9349 8698 67 20 9392 8708 1 1 {0} 0 0 0 Scaling factor e63a5cea-837a-4466-8c03-aa983afb0616 1/X Factor Factor false e2349130-aa0f-401d-b935-da39728890df 1 9349 8718 67 20 9392 8728 1 1 {0} 0.5 Scaled geometry 39beea24-256e-4dab-b765-3357110414ce Geometry Geometry false 0 9446 8678 53 30 9474 8693 Transformation data 496aa0d8-898b-4b92-857a-391bfa610d7b Transform Transform false 0 9446 8708 53 30 9474 8723 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 40d1fb3a-4c8a-4cd8-897e-f93423e452e4 Point Point false 39beea24-256e-4dab-b765-3357110414ce 1 9396 8652 50 24 9421 8664.346 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true 6ba0ca13-3163-433b-bdcf-cbb6eb2e32a1 Mirror Mirror 9352 8002 138 44 9420 8024 Base geometry 11d697c4-f19a-4f84-93a3-a982daf03ec6 Geometry Geometry true 72093452-ecdf-459b-8976-35063c92dd1f 1 9354 8004 51 20 9381 8014 Mirror plane b16eb7a6-4cb5-45ca-bea4-26fae76bc9e0 Plane Plane false bd41a999-d637-478a-99d6-7456e8136d87 1 9354 8024 51 20 9381 8034 1 1 {0} 0 0 0 0 1 0 0 0 1 Mirrored geometry 8831d957-d436-43f9-a31b-730e1d909d2f Geometry Geometry false 0 9435 8004 53 20 9463 8014 Transformation data 0e8720af-deb4-4c39-8129-8fd604951957 Transform Transform false 0 9435 8024 53 20 9463 8034 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves 2c62e475-50df-4188-ac09-8024f05be84e Curve Curve false 72093452-ecdf-459b-8976-35063c92dd1f 1 9395 7541 50 24 9420 7553.033 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object f210c96f-2d80-44cf-9628-9361c422e064 Relay false 549d34cb-c2d5-4037-90dc-da2ba0434b4d 1 9406 11365 40 16 9426 11373 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true c6eacf19-8f0e-4bb9-b4b0-cf978a21ac60 Curve Curve false 39a4ff0f-6c72-4497-8065-1a6228469a0b 1 8927 11618 50 24 8952.876 11630.08 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 549d34cb-c2d5-4037-90dc-da2ba0434b4d Curve Curve false e62f36d2-2c6a-4868-95b8-f39c3e5d83d0 1 8927 11414 50 24 8952.973 11426.06 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true c98f483b-84e7-4f79-ba9e-e0b4f6b43672 Scale Scale 8875 11456 154 64 8959 11488 Base geometry 234d84c3-cb1d-4097-989c-3756d196a190 Geometry Geometry true c6eacf19-8f0e-4bb9-b4b0-cf978a21ac60 1 8877 11458 67 20 8920 11468 Center of scaling 3ea89f27-91b1-46d1-a79c-bea00b132583 Center Center false 0 8877 11478 67 20 8920 11488 1 1 {0} 0 0 0 Scaling factor 6c864e4f-9df5-4c74-bea6-ba889c4751e4 2^X Factor Factor false 441d669f-89e0-4184-9e8b-861b77ffcbcf 1 8877 11498 67 20 8920 11508 1 1 {0} 1 Scaled geometry e62f36d2-2c6a-4868-95b8-f39c3e5d83d0 Geometry Geometry false 0 8974 11458 53 30 9002 11473 Transformation data 57faab0e-646b-4ced-980c-d267e7034860 Transform Transform false 0 8974 11488 53 30 9002 11503 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects c6eacf19-8f0e-4bb9-b4b0-cf978a21ac60 549d34cb-c2d5-4037-90dc-da2ba0434b4d c98f483b-84e7-4f79-ba9e-e0b4f6b43672 27899f96-8899-44d3-a06c-50d23c4c5623 3d12c214-7971-4352-985a-0fd340c4b343 441d669f-89e0-4184-9e8b-861b77ffcbcf beb16079-3864-4233-9af9-59f099bc7bc0 7 d0a60f2e-f49e-4d09-b4c3-1ac7d60defe7 Group e9eb1dcf-92f6-4d4d-84ae-96222d60f56b Move Translate (move) an object along a vector. true 87a9a300-1939-4978-bea9-829655d2c198 Move Move 9352 7895 138 44 9420 7917 Base geometry d179b163-9a69-4527-a113-6e6f6cc527df Geometry Geometry true 72093452-ecdf-459b-8976-35063c92dd1f 1 9354 7897 51 20 9381 7907 Translation vector 0fc66504-c5ba-4e9d-b24e-173081ac3ba8 Motion Motion false 0 9354 7917 51 20 9381 7927 1 1 {0} 0 3 0 Translated geometry e89390a3-e1dd-4269-af99-456b46abbf1b Geometry Geometry false 0 9435 7897 53 20 9463 7907 Transformation data c1821fb9-4027-42d5-88e2-2cba21d526be Transform Transform false 0 9435 7917 53 20 9463 7927 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 3d12c214-7971-4352-985a-0fd340c4b343 Digit Scroller false 0 12 2 27.9312132004 8827 11581 250 20 8827.646 11581.56 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 441d669f-89e0-4184-9e8b-861b77ffcbcf Panel false 0 0 27.93121320041998779 8875 11540 154 20 0 0 0 8875.247 11540.97 255;255;255;255 false false true false false true d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 4f429b08-e754-4858-8236-abf77d1883d8 Curve Curve false 0 8927 11665 50 24 8952.695 11677.73 1 1 {0;0;0;0;0;0;0} -1 zPxpPFVvG/D/b2OGTJXIXIaklCEylGMrlWYiNFOISjQoGjdS0kRJ0mQolIpKRaadKZEyD5m2eWabaeDne32Pa5397+t1P/k/uj3wbn3WWvs899rLsjZe0ThoNNrk1Mc//vMxnXPqk/VWJ+cjrqtcXVxcjyxSsHI4dtzZ9ciKZYs1tRdraWov1Zv6h4aG5iKFVe6HT7gfc1hxxMH9xDG7w4sUzNz3HXbev8HB09L1kMORFTo6Wlp6mg76y/Yv09HR0dbg+WcUyf88+OK1Dq4uDieOeS42cz3sucr92EkH7qmV007+O5iA3bH9Ts4nHbTtXfhd3RyOHHE/tu84t73dCbt/NuLj4+P8Z56i82k0rSlv/xaczs819Q+Rfz6VXaTROH9e4KR9ufjvc/o1yUmbhc+PVVqxeW1HiVh6C03Uh2Me+/mwmt/vqfWBuK0oN+3//GDD/6R/e/r/WXj+ZxsN+r/SUVPUjP7PBP8o/O8E54jF7TEXLBVLn/h3guulPCX+mWA2bivKhRv+M1Gu/75s//9M9n/2/T8/4vGxmGguWoiWopVoDcpCG9FmtBVtRzvRbrQX/n+fQz86gA6iQ+gwOoKOomPoOPoT/YX+Rv+gE+jkf48d/T+fGSiNA5dRGicuozQuXEZp3LiM0nhwGaXx4jJKm4bLKI0Pl1EaPy6jNAFcRmmCuIzSpuMyShPCZZQmjMsoTQSXUZrov9JRBspEaWK4HmWgTJQ2A9ejDJSJ0mbiepSBMlHaLFyPMlAmShPH9SgDZaK02bgeZaBMlCaB61EGykRpkrgeZaBMlDYH16MMlInSpHA9ykCZKE0a16MMlInSZHA9ykCZKE0W16MMlInS5HA9ykCZKE0e16MMlInSFP5VAaWjtigDDUOZKAulzcX9UTpqizLQMJSJslDaPNwfpaO2KAMNQ5koC6Up4v4oHbVFGWgYykRZKE0J90fpqC3KQMNQJspCacq4P0pHbVEGGoYyURZKU8H9UTpqizLQMJSJslDafNwfpaO2KAMNQ5koC6Wp4v4oHbVFGWgYykRZKG0B7o/SUVuUgYahTJSF0tRwf5SO2qIMNAxloiyUthD3R+moLcpAw1AmykJpi3B/lI7aogw0DGWiLJSmjvujdNQWZaBhKBNlobTFuD9KR21RBhqGMlEWSluC+6N01BZloGEoE2Wh1E0L8X/vM8jHxU/uO49vX/k/9x1rIjT41S/thI7z8lLTjGev+G9f959+CIRuVuu2emin/rcneDbnhD85AXJ39bPLZm39P7Y/A+p1+XZra92o7Q87pCnXaHuBxxW2wNCpm9T27/7zOBfhjdAHuQ27XlLbT1wXcDog7gdzePjq8u3zqe1N/vP4V0G1+NgLpm8/1Q+/t3o+MHIDfB8H7m2L5jP6b1f4z7iBoGh+aI6EqTTVQ4+Yjxh13wJaXG6W1RY1qguc+mc+QSBnsdvggdIyqm89d+ou9+5g0K07/nSCfxXVj174Z54hcKhPRmffp01U5z39UC+v4B7obhP232JuRfV7B/6Z/30Ye+hPC1xiS/U3kFl10+gh/Jp5NNGrxJHqt4a3TT2vRyABk6ksF1eqbzI8kfrcOgwWeSh01Gm6U32WZerU8w0HRY3HD+kzz1KdocV7Q0g0AhjbXcpVNnlTnS9189RxiICj32JFrl+6TPX5RcF73HIjQbd5beHJmutUH6fXTR2fJzBdwa04KuUW1ZcXKi0pYTyFEP3FO9+vvkv1Yo2DU8ctCgZ4nltHRTyguv/Ey0kd/Wj4s293+6FT4VTX+dh34IB4DPzcmGwwqPiU6k2ZiwtD+mNgSevAmnrHZ1TXtjw4dZyfgd7vHye3m7+i+sUT4WG/nj2HR/TkpOafr6kuPlLMp34pFviHVUTY2u+o/vXAH7c9+16Agbb9avO6RKpfFpCfel1ewqkTGWcMeFKp3pepY/xJ6hXEpHQfXfeDSbYXgWcDI6/gZ5aU/PmzmVTP7FkmplQSB0JZXgu7XXOo/tjpRspz63gY2b/HODr5C9XTsk64ZWbHQ5K583XVAwVUf31no1KN9mtYdyQ4TTW1kOpnfs2oHAp/DVqaL40+TBRTXelh1lUh0TewKV2k5sHZMqrfD9kNKuffQNup1I4jhpVUn360asCo+w2wbuVa/4Zqqmv+0oqy3vEW/mgzZmy5WUf1P2vtt7vlvoUTCgXxVhINVOe+7jj9im4CBJ96FVkg1kT1LAGt9PAnCTAx0dTXo99C9bvs1KMfZ7yD+zl1e5NutVFd0oimVMJ4B6N08edb5TupXhfeU9bV+w6qte4qTDR2U91um+dl7t3vQd0q3HZeQx/VG4aD9GTz3wPXVkmvJzf6qT68XaNDR/8DKD/Ii7y5aZDqHfv1722O/gAX7LwdDZcMU31D4X3TA+KJ8GLpbJlInVGq59CMRy/4JMK4VMNg6b5xqv/MEHka0p8IJyL9zQcSf1G9Z0a3+eu9SVAZ/11Jw2CC6npV7/98KUiCZfaRYYdO0Kjr9Oonm2IaDT+C/7k5OyOaOKj+cpe/+a9nH2HbsPDM4UNcVLceWjk+UzIZJt6Fi0QL81BdQnTd40WXkkGt212Pt4CX6uaxzqtWDyXDkmKpNYdi+Kj+8/3hlt37UqBeabJSP0KA6qcSZ/meLEyBVR5Ja1nJ06nuuF9u3k2jVDji8+JExYgw1ScW01OiX6TC5q5KM/PnolRvaV1gwZRKA7knyhEHusSovn7ZxdZKvzSQT644fBpmUp2xlO3eP5IGvpGuu3dEzyLzrOXlEHBIBznuXWM1irOpnvrA5vK8knRYlcB5seadBNXv79G9+FCBCUaLvgws2zOH6hbHWJ+eWTMh57xMQbGsNNXH6Pa/391gwsAXD+k7wzJUnyV7UjsjmwmFEm5mh1rlqG4Wk+X47TcTlm61mRPpoUD1vb5jd35ofwI58N1//epcqudMS2C2HvwEhoYGskdfzKP6jYZbrQPhn6BYja/1a7Ui1ce/LZg2WfkJvJXu7pwrpUx1TTrvPEHRDNicFi3cf0CF6tM4XulKrM2Ass6ZHszs+VQvr3tkong+A7bYfu8RX7qA6lc3bt6w5F0GjHi33fV8q0aOA/eC9YbdGSD21dvB3WQROd9ib9HXKmbCQFQ9x502dapvONiibrEjE8ZStn5xeLiE6tqBR8X2BmZCneW8vYZvNajOp3Gu82BuJoxcloAX4ZpUr3u9KvHkZCZIXNx4f3OoFtXb3Yc9vXWzQOEo/6bDD7Wp7nzgw+IbLlmQGBLSuSV2KdWXB0WU3XuSBTtuZH4yydKh+tmMTJen1VkQM7ylOLhdl9wf8UiPxM/IBt2mM7m3JPWo/nvzfZeUddkwrdRz1NdSn+pfedVKPjOywUqv2yLtgQF5XiGPlEs+ZEPAddsj/v2G5Pznzthf15sNy7nzXPQtVlB9zqnN1zqUc0Do1S9+6Qwjqu8s7H04tCsH9CXFMkGeTnVbA6O7k7dzQOPso7KdzaSXv/98UiA/B6rdN9j5xxuT60Acj6E452fwXi9vOuRD7gdZPnaN8vqfQaopLSpjzyqq68lqH1Jz+wwPrWOK5IxNqL77NLNkafRnyNY6slVr4Wqy/coVUlD3GWIODzSryK6huqBl3vJ14rnwWyr8hIrEWjJPG3d9i425sKfs+Zydc0ypbrNNT3i3Ty4kfjWa3ae4jurZy8cTHT/mgn1QVsn0Zeupfv7ilWVu/blw/744q27rBqp/SXx62VP1Cxy2ed9589RGqj+eMRzlvfcLOEiJZKx/uonqBcL8t68GfwHBqCdmBjWbqX6Bd/e6oIIvUDZdtcBE2Izqi75s+/yAOw+UfybXaL4l/ZCescBTwzzIjp3bO77LnOpdzdtEXh7LA4NIdtgbwa3kOhz3piThWR5Mr/90/2g66bn791imsPJgPMHg6kYPC6ovPL72RqZEPhRb88hv17WkemDOqvN5m/Nh28cdPC/HSfdYJzq3yDcfdC8v7N6dsY1cfy6bHa9IyQc7w0yGV4AVuc6Y3DhaO5gPb4e6XdXtrcn5Ka0v2aT2FULVgh1OrbChuj1H1P52u69g/31EyF1mO9WfqouY9YR8hR26UmLLOXZQPajtdlX/969wwbFcpLGLdB8jvd/DvAXwdVdZxNmanVTnzG9+O76iAHw+iG6fW7KL6sNHHX//PlEAksrH37d83031bwuPFE3GFkC6n6tWffEechy+ByzmbCqAae9DdRVr9lJ9VcMaEW6pbzCgGnGjyd2W6okO3Ud4zL/B/aZpkmyaHdXzE5mmvH7f4LjfmhLjm6TLOrfe5U3/BnPeO21tUthH9VqJ/da8I9/AcmyabP070kV3y3vzqH+H1Xz34mDzfnL9j2+dwW3/Heo5Ek+LdJKeaX2Am/P+d/C5eaLR5oo9+b5po2U+WfQdRIQerVBZ5ED1kg+14+e4C+F0pEiZVzHp/ZcXDf6SLwTDPb8b3c86Ur1aIyLQ07AQEgwNb01XO0D1+qcbi0esCkHP4PafLdWkR8LCN8ePFcL7fdOWrA9wIt/vshcvZl8vhMHiefI865ypnuehv+rws0LwyjVJ8Oc5SPXpyvK9bVmFIPeq+1NzNunXNZ4u3M8qBCd1Xj5Z/0NUT3vtPVb7qxB41+hordh6mOpcl23NbSSKoODwvIrNci5U9z9apVWsVQRtb3NO7ewl/aD26XsbNhfBtYkP5w9nHCGvV/wnryznInhp7A5XQ12p/mzW3PblvkXAcbDqtK2hG9U7R3/lJoQVQegBi31XY0nnuB6jsCilCJQz1KrzZI+S/s21K6KiCIo5XXcr3iLd/dV15TmDRbDKvsniHt8xqruaaebfEC4GfY2n0ppepG9Yca6SS60YHBYWc/X9Ij0t/PI6j9XFsF90yaYKj+NUP3l9h1S3bTFoSn9b0DtKur3u0Jq9Z4tBJ+pdyjLPE1R3g7X5RXeLQfHHpTmJv0n/zWkYueptMfAfUzI57u1O9R+s2LyEb8VwO2i7hovASapLBxxaodxZDBJZjE/Pgkg/csJ4NIinBFxb1fIWzT1Fntdo5yDX3BIQdswR/BlH+pdm6SXHlpcA02WNrrixB/n6/Xr+Sb311Pb0vDavUtI/2L/bsvF4Ccx6YfJi1UFPqv8aslmUeKME3ocp/tnNeZrqMek/dRSfl0Bl/Si99AHprceUnK5nl0BWsUz+M/0z5Hx7YJM2wioBAy/b6oZK0svkZi7d+7sE3r2IfXjh9FlyXY3/kpUjUQrJIs8XXJI7R/Uim+5D6tqlIPLlmPdYFumX2C1KtzeXgk+1RnCVy3ny/e6FTNeocylckP+6YtGcC1TfGjWQtNO3FH6bBy4fzCH9q3POtbSwUpCQ63scYsigevHVwT0KKaXw8/Ve16Eg0pP5SxZ6VZRCEYhsutFHut7t5F7WQCnM/Rp45MAGL/L1XsERCcJlYHs4e4IRQ/qp72OrHi4oA5mUCdkaXm9yn8w38HXcpAy2spc2ejqS7ta5Qn+bbRmsEVpsvfMz6Udoiy7GnSmDtdKx570W+FB9wFDwGd/dMjDfH2TWc430ej21SNs3ZVAcr5z8uJ/03+crXD4UlIHwPanIe9YXqR72yY5bqKMMtnz+0VSdRnqNrOQ+O+5ymNwUteXAfF+qu1it906QLwfe35/ilgeSLi28zpbXsBxmv4/M2vWb9J+TDqNWVuVQUCK3JtfpEtVDdIZWRh0thz8XApoulJNub2hqNHStHFqkp5tcXH2Z6glbE5vpMeXA9fQyb/k70pvDH2heyyyHMRm+DPf5flRX27dFobyuHDYPFvDYh5JuLaj+Qu5nOZx289oeLnyF6rrnggodxCtgfO7eFYsvkt6k0uYXq1EBHWvs1QR/kX514ZXCvg0VULv8zC294/5kXN+GCK0DFbCjO5r1vpv0l0o7fh33roDCpUs9Lx24Su6LRGzL3j6sgL3WNUnRTaT/Prt/0UBiBeja/hqXsrtG9dNdFb8Wl07N5/oHf1Y96bUGS+FgXwWEv1/8YWzvdfI6pg30RwpUwo7nEVn7G0hvNwsUqVGuBIFbTwfm2t8g1+G9gbdnGFeC1oY1Z7TbST/785Tn2l2VsCZ9+e0Ql5tU/1hbkHL6VCUU6M4+aD5EupSH/PYXtyrhbYmG+BKjAHJ/wv69ruZlJeye6Dlb7016xIKf/gJfKuGN+rff+rmk16a9kljWXAkcSxQijYQDqX6M+32X3WQlvFSefrbHkvRYWhznVakqqI94FrjmAemi9stt3uhUgXOSePe6ZtLbznO3V5hVQZbQlcDRRbeoXqH9+uWvQ1XQ0uByactJ0mXa+57IXq6CNJmTBeZM0jvcjn5ZEVEFKpteH5gQuE311RMds3elVsHP6AjLbVak07nErnhUVsEeDutbVhGk75IOl749WAXhzNOynH2kX+qxzosV/gF931z7rZcHUR2mjwRkLPgBJoz9fDb+pM8uMTpUYfIDgk7a7+SsIv2N8Zhl594fcPyCR6OV6h1yf1LSue7X6R9g7PwmaJsH6eusG1YLBP+AvB9rnSZySTdNjTGReP0DBLmit5pLBVPdoV9k5byvP2Bp2jXTzYdJr7nWpr+w7QcotEgaDaeRbsjNqarFWQ3WFh0qa2bcpbrKpCbfMtlqWMeUHqE7kq6ktaVcX68aShnZj1o+kj7WKn/DwKIahN49nblUNITc160sCdd3qIamrPe6F9eRXvVcqUjvSDVsGzEIMHUk3f3JlrzJC5yM/y7/P/SHEP/7i49/R0IVUA2UjpqhtqgbykAD0DA0HmWihSgLZf93fE0cH1VANVA6aobaom4oAw1Aw9B4lIkWoiyUjdK0cHxUAdVA6agZaou6oQw0AA1D41EmWoiyUDZK08bxUQVUA6WjZqgt6oYy0AA0DI1HmWghykLZKG0pjo8qoBooHTVDbVE3lIEGoGFoPMpEC1EWykZpOjg+qoBqoHTUDLVF3VAGGoCGofEoEy1EWSgbpeni+KgCqoHSUTPUFnVDGWgAGobGo0y0EGWhbJS2DMdHFVANlI6aobaoG8pAA9AwNB5looUoC2WjND0cH1VANVA6aobaom4oAw1Aw9B4lIkWoiyUjdL0cXxUAdVA6agZaou6oQw0AA1D41EmWoiyUDZKM8DxUQVUA6WjZqgt6oYy0AA0DI1HmWghykLZKM0Qx0cVUA2UjpqhtqgbykAD0DA0HmWihSgLZaO05Tg+qoBqoHTUDLVF3VAGGoCGofEoEy1EWSgbpa3A8VEFVAOlo2aoLeqGMtAANAyNR5loIcpC2SjNCMdHFVANlI6aobaoG8pAA9AwNB5looUoC2WjNMDxUQVUA6WjZqgt6oYy0AA0DI1HmWghykLZKPVXm8R/7jP+bzc2FTNO0vROVUP6/PSO6T6k19Jcn+tcqQbjudMWf0shnX+/B6/Gk2rILTiXOGfWParvznhsqJpeDaICSj+ED5Me/OfFarkf1TBtk4HvyyzSG+acVpgxXA0Gt2ReDMuGUt0xquYzl2gNGPDTjNtOkS4j8XLZoFoNZO+I0PEuJv2yafYh1uoasM9ccSZH/T7VBc04bPNta+CC/lHOhCukd78G0YQzNZBSujB5fSvp+Zl2HqHBNTBgdzfIf9UD8safd2PQ+dc1MLmc69zxcNIrLrXutf1aA61K3+14aA+p/ni5bAW01YCanNUS+l7SVxxlDctw1sLyvVWFiumkb1ZWThyVqYWJtYc04uUfUX3J6ZY5hctqYfv+H7otDNJF5eZKRG2tBVf3B/kZjaQf/Fgb6+lSC5xBSaWmqx9Tfb7D/NL1frWQtP6D7qkY0q1niV2bE1kL2S3GnSq8YeSN9qx331tSa0HoTvxaRz3S2xk69+Mqa0F1q1Pk+EHSR9NTOk8O1kLNT6Nu1kPSBWnnPxoK18GuXeKiMkWkWyW+451QrYOAjq+/nnOHU/31wuf5qavqgMdjxf3reqQP9MTynNlTB384F1ZlHib986HZr3U862Cnu+HjTeGkz3A3y+u5PfX4nt1lauWkR375uinyVR3kmV2x3ykYQd6YxAjoWX2pg+E4Bc16OunT7YJ9eZvr4OCT0wrvT5JOa+fXTpiogyPnhWezXpBeeFhoxd459bA7c2xwVxPpVQPWYdOW1kOOcn/oIqlI8gOc7rjtLzfXQ6QvvXOzOelzK7sczJzrYdbI+/RMP9I9WQOf2D71sC8/fNSfSXrhudSDNx7Vg0Lcp8NPxki/JWW1e0FSPRQn08dENJ9Q3SmpKvhTST2sfxxztMCZ9NGHHrOse+vhYlblq5oI0uPOJHec4GZBv89vnxU1pF/PCW5PEWNB6E6vzD7xp+QNr66vL5c8C96qCxkNbiF9fqFpuukiFkReOpGx1p901a5XQdf0WdDRES/bk0X654AA7u9rWLBCpUKqaZL0JWXFQqKWLFgdL+SzwDCK6huWHojbYscCQR4fWeZJ0ml9G9qvH2FB2Az7uKg3pFs5X/uQd4YFndHFv2p6SQ+9YizDe4UFL7uqM/ctjKa6luQtcXowCwKrjuQscyLdReFthEckC5g5W5k7n5LOs7U9Iy6eBS7dsoe/NZJ+dv9F95ZUFviML/S+qRBDjo97R9KcfBbMfx6U+GgP6cLuV25urGSBpeO8zF8PSLf0aR0+18IC9VZTi6hq0v2sb3e/HGBBXrW05COpZ1TXj9I+XjPJgusxq9Mat5Ned/nsFX6hBthHm+g7fo90y7qlS3SkGuByH22beRXpsZ907PfObwBXv4u3Ts95Tt5Qfz+o6re0Afa8WLqhbzvpVSrFZ+KMG6Bdmy4fF0q6kcPZPWWbG2DbJvsXSdWkF0ZdKxzf2QCNm8auC8vGUv3ZBb1iGecG4Ns5vuvlHtIPDn/eb3SyATbMnh1/J4z0gJN3fPf4NMBvo4/SnxtJr/oupHcuoAH8N0lpGSu/IPOXjz8T+rAB9KeBD5cT6c9yhczfP28APQGxh0KxpL/em5dY+KEBlLfaC+7tJT36/v23HVkNcCSBy2ZU8yV5HPq6lRzFDfDTMkWg3J10b4GXDhL1DXBzhvOzn0mkz7/zRm5RdwPIdP35YD9B+sZV1kdgvAHuWd9OnLnqFdXXKD7fZs7bCJcfH104zY90/uL8MruZjdCsKHPTqID007t6+9wUGuFV+C7bpBlxVG+R2/b0vHojHDu0WeqUDenZEZaj/gaN4BLqrHvq0V/99Na2O2sb4bbujUVJzaRLyWaffGzZCHyxl/UficdTXTpFOzrarhHy5uwFmj7pS2R1T7860gjVD0/bee8ifd6RE/1vzzRChV+RjRKD9DTJaOFEv0ZYl/28tiWS9NKg4JKPdxqhY0tEdM5n0uP1pFemRDSC44tXLjldpPdNk92VEtcIbttUWptFXpMffDFuKyanNIKnanbO3KWkNxzwDU380gilX19nnbUh3eUWX2ZCeSPQZ/sEDZ8lXT7O+HFcUyOo7V/deTWcdCshe81n7EaYP3LBE3JIF93/+kz4n0Yw3mAwLNJF+vZAT0aIQBM8cOIQ/SPyhuo7DkitvCHRBJ/Ues7w6pAuaz+Z4a3UBHevPe1cuIP02pPhPCc1m6C084CQywXSFdMuTXcyaoKVq6bf+fKE9BurV/6w2dAEz10FtIzzSN+WcfyoqU0THNl1Iaikj/QHmz+X6jo0wWxDrcMM8bdU91cc5lU61gTe8fec1hqSbrj1k4DohSZQmWTpqdqR7nPmV+PPq02gpN5zdd5l0qMvnb/VHNIEB1T2ieq+JL3ZSkOm4GkTlP2IPrGvhHQuBodPwpsm8LLpc4weJ714vPtLaHoT6Dcuu8OtkED1J8Wjgxe+NoEEp+VLzzWk17I0uO2rmiAipHcXrwvpl47H/1nT2gQjbTfNn98mfYwjpEl1sAnUHkToOXwkPf2HWBI/rRn8CzzSdRtIVysy8+qY3gwX+c1vy/G9o3p9103IndMMtlo77WSWkF4mOGP0qUoz7OlILV9iRXpa7NxYb+1mSGi+F2ZzjnRfuujePfRm2Mshfjj4yV/dSme2/qZmyIs52NqeT/rJV70lM3Y0w4R6W8qWQdIlxMPudzk2w/nq9gd5Uu+pPmvrW7fM482QLVWvvX0l6X6Td61CGc3Az9iw5Jcz6Y3RmWZu15vhj0rq8vhA0lVY8ftWhzbDMoEGfo8k0q9G1N2cE90MLr+vmWxtIF2fr7C6+20z+DRnhBrxfyDXvQ7B9enMZmBMe/9xuSbpH71k6gIKmqEj4/vWjdtJH5a4ed/uRzMsOJQg5uJFuuujQV/NtmYolDWNevSM9FCbmjDaUDM0Bb1NZxWRPvt8bd83WgswR52EtH+SXl977eQDoRYIea4Kd+YlUn2pl5ees1QLnJLh5Zm2gfQ9my30dea3QMftwyJ+x0nXjA09S1vaAmY/FUUkH5B+Rp7Nk09vAdmobe/eZ5G+brSrMmhTC3AqBb7d30O6aIvy+O4dLcAzWZgsNzuJ6gWRSw+qHGiB1ssXGG1GpIvde7mk93gLhN4/k5B6gHThU0qb3jFaYIGzrGB4AOlhdWo5Z663wG9dQ73AJNLtOMweGYe2QNj8xezrjaTnrlKo4o1uAaOJ8rZgwY9k+3ql0/lvW+BlY0Rp7FLSJX2bLt5ktoCjcsDhr7tJj52s/b21oAUsuLQdxy6Rrlce2CL+owUeOX/0WBJPOkffqZWVrS1wMWlo59Eq0vdqcUuEDraA6zXL3FTOZHL9V3/quJPWCos8hk/OWkT6qw+ZS2WEWuFKSdhc922ka97KuFgzpxVszxR7158nfVRkYvsDlVbgCUndZhFDesuH/A87tVvh1H5zq8Ii0pM6PMOl6K0w3LfC2OoX6Y3eW6SqNrbCjb6xkmalFKo/97mqfHd7K5idzfh6ZjPp6Qn2OZaOrbC74VmnlAfpypv4aTOOtwK/w62eT+Gke4Y8Kvt2oRXyZuoFu+WT/vohff3Va62w69rSKJVh0pflcNitvdcKv79ysZrkUql+wbdThiuqFXI4+KfFmJLOzzHOSHvTCjssb9cfO0Z6WaJCgGd6KzBTGhebPCB9h8b6TUu/tsKbkkXJ0jmkt9/dmtxb2QoGUeEbxvtIv3dSsDamZepx/N1iauakkdfL0uDdvoFWCBz9Gpq9ivQzjiFrZCZboXPHYPdbF9LLlhXfLhNsg0tD6gej75I+Yn358Q3JNsiOr6p7/In0CZ71h9cqt4EzzyHJh12kN9c++j2p2Qad34+1PBJPp/of399bE43a4KxO5NS7KdL5d+cfddvQBsyLpZ5xzqRnqzrsVLVpgwZJgebU26RPZM2awbJvg5Nwan5hKun7S8RD7h6dGlf6omRrG+lih4L6Np9vA5nNzjmTfEyqP8l/IcV7tQ28QsPVheVIv8dzSDr1bht4Lv+jLqdNuv2M/MHjT9ogTmVJwhJT0tVnJT1Ve90G/pJ+L1fuJv3odTHthtQ2MJAYmmZ9jPQX98Mf3s1rA9mi0deHL5PepTm/bVNFG6zgexXq84D0hZbmYtzNbSD5O+v1/deka1swZT+y2yCz9ExbQg7pw3y8wm5/2iBdOGzR92rS3cSjmpQF2uFlm/+xTjbpPDKzw6pnt0N2vlwsL+8nqhtzpJkEKrbDeGZWrqI06dMXjBWv0WiH6mbnNGMN0te9E9v4e3k7SKadvWC7mvT0rPWvX69rh/t5nZMXdpB+5k051wGrdjBskF0a5kr6vm01JjL72+HX03HRTxdJ16KfdC9ybYf8X5VXG++RnsTxNvjS2XZIPnk1lDuO9B0Od54ZXmmH+G9btednkV70dlYc+047nN7K2ri+inT9IZmYpxHtYLFza51LL+nL1W/e2RHXDu+ZmvWBXBnk+3WUsYdISjs82Oi69r0k6WfUaOZZue0wvMROpFqd9JK11xQ8y9rB9xRzCW0V6Rm3H7apN7YDmxEVrmxDOnd3Q1RjbztIu/nv2eBCunzSnz13f03N54mR7VFv0r9oXBPdyNcBYhq9YXfvkn4kRD6FJj7VN0hJp70g/etl433v5naA7de7X5o/kf5i4XGug4s7IOPRtWjBCtLj/dTD5Aw7IGiZS7xWN+nL0xr0StZ2gKPQz/rtHJlUP7huvOCyZQdkCq/Q8ppNurhp+d7ldh0wbc7lyJiFpPcll/SyXTrAxtVFo5BO+suC1Weenu6At5qfy0a3ka4leppnx+UOECx9HiB/iPTSzA/XhYM64NKdQ3vWMkgPm0OflRnWAQmjwctd75D+4uTme6dedkCfzoDq3eekH/ogKbvoYwfEp5yam55Ousjx749ZOR0wEWap1FZKervRo7l3SjqgVqJ1iUjnX/Ppj41Yx+qAgp73K5dNkh7eJqU40d0BGyfO7tw7K4vcb5vwR74Z7wCL2NmelxeQfl0vcN4B3k74bekXGmdEuviqL+HSMzuBWTieVmFBusrJLIVC+U5Qb3zbMulE+q6Ptx5fXNQJq17JCqueJz1R1FhOX78TKld+XGZ2m3TTmqoHPas7QaxEeZ9HDOmPhR2kI7Z2QprgrOthqX/N51P7Pau9nSBusT4xt5j0lXpOkoKHO6Fn5bMmdhvpb4vag9M9OqFw0x/hOX9I3y3rLH7CtxO4TSwNjGdkk/vMcx23VW91QvvR5w7O80nPrnSeUfuoEz6W0QIDl5OecyjdcVt0J7xIvGnzYj3pSjqdAYGxneCy0DolyZz0485PeP4f/UOI//3Fx3/gQ0VRSVQBVUU1UD2UjpqiZqgNaos6oW6oB8pA/dAANAQNQ2PQeDQRZaK5aCFaibLQdpSNjv33+Rv/Kx8qikqiCqgqqoHqoXTUFDVDbVBb1Al1Qz1QBuqHBqAhaBgag8ajiSgTzUUL0UqUhbajbHQMpa38Vz5UFJVEFVBVVAPVQ+moKWqG2qC2qBPqhnqgDNQPDUBD0DA0Bo1HE1EmmosWopUoC21H2egYSlv1r3yoKCqJKqCqqAaqh9JRU9QMtUFtUSfUDfVAGagfGoCGoGFoDBqPJqJMNBctRCtRFtqOstExlGbyr3yoKCqJKqCqqAaqh9JRU9QMtUFtUSfUDfVAGagfGoCGoGFoDBqPJqJMNBctRCtRFtqOstExlLb6X/lQUVQSVUBVUQ1UD6WjpqgZaoPaok6oG+qBMlA/NAANQcPQGDQeTUSZaC5aiFaiLLQdZaNjKG3Nv/KhoqgkqoCqohqoHkpHTVEz1Aa1RZ1QN9QDZaB+aAAagoahMWg8mogy0Vy0EK1EWWg7ykbHUNraf+VDRVFJVAFVRTVQPZSOmqJmqA1qizqhbqgHykD90AA0BA1DY9B4NBFlorloIVqJstB2lI2OodR/W0X85z7j/3Zj4zUxK7kgrhMWP5JT+GxDunfgQZE1iZ2g4PWyrcGRdKfuzus/szphoJlrpsBZ0js3HpoeV9QJ5TN2GGkFkh4U0uW/v64TBPhfO++IIp1H6zC/ZFcn9M7kueOdTLrWs67LX0c7IZvLnvm8kPRnO115vbi7QHZDaFdxC+m0Gz8v6oh1wRcfv9m/fpIesP02V6dsF3DNGqIriuZQvTvO2PuRWhfcjQk4uEGZ9HlDIhwWy7rg5Ymft44bkK49X5AxzaQLpC8lJN3fQnqy5qrJZLMuqONQqcu0Jz1DOf+82+4uuBx7d7LLk/Ro76QJpYNdcMNGU3bWTdJPeKheqDrZBULOozrLn5Buu1CXdsOnC/4Y5ZraJ5GuP8rtvTKgC2rfbbe89o30mjfJ3KMPukAtVNc6oYn0+4O+frHPuqBLIWVLzdhf8zELErJ93wUqeyWWcwt/JvOJkgmaldkFlp9WSi1SJH32jh0yX753wXdvrnYLPdJDH9yIOlfTBarKbRFnNpG+/RVNW6ujC7zb6KaR+0jXnjfxqXW4C0pWzC/LO0V6jUK1xX3ObpAwPbpm4Brpgi8G2reIdMOJdQkhcyJID2mI8uKW6Ya18sa59A+kPzCyk0tS7QbJxLlFB76SfrrxVrqLTjec9p8dd6OB9KqiBId5K7vhi2DQ7ncjpJ/XNxWr2DzVVZgV1YK5VF/wujzj6s5uUHrjKsk5l3ST8wOn6U7dwGxVlFLVJf1Sua7B8Ilu6CybVrFpA+kn5plyPPfqBqv6HtPjtqQXQGnhnhvd0KKyyTnEnfSUzFvPZt7vBiMB0Ez1J336itXXcqOn5hN89l7DY9KFT37wPJfQDZd/7QzleUf6yffpx7Q+dYMd97eFC/JI7+UGj7aCblDz27l6Yz3pN53mXn3woxsUWPPqjgyRLqG254V5WzeI7CzrDuD/QvWWWWM1vEPdUB+fcOCNHOkFH/7IptB64LF7gEmJNulXnl5xOyrUA3At02PQlPTJhIwyFakeyAjRHJ+xh3RD45rNNSo9MHnU5KPmcdJ5nWfXBmr3QMOtjrgtfqSv3JzmtZbeA+JXbxYcfkh6heVioz8be0DdVZH3yhvSze2+zXy7vQekTYU3PvlMurjELG5nxx6Q9NYKTKshXWa2j6j88R7I3NGRU9FP+m69lwZlF3rg4WZaXR9vHjk/v2ldvHqtB9J83+fwypBeUZPRa3yvB8Lgo5uMJulSVtJnx572gJmRSr7GGtKbrfkXx73pgYUaF7JW7ST9lb0zr2N6D9hJvV6/zY30yEfzp8l+7YHtKdM3OPiSrjsJWqWVU/PhW/3meCjpTcFpV6629ECL6eHDjDjS1z9NF1k10APyHwbsr2aR7mPsmvNzogcOrn92KaiKdBDij38j2AunZ2Ul3+8lfWNzxbeDkr0gk1LTE8aVT3WHazrKisq90NI7xPNEkvR19v7vqjV7QaXUo/uJOulbZ2zyDjLqBY/zxlciV5J+XIvzxqYNvXB3193Mx9akF3Atr+a16QWHZ0u97x0m/Z546GGmfS/MqF4bG+BFevxgrsnpo71wRuykkm8w6bbFXo5Lz/dCik9t8clY0nv1/Ut7/XuBo0fivgPzr/m8fhv47O7UcRhbbmdeRjo4V4fZP+mFly+a+Qw6Sc9t7uBWeN0LY2UL3OUnSRd9UsysTu2FXW4v/DhmfaV68NfbFXfzeiFWNEiZpUr6tyKdjZYVvTC88ZZ68grSFWXz54o194KVUovXra2k+71z3fmN3QsLHbdzOR4g/VGr6e+rf3rhjeSmWzpnSXdouzhtvUAfzKx/LcwRSPpNxg4Gn0QfsPaI2OQ+JX3fG76DnxX7QP6p76arH0k331H++ZJGH1T6fy9Y95108Uqxh2tW9IHanNUfuJpJv/9GtId3fR/M7qltSxwj/cDyJcmfrfogO1R7hbNQAflB3LJCgSv7+yBC9GLQrHmkrz2zq369Wx9I/nyb91GXdNGglcuFzvWB4DzzlJ0bSH94cESp8EofaJYFrR7dS/riFvaD28F9oGriuPL6CdJb/eOirSP7wKdl1w3ZK6QzVBJMZeL7ILkigzvmIeltThd9GlL6QGDVXcaiN6RHX322M/pLH+xMDqh5nkO6wWBcqUt5H6yOkB+cV036siKVgaVNfSB8xe1RUB/pZ3Ief/jd1wdtt44kTnJ9I9v7vlLN/t0H2yuypewlSb+gf0LpMzcbKrNaHn1aRPoB5QGhRYJsKPDhkpM0Jv1q/YOtgWJseLtd5uiBbaQPX6cPjUiwoXX6mFucM+n+J54N7ZJjQ5jpwpG+c6QvzYnclqnEhhscUlWqt0ifc/KXpNpCNvz8Md6/PYr0Cr6z9EBNNjhfK5X0+Uh6jwO7YGwZGwbW+is/+Ub6gmfzMm2N2LBmbmlfSiPpa4eq534xYYOj+5otBSOkP6Y3d2luYIO0hYV0mcB3qk/T5FS8b86Ge80bF5bKkV7X9DOX24YNkZUHrPK0SBfLDqw/socNaUWpxz+sIV3bzs+pyp4NuzK37Li/g3RbnUcOJofYUBbM1+B+hHSpawGVcUfZ4PElrW6NN+n31KQypT2m5tmhryYcTHpH7YCK33k2VKcbhOY/I73xynee4YtscOf05LmQSnrDrH12+66yYVF55ErVItJX791uWBjIBoa9nernZtL1l9jdMQqZ2n7flus7x0hfCvOOvnw0Nf89tCcDPIVUv/nVuFDmKRumd3hLvBEhPXutXcK1WDYIjHlMPzyH9PlL5eT/vGbDvouLjygokm73S2zGkUQ2uGkOzv++iPR3WUU36tPYYOIrreyhS3rxht5g82w2tKlxmkvTSTdMHFyYlc+Gei3+u4nrSJ/n7rxlWTEbNm2737jFgvTX/MWcsZVs+LBUXb5hF+lF/c/XytezoSTcSO+wI+n7Th2WD2phgxJr55x+V9J5r125yt/Nhiddcq9cPUnfG+l6/cLA1LjpGo1t3qSXXb+kMjLGhugH68O3XyN93ELDxmWSDeaWyyqy7pC+e8YXxRaefvC+Weq64DHpM8qj/HdP74eHUrOsL8f8ddw859won9EPiRp/POpekz7b5+ASszn9YJr78tPiZNJPcdS65sn3Qyprp6xH1l/98Euz1Sr9sKbIyuNjAekPfMRKmIumxg3hSx8uJ91jsd7Ycu1+aFIfrV3AIj1o97pPSfr9EFmc/cmqg/SeLocly+j9UOuga312gHRtr+hV79b0g16i2tXQX6Snn1CY1N7UD1sanq5/zV1E9UWvq/e9tegHseACb6YQ6V9Daly1d/SDBaNLIXc26R875eYn2PbD8btHZuTKk54dE3xF50A/SJ/uNmGqkj5zYknIB5d+WPZlXlS8JunXVL5bGJzohxGfMcV7BqTPtjZLTT3dD7/sL7zwXEX63ajLZcZe/RBLH1bfupH0T6P0hzmX++G+fXbwvG2kZzSB+MYb/aAwdqWsczfpr5+CUXFQP0zsFqp67kh6G++g5Pb7U/O8uyFgnyvp8hu5o1jh/dAfdbxTzIN0hqJ4q1NMP5wdbS9PZJB+/nZaVf+rfjjNNFltfYX0gM4ArzPv+kHgiLVyTyDpTXEz63hSpo4bv9qB06Gkfw/K7gvI6IeCsMmfExGkmx+Q+SDzpR/qE6yKTseSvoHHd+mz7/2gGt75o+ftX49jtt9Jt7wfVATe8dmkkK6rPMMiq6YfLq3v25CURfqyTU1DW5v6IaVhZrBYAek1nvKbGzv64XpTfaVtGemuBrx7j7H74YmTJW90LelmwwXzuUb7YTotUbS5hfSUhsiYoD/98HpuSKdEL+m+nC8aVLgHICM879LKEdI/zOUoSRIYgH4l18r9E3/NvyDh7CaxAWi4wy4+w1tM9c2W3+saJAZgbyjvQX9h0n9mbxk/KTcAZ4U+BN6cTbpO/8Kv05UHwPaQtdFVOdKn7TOzjlw4ALtO3rA/p0K67ZWwUAOtARiKsxh3WEz66cGRO8V6AxAt3Ntvokv6w9PK6w7BAETUDaySMiI94PTwW+41A6AabNLSspp0Ry7V8kcbB2DFC7Gv0ZtInzv9ZJy+xQDUu5T07t1Ges+TACjbPgDBxRtNhHeTLrhg7qWjtgNgaHYl84096dZuX7yFDwzA2Mvq/ZsOk+5JU9J54TIAruU1MnXHSX+yIuvB+hMDMOfZwVb7M6RPhOomdZwegPy8qMQGb9Kv5dH8r3gNgIP78FVLf9KZ3eHCan4D8HTNb5vUwL+OQ/qtNfk3BkBDOFxS5h7pYgWrNV3uDMC9UL4stzDS4+7N/ybyYAA++N6xTI4mvbbokczbiAH4Odma+esV6RtPTZexfjYAfaEVglrvSY8S+pr/K24AamacVdmTSnpejvbC8PcDcFFinjAji/QLr4L016YOwODMLal380mPLzMY6ckcgCvDaYufFpPOe87F9k7eAHAM7NsdU0W6DLieWlE0AM832pqEs0jnMzhv0FoxAElSIvU320g/olcac7NuABJ4x1VP9JLOror6pN8yAJwzK2U3D5OulDz/YnPXADzeeSdJ9jfpDQ8u9t0cmDp/yteONXKWkPPkahvn8vGp111cu/whP+nJnKdS2ycHwJIjZ8tmUdLrJazkgnkHwfDBPbuh2aRrhT5RMhEahE8prnwBsqRH61/4PjBzEITyNY3nKpG+7PmkbITUILic7eOLUSNd+PNyka1zpx7/Ru0uJU3S575bH8GpOgiNFywNgpeRrsJjWP528SDM2Pj90Z8VpHeUyjx30BkE1bmdl3eY/PV82b9lJJcPQr6k3eCL9X+Ny25Rz185CO96heuHzEiv3smqPr9uEDLed5lqWZN+JWdAWdtsENRvCS5x2E364565gu1WgzDb/uHN6/tJDyl383+4exCW+XY4xTqTXtjFirCwH4Sek2ZJaa6kl0kesxA4NAied9Zd+OxO+p+Wefc/HR0E/y92SdlnSD9ym+3h6TEI8voGjklepLtrV3RpXhiEh6OXLkZcJl0zq2ig03cQNr8Tmul1nfRnpj+uPbk2CHOPPBHddvuv49/Qkbjn9iCUSWiclbtHOmfTmPuc0KnntSXSsvYR6bv7JjJKw6bOB54/IYFPSPcXHHwUED0IVWprTQ2fkx77Kp9v06tBWLfvjt2PONLThs9P8r+bmv8lruYj70i/ZsLp/Tl5EL52Jnwb+0i6nczGm74ZgxCw+buCB5P0nhObVUy+DML2pJNV3dl/Hbf4rwGZBYMwoJfc4/flry4QvourcBCmnbXQ3pZPuqxYwbH/R/8Q4n9/8fEf+FBRVBJVQFVRDVQPpaOmqBlqg9qiTqgb6oEyUD80AA1Bw9AYNB5NRJloLlqIVqIstB1lo2P/ff7r/pUPFUUlUQVUFdVA9VA6aoqaoTaoLeqEuqEeKAP1QwPQEDQMjUHj0USUieaihWglykLbUTY6htLW/ysfKopKogqoKqqB6qF01BQ1Q21QW9QJdUM9UAbqhwagIWgYGoPGo4koE81FC9FKlIW2o2x0DKVt+Fc+VBSVRBVQVVQD1UPpqClqhtqgtqgT6oZ6oAzUDw1AQ9AwNAaNRxNRJpqLFqKVKAttR9noGErb+K98qCgqiSqgqqgGqofSUVPUDLVBbVEn1A31QBmoHxqAhqBhaAwajyaiTDQXLUQrURbajrLRMZS26V/5UFFUElVAVVENVA+lo6aoGWqD2qJOqBvqgTJQPzQADUHD0Bg0Hk1EmWguWohWoiy0HWWjYyht87/yoaKoJKqAqqIaqB5KR01RM9QGtUWdUDfUA2WgfmgAGoKGoTFoPJqIMtFctBCtRFloO8pGx1Daln/lQ0VRSVQBVUU1UD2UjpqiZqgNaos6oW6oB8pA/dAANAQNQ2PQeDQRZaK5aCFaibLQdpSNjqE0s//xn/uM/9uNjYu9u+qq4qkbyPQuj7kFpDsY7uvJKB8EmUKZM+8LSb/vZCXtUzsItiUH9wmWk77zXe23Vc2D4Ow6/GJbNeniCR28PF2DoBfcvv0Oi/Ruc7eMnP5BkH7o7pTXQnqeniPtytjUje7ebxVDnaQX8zDTN0wOworkRdGz2KRvrT86Kcw7BMyXxWULhv+60WW4phVPH4Iq7un7l/4k/YPSi1/BM4fgZOSSzUsnSd/DkHq/U2oIuJrDghdwl1J91psX3Qpzh8B5sNBwFj/pGfqWj1rnD8H5xfQVQ0Kkb+rlyHuxeAj2X7gQ+mUG6RZDT48c1xkC62RNiyAJ0m+9W3LVYPkQ9NCEDljKkN5ZeV2Oc9UQ3J9dU8Y/l3RZw1fz89YNQfiXC48TlElf3H7u6S2zIdiyiZ1pqUb6QfGO4J3WQxAYarSqczHpCjLVP5X2DEHF9zuy7tqkj58wKuy1HwIIXG4xvIx0voTf4kmHhmCmc3DzweWkH/adyPM5NgTnVJWLy+ikpzxf2LvZcwhumfrL6K4mnT128LwUYwj8NvhlXV331/OyjjjdemkINOW488s3kf4+9X3Dm+tD8N6TV1NiK+m+utfeXAgaguOrU0c3WpG+tpane+P9IZg1flbBY8dfx5PFc10qYghqJz69CNnz9/xdgtpjhkBqttajV/tId1GR5fgQNwRJ7x6OJDmSvsZgqMj3/RBMHOFI/HiQ9OZtRTzbUofgkNnl5vgjpKtp3rqvlDUEb0z9zj849tdxjp15ayhvCD5fue537iTpVSWa7VlFQyDYbc5jeZp0487PD+5UDsEl88xR+fOkHzoU/8qxfgh0+bn3N3iRXi6eLaPXOgR7tA6vD/ElffNAXQt/zxB0yF99bXKF9Hu7yvlqBoegOFn1Qes10mOn+1x89XMIfDvXCJ8PIP2UQoq1F8cwrO6dN10wiPQNKjZelnzDcCNPN/T6XdLT5qvTVEWGwSXaIJXnPunK70RLfokPw/elKqePPyL9YX/F2HeZYUgR0iovDyfd77G12xPFYbguXVW+5CnpL9Tt9TzVhuHPWJXX+RjSk7OKtmzWHAbtbXq1GbGk22878U5RbxieWhn1/X5FeneUvNO40TC0/TmXtugN6fMdox2/rx4GC79i863v/vq60KmPe7pxGG4X28W7JP41z4+hK89aDANX8sOG88mki759KWuxYxi6fFb3+Kb9dV5xdIOa3TBc0zlQ7f2J9I3pC2I4nIZBgGaX4J5FupWZ4baqI8Mg9LCRsecz6e+ODa9+7T4Mrq97163II33JVnXPK2eHoVa9RnJGAemvQxN77HyG4dwb69Ga76TfvOoSYeA/DMqt9n0Pi0nnEVAMnhk4DOyfewW3lZHOmRT/ufvuMEwemNjGWUl6n1yfTs6jYVhnu+nH0x+kt+R+qH/8dBgW+8RHQi3pR1xaMj1fDMPHs6zU7/WkKwpbNli8HQanZx1LrRr/ur5JNugu/jgM8xLVxEuaSdf3PZTJ92kYejdYHFrT9te4oyW+TZ+HofPBPpP4DtJHq3+fTfs2DKmSUS9Fu/+6/nvnRd8rmzpvORMTDvSSPmCoyONeMwzvxc4feMcm3fxU322zpmEoE1MtHR/46zypnGOxqHMYSi4s5tcZ/uu6Z37TmK9/GHarmosfGCW9dznsaR4dBunsO9MCxkl3OCEdw5yYOm/vremL+0W6qYOk3EOeEeAR7a/O+UP61fnq6Z7TR6DU0r62dJL0nEALf6uZI0AbjOP6wVFGzp+Nfue1pUZgkeu8veVcpBe15IWKzh0BZuNaWh4P6XwNsnU980fgRXD7aMI00i9/ubQ2f/EI1DycZn2Xn/RIY+HyGJ0R2OfasPioIOlNYky/S8tHwIHRGbBSiHS1ZbF77FeNwPfaghuCIqSP9zVYrVw/AtnZhwy+ipLenevppmA+Ap30yqcXZ5C+Lubq8wnrEXBL3t60dBbpGZXa3LV7po7bowM8teKk759562yywwjcbo2ROydBeoLflxmhh0eggTlgLD6HdI4OWo7H8RGYIb/W+6kU6axD++5Ynx4Bsa0lA+oypA+USzN0vaaOT3hv1CtZ0r/67PEV9xuBzy2Sb+bLk27osPfJ0I0RiJEZn39PgfQXgtY1JXdGYJx7lwzXPNJ7YrwWvX0wAiMJWpEOiqTPnykfdCtyBF5rBRYylUhf8vnYjGPPR0Bl+svEWSqkS3dmRpm/HgGLvmpXu/mkL1y/20wzcQQ2r7wlEK1K+oy914XF0kfAOdnuYcsC0r3XRbHY2SOwa3x0uexC0lWL/2QXfh2Bc9KyE5sWkU5z6kmNLxkBjh1vhk+pky4gV/w54MfU4zyK17u/mHSXmOlNbg0jECU9v+bDEtJ/2XCImLePgEyb/nCBBulLpSU3aPaNwIcAhXu1mqQ/d00JFhsZgeZkpdpWLdJbHHf39/8eAdPEsPIObdIz77vsKOYahfdSE6GtS0m3UN9f9EZgFMSsEqBWh3TNxA/bbouNAu+2tT8KdEl329LeelxyFJaJrWEkLiN97IT7RUv5UXi0dN3ah3qkfxJrUtdRGYWVd/pNzuqT7ns4sVFcfRQ8jdpubDP46/VSYkSMaI+CllO5wQJD0ocX5h6uMBiF1smDe0b/6uYpc40TjUfhbaG5CHM56elr5srfMx2F2Sp6+31WkB7rtIf39JZRSGLnuxobkW5Qf3xkh9Uo3HBOXv/zr37ZY7LXcPco5Bm8538FpM8WjuiTsR+FT/zOGbvopE+emRz9c3AUjrue9uc1Jt0yKG1a/dFRsOPyPxX7V18/84oc02MUpKoWP96wkvTCW4LLwy+MAktxZHbbX13w/PBe70ujYFxoN3RuFelB3ONX9l8fhccKbRtFTUi/KpSfZBI0CorrenQe/dU91RT7lO+PwrTpX7Pmryad3z95wbSIUeCyyhN++VeP7DRzbo8ZhfofMgsWryG99lrEyy9xU+fDm2bV2L96pfKxkefvR8FiSF1RaS3p54p8Vl1LnZq/de+ie3/1GO5HQS5Zo/Arn2ungCnpxheudGzOH4Vcae2MU3/1dUZiKzWKR+GNr8qphr96hQvnI7GqUViy6/CNtetIl9y56M9A/Sg0RLjLPP+rGzva7i1tHQWvF0E6/Ov/et2Hjma96xmF7sRfPfZ/dcV9uovuDo3C+tvJ21P/6uuHLgZ7/BqFvRoZ12ZsIN0kX5drB+cYjG2sCrX/q18sVTlmyD8G7tOf/n/t2/9Xj2ccx/E2fRBjIjFis5IPUWq+bGPeiSkhUuurCYlSmy+FaDVSskpf1uRbhUQqKvKlPsI0sWaa7bOzYqNQO6EOEa7rrtU6Zzun9+fsL9g5r8dv9/OH677u67rPuX+5r91FrP9aav3ApJ+gNbszUztYT7s/0a3dWFCsxjzPYW5Xn+ww4HrNMEH20YsaElhfuT1v+mUzQYYPZyz9hfWGi/dKMi0EzfUoVA+Yx54rcd97UTaC4vzsnZ1Z/+v10ny/DwRVL/uyKZ712zHjLOxtBQ18LePNq6yX1FQdU9sLCn1ytqKN9SijI6N6OQkaEJY7ztqpq6cEbsl+7Coo3NJsni/rsz3d1De8BUWu3ftBCuvd1hvl5i8T9FTtoH+Z9eGf5YxNChC0wW3ixUbWZ7bqF65dI2hHsUWo8Xz2XaseNMFloyD/VRq7aaxbnNYWT4gQNDLqPcvlrIeaWUwzjhZUrsl13MH6kIOGV17FCfLVa8nOZT1ybZjjra8FBZplfnKddf0Tn/6s2SvoXrDK9xHrt8zzPdIOCjrqOaamx4KuviDAtzY8W9Dt9qpqU9Y98kL8ffIF2T1OWDyN9ZnXbj21PSPoxJGYCHfW/7CO2/RuqaBg15OzVrNe0Lz1df3vBDV/WnglmvUzqefi6is698vgjmo/6xNszAdeuyno7jC7QQWsNzl9n3GsSpDB9v2qMtbTHu5Rx94VlNnkekfLxw9IORVYLyjEd0duHeuf7yuaOq9RUKrSFtrCumnWi6uWzwVdWDnStZtzV7+rcnPupwjyyR9ub8i6Z+LPvzfrSXr5df6i4azXevmt0PaQdGjhzANjWE+61rf5dF9JC82VwZNYfxF8PSx1oCTLPalaW9Zb3t/bPdREkl39zmpH1geN3JDsaSqpwbubtSvrb4cuMZkyRpLR+R/qF7H+Z4Zbtom1JN/kgI7lrEdZudu0T5Y0I23w9iDWy+uXXKiZJumNUeVbg1mvPLDO4fLHkixW9Vc2sd7dO06bOVcSPfJ6+SXrdta5i6NcOsevOhkezfoQt8qHfl6SCgPrUmNZ32j0KsR+qaQjc8IcEll3+dFUb7S/pH515/eksJ711CWu12pJ2oqcnbtZX6OKMW5cL6lpcM9x+1kfkFF66MYXkrK0Xl9ksL7Pu2VswbbO+Uxv2HKI9YWPxxUnxUpaPF9DWawHqQJmrEuW9G3jgQtHWa8IPFLpskdSVZBlxzHWqxvue048IKmkrqxnHr+v04h646OSLsZuu3uc9bPrl6wRxyUdH7g0Kp/17KkHW28VSaodOri9gHX9mNrt5zWSNq6zmX+S9ZtTR/RPvywpPL5n2CnW62cvS4/4vvM9uV0WVcR6cPph9ZKfJB0e5b36NOtbRtcXTf9NUntb+kdnWI+8b06mdyQlt1k84111yf8H/TpJiXZhiWf5ep7L/eTPR5KMr1QPOse6VXlj7bVmSUvzA3bynv7AMihHSHpePvYZ75l9176K7ZCkKW+1L2bdZEZRZFB3hWZdjE/ifV/Eiz5OfRR6HBJ8g/eplybvtTJS6GnZu3olrCd222xmOFQhTUvTaN63OZYWPBuh0Et1r7m8z05p//BXtUIVBYkreXe6Y3v1jJVCzQFh4byPVG9z3j1JobZRhQm8RweX/xH6kUJBBmJ/ic48e/h7zVTowe+qo7yb93Z8PmWOQi6bN5zg3dI9PmLYQoWGjv3lFO/2hysNOjwU8tFPOMt7wJN+u2p9FPrGtk+JzjpMcXmnbEXnPHMyNbyfi9mVd/gzhWwak8/zXqOtmhQdotAqI8NS3nu+M6RsRZhCPTbN1unjgxbNc4jsXM/fvHS6Z3FG9eivFDph5abTt+rf8+2dpND9z911eu4C0yeNqQp5vKXbtWl+myvTFZozXre3NmSrCrMUMhij2wOvRiyblaP8e0Cyq/9zcPK/3aK1OJ7/COFemODDr3vrAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/B/8DQ== 00000000-0000-0000-0000-000000000000 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects ef1ae534-4ffe-47ba-93ee-e346a77185c6 0b49ec6b-d1db-40e0-af41-4db336de037b dfcb280a-2f59-4aaa-ab7d-450af4129a69 b624573d-9ca3-41eb-81ff-2b404e8dcc1a ef7b2268-af5a-414f-95b9-02fae550af7f e94550ca-554f-4546-abe2-88d301199805 226d2b02-21ed-4b8d-8bf5-4ab9e27624c7 983699a0-215c-40e0-b26d-948c1512ac26 a5cc72ef-aed5-4ae6-9e2b-4189940315ef 1f6b6fe0-03e9-4c89-840d-3b8f6290e785 19ed3ae6-ff8b-4b60-afa2-110ed9eef5c3 3098d657-78ce-4006-b960-e7badca11ff1 1aee2baf-e365-4163-b2cb-49ff49fc26ee 6e4e46b3-e8c4-44de-b5c1-43708200af57 1dd3a0a0-6bb9-4514-8a9a-cebe29e3de2f 4bda8a96-a835-4e3c-a535-d7498d0258cf abd647a2-ec4c-418e-bb1f-32a6b6a1a90e 13c8422e-4844-4300-8cfe-2cef76a73f85 03c64ba8-bcab-4d93-88d6-59b14530c84b ade9bcfd-b1e9-45df-8319-217a0d5fee53 529c6ff8-6d35-4137-9be7-8351a51e1942 b5ce827a-f129-4300-8a93-baeb26c14cea 22 04440443-33c0-49fd-ae8c-2cb12af1e07e Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects ef7b2268-af5a-414f-95b9-02fae550af7f e94550ca-554f-4546-abe2-88d301199805 226d2b02-21ed-4b8d-8bf5-4ab9e27624c7 983699a0-215c-40e0-b26d-948c1512ac26 a5cc72ef-aed5-4ae6-9e2b-4189940315ef 1f6b6fe0-03e9-4c89-840d-3b8f6290e785 19ed3ae6-ff8b-4b60-afa2-110ed9eef5c3 3098d657-78ce-4006-b960-e7badca11ff1 1aee2baf-e365-4163-b2cb-49ff49fc26ee 6e4e46b3-e8c4-44de-b5c1-43708200af57 1dd3a0a0-6bb9-4514-8a9a-cebe29e3de2f ce15836c-2f61-4886-a0a5-02921828a77d 12 ef1ae534-4ffe-47ba-93ee-e346a77185c6 Group dd17d442-3776-40b3-ad5b-5e188b56bd4c Relative Differences Compute relative differences for a list of data true 0b49ec6b-d1db-40e0-af41-4db336de037b Relative Differences Relative Differences 4234 -4107 128 28 4287 -4093 1 List of data to operate on (numbers or points or vectors allowed) c14a33b0-a7a6-41fa-a420-40ef0bb353c0 Values Values false b624573d-9ca3-41eb-81ff-2b404e8dcc1a 1 4236 -4105 36 24 4255.5 -4093 1 Differences between consecutive items 7c3dcc56-ac64-420d-9c7b-f533767553f8 Differenced Differenced false 0 4302 -4105 58 24 4332.5 -4093 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object dfcb280a-2f59-4aaa-ab7d-450af4129a69 Relay false 7c3dcc56-ac64-420d-9c7b-f533767553f8 1 4278 -4141 40 16 4298 -4133 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object b624573d-9ca3-41eb-81ff-2b404e8dcc1a Relay false bd41549a-5c39-43b1-a411-b1275b839e38 1 4278 -4059 40 16 4298 -4051 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true ef7b2268-af5a-414f-95b9-02fae550af7f true Line SDL Line SDL 4233 -4836 122 64 4313 -4804 Line start point 9c0cadc2-c8c5-45c9-a816-b9c5295ff983 true Start Start false eec198eb-ba36-4323-bfe5-713f7913588f 1 4235 -4834 63 20 4276 -4824 Line tangent (direction) b0d13cdc-8dc5-4f9d-a302-6abf96d5304e true Direction Direction false e94550ca-554f-4546-abe2-88d301199805 1 4235 -4814 63 20 4276 -4804 1 1 {0} 0 0 1 Line length 80443a02-cce4-4190-bbfc-029334d26ea0 ABS(X) true Length Length false 3098d657-78ce-4006-b960-e7badca11ff1 1 4235 -4794 63 20 4276 -4784 1 1 {0} 1 Line segment 9d483e50-9bf1-41e8-ab8c-13b018a627ee true Line Line false 0 4328 -4834 25 60 4342 -4804 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object e94550ca-554f-4546-abe2-88d301199805 Relay false 64fde29a-f76c-4fc1-b003-229851718aab 1 4274 -4754 40 16 4294 -4746 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values 226d2b02-21ed-4b8d-8bf5-4ab9e27624c7 Number Slider false 0 4220 -4599 150 20 4220.314 -4598.975 6 1 0 1 0 0 0.125 2fcc2743-8339-4cdf-a046-a1f17439191d Remap Numbers Remap numbers into a new numeric domain true 983699a0-215c-40e0-b26d-948c1512ac26 Remap Numbers Remap Numbers 4236 -4472 115 64 4291 -4440 Value to remap fb8d9f5e-32f9-4db2-b360-34bae71932b9 Value Value false 19ed3ae6-ff8b-4b60-afa2-110ed9eef5c3 1 4238 -4470 38 20 4258.5 -4460 Source domain 5c508ec9-4e02-49e0-b4c9-a6a40d3ff2ef Source Source false 0442551f-7f33-45c3-aac1-452de3f7b5d2 1 4238 -4450 38 20 4258.5 -4440 1 1 {0} 0 1 Target domain 11aa0bca-781e-4402-a96c-331d9051a343 Target Target false 0 4238 -4430 38 20 4258.5 -4420 1 1 {0} -1 1 Remapped number a4d87544-a355-4123-8651-a85bdd2e868a Mapped Mapped false 0 4306 -4470 43 30 4329 -4455 Remapped and clipped number d947a3b4-f26e-4122-8a22-91692e497026 Clipped Clipped false 0 4306 -4440 43 30 4329 -4425 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true a5cc72ef-aed5-4ae6-9e2b-4189940315ef Bounds Bounds 4233 -4389 122 28 4297 -4375 1 Numbers to include in Bounds 9a3b89db-31d4-474c-b3b7-4f68b41e6d55 Numbers Numbers false 19ed3ae6-ff8b-4b60-afa2-110ed9eef5c3 1 4235 -4387 47 24 4260 -4375 Numeric Domain between the lowest and highest numbers in {N} 0442551f-7f33-45c3-aac1-452de3f7b5d2 Domain Domain false 0 4312 -4387 41 24 4334 -4375 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects f51f5f2d-941f-41ef-b98f-20f88c0f615c afc9108c-9db9-441a-9c43-d667d1c32b78 58b4763e-c14f-475c-bea3-43146b32e6bd 569a059d-e90a-4cb8-86b1-26bffb26bfcb 80033146-5b4f-404e-b6dc-65dc753db8a1 145eea6c-da47-45fb-84e7-715c62530022 22307018-81e5-47cd-acd7-460831a3214c 983699a0-215c-40e0-b26d-948c1512ac26 a5cc72ef-aed5-4ae6-9e2b-4189940315ef c3830b7d-0858-410d-89db-9af833da8bf5 3098d657-78ce-4006-b960-e7badca11ff1 19ed3ae6-ff8b-4b60-afa2-110ed9eef5c3 226d2b02-21ed-4b8d-8bf5-4ab9e27624c7 1aee2baf-e365-4163-b2cb-49ff49fc26ee 14 1f6b6fe0-03e9-4c89-840d-3b8f6290e785 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 19ed3ae6-ff8b-4b60-afa2-110ed9eef5c3 Relay false dfcb280a-2f59-4aaa-ab7d-450af4129a69 1 4274 -4344 40 16 4294 -4336 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 3098d657-78ce-4006-b960-e7badca11ff1 Relay false f047ec66-d90a-4bcc-bfb9-311207bc37ce 1 4274 -4711 40 16 4294 -4703 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 1aee2baf-e365-4163-b2cb-49ff49fc26ee Multiplication Multiplication 4253 -4672 82 44 4284 -4650 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication 799f5374-eb2c-417a-8cdf-2a01fa6ea87b A A true 6da65fd3-5c6d-44c1-a7f0-8ec59707bf1e 1 4255 -4670 14 20 4263.5 -4660 Second item for multiplication 9e91b11d-3467-4b14-85af-501123115dc9 B B true 226d2b02-21ed-4b8d-8bf5-4ab9e27624c7 1 4255 -4650 14 20 4263.5 -4640 Result of multiplication f047ec66-d90a-4bcc-bfb9-311207bc37ce Result Result false 0 4299 -4670 34 40 4317.5 -4650 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 6e4e46b3-e8c4-44de-b5c1-43708200af57 Multiplication Multiplication 4253 -4571 82 44 4284 -4549 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication ec014c94-82dd-451d-9aa8-cc1448ecae4e A A true a4d87544-a355-4123-8651-a85bdd2e868a 1 4255 -4569 14 20 4263.5 -4559 Second item for multiplication 5f62925b-02e2-496e-ae05-bef98d16dd5e B B true 1dd3a0a0-6bb9-4514-8a9a-cebe29e3de2f 1 4255 -4549 14 20 4263.5 -4539 Result of multiplication 6da65fd3-5c6d-44c1-a7f0-8ec59707bf1e Result Result false 0 4299 -4569 34 40 4317.5 -4549 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 1dd3a0a0-6bb9-4514-8a9a-cebe29e3de2f Relay false b81ec812-8ec8-4429-a6a9-685744f02fd4 1 4274 -4509 40 16 4294 -4501 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects dfcb280a-2f59-4aaa-ab7d-450af4129a69 b624573d-9ca3-41eb-81ff-2b404e8dcc1a 0b49ec6b-d1db-40e0-af41-4db336de037b 3 4bda8a96-a835-4e3c-a535-d7498d0258cf Group 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true abd647a2-ec4c-418e-bb1f-32a6b6a1a90e Create Material Create Material 4222 -4960 144 104 4306 -4908 Colour of the diffuse channel 1d56968e-75ed-4873-822e-0a0d8308d85d Diffuse Diffuse false 0 4224 -4958 67 20 4259 -4948 1 1 {0} 255;201;201;201 Colour of the specular highlight cb6ba0b9-4e0e-4c02-9336-ec7b2e53ac17 Specular Specular false 0 4224 -4938 67 20 4259 -4928 1 1 {0} 255;0;255;255 Emissive colour of the material fe4014e1-9c85-4048-a6ff-40b7bed0d24c Emission Emission false 0 4224 -4918 67 20 4259 -4908 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 7a44b2bd-9c58-45b7-b682-207eb317c7f5 Transparency Transparency false 0 4224 -4898 67 20 4259 -4888 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine c53d6825-23d8-4f3f-bfc6-95d005e14cd5 Shine Shine false 0 4224 -4878 67 20 4259 -4868 1 1 {0} 100 Resulting material 818b19a3-88e1-4ef3-9e61-352731d41d82 Material Material false 0 4321 -4958 43 100 4344 -4908 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true 13c8422e-4844-4300-8cfe-2cef76a73f85 Custom Preview Custom Preview 4253 -5022 82 44 4321 -5000 Geometry to preview true df22e348-bf33-43a1-99b7-1519c7ea80c4 Geometry Geometry false 9d483e50-9bf1-41e8-ab8c-13b018a627ee 1 4255 -5020 51 20 4282 -5010 The material override b321e0e6-c729-469e-9268-ea19e8ee2cb4 Material Material false 818b19a3-88e1-4ef3-9e61-352731d41d82 1 4255 -5000 51 20 4282 -4990 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 03c64ba8-bcab-4d93-88d6-59b14530c84b Evaluate Length Evaluate Length 4222 -5105 144 64 4296 -5073 Curve to evaluate 046ad11f-70e6-4505-8193-4cfebcaf8e21 Curve Curve false 9d483e50-9bf1-41e8-ab8c-13b018a627ee 1 4224 -5103 57 20 4254 -5093 Length factor for curve evaluation 50146ae9-7cd6-4607-b3b1-7ea08bbd2e70 Length Length false 0 4224 -5083 57 20 4254 -5073 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 6d588bc5-fc41-45cb-8f38-40124817924b Normalized Normalized false 0 4224 -5063 57 20 4254 -5053 1 1 {0} true Point at the specified length 74967dbc-9e6d-4593-b909-64c5a9447a6c Point Point false 0 4311 -5103 53 20 4339 -5093 Tangent vector at the specified length 8de75a4e-0889-4e65-ae38-cb57f2be9b47 Tangent Tangent false 0 4311 -5083 53 20 4339 -5073 Curve parameter at the specified length ca8d6540-e850-4664-b4f4-9d5efd30c5c5 Parameter Parameter false 0 4311 -5063 53 20 4339 -5053 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true ade9bcfd-b1e9-45df-8319-217a0d5fee53 Interpolate Interpolate 4231 -5209 125 84 4298 -5167 1 Interpolation points 29845e5d-afaf-4903-aa5c-bbfb8f7fcf23 Vertices Vertices false 74967dbc-9e6d-4593-b909-64c5a9447a6c 1 4233 -5207 50 20 4259.5 -5197 Curve degree 9e9dfdc4-7916-44c7-a221-0111c7479097 Degree Degree false 0 4233 -5187 50 20 4259.5 -5177 1 1 {0} 3 Periodic curve acb393bc-b4aa-45d8-848c-50a30e8c89d0 Periodic Periodic false 0 4233 -5167 50 20 4259.5 -5157 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) c2a6c99b-93d4-4a85-aadb-141f09862c54 KnotStyle KnotStyle false 0 4233 -5147 50 20 4259.5 -5137 1 1 {0} 2 Resulting nurbs curve 34897c28-2e6a-45e0-a110-8502e0d5dbd0 Curve Curve false 0 4313 -5207 41 26 4335 -5193.667 Curve length 69ef6226-f499-4dfb-866c-9011810ab8f7 Length Length false 0 4313 -5181 41 27 4335 -5167 Curve domain 30bcd92e-aa57-44ed-805d-1e40d7835ccf Domain Domain false 0 4313 -5154 41 27 4335 -5140.333 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 529c6ff8-6d35-4137-9be7-8351a51e1942 Create Material Create Material 4222 -5333 144 104 4306 -5281 Colour of the diffuse channel 11e02fb1-efbd-4d40-9167-f495ff4504d0 Diffuse Diffuse false 0 4224 -5331 67 20 4259 -5321 1 1 {0} 255;176;176;176 Colour of the specular highlight 940b3df6-3247-4f66-b54c-8f5c6fc96ee5 Specular Specular false 0 4224 -5311 67 20 4259 -5301 1 1 {0} 255;0;255;255 Emissive colour of the material 65718b7f-1211-4e84-bd6d-a38639de6ad0 Emission Emission false 0 4224 -5291 67 20 4259 -5281 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 493a32f5-a494-4108-ad45-05bfe219b629 Transparency Transparency false 0 4224 -5271 67 20 4259 -5261 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine bb3e61f7-09e3-4483-8b72-8b5a6778ddd9 Shine Shine false 0 4224 -5251 67 20 4259 -5241 1 1 {0} 100 Resulting material 7adc7763-c87e-4a16-a706-bfcb8d2fd03f Material Material false 0 4321 -5331 43 100 4344 -5281 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true b5ce827a-f129-4300-8a93-baeb26c14cea Custom Preview Custom Preview 4253 -5393 82 44 4321 -5371 Geometry to preview true 6e30daa4-f325-4ee6-8ebf-0b4bae61c4f0 Geometry Geometry false 34897c28-2e6a-45e0-a110-8502e0d5dbd0 1 4255 -5391 51 20 4282 -5381 The material override b1efbdd3-082e-41f3-8084-c81501e78309 Material Material false 7adc7763-c87e-4a16-a706-bfcb8d2fd03f 1 4255 -5371 51 20 4282 -5361 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 09b5c871-b23d-450a-a4bb-339de659f7ed b284a812-a6b6-455a-89e6-4dc70c382dbc a238cbdd-49ea-4a2e-bc72-bd58d5cb8d00 7ce3d0df-421a-4ecf-b6cf-8cbe6fdc7951 ad9c4bf0-92e9-49dc-9503-3ace8c906423 27649ea5-f5e8-489c-9e90-2987faa665f4 f9947fea-968d-4a00-a6cd-c45f937d1dce b94c2e8b-4e52-432f-876f-991c1f336f72 7e8ebc68-ea71-4f76-a02b-78749e6a58f3 e792059b-819d-454c-a064-879834cb0691 61c5cb95-675b-450c-ac7c-c345b5655697 04147491-2b0f-41a4-b1f1-ce1ea788b236 73f3bd4f-7585-4815-9be9-9ab8fcdfbc29 b454a2e0-9ee4-4ced-94ca-c73953245a5d 2929195c-c84d-4065-bba0-c8eddb127ad7 1f48bc0e-0e1e-4139-b555-9a8627e52840 eab79ce2-4a6f-4de4-b319-5ea88078fe90 c06233c5-08d9-45bf-9909-4a2213dd6b3a 87b44b04-ba59-4b8b-9f5d-76b99ba94f34 78cfda91-3376-422e-8531-38159007754d 9a71e198-44c6-4e2e-87f3-9062069a0a3d f2a3f20c-6e65-42d7-9515-1adbe5d9a7ee 22 e44ea14d-e9df-4851-acc4-e93283f615a7 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects ad9c4bf0-92e9-49dc-9503-3ace8c906423 27649ea5-f5e8-489c-9e90-2987faa665f4 f9947fea-968d-4a00-a6cd-c45f937d1dce b94c2e8b-4e52-432f-876f-991c1f336f72 7e8ebc68-ea71-4f76-a02b-78749e6a58f3 e792059b-819d-454c-a064-879834cb0691 61c5cb95-675b-450c-ac7c-c345b5655697 04147491-2b0f-41a4-b1f1-ce1ea788b236 73f3bd4f-7585-4815-9be9-9ab8fcdfbc29 b454a2e0-9ee4-4ced-94ca-c73953245a5d 2929195c-c84d-4065-bba0-c8eddb127ad7 1787085e-7b5d-42df-bd61-b2a136b5c1f8 12 09b5c871-b23d-450a-a4bb-339de659f7ed Group dd17d442-3776-40b3-ad5b-5e188b56bd4c Relative Differences Compute relative differences for a list of data true b284a812-a6b6-455a-89e6-4dc70c382dbc Relative Differences Relative Differences 4229 -5592 128 28 4282 -5578 1 List of data to operate on (numbers or points or vectors allowed) 8e3ab32b-1005-4b16-abd3-ba3b2211d05c Values Values false 7ce3d0df-421a-4ecf-b6cf-8cbe6fdc7951 1 4231 -5590 36 24 4250.5 -5578 1 Differences between consecutive items 5a98769a-f261-440e-864b-0382126b5dc9 Differenced Differenced false 0 4297 -5590 58 24 4327.5 -5578 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object a238cbdd-49ea-4a2e-bc72-bd58d5cb8d00 Relay false 5a98769a-f261-440e-864b-0382126b5dc9 1 4273 -5626 40 16 4293 -5618 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 7ce3d0df-421a-4ecf-b6cf-8cbe6fdc7951 Relay false dfcb280a-2f59-4aaa-ab7d-450af4129a69 1 4273 -5544 40 16 4293 -5536 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true ad9c4bf0-92e9-49dc-9503-3ace8c906423 true Line SDL Line SDL 4231 -6323 122 64 4311 -6291 Line start point 4724e880-2b6c-4163-b28e-5bed0a8a7d56 true Start Start false 74967dbc-9e6d-4593-b909-64c5a9447a6c 1 4233 -6321 63 20 4274 -6311 Line tangent (direction) f3a5a56c-fe64-44e9-af5b-7f9c98bd76d6 true Direction Direction false 27649ea5-f5e8-489c-9e90-2987faa665f4 1 4233 -6301 63 20 4274 -6291 1 1 {0} 0 0 1 Line length 9ac75d8b-6a54-4ff4-a22e-64160337c330 ABS(X) true Length Length false 04147491-2b0f-41a4-b1f1-ce1ea788b236 1 4233 -6281 63 20 4274 -6271 1 1 {0} 1 Line segment 0ed9a5e2-e91a-4a6e-ba41-2890545351ee true Line Line false 0 4326 -6321 25 60 4340 -6291 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 27649ea5-f5e8-489c-9e90-2987faa665f4 Relay false 64fde29a-f76c-4fc1-b003-229851718aab 1 4272 -6241 40 16 4292 -6233 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values f9947fea-968d-4a00-a6cd-c45f937d1dce Number Slider false 0 4228 -6097 150 20 4228.423 -6096.078 6 1 0 4 0 0 1 2fcc2743-8339-4cdf-a046-a1f17439191d Remap Numbers Remap numbers into a new numeric domain true b94c2e8b-4e52-432f-876f-991c1f336f72 Remap Numbers Remap Numbers 4234 -5959 115 64 4289 -5927 Value to remap d9560dca-f4eb-49ed-9757-29a5c45d27a1 Value Value false 61c5cb95-675b-450c-ac7c-c345b5655697 1 4236 -5957 38 20 4256.5 -5947 Source domain bc7a48a7-b2ee-4944-8461-cbf232e7777b Source Source false 3e8f5d17-7580-4562-abf4-756a8eb292c5 1 4236 -5937 38 20 4256.5 -5927 1 1 {0} 0 1 Target domain df58fa5e-6931-45b6-ab70-a1d89b383108 Target Target false 0 4236 -5917 38 20 4256.5 -5907 1 1 {0} -1 1 Remapped number 9817685a-1639-4509-8f05-6b5bc0acbab2 Mapped Mapped false 0 4304 -5957 43 30 4327 -5942 Remapped and clipped number 1ccae494-0aa9-4808-af40-d9ad39bf7920 Clipped Clipped false 0 4304 -5927 43 30 4327 -5912 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true 7e8ebc68-ea71-4f76-a02b-78749e6a58f3 Bounds Bounds 4231 -5876 122 28 4295 -5862 1 Numbers to include in Bounds 2927b649-a574-48f3-8f59-f41eaaafab0d Numbers Numbers false 61c5cb95-675b-450c-ac7c-c345b5655697 1 4233 -5874 47 24 4258 -5862 Numeric Domain between the lowest and highest numbers in {N} 3e8f5d17-7580-4562-abf4-756a8eb292c5 Domain Domain false 0 4310 -5874 41 24 4332 -5862 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects f51f5f2d-941f-41ef-b98f-20f88c0f615c afc9108c-9db9-441a-9c43-d667d1c32b78 58b4763e-c14f-475c-bea3-43146b32e6bd 569a059d-e90a-4cb8-86b1-26bffb26bfcb 80033146-5b4f-404e-b6dc-65dc753db8a1 145eea6c-da47-45fb-84e7-715c62530022 22307018-81e5-47cd-acd7-460831a3214c b94c2e8b-4e52-432f-876f-991c1f336f72 7e8ebc68-ea71-4f76-a02b-78749e6a58f3 c3830b7d-0858-410d-89db-9af833da8bf5 04147491-2b0f-41a4-b1f1-ce1ea788b236 61c5cb95-675b-450c-ac7c-c345b5655697 f9947fea-968d-4a00-a6cd-c45f937d1dce 73f3bd4f-7585-4815-9be9-9ab8fcdfbc29 14 e792059b-819d-454c-a064-879834cb0691 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 61c5cb95-675b-450c-ac7c-c345b5655697 Relay false a238cbdd-49ea-4a2e-bc72-bd58d5cb8d00 1 4272 -5831 40 16 4292 -5823 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 04147491-2b0f-41a4-b1f1-ce1ea788b236 Relay false 33cece3d-a7ae-4c67-9195-b427397baa30 1 4272 -6198 40 16 4292 -6190 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 73f3bd4f-7585-4815-9be9-9ab8fcdfbc29 Multiplication Multiplication 4251 -6159 82 44 4282 -6137 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication f8f68b8f-bcbb-4214-9565-0fc39e8c4be7 A A true e4e15be4-8fb3-44f1-9273-7280b735771b 1 4253 -6157 14 20 4261.5 -6147 Second item for multiplication 9612eff9-ea84-4928-8022-7cfaa895dda0 B B true f9947fea-968d-4a00-a6cd-c45f937d1dce 1 4253 -6137 14 20 4261.5 -6127 Result of multiplication 33cece3d-a7ae-4c67-9195-b427397baa30 Result Result false 0 4297 -6157 34 40 4315.5 -6137 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true b454a2e0-9ee4-4ced-94ca-c73953245a5d Multiplication Multiplication 4251 -6058 82 44 4282 -6036 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication d12772fe-d7bd-4afa-b083-00663f0ff79f A A true 9817685a-1639-4509-8f05-6b5bc0acbab2 1 4253 -6056 14 20 4261.5 -6046 Second item for multiplication eecab38e-7511-43ee-ad9e-7906c039bd54 B B true 2929195c-c84d-4065-bba0-c8eddb127ad7 1 4253 -6036 14 20 4261.5 -6026 Result of multiplication e4e15be4-8fb3-44f1-9273-7280b735771b Result Result false 0 4297 -6056 34 40 4315.5 -6036 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 2929195c-c84d-4065-bba0-c8eddb127ad7 Relay false b81ec812-8ec8-4429-a6a9-685744f02fd4 1 4272 -5996 40 16 4292 -5988 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects a238cbdd-49ea-4a2e-bc72-bd58d5cb8d00 7ce3d0df-421a-4ecf-b6cf-8cbe6fdc7951 b284a812-a6b6-455a-89e6-4dc70c382dbc 3 1f48bc0e-0e1e-4139-b555-9a8627e52840 Group 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true eab79ce2-4a6f-4de4-b319-5ea88078fe90 Create Material Create Material 4220 -6447 144 104 4304 -6395 Colour of the diffuse channel 7c4a51f4-0583-4188-a10b-54dc07cabf06 Diffuse Diffuse false 0 4222 -6445 67 20 4257 -6435 1 1 {0} 255;194;194;194 Colour of the specular highlight 611771b9-e351-420d-9b06-b71a8e8dd4d1 Specular Specular false 0 4222 -6425 67 20 4257 -6415 1 1 {0} 255;0;255;255 Emissive colour of the material 64490fa0-23ab-4990-8a3a-d4f544527668 Emission Emission false 0 4222 -6405 67 20 4257 -6395 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent e8b91e67-8cc3-476b-8b92-4a62d3f25066 Transparency Transparency false 0 4222 -6385 67 20 4257 -6375 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 683de6db-dd8c-4549-bf90-ec1d80d52966 Shine Shine false 0 4222 -6365 67 20 4257 -6355 1 1 {0} 100 Resulting material 13a42099-91be-4e02-9443-ec018f0493de Material Material false 0 4319 -6445 43 100 4342 -6395 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true c06233c5-08d9-45bf-9909-4a2213dd6b3a Custom Preview Custom Preview 4251 -6509 82 44 4319 -6487 Geometry to preview true 1b059b68-8bf5-4be4-8083-8d579038e428 Geometry Geometry false 0ed9a5e2-e91a-4a6e-ba41-2890545351ee 1 4253 -6507 51 20 4280 -6497 The material override f1ab5e4e-953a-444d-b82c-29bc75d1c69d Material Material false 13a42099-91be-4e02-9443-ec018f0493de 1 4253 -6487 51 20 4280 -6477 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 87b44b04-ba59-4b8b-9f5d-76b99ba94f34 Evaluate Length Evaluate Length 4220 -6592 144 64 4294 -6560 Curve to evaluate 00542962-eec2-46df-a544-450d778f79b8 Curve Curve false 0ed9a5e2-e91a-4a6e-ba41-2890545351ee 1 4222 -6590 57 20 4252 -6580 Length factor for curve evaluation 6f026c12-7a70-4bbb-9cfa-f4bcb991e9ca Length Length false 0 4222 -6570 57 20 4252 -6560 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) eb809d09-c619-4d8f-8e62-67891cb2d19b Normalized Normalized false 0 4222 -6550 57 20 4252 -6540 1 1 {0} true Point at the specified length fd3e9093-2acb-41bd-b013-4daaf75d9651 Point Point false 0 4309 -6590 53 20 4337 -6580 Tangent vector at the specified length b6e3eb0c-8184-4fe9-8d71-2c8e626666ac Tangent Tangent false 0 4309 -6570 53 20 4337 -6560 Curve parameter at the specified length 80661f8f-2864-4026-a72f-b7f14e51efff Parameter Parameter false 0 4309 -6550 53 20 4337 -6540 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 78cfda91-3376-422e-8531-38159007754d Interpolate Interpolate 4229 -6696 125 84 4296 -6654 1 Interpolation points 2b517992-7deb-4b22-acdf-f7204b4cae29 Vertices Vertices false fd3e9093-2acb-41bd-b013-4daaf75d9651 1 4231 -6694 50 20 4257.5 -6684 Curve degree e97296ac-4c7f-4c69-a903-8a3baba9e923 Degree Degree false 0 4231 -6674 50 20 4257.5 -6664 1 1 {0} 3 Periodic curve 01423a36-7ce9-43a9-acd1-7a163f84b5c8 Periodic Periodic false 0 4231 -6654 50 20 4257.5 -6644 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 8927a988-0b4d-4eb6-8477-e7a012a5bec8 KnotStyle KnotStyle false 0 4231 -6634 50 20 4257.5 -6624 1 1 {0} 2 Resulting nurbs curve 7486d2e5-004d-437e-8099-9e8c2ddcac0c Curve Curve false 0 4311 -6694 41 26 4333 -6680.667 Curve length 404d6128-a558-49a4-b1eb-a49b0c6909b5 Length Length false 0 4311 -6668 41 27 4333 -6654 Curve domain eefb7b2a-5531-4dc0-8b13-76f7334fa105 Domain Domain false 0 4311 -6641 41 27 4333 -6627.333 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 9a71e198-44c6-4e2e-87f3-9062069a0a3d Create Material Create Material 4220 -6820 144 104 4304 -6768 Colour of the diffuse channel 5147f3a1-0406-4fbd-affd-bf242442bf11 Diffuse Diffuse false 0 4222 -6818 67 20 4257 -6808 1 1 {0} 255;168;168;168 Colour of the specular highlight 76976327-c546-4c25-a643-463563ce6aac Specular Specular false 0 4222 -6798 67 20 4257 -6788 1 1 {0} 255;0;255;255 Emissive colour of the material 8c292c6c-1696-4580-911f-ca10ec2b3df1 Emission Emission false 0 4222 -6778 67 20 4257 -6768 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent ccd171f6-06f7-4163-91c3-de4ff030944c Transparency Transparency false 0 4222 -6758 67 20 4257 -6748 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 560559b8-059f-4151-b6f9-c444df973bbc Shine Shine false 0 4222 -6738 67 20 4257 -6728 1 1 {0} 100 Resulting material 98a38c6d-1f33-4ea9-a252-49ed8bcb8a78 Material Material false 0 4319 -6818 43 100 4342 -6768 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true f2a3f20c-6e65-42d7-9515-1adbe5d9a7ee Custom Preview Custom Preview 4251 -6880 82 44 4319 -6858 Geometry to preview true bc9bafd1-6f57-4b26-b2c5-4ddb23c05dde Geometry Geometry false 7486d2e5-004d-437e-8099-9e8c2ddcac0c 1 4253 -6878 51 20 4280 -6868 The material override 4a6f9897-5838-4aa5-adc3-7e44ea1a3c80 Material Material false 98a38c6d-1f33-4ea9-a252-49ed8bcb8a78 1 4253 -6858 51 20 4280 -6848 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 3c6039d9-a9b6-448e-8828-0465bc555816 2a1e862f-0a79-4019-895f-646e542ba372 1e04376c-53a0-49c5-ba39-577472064d46 a122ee6e-5e1b-4896-96c5-39dd66b68eb0 0a0d1816-e06a-4d25-8197-47bc3d47d233 412d297b-113a-4074-be27-a16f9856989a ed0e1f07-ad3d-4b0a-9fa9-5061abfdc421 bb3cd280-d939-4170-95ed-1a0580c8c376 7534a00c-5bc1-4f63-bebe-573577dcb356 0eb7b3d8-d743-4861-8cc7-f446291f84f3 23262df6-ceb8-45fe-91ff-a236da1ebf6d 496a0dc5-d4d6-4733-affc-03d37a8d6672 a56116bb-0c46-4e8d-bc93-60a8c6c0b32a 184fb0e3-74c7-413a-936e-174cb2181dbd 1e9bc7f5-78c4-46b6-ab48-d40cc797b498 055a231f-bf57-48cf-acaf-dbb405c87b11 abd6a62c-2e0d-4044-8fd0-d8159b4c4093 4a37a2a9-ce90-4c30-a05b-f39ad076b343 d0c22d51-b23d-4a8c-8cd6-6871a1ba4300 c11d0521-e267-483c-a9f7-e68d5797856b da2544c0-9ab1-4296-badb-8fd58b4bd192 903725b5-424a-4fd7-9e37-c86a40e106fc 22 216781d2-a401-47f7-b904-78e23985f1bf Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 0a0d1816-e06a-4d25-8197-47bc3d47d233 412d297b-113a-4074-be27-a16f9856989a ed0e1f07-ad3d-4b0a-9fa9-5061abfdc421 bb3cd280-d939-4170-95ed-1a0580c8c376 7534a00c-5bc1-4f63-bebe-573577dcb356 0eb7b3d8-d743-4861-8cc7-f446291f84f3 23262df6-ceb8-45fe-91ff-a236da1ebf6d 496a0dc5-d4d6-4733-affc-03d37a8d6672 a56116bb-0c46-4e8d-bc93-60a8c6c0b32a 184fb0e3-74c7-413a-936e-174cb2181dbd 1e9bc7f5-78c4-46b6-ab48-d40cc797b498 82bfe000-c430-4ae8-ae2a-7e4496c9cb6b 12 3c6039d9-a9b6-448e-8828-0465bc555816 Group dd17d442-3776-40b3-ad5b-5e188b56bd4c Relative Differences Compute relative differences for a list of data true 2a1e862f-0a79-4019-895f-646e542ba372 Relative Differences Relative Differences 4233 -7078 128 28 4286 -7064 1 List of data to operate on (numbers or points or vectors allowed) b2483040-404d-4910-98d0-66122917c866 Values Values false a122ee6e-5e1b-4896-96c5-39dd66b68eb0 1 4235 -7076 36 24 4254.5 -7064 1 Differences between consecutive items c4c324ce-db80-41b8-a748-0926dd52820b Differenced Differenced false 0 4301 -7076 58 24 4331.5 -7064 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 1e04376c-53a0-49c5-ba39-577472064d46 Relay false c4c324ce-db80-41b8-a748-0926dd52820b 1 4277 -7112 40 16 4297 -7104 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object a122ee6e-5e1b-4896-96c5-39dd66b68eb0 Relay false a238cbdd-49ea-4a2e-bc72-bd58d5cb8d00 1 4277 -7030 40 16 4297 -7022 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 0a0d1816-e06a-4d25-8197-47bc3d47d233 true Line SDL Line SDL 4230 -7809 122 64 4310 -7777 Line start point ab952a47-2d3d-460e-bc4d-b20cae7a4d41 true Start Start false fd3e9093-2acb-41bd-b013-4daaf75d9651 1 4232 -7807 63 20 4273 -7797 Line tangent (direction) fd5d607b-e5a8-41bb-9b1b-35c479b18b27 true Direction Direction false 412d297b-113a-4074-be27-a16f9856989a 1 4232 -7787 63 20 4273 -7777 1 1 {0} 0 0 1 Line length 4fc7eee3-4e6a-457f-83a3-82bcc8ebf81e ABS(X) true Length Length false 496a0dc5-d4d6-4733-affc-03d37a8d6672 1 4232 -7767 63 20 4273 -7757 1 1 {0} 1 Line segment 0d0211dc-161c-490d-b87a-3eb2b0778605 true Line Line false 0 4325 -7807 25 60 4339 -7777 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 412d297b-113a-4074-be27-a16f9856989a Relay false 64fde29a-f76c-4fc1-b003-229851718aab 1 4271 -7727 40 16 4291 -7719 57da07bd-ecab-415d-9d86-af36d7073abc Number Slider Numeric slider for single values ed0e1f07-ad3d-4b0a-9fa9-5061abfdc421 Number Slider false 0 4228 -7582 150 20 4228.33 -7581.998 6 1 0 4 0 0 0.25 2fcc2743-8339-4cdf-a046-a1f17439191d Remap Numbers Remap numbers into a new numeric domain true bb3cd280-d939-4170-95ed-1a0580c8c376 Remap Numbers Remap Numbers 4233 -7445 115 64 4288 -7413 Value to remap 416b3b44-0436-4ed2-88ee-70fc9bc0e2f8 Value Value false 23262df6-ceb8-45fe-91ff-a236da1ebf6d 1 4235 -7443 38 20 4255.5 -7433 Source domain 1a901a09-eb7e-4e4c-aeb1-7f980579d374 Source Source false b8bdcbb9-4d1e-4349-a2aa-02db78957eab 1 4235 -7423 38 20 4255.5 -7413 1 1 {0} 0 1 Target domain 8b287cf5-0028-41ad-829e-d6faf4909996 Target Target false 0 4235 -7403 38 20 4255.5 -7393 1 1 {0} -1 1 Remapped number f846b9b8-37b9-4009-a0e4-29a2b2b5bb97 Mapped Mapped false 0 4303 -7443 43 30 4326 -7428 Remapped and clipped number 3da64975-8e99-4050-aed6-f66fef8b77ab Clipped Clipped false 0 4303 -7413 43 30 4326 -7398 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true 7534a00c-5bc1-4f63-bebe-573577dcb356 Bounds Bounds 4230 -7362 122 28 4294 -7348 1 Numbers to include in Bounds 0059c6e1-7939-47b5-a46a-bf590b0e365f Numbers Numbers false 23262df6-ceb8-45fe-91ff-a236da1ebf6d 1 4232 -7360 47 24 4257 -7348 Numeric Domain between the lowest and highest numbers in {N} b8bdcbb9-4d1e-4349-a2aa-02db78957eab Domain Domain false 0 4309 -7360 41 24 4331 -7348 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects f51f5f2d-941f-41ef-b98f-20f88c0f615c afc9108c-9db9-441a-9c43-d667d1c32b78 58b4763e-c14f-475c-bea3-43146b32e6bd 569a059d-e90a-4cb8-86b1-26bffb26bfcb 80033146-5b4f-404e-b6dc-65dc753db8a1 145eea6c-da47-45fb-84e7-715c62530022 22307018-81e5-47cd-acd7-460831a3214c bb3cd280-d939-4170-95ed-1a0580c8c376 7534a00c-5bc1-4f63-bebe-573577dcb356 c3830b7d-0858-410d-89db-9af833da8bf5 496a0dc5-d4d6-4733-affc-03d37a8d6672 23262df6-ceb8-45fe-91ff-a236da1ebf6d ed0e1f07-ad3d-4b0a-9fa9-5061abfdc421 a56116bb-0c46-4e8d-bc93-60a8c6c0b32a 14 0eb7b3d8-d743-4861-8cc7-f446291f84f3 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 23262df6-ceb8-45fe-91ff-a236da1ebf6d Relay false 1e04376c-53a0-49c5-ba39-577472064d46 1 4271 -7317 40 16 4291 -7309 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 496a0dc5-d4d6-4733-affc-03d37a8d6672 Relay false da13ee93-0b21-4037-bf43-883cd57db9e6 1 4271 -7684 40 16 4291 -7676 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true a56116bb-0c46-4e8d-bc93-60a8c6c0b32a Multiplication Multiplication 4250 -7645 82 44 4281 -7623 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication afc40277-7f69-4625-b33d-627974ebad9b A A true 0224e863-203b-438a-b002-6a057176c6a6 1 4252 -7643 14 20 4260.5 -7633 Second item for multiplication cf39143c-24c4-4f91-a552-adbd120a73b5 B B true ed0e1f07-ad3d-4b0a-9fa9-5061abfdc421 1 4252 -7623 14 20 4260.5 -7613 Result of multiplication da13ee93-0b21-4037-bf43-883cd57db9e6 Result Result false 0 4296 -7643 34 40 4314.5 -7623 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 184fb0e3-74c7-413a-936e-174cb2181dbd Multiplication Multiplication 4250 -7544 82 44 4281 -7522 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication ec949d17-caf2-48c3-a0d9-7b41d58ae274 A A true f846b9b8-37b9-4009-a0e4-29a2b2b5bb97 1 4252 -7542 14 20 4260.5 -7532 Second item for multiplication c158152b-5a4a-4b31-aaeb-0a4869c1b1a8 B B true 1e9bc7f5-78c4-46b6-ab48-d40cc797b498 1 4252 -7522 14 20 4260.5 -7512 Result of multiplication 0224e863-203b-438a-b002-6a057176c6a6 Result Result false 0 4296 -7542 34 40 4314.5 -7522 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 1e9bc7f5-78c4-46b6-ab48-d40cc797b498 Relay false b81ec812-8ec8-4429-a6a9-685744f02fd4 1 4271 -7482 40 16 4291 -7474 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 1e04376c-53a0-49c5-ba39-577472064d46 a122ee6e-5e1b-4896-96c5-39dd66b68eb0 2a1e862f-0a79-4019-895f-646e542ba372 3 055a231f-bf57-48cf-acaf-dbb405c87b11 Group 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true abd6a62c-2e0d-4044-8fd0-d8159b4c4093 Create Material Create Material 4219 -7933 144 104 4303 -7881 Colour of the diffuse channel c5d63f14-839a-45e3-afce-4e383878eee0 Diffuse Diffuse false 0 4221 -7931 67 20 4256 -7921 1 1 {0} 255;186;186;186 Colour of the specular highlight 8201d10a-82f2-4191-96ab-5e3bef145158 Specular Specular false 0 4221 -7911 67 20 4256 -7901 1 1 {0} 255;0;255;255 Emissive colour of the material 71fa2cc4-a69d-4e50-883a-24caafb9cd69 Emission Emission false 0 4221 -7891 67 20 4256 -7881 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 8286cae0-537e-4efb-b539-b117603416b8 Transparency Transparency false 0 4221 -7871 67 20 4256 -7861 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 99781edd-ce62-40af-b20a-c76751ab58f6 Shine Shine false 0 4221 -7851 67 20 4256 -7841 1 1 {0} 100 Resulting material 74a840a4-b3d7-4986-be4e-74f6e96ddb29 Material Material false 0 4318 -7931 43 100 4341 -7881 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true 4a37a2a9-ce90-4c30-a05b-f39ad076b343 Custom Preview Custom Preview 4250 -7995 82 44 4318 -7973 Geometry to preview true cf1386d0-c8e0-4d6d-a6d6-cda8bab05b37 Geometry Geometry false 0d0211dc-161c-490d-b87a-3eb2b0778605 1 4252 -7993 51 20 4279 -7983 The material override 5ed40b59-2add-443e-bae1-e00c21dcc7ad Material Material false 74a840a4-b3d7-4986-be4e-74f6e96ddb29 1 4252 -7973 51 20 4279 -7963 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true d0c22d51-b23d-4a8c-8cd6-6871a1ba4300 Evaluate Length Evaluate Length 4219 -8078 144 64 4293 -8046 Curve to evaluate 8628b3e0-21b4-4fa7-a85c-d69b93b55a29 Curve Curve false 0d0211dc-161c-490d-b87a-3eb2b0778605 1 4221 -8076 57 20 4251 -8066 Length factor for curve evaluation 814ae5f8-db79-44bc-87eb-bbdfe53387d9 Length Length false 0 4221 -8056 57 20 4251 -8046 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) af925494-44d5-49ca-a447-bd1db4a924a2 Normalized Normalized false 0 4221 -8036 57 20 4251 -8026 1 1 {0} true Point at the specified length cf5e2264-77c9-46a9-889a-3071f1ddc9e9 Point Point false 0 4308 -8076 53 20 4336 -8066 Tangent vector at the specified length e337db52-6b76-4d06-9fa0-19c756786bc0 Tangent Tangent false 0 4308 -8056 53 20 4336 -8046 Curve parameter at the specified length d632dec7-de3e-4e35-953c-86bae29949ae Parameter Parameter false 0 4308 -8036 53 20 4336 -8026 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true c11d0521-e267-483c-a9f7-e68d5797856b Interpolate Interpolate 4228 -8182 125 84 4295 -8140 1 Interpolation points 1f4f40aa-3e54-4891-a140-d2da1f6d7a42 Vertices Vertices false cf5e2264-77c9-46a9-889a-3071f1ddc9e9 1 4230 -8180 50 20 4256.5 -8170 Curve degree 60cc8e12-79fc-4a0b-9d72-ac4338dca87a Degree Degree false 0 4230 -8160 50 20 4256.5 -8150 1 1 {0} 3 Periodic curve 0247e65e-7383-4055-9ff1-034b056cb90c Periodic Periodic false 0 4230 -8140 50 20 4256.5 -8130 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 672bcc7d-50ef-4af8-a8e8-a01c0fcbad4a KnotStyle KnotStyle false 0 4230 -8120 50 20 4256.5 -8110 1 1 {0} 2 Resulting nurbs curve b5b9fd8b-d9bd-4de4-9b42-30e95a66cae2 Curve Curve false 0 4310 -8180 41 26 4332 -8166.667 Curve length 098053bd-11ad-47c6-8105-ff8b7014986a Length Length false 0 4310 -8154 41 27 4332 -8140 Curve domain 2e105d30-2a42-4528-965e-d171c063de87 Domain Domain false 0 4310 -8127 41 27 4332 -8113.333 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true da2544c0-9ab1-4296-badb-8fd58b4bd192 Create Material Create Material 4219 -8306 144 104 4303 -8254 Colour of the diffuse channel 52b11a1c-01b1-41ac-b9b5-cf34aa7ba088 Diffuse Diffuse false 0 4221 -8304 67 20 4256 -8294 1 1 {0} 255;161;161;161 Colour of the specular highlight 21147615-a005-440b-ad1d-84da794698ba Specular Specular false 0 4221 -8284 67 20 4256 -8274 1 1 {0} 255;0;255;255 Emissive colour of the material 4938be8d-ab6e-4760-aee6-417b92f9f38b Emission Emission false 0 4221 -8264 67 20 4256 -8254 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 87343965-3350-4f44-bc35-8fb8324a2dc4 Transparency Transparency false 0 4221 -8244 67 20 4256 -8234 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine dec3f57c-217a-453a-b452-93527285feb2 Shine Shine false 0 4221 -8224 67 20 4256 -8214 1 1 {0} 100 Resulting material fb82debc-f95f-45c5-9340-58b2033c913e Material Material false 0 4318 -8304 43 100 4341 -8254 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true 903725b5-424a-4fd7-9e37-c86a40e106fc Custom Preview Custom Preview 4250 -8366 82 44 4318 -8344 Geometry to preview true a61fe3ff-beaa-433a-8d56-03df25a76fbe Geometry Geometry false b5b9fd8b-d9bd-4de4-9b42-30e95a66cae2 1 4252 -8364 51 20 4279 -8354 The material override 8192af13-a257-49bb-bc59-f3f37f76822d Material Material false fb82debc-f95f-45c5-9340-58b2033c913e 1 4252 -8344 51 20 4279 -8334 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true ba7bf764-2896-4928-aa12-7eb4384bb962 Evaluate Length Evaluate Length 2721 4623 144 64 2795 4655 Curve to evaluate 6766e885-d2cf-4cf5-9bb3-7c09c19686d2 Curve Curve false 4b682de7-9b79-46c1-8e2a-4fdbcc588751 1 2723 4625 57 20 2753 4635 Length factor for curve evaluation ebef7165-f677-41ca-a36f-f170ed2c8eec Length Length false 0 2723 4645 57 20 2753 4655 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 21fd8f83-3d13-43b1-95e8-8fbcdb2ff50f Normalized Normalized false 0 2723 4665 57 20 2753 4675 1 1 {0} true Point at the specified length afe3f13f-865d-46d5-a989-a40e06880c47 Point Point false 0 2810 4625 53 20 2838 4635 Tangent vector at the specified length 9fbf8988-25cc-468d-a609-71f6d05f49f2 Tangent Tangent false 0 2810 4645 53 20 2838 4655 Curve parameter at the specified length de474ff5-22db-47d1-bedf-47a074eb3dc7 Parameter Parameter false 0 2810 4665 53 20 2838 4675 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 2d610791-db23-4b32-8d5f-7acab4a83c30 Interpolate Interpolate 2730 4519 125 84 2797 4561 1 Interpolation points d70c8d41-3973-4b7b-987f-44cd7d9d30e2 Vertices Vertices false afe3f13f-865d-46d5-a989-a40e06880c47 1 2732 4521 50 20 2758.5 4531 Curve degree cf9da90b-7453-4d88-be68-7f8850d81083 Degree Degree false 0 2732 4541 50 20 2758.5 4551 1 1 {0} 3 Periodic curve 482b3b5d-e29d-4f22-96db-2353206a33b7 Periodic Periodic false 0 2732 4561 50 20 2758.5 4571 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 26eb7e3c-1ce9-48d7-a3b9-20b252a29349 KnotStyle KnotStyle false 0 2732 4581 50 20 2758.5 4591 1 1 {0} 2 Resulting nurbs curve 5cc66ec7-4917-435f-9bd7-7ec449c83a74 Curve Curve false 0 2812 4521 41 26 2834 4534.333 Curve length 8c6c0b35-093c-4169-bc86-41d1587ce95a Length Length false 0 2812 4547 41 27 2834 4561 Curve domain cadb7213-d0b1-4645-bc47-a66951122d6e Domain Domain false 0 2812 4574 41 27 2834 4587.667 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 0af17cec-270f-4e97-b701-db34056ae4c1 Create Material Create Material 2721 4396 144 104 2805 4448 Colour of the diffuse channel 92eb1194-e2fc-4c41-a971-07fa76af8160 Diffuse Diffuse false 0 2723 4398 67 20 2758 4408 1 1 {0} 255;222;222;222 Colour of the specular highlight 189957c0-5ad0-4ab8-ac8a-4b503045aa98 Specular Specular false 0 2723 4418 67 20 2758 4428 1 1 {0} 255;0;255;255 Emissive colour of the material 524c5bff-f600-4867-97aa-19441a238d44 Emission Emission false 0 2723 4438 67 20 2758 4448 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent a3bb41fd-dc3d-45a8-a0fb-f515db11a7bd Transparency Transparency false 0 2723 4458 67 20 2758 4468 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 3d57d483-8859-4a10-ba2f-2e6213946923 Shine Shine false 0 2723 4478 67 20 2758 4488 1 1 {0} 100 Resulting material e87b155e-8cde-42ab-ac3f-f958ba701ace Material Material false 0 2820 4398 43 100 2843 4448 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true 353338f3-55aa-4282-961c-9ee025929d4c Custom Preview Custom Preview 2752 4334 82 44 2820 4356 Geometry to preview true 16a51b16-3990-411c-9a5a-c27adecef47e Geometry Geometry false 5cc66ec7-4917-435f-9bd7-7ec449c83a74 1 2754 4336 51 20 2781 4346 The material override 53a86410-9a02-46d4-add5-ad52294248ba Material Material false e87b155e-8cde-42ab-ac3f-f958ba701ace 1 2754 4356 51 20 2781 4366 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 0af17cec-270f-4e97-b701-db34056ae4c1 353338f3-55aa-4282-961c-9ee025929d4c 2 b268e0d3-c479-441e-9ab8-752e8081f7ee Group 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 0341b73f-f7f8-4b04-9f93-e590bbc75247 Evaluate Length Evaluate Length 2721 2786 144 64 2795 2818 Curve to evaluate 8bd11dec-e992-4d21-92af-e1264ecd11b1 Curve Curve false 4ec3c04c-6c11-40c7-b64f-2c1b38ff8091 1 2723 2788 57 20 2753 2798 Length factor for curve evaluation 6785591a-b134-4c87-8bc3-8bb13b0d64cf Length Length false 0 2723 2808 57 20 2753 2818 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) a1bca1f9-b694-4940-827a-e432b1219678 Normalized Normalized false 0 2723 2828 57 20 2753 2838 1 1 {0} true Point at the specified length ee61d580-37f3-437a-986b-f58d1757c703 Point Point false 0 2810 2788 53 20 2838 2798 Tangent vector at the specified length 66b16fd0-fb50-4bf7-8f3f-d57a5784417c Tangent Tangent false 0 2810 2808 53 20 2838 2818 Curve parameter at the specified length 45231bdb-4614-4a2f-ac69-ec61fae463c4 Parameter Parameter false 0 2810 2828 53 20 2838 2838 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 34521a17-b7e4-42f7-bc4c-f5a2c804e428 Interpolate Interpolate 2730 2682 125 84 2797 2724 1 Interpolation points 8fa423ea-8250-433c-9563-655b9f30b742 Vertices Vertices false ee61d580-37f3-437a-986b-f58d1757c703 1 2732 2684 50 20 2758.5 2694 Curve degree b0475c81-f6a9-4c5c-a645-e9e48abc3c9c Degree Degree false 0 2732 2704 50 20 2758.5 2714 1 1 {0} 3 Periodic curve 3bdcd56e-0724-4eed-8927-ac786e64176a Periodic Periodic false 0 2732 2724 50 20 2758.5 2734 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) cdfb1f92-29d0-462e-8b90-ad2a7b8bcf3e KnotStyle KnotStyle false 0 2732 2744 50 20 2758.5 2754 1 1 {0} 2 Resulting nurbs curve 75280ce7-4e63-4576-be04-d9d75e696859 Curve Curve false 0 2812 2684 41 26 2834 2697.333 Curve length 07179d32-1fef-47e8-806c-e47d63610ff5 Length Length false 0 2812 2710 41 27 2834 2724 Curve domain 147e71bd-7114-42f9-9c2f-ba62b3025733 Domain Domain false 0 2812 2737 41 27 2834 2750.667 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 7fa07956-23c0-4600-9960-b23370a32f2b Create Material Create Material 2721 2559 144 104 2805 2611 Colour of the diffuse channel c43cdef6-edfd-4467-b468-ff109523dc01 Diffuse Diffuse false 0 2723 2561 67 20 2758 2571 1 1 {0} 255;214;214;214 Colour of the specular highlight 4b599ab5-90f6-46f2-aeb2-bc5cb1a36e7f Specular Specular false 0 2723 2581 67 20 2758 2591 1 1 {0} 255;0;255;255 Emissive colour of the material 73ec4cb1-8e09-40e7-8d97-638e49dde930 Emission Emission false 0 2723 2601 67 20 2758 2611 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent c7bdcc16-ccba-494c-8043-4bdc1a080109 Transparency Transparency false 0 2723 2621 67 20 2758 2631 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 17bb5682-d8db-46cd-8d24-a078c961f2bc Shine Shine false 0 2723 2641 67 20 2758 2651 1 1 {0} 100 Resulting material dc2f6513-444b-4a13-b29b-e5bc289d56a9 Material Material false 0 2820 2561 43 100 2843 2611 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true 1e539816-62d2-49f3-b7dc-a17e5e68207f Custom Preview Custom Preview 2752 2497 82 44 2820 2519 Geometry to preview true cb61a8b0-da79-4c69-a91c-ac946d4836f7 Geometry Geometry false 75280ce7-4e63-4576-be04-d9d75e696859 1 2754 2499 51 20 2781 2509 The material override e4008ddf-4c09-4ef9-9e30-78697849f095 Material Material false dc2f6513-444b-4a13-b29b-e5bc289d56a9 1 2754 2519 51 20 2781 2529 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 7fa07956-23c0-4600-9960-b23370a32f2b 1e539816-62d2-49f3-b7dc-a17e5e68207f 2 a26d1668-a53e-4720-8aa2-43cf9a2c28b9 Group 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true e8057930-398e-4baf-a355-345906fe0d96 Evaluate Length Evaluate Length 2721 895 144 64 2795 927 Curve to evaluate c78a4abb-deb5-4cfe-ace8-6d2dffccd005 Curve Curve false c17c1c53-7107-43f9-9a8e-a08dfe3a4373 1 2723 897 57 20 2753 907 Length factor for curve evaluation be4482b5-351c-4234-af41-b9838388aac9 Length Length false 0 2723 917 57 20 2753 927 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 94f17404-396c-4433-b7f0-98513eb8a551 Normalized Normalized false 0 2723 937 57 20 2753 947 1 1 {0} true Point at the specified length 61413e0e-4213-465a-adc8-fa8b5367dec3 Point Point false 0 2810 897 53 20 2838 907 Tangent vector at the specified length 0be4c28a-386d-45aa-aac2-ab2934c90bfb Tangent Tangent false 0 2810 917 53 20 2838 927 Curve parameter at the specified length 0027017f-72a6-46a0-ab7c-a32bf0f37476 Parameter Parameter false 0 2810 937 53 20 2838 947 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true a2c94e7d-3876-4f54-9250-0ae4fb156f8d Interpolate Interpolate 2730 791 125 84 2797 833 1 Interpolation points 3cd20117-2928-4f3b-af11-6b21f5f2a28a Vertices Vertices false 61413e0e-4213-465a-adc8-fa8b5367dec3 1 2732 793 50 20 2758.5 803 Curve degree bda29afb-8a2f-4020-a8eb-0974f24ade3a Degree Degree false 0 2732 813 50 20 2758.5 823 1 1 {0} 3 Periodic curve dd2c1851-16fe-4e50-946e-47197a2b5691 Periodic Periodic false 0 2732 833 50 20 2758.5 843 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 2d629a42-4210-4040-9449-3fd81cd92664 KnotStyle KnotStyle false 0 2732 853 50 20 2758.5 863 1 1 {0} 2 Resulting nurbs curve a4ed0af7-f4b3-4ebd-a752-519e201b8045 Curve Curve false 0 2812 793 41 26 2834 806.3333 Curve length 9442c4c1-404e-42d7-934f-e79cdd280815 Length Length false 0 2812 819 41 27 2834 833 Curve domain e4977ced-76d3-4b9e-a511-4a84318c01e4 Domain Domain false 0 2812 846 41 27 2834 859.6666 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 0e619394-c4fb-4962-a0e0-582190fafb60 Create Material Create Material 2721 668 144 104 2805 720 Colour of the diffuse channel 033af848-67cf-4da6-b498-4f333c991180 Diffuse Diffuse false 0 2723 670 67 20 2758 680 1 1 {0} 255;207;207;207 Colour of the specular highlight 0c29a999-b0c3-4d63-9aff-f4081e7d99fb Specular Specular false 0 2723 690 67 20 2758 700 1 1 {0} 255;0;255;255 Emissive colour of the material ce4216e9-6c10-49c2-9aae-d1979f7a24f3 Emission Emission false 0 2723 710 67 20 2758 720 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 2fa1a745-061e-4763-9493-0d8b3117fb98 Transparency Transparency false 0 2723 730 67 20 2758 740 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine c7f6b90e-711f-40b9-a744-6feaaa9dba41 Shine Shine false 0 2723 750 67 20 2758 760 1 1 {0} 100 Resulting material 9dd4be2b-8d83-48b6-9e3a-cb72654820b7 Material Material false 0 2820 670 43 100 2843 720 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true 562d0609-e0b8-4f53-b04a-a535ce8448d4 Custom Preview Custom Preview 2752 606 82 44 2820 628 Geometry to preview true 1278e734-0e5c-44b0-a3d5-0bf77739ac1e Geometry Geometry false a4ed0af7-f4b3-4ebd-a752-519e201b8045 1 2754 608 51 20 2781 618 The material override 5fcd3d59-499d-44cf-9f73-fba1ab6db3df Material Material false 9dd4be2b-8d83-48b6-9e3a-cb72654820b7 1 2754 628 51 20 2781 638 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 0e619394-c4fb-4962-a0e0-582190fafb60 562d0609-e0b8-4f53-b04a-a535ce8448d4 2 1c4bd00b-f41c-4877-89ae-c2cc8ba90668 Group 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 7bf39698-e931-4e9d-b356-45343bde39ac Evaluate Length Evaluate Length 2721 -868 144 64 2795 -836 Curve to evaluate c940d625-5c77-4efd-9449-891b2cd38924 Curve Curve false 4e9c218a-a4d8-4359-b2b4-e7fec76f23f3 1 2723 -866 57 20 2753 -856 Length factor for curve evaluation 3f62bbba-51cd-4e1e-9d43-ee007a859050 Length Length false 0 2723 -846 57 20 2753 -836 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) e7b42cd1-69e6-4702-8c26-07f5870051dd Normalized Normalized false 0 2723 -826 57 20 2753 -816 1 1 {0} true Point at the specified length fadaec37-dfbb-482d-9f47-0e3e51011424 Point Point false 0 2810 -866 53 20 2838 -856 Tangent vector at the specified length 8a242e49-de07-4050-8cef-ad078ed8961e Tangent Tangent false 0 2810 -846 53 20 2838 -836 Curve parameter at the specified length f05fe9cf-f5c6-410d-97f3-145366950292 Parameter Parameter false 0 2810 -826 53 20 2838 -816 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 5e6a71c9-068b-4c80-8329-8dc78e13758c Interpolate Interpolate 2730 -972 125 84 2797 -930 1 Interpolation points 56906cca-774d-4ef1-931b-aff12525564c Vertices Vertices false fadaec37-dfbb-482d-9f47-0e3e51011424 1 2732 -970 50 20 2758.5 -960 Curve degree 1f64f639-2eb9-4764-aea6-564cc9827f37 Degree Degree false 0 2732 -950 50 20 2758.5 -940 1 1 {0} 3 Periodic curve 9c1c462f-1b8a-4649-8201-2164d6547630 Periodic Periodic false 0 2732 -930 50 20 2758.5 -920 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) c79572bf-7153-4840-8398-c8aedaaf941e KnotStyle KnotStyle false 0 2732 -910 50 20 2758.5 -900 1 1 {0} 2 Resulting nurbs curve 38126390-8b76-44af-8048-0b19ba6f2d1b Curve Curve false 0 2812 -970 41 26 2834 -956.6667 Curve length 915514b3-a2f6-4660-9413-017a2459de5b Length Length false 0 2812 -944 41 27 2834 -930 Curve domain b9f574d7-9537-4fb7-aac4-bdab3d2faecb Domain Domain false 0 2812 -917 41 27 2834 -903.3334 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 71452f07-0445-4149-bae3-e638f6b09057 Create Material Create Material 2721 -1095 144 104 2805 -1043 Colour of the diffuse channel de1c9476-012c-4da1-92fc-08c1e9b0fca4 Diffuse Diffuse false 0 2723 -1093 67 20 2758 -1083 1 1 {0} 255;199;199;199 Colour of the specular highlight 35acc16c-23a6-475a-82b2-32b381f7b808 Specular Specular false 0 2723 -1073 67 20 2758 -1063 1 1 {0} 255;0;255;255 Emissive colour of the material 47b5ac7c-85cf-4266-9cfd-f02673289bc1 Emission Emission false 0 2723 -1053 67 20 2758 -1043 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 7f94c3bf-7f3e-457b-9128-3fedc43684f0 Transparency Transparency false 0 2723 -1033 67 20 2758 -1023 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine fe0ff523-6c2a-4449-b853-bade7c72ed3e Shine Shine false 0 2723 -1013 67 20 2758 -1003 1 1 {0} 100 Resulting material 18040f17-d978-42d5-a780-e94e311876e6 Material Material false 0 2820 -1093 43 100 2843 -1043 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true bf27f44e-23ad-4bc1-b47e-9f177aee7784 Custom Preview Custom Preview 2752 -1157 82 44 2820 -1135 Geometry to preview true 7c69675a-94e9-4566-a454-1688895446a5 Geometry Geometry false 38126390-8b76-44af-8048-0b19ba6f2d1b 1 2754 -1155 51 20 2781 -1145 The material override 4f017d08-b960-4b04-9bad-d16fbbc1eacb Material Material false 18040f17-d978-42d5-a780-e94e311876e6 1 2754 -1135 51 20 2781 -1125 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 71452f07-0445-4149-bae3-e638f6b09057 bf27f44e-23ad-4bc1-b47e-9f177aee7784 2 270675ac-b627-4eee-8542-de839b52b43a Group 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true fdd729ab-4118-45f2-8236-51dc69417454 Evaluate Length Evaluate Length 2721 -2666 144 64 2795 -2634 Curve to evaluate 4e7d4097-4afe-4fb5-83ed-beb3e77cd8a1 Curve Curve false 96991c77-8125-4887-b56d-a51f89a5adc1 1 2723 -2664 57 20 2753 -2654 Length factor for curve evaluation 30472e4a-87e7-49dd-b946-3993dd93298d Length Length false 0 2723 -2644 57 20 2753 -2634 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 9e5200f2-9bc8-48cf-8a4b-63f210d85383 Normalized Normalized false 0 2723 -2624 57 20 2753 -2614 1 1 {0} true Point at the specified length 17645f8c-ab5a-45ae-a1cf-d05b9769d316 Point Point false 0 2810 -2664 53 20 2838 -2654 Tangent vector at the specified length 50c59105-d966-4ec8-98eb-bb5c50858bc0 Tangent Tangent false 0 2810 -2644 53 20 2838 -2634 Curve parameter at the specified length 5f8e1317-8e2c-47c8-ad81-7b06726e35ee Parameter Parameter false 0 2810 -2624 53 20 2838 -2614 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true a0a24f49-2328-4bff-a809-2b88c32a0d50 Interpolate Interpolate 2730 -2770 125 84 2797 -2728 1 Interpolation points b7f83fd2-c865-4e34-89b3-7a85d961945a Vertices Vertices false 17645f8c-ab5a-45ae-a1cf-d05b9769d316 1 2732 -2768 50 20 2758.5 -2758 Curve degree cec4d6bb-950c-48cc-ae0e-bad9e2709040 Degree Degree false 0 2732 -2748 50 20 2758.5 -2738 1 1 {0} 3 Periodic curve f499d3f8-a9b3-409a-bf26-d1c7090bb676 Periodic Periodic false 0 2732 -2728 50 20 2758.5 -2718 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) aa20cd17-cca3-489b-a08c-b04a01f2aae8 KnotStyle KnotStyle false 0 2732 -2708 50 20 2758.5 -2698 1 1 {0} 2 Resulting nurbs curve 0a17bf02-c70d-4c2d-91b2-fa9f080746df Curve Curve false 0 2812 -2768 41 26 2834 -2754.667 Curve length 1563774a-6fc3-401b-a23e-5e73bf21b65e Length Length false 0 2812 -2742 41 27 2834 -2728 Curve domain f0aeb868-3f61-4fca-bde0-c269d2fae5d8 Domain Domain false 0 2812 -2715 41 27 2834 -2701.333 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true c1beb210-89f4-4872-a882-d3bea5edb540 Create Material Create Material 2721 -2893 144 104 2805 -2841 Colour of the diffuse channel d85a2ec3-fc0c-4cab-9d29-1bb4ff01317f Diffuse Diffuse false 0 2723 -2891 67 20 2758 -2881 1 1 {0} 255;191;191;191 Colour of the specular highlight 0f559a94-403d-4c04-9ea2-c190de5dc216 Specular Specular false 0 2723 -2871 67 20 2758 -2861 1 1 {0} 255;0;255;255 Emissive colour of the material fecfdd8b-ba51-45fd-a852-e1da36a06c5a Emission Emission false 0 2723 -2851 67 20 2758 -2841 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 9ee2f992-9b6c-4d56-814b-8970273815c2 Transparency Transparency false 0 2723 -2831 67 20 2758 -2821 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 73392aca-6301-417b-b5cb-b8bb5ef08351 Shine Shine false 0 2723 -2811 67 20 2758 -2801 1 1 {0} 100 Resulting material 69642124-cb6b-41a2-a582-114712305f74 Material Material false 0 2820 -2891 43 100 2843 -2841 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true ef73682f-b60c-48ce-82de-c7de410bb746 Custom Preview Custom Preview 2752 -2955 82 44 2820 -2933 Geometry to preview true 7a9a9039-2d22-43ef-8057-c6d4d89a190e Geometry Geometry false 0a17bf02-c70d-4c2d-91b2-fa9f080746df 1 2754 -2953 51 20 2781 -2943 The material override 20c52469-09b1-4f94-9bbb-45be2741cef0 Material Material false 69642124-cb6b-41a2-a582-114712305f74 1 2754 -2933 51 20 2781 -2923 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects c1beb210-89f4-4872-a882-d3bea5edb540 ef73682f-b60c-48ce-82de-c7de410bb746 2 c01c4d44-05ec-478f-b965-a8feee784c17 Group 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 2f61758a-02e7-4f21-b8fd-f5ec5b8aa6ad Evaluate Length Evaluate Length 9548 8002 144 64 9622 8034 Curve to evaluate 922aa04c-49c9-4821-bb04-e9558276e653 Curve Curve false 72093452-ecdf-459b-8976-35063c92dd1f 1 9550 8004 57 20 9580 8014 Length factor for curve evaluation 9b4e8d6b-6d88-41d9-8672-85668b990c8b Length Length false 0 9550 8024 57 20 9580 8034 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) b73b8266-f105-4865-a30c-96ce04850d18 Normalized Normalized false 0 9550 8044 57 20 9580 8054 1 1 {0} true Point at the specified length 7d1ed271-c056-440e-be01-f0685d6fb297 Point Point false 0 9637 8004 53 20 9665 8014 Tangent vector at the specified length f3478d1c-1a01-41fb-9868-2059c04977c5 Tangent Tangent false 0 9637 8024 53 20 9665 8034 Curve parameter at the specified length c4d04acc-2353-4b10-bd60-517e680e0acb Parameter Parameter false 0 9637 8044 53 20 9665 8054 fad344bc-09b1-4855-a2e6-437ef5715fe3 YZ Plane World YZ plane. true 691fa5aa-1bb4-4b8f-9293-8d7655893ba5 YZ Plane YZ Plane 9630 8128 98 28 9680 8142 Origin of plane 056716ea-1765-4246-b875-f95dc379dbfb Origin Origin false 7d1ed271-c056-440e-be01-f0685d6fb297 1 9632 8130 33 24 9650 8142 1 1 {0} 0 0 0 World YZ plane bd41a999-d637-478a-99d6-7456e8136d87 Plane Plane false 0 9695 8130 31 24 9712 8142 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true 8db98b66-6014-4b20-a17d-cd0f82d5b85e true Join Curves Join Curves 9574 7895 118 44 9637 7917 1 Curves to join 6b31f481-de17-4bb0-9e48-7e0c080b2591 true Curves Curves false 72093452-ecdf-459b-8976-35063c92dd1f 8831d957-d436-43f9-a31b-730e1d909d2f 2 9576 7897 46 20 9600.5 7907 Preserve direction of input curves b9839ca3-2137-4050-a772-bb0de9ac1d86 true Preserve Preserve false 0 9576 7917 46 20 9600.5 7927 1 1 {0} false 1 Joined curves and individual curves that could not be joined. e8f5a8bc-54e1-4e6b-932f-bc49a26d7f07 true Curves Curves false 0 9652 7897 38 40 9672.5 7917 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 94e2a1cf-7e04-4d30-9f4f-09bcfed4b895 Quick Graph Quick Graph false 0 bad1c978-837c-473b-b4f0-a58dfe6f997e 1 4236 1293 150 150 4236.364 1293 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 1a0014ae-7819-4c4e-8299-9532e4fdd989 Quick Graph Quick Graph false 0 c17bf30a-d3fb-42bf-8a5c-8a85b4e571e6 1 4236 -86 150 150 4236.694 -85.37048 0 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 23d7a889-8f34-4d35-aefb-2c83b8e62cac Quick Graph Quick Graph false 0 f011379a-ace5-42cd-9bf6-03a6a430b537 1 4236 -1499 150 150 4236 -1498.14 0 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 5af1d85f-5880-46e4-ab73-4082b5287d29 Quick Graph Quick Graph false 0 bd41549a-5c39-43b1-a411-b1275b839e38 1 4235 -2893 150 150 4235.352 -2892.188 0 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph ce15836c-2f61-4886-a0a5-02921828a77d Quick Graph Quick Graph false 0 dfcb280a-2f59-4aaa-ab7d-450af4129a69 1 4220 -4311 150 150 4220 -4310.277 0 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 1787085e-7b5d-42df-bd61-b2a136b5c1f8 Quick Graph Quick Graph false 0 a238cbdd-49ea-4a2e-bc72-bd58d5cb8d00 1 4222 -5796 150 150 4222 -5795.794 0 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 82bfe000-c430-4ae8-ae2a-7e4496c9cb6b Quick Graph Quick Graph false 0 1e04376c-53a0-49c5-ba39-577472064d46 1 4220 -7282 150 150 4220 -7281.181 0 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true a4369984-93e4-477a-9ffe-885dcfa33ab8 true Scale Scale 9346 8572 154 64 9430 8604 Base geometry f550900a-6632-43a1-9794-a8d7765472b9 true Geometry Geometry true 5e4df801-67a9-4c5d-99b6-b74cf5953f5e 1 9348 8574 67 20 9391 8584 Center of scaling 2e05a58b-91c2-4a94-b6d4-c8ab3738c383 true Center Center false 0 9348 8594 67 20 9391 8604 1 1 {0} 0 0 0 Scaling factor 4be42091-24c9-4003-9f59-c9f92a4689dc 1/X true Factor Factor false e2349130-aa0f-401d-b935-da39728890df 1 9348 8614 67 20 9391 8624 1 1 {0} 0.5 Scaled geometry 190f94fc-abc4-4e1f-98b5-dede0db8ff84 true Geometry Geometry false 0 9445 8574 53 30 9473 8589 Transformation data 47dc683d-7096-4399-94d6-0a0a9bb6bd87 true Transform Transform false 0 9445 8604 53 30 9473 8619 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects db144b0d-67c2-49f2-8698-55f8c4324b2d 68ecc26b-e785-469e-8f81-f893c6e34388 5be0ac6f-f9f3-4951-9a53-8e1e6c323367 b4441e4c-5cf2-4d1f-8249-265dd4e3c699 56efe341-a041-43c7-a346-024f7fdd9345 5 aca50386-5de5-4378-99a4-2ce1898a2178 Group 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 3488d1f0-a79b-400e-a50b-1eddfbbd2e40 Evaluate Length Evaluate Length 2730 -4540 144 64 2804 -4508 Curve to evaluate cac12fc2-31a8-40d3-b585-9b83ff632cf1 Curve Curve false 531dc426-bfb6-4210-89d1-a169cc14774b 1 2732 -4538 57 20 2762 -4528 Length factor for curve evaluation e650501c-cbbc-4847-a3b3-d6e7f56d2272 Length Length false 0 2732 -4518 57 20 2762 -4508 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 4a92b2b6-7f6c-464a-a982-141bc95fa4ec Normalized Normalized false 0 2732 -4498 57 20 2762 -4488 1 1 {0} true Point at the specified length 2555f212-58dd-41ce-b018-93a805640ffd Point Point false 0 2819 -4538 53 20 2847 -4528 Tangent vector at the specified length f828ba21-e403-456d-a4de-a9f9d959342e Tangent Tangent false 0 2819 -4518 53 20 2847 -4508 Curve parameter at the specified length 0a3ec122-e68d-48ef-9c78-47adea00d969 Parameter Parameter false 0 2819 -4498 53 20 2847 -4488 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 04bbc5bd-f892-4d59-b824-de2d4234e6ff Interpolate Interpolate 2739 -4646 125 84 2806 -4604 1 Interpolation points fec10e60-e178-4868-878f-cedb36ab764a Vertices Vertices false 2555f212-58dd-41ce-b018-93a805640ffd 1 2741 -4644 50 20 2767.5 -4634 Curve degree 9165d516-9e95-4779-90a8-f2fcb2931f80 Degree Degree false 0 2741 -4624 50 20 2767.5 -4614 1 1 {0} 3 Periodic curve f7f0451b-3419-4885-a7df-100196553974 Periodic Periodic false 0 2741 -4604 50 20 2767.5 -4594 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) f8121b15-b6d9-420e-8732-b60383c61d7d KnotStyle KnotStyle false 0 2741 -4584 50 20 2767.5 -4574 1 1 {0} 2 Resulting nurbs curve ee30290b-dd6d-480d-af7b-a1b3cdfc86fb Curve Curve false 0 2821 -4644 41 26 2843 -4630.667 Curve length e0c889b8-a7fc-426d-aedb-fb9c3ab4bb96 Length Length false 0 2821 -4618 41 27 2843 -4604 Curve domain a862844e-cd69-4ae2-9ce7-9d39613aeb85 Domain Domain false 0 2821 -4591 41 27 2843 -4577.333 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true d92f5405-c7c9-45d0-bee1-e1d4373026b9 Create Material Create Material 2730 -4769 144 104 2814 -4717 Colour of the diffuse channel c289a70f-6ade-4f16-8d4f-2d74ac055228 Diffuse Diffuse false 0 2732 -4767 67 20 2767 -4757 1 1 {0} 255;184;184;184 Colour of the specular highlight 140312ca-730f-4667-9b1f-56732b45688a Specular Specular false 0 2732 -4747 67 20 2767 -4737 1 1 {0} 255;0;255;255 Emissive colour of the material d7650f68-7c8c-491e-b380-0bfc50c7bfbb Emission Emission false 0 2732 -4727 67 20 2767 -4717 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 651b77a2-05d2-4efb-bd74-ea38e6289d1c Transparency Transparency false 0 2732 -4707 67 20 2767 -4697 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 930dc256-e900-4253-b78e-daa03a82cd30 Shine Shine false 0 2732 -4687 67 20 2767 -4677 1 1 {0} 100 Resulting material 3ff6a69e-40dc-45a7-a6ab-50db1d349192 Material Material false 0 2829 -4767 43 100 2852 -4717 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true 86039917-a2e2-470f-8e07-bc4121e5e0ef Custom Preview Custom Preview 2761 -4831 82 44 2829 -4809 Geometry to preview true 2bf56fb3-9423-4430-b2de-022b53ad150a Geometry Geometry false ee30290b-dd6d-480d-af7b-a1b3cdfc86fb 1 2763 -4829 51 20 2790 -4819 The material override 7d7720f2-c8eb-45ee-af45-2537d6261375 Material Material false 3ff6a69e-40dc-45a7-a6ab-50db1d349192 1 2763 -4809 51 20 2790 -4799 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects d92f5405-c7c9-45d0-bee1-e1d4373026b9 86039917-a2e2-470f-8e07-bc4121e5e0ef 2 33763df5-c277-4f3a-9004-08657d703d20 Group 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 527acc98-cb13-4557-838a-b79e4839fd1b Evaluate Length Evaluate Length 2730 -6367 144 64 2804 -6335 Curve to evaluate 25dc3751-703b-435e-80f3-04f19fb6d3bf Curve Curve false d18de3da-aab3-4b7a-b9a4-52cd5cd878a4 1 2732 -6365 57 20 2762 -6355 Length factor for curve evaluation 5cdd8258-bb4e-42ae-ad96-d40b17967bd2 Length Length false 0 2732 -6345 57 20 2762 -6335 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 91f6b7aa-f762-4124-9439-aba4fb432200 Normalized Normalized false 0 2732 -6325 57 20 2762 -6315 1 1 {0} true Point at the specified length b9af8b04-6282-4569-ae45-2b9cd6e254d6 Point Point false 0 2819 -6365 53 20 2847 -6355 Tangent vector at the specified length 35f55702-1955-4d54-864c-3eca0c8cc893 Tangent Tangent false 0 2819 -6345 53 20 2847 -6335 Curve parameter at the specified length c1af9a89-2936-41af-81a5-b1756ab639ba Parameter Parameter false 0 2819 -6325 53 20 2847 -6315 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 60fd7d67-f0e4-470f-95ec-9b2b668f5b90 Interpolate Interpolate 2739 -6473 125 84 2806 -6431 1 Interpolation points 0fbc3b36-c796-41db-ab7c-9dce718e481d Vertices Vertices false b9af8b04-6282-4569-ae45-2b9cd6e254d6 1 2741 -6471 50 20 2767.5 -6461 Curve degree 0f15b6d2-d753-4b81-b8dd-b1834d3e0e3e Degree Degree false 0 2741 -6451 50 20 2767.5 -6441 1 1 {0} 3 Periodic curve 389fe97b-8272-4227-a236-e40c09568651 Periodic Periodic false 0 2741 -6431 50 20 2767.5 -6421 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) f7737c52-7acc-43a6-8ae9-9aa09e961d2e KnotStyle KnotStyle false 0 2741 -6411 50 20 2767.5 -6401 1 1 {0} 2 Resulting nurbs curve 94e70347-3432-4235-91e3-f0f9ee1f87a9 Curve Curve false 0 2821 -6471 41 26 2843 -6457.667 Curve length 8239adba-c94b-4357-8ad2-3f812dddb986 Length Length false 0 2821 -6445 41 27 2843 -6431 Curve domain f009de9e-d853-411f-99bf-a63e229b6da3 Domain Domain false 0 2821 -6418 41 27 2843 -6404.333 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 408d5a9f-e526-42b5-8a06-5793bb3d562b Create Material Create Material 2730 -6596 144 104 2814 -6544 Colour of the diffuse channel 634574ed-4fa6-46c7-88cc-41a189c2d8c6 Diffuse Diffuse false 0 2732 -6594 67 20 2767 -6584 1 1 {0} 255;176;176;176 Colour of the specular highlight 9421a9d7-f462-4df0-a28d-16e84bde4501 Specular Specular false 0 2732 -6574 67 20 2767 -6564 1 1 {0} 255;0;255;255 Emissive colour of the material 32f2429e-f3b9-4db3-8c38-e0984c7e1141 Emission Emission false 0 2732 -6554 67 20 2767 -6544 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent ce3e42e2-5e25-4b96-9181-3b14d3ccfef9 Transparency Transparency false 0 2732 -6534 67 20 2767 -6524 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 35a8a093-7d08-41bb-aa58-6d526cde6ee3 Shine Shine false 0 2732 -6514 67 20 2767 -6504 1 1 {0} 100 Resulting material 1e325218-b187-4561-a76b-7d14013ee849 Material Material false 0 2829 -6594 43 100 2852 -6544 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true 66a85b7a-0ae9-464a-a60d-bb8056fa5d88 Custom Preview Custom Preview 2761 -6658 82 44 2829 -6636 Geometry to preview true ec9ea864-9381-4479-86c4-7d8f70090072 Geometry Geometry false 94e70347-3432-4235-91e3-f0f9ee1f87a9 1 2763 -6656 51 20 2790 -6646 The material override ed32b0c3-a070-4528-a492-c2cc405fe4d0 Material Material false 1e325218-b187-4561-a76b-7d14013ee849 1 2763 -6636 51 20 2790 -6626 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 408d5a9f-e526-42b5-8a06-5793bb3d562b 66a85b7a-0ae9-464a-a60d-bb8056fa5d88 2 c0fe9d62-dced-4912-b38a-a715c1f30baf Group 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true ac16c2b6-dcc6-40a0-a135-c8fdab057662 Evaluate Length Evaluate Length 2732 -8233 144 64 2806 -8201 Curve to evaluate 1da9d75c-eee3-4235-8b84-9eeadbae8970 Curve Curve false b1a63964-6d3e-4377-b10a-a030fc678908 1 2734 -8231 57 20 2764 -8221 Length factor for curve evaluation 3262ee12-4d2a-43e2-8928-25a9f2ac3509 Length Length false 0 2734 -8211 57 20 2764 -8201 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 57a59441-fe8f-423c-9ee6-acee33352bb5 Normalized Normalized false 0 2734 -8191 57 20 2764 -8181 1 1 {0} true Point at the specified length d624daa5-82e1-405a-927f-a1a18ac94b04 Point Point false 0 2821 -8231 53 20 2849 -8221 Tangent vector at the specified length b7717022-f735-45f9-ab8c-53e4301c6a7b Tangent Tangent false 0 2821 -8211 53 20 2849 -8201 Curve parameter at the specified length 6d3e0a23-9224-4b77-9ac5-33c753e15dcc Parameter Parameter false 0 2821 -8191 53 20 2849 -8181 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true af940d6c-4295-4640-a34e-53f4c0fed0b4 Interpolate Interpolate 2741 -8339 125 84 2808 -8297 1 Interpolation points 1f9f0b47-c663-46fb-98da-d0ad69a7e79e Vertices Vertices false d624daa5-82e1-405a-927f-a1a18ac94b04 1 2743 -8337 50 20 2769.5 -8327 Curve degree b7bda953-8428-44d5-a9c6-881c2bb5bafb Degree Degree false 0 2743 -8317 50 20 2769.5 -8307 1 1 {0} 3 Periodic curve 44f5cd9b-1b58-4899-b144-9fb966f1ae4a Periodic Periodic false 0 2743 -8297 50 20 2769.5 -8287 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 61c1244c-b6b3-48ed-af67-f3b6030346ee KnotStyle KnotStyle false 0 2743 -8277 50 20 2769.5 -8267 1 1 {0} 2 Resulting nurbs curve ce5865df-2f1f-461b-8703-d0cca48ff0c4 Curve Curve false 0 2823 -8337 41 26 2845 -8323.667 Curve length d117a34d-b3c7-4fb0-a6b7-8c9ab925b875 Length Length false 0 2823 -8311 41 27 2845 -8297 Curve domain 091cbdc9-32f7-4626-a305-fff8dd552e1e Domain Domain false 0 2823 -8284 41 27 2845 -8270.334 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true acab807e-0bd7-41ce-8d23-5f50bbcc109b Create Material Create Material 2732 -8462 144 104 2816 -8410 Colour of the diffuse channel e87af2c4-3cb8-4e3e-b78f-7a9626f24469 Diffuse Diffuse false 0 2734 -8460 67 20 2769 -8450 1 1 {0} 255;168;168;168 Colour of the specular highlight 26ac3729-b86f-4077-ad20-142d4703ed91 Specular Specular false 0 2734 -8440 67 20 2769 -8430 1 1 {0} 255;0;255;255 Emissive colour of the material 7f618772-9dc2-45a5-90ce-c5f8b46e0493 Emission Emission false 0 2734 -8420 67 20 2769 -8410 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 408b3edf-0a38-4762-b761-ecb47610b93d Transparency Transparency false 0 2734 -8400 67 20 2769 -8390 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 0a104caf-b2b8-4b96-bb72-d4da6745b45b Shine Shine false 0 2734 -8380 67 20 2769 -8370 1 1 {0} 100 Resulting material 1d958c6c-3e16-41f4-a27a-d3be287cb8d3 Material Material false 0 2831 -8460 43 100 2854 -8410 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true ac7e4b79-a15f-4747-88fc-835181cee777 Custom Preview Custom Preview 2763 -8524 82 44 2831 -8502 Geometry to preview true 92a2a9ee-18a1-4d3d-ada7-3611e4169835 Geometry Geometry false ce5865df-2f1f-461b-8703-d0cca48ff0c4 1 2765 -8522 51 20 2792 -8512 The material override 377a15bd-bf90-43a1-89d0-19e8d767fb7a Material Material false 1d958c6c-3e16-41f4-a27a-d3be287cb8d3 1 2765 -8502 51 20 2792 -8492 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects acab807e-0bd7-41ce-8d23-5f50bbcc109b ac7e4b79-a15f-4747-88fc-835181cee777 2 769608b0-b6df-44d2-9130-42067c104fb2 Group 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 8b4070e4-7dcf-409a-8978-2d9aa65cc7e9 Evaluate Length Evaluate Length 2736 -10086 144 64 2810 -10054 Curve to evaluate a3afa127-759b-4669-8704-4cec35a686c2 Curve Curve false 9122048b-5af8-459a-a9f2-1cb38d844e1f 1 2738 -10084 57 20 2768 -10074 Length factor for curve evaluation 4c8d8301-c3e7-4cd7-bc8e-1f411f8c135b Length Length false 0 2738 -10064 57 20 2768 -10054 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 293fe742-6f99-483c-872f-224ea79f457c Normalized Normalized false 0 2738 -10044 57 20 2768 -10034 1 1 {0} true Point at the specified length 693e8242-969f-4fdb-8845-cbb05910a1fe Point Point false 0 2825 -10084 53 20 2853 -10074 Tangent vector at the specified length 7b2205dc-a074-4d7e-9b6d-dee7a4a17464 Tangent Tangent false 0 2825 -10064 53 20 2853 -10054 Curve parameter at the specified length 8d92c1da-eaa1-4cf8-b57d-dbf05962a836 Parameter Parameter false 0 2825 -10044 53 20 2853 -10034 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 1eb5bbdd-80c5-402d-a116-d1477654d742 Interpolate Interpolate 2745 -10192 125 84 2812 -10150 1 Interpolation points 8e2c778b-e5bf-4b60-8c0a-a3e22c63229c Vertices Vertices false 693e8242-969f-4fdb-8845-cbb05910a1fe 1 2747 -10190 50 20 2773.5 -10180 Curve degree 0d9483da-ccd5-4006-9877-ca3f728475f4 Degree Degree false 0 2747 -10170 50 20 2773.5 -10160 1 1 {0} 3 Periodic curve d6f55a48-e0d2-4652-a500-6eacb975b2e0 Periodic Periodic false 0 2747 -10150 50 20 2773.5 -10140 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 4ba70e61-96c9-4b68-9832-c3aa656bd50d KnotStyle KnotStyle false 0 2747 -10130 50 20 2773.5 -10120 1 1 {0} 2 Resulting nurbs curve 3b076e99-c62b-4bc8-88c5-a63254cda76a Curve Curve false 0 2827 -10190 41 26 2849 -10176.67 Curve length d9b4b6be-1349-4ac7-87ba-4057f2f8ad2f Length Length false 0 2827 -10164 41 27 2849 -10150 Curve domain 84f05e8f-85a8-4579-8004-499993fea21d Domain Domain false 0 2827 -10137 41 27 2849 -10123.33 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 1b7ce45e-efe0-4abb-b207-d21b466ff7f3 Create Material Create Material 2736 -10315 144 104 2820 -10263 Colour of the diffuse channel 25a0de77-3764-484b-a26d-4902fa8fa4ce Diffuse Diffuse false 0 2738 -10313 67 20 2773 -10303 1 1 {0} 255;161;161;161 Colour of the specular highlight bc623c4d-bb30-4ec3-84f0-01d01819e892 Specular Specular false 0 2738 -10293 67 20 2773 -10283 1 1 {0} 255;0;255;255 Emissive colour of the material 851b3a69-b51f-4987-8951-94817991114c Emission Emission false 0 2738 -10273 67 20 2773 -10263 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 257f886f-a17e-4acd-b78a-db2beed62bc9 Transparency Transparency false 0 2738 -10253 67 20 2773 -10243 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 1d3716b5-c753-4c63-8b7b-e86c81ab72a2 Shine Shine false 0 2738 -10233 67 20 2773 -10223 1 1 {0} 100 Resulting material dec36279-f586-4541-80a1-49a48a5526f2 Material Material false 0 2835 -10313 43 100 2858 -10263 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true 6769cdb3-9ea7-409e-b566-b5221866f156 Custom Preview Custom Preview 2767 -10377 82 44 2835 -10355 Geometry to preview true f1577d20-42de-4929-9dd8-f0e3ebe34ab6 Geometry Geometry false 3b076e99-c62b-4bc8-88c5-a63254cda76a 1 2769 -10375 51 20 2796 -10365 The material override 72d4b777-760a-477f-9f72-94af0fb8e4b7 Material Material false dec36279-f586-4541-80a1-49a48a5526f2 1 2769 -10355 51 20 2796 -10345 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 1b7ce45e-efe0-4abb-b207-d21b466ff7f3 6769cdb3-9ea7-409e-b566-b5221866f156 2 402b11cc-e986-4056-8676-42eec6a89ccd Group 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 38af291c-fdb3-4110-91d3-58dd6b570756 Digit Scroller false 0 12 1 0.01794871794 4180 -1796 250 20 4180.949 -1795.593 0bb3d234-9097-45db-9998-621639c87d3b Bounding Box Solve oriented geometry bounding boxes. true d84a0127-8eb7-4720-a062-ad61e0e7cc5d Bounding Box Bounding Box true 9088 7591 100 44 9147 7613 1 Geometry to contain 5c925c57-f0d9-435e-b548-645c6fba82a7 Content Content false ac1a8ab1-bd3f-4678-aa93-a7f3196bd24f 1 9090 7593 42 20 9112.5 7603 BoundingBox orientation plane true 8af7144d-0fdf-4f74-a9a3-b4448abe51ca Plane Plane false 0 9090 7613 42 20 9112.5 7623 1 1 {0} 0 0 0 1 0 0 0 1 0 Aligned bounding box in world coordinates 4752baa9-276c-473e-9411-f42747d16825 Box Box false 0 9162 7593 24 20 9175.5 7603 Bounding box in orientation plane coordinates true cf035c8c-c992-41c0-af32-707fe77bd1fd Box Box false 0 9162 7613 24 20 9175.5 7623 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true db08f3e8-3645-4ecd-a731-da94d628dda2 Merge Merge 9101 7660 87 144 9137 7732 7 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 90dbe640-5f1f-43c2-8d6b-1702c5d0ce17 false Data 1 D1 true 225650fb-215c-4398-9f6f-49f6df1d9b0f 1 9103 7662 19 20 9114 7672 2 Data stream 2 ab101310-b4f8-4536-932d-0d74c240f23d false Data 2 D2 true 5cc66ec7-4917-435f-9bd7-7ec449c83a74 1 9103 7682 19 20 9114 7692 2 Data stream 3 38f5e480-e3ce-4671-b1c6-9571e4a2432f false Data 3 D3 true 75280ce7-4e63-4576-be04-d9d75e696859 1 9103 7702 19 20 9114 7712 2 Data stream 4 3ab5ca44-a235-43dd-a3eb-397b5ff0ea92 false Data 4 D4 true a4ed0af7-f4b3-4ebd-a752-519e201b8045 1 9103 7722 19 20 9114 7732 2 Data stream 5 54b92901-03d4-4637-b966-ebcccbbbdd2c false Data 5 D5 true 38126390-8b76-44af-8048-0b19ba6f2d1b 1 9103 7742 19 20 9114 7752 2 Data stream 6 b8dea9d8-913f-4c06-878f-b1d7e56b5310 false Data 6 D6 true 0a17bf02-c70d-4c2d-91b2-fa9f080746df 1 9103 7762 19 20 9114 7772 2 Data stream 7 323936a2-f0df-48d3-b580-bf44e73a8b50 false Data 7 D7 true 0 9103 7782 19 20 9114 7792 2 Result of merge ac1a8ab1-bd3f-4678-aa93-a7f3196bd24f Result Result false 0 9152 7662 34 140 9170.5 7732 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects d84a0127-8eb7-4720-a062-ad61e0e7cc5d db08f3e8-3645-4ecd-a731-da94d628dda2 2 16eb7a98-97a9-4d71-85f5-09c122d3e6e0 Group iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABVqSURBVHhe7Z3Jrh7FFcfvKou8Q56CdRSB8gTwBqyzDEsjkJAisTAsmIQYxAbMAgkJsDAYCPNs5sFmxgwOZp7DlPzCn5zUV8OpU9X9XePgWny3b3dVdVWdeajqnZ1T5f9gBf51qpy0K/AL+pXj/+KLL77++mvu//TTTx9//DG/rTnu/7nwlCbff/+9qn377bdc//DDD999990333zD7z9/Ll999RW/PKVDflWZO1SmGvW50L/qQa30L53wmz7Vv7qvOtm/PEqflv+qf83uyy+/ZAwU+tHYuNajO++88+GHH/ahzPSZneqwYj/++OMQVlCfVtUmLMt99913zz33/L0o1K+DMO0uHVn1Bcz8gw8+yB4Bfgfqwgz9WrGb6YWzCn7/8eVLB5C2YhGExBS78MdjuA7sP/vss/gYVPOTTz4xGsjaPv3006DRAAg///xzBkEvDmqk7xCpCXlV6IEBMaXjx48fO3bsvffee/fdd99//33+5eann35KBZBDhWsmrMKjtHz44Yf0k90s/6Xbjz76qFtttILWQVwkAg8gzXSMEKGeSCurAzFQqk3efvvtAwcOREGYgs1g2R0KuExDK4ba4m+MjOUDHv/4b4FwBR5ewcxZoyrnATCaVUqv5TW9iQJWL4xqiNyNhTLrUUJkrViQ6lKzSgcPHoyC0KRgkAS70C0r0DMSCMiJWIElMAC4/Bo9ATlWgRWJLATVAPbESFZvAskyqWlCbAlRVuz++++/++67MyjyolwWpsqLwXL1ebY6hPOkoAUq8N633noLuKYkS52MZCHxUh7v2rCzFxkYUnAGBwO+mpYXEYcVEKJTiZt3FdHgmCaqSW+Eq/DLeICN+DAQhVIBJ79AVJQnVg8pUy0Vxq2FmBjPaJNMIg7xYQfqb7zxRikOKyBkXSSE03GMzmFhfYhMOGRySBKOm9yBLl977bXnnnvu9ddfB8ym2VoTyWM6MZNg4XgmmoNbGlhXn886Z/Fb4pA+77jjjg4jBetB9mk+PjHVrAnU9tRTTzF5SAr6M2tSFwAG2nrkkUfQsK+99trbb79dOAtdUoELGZ2qyVrcddddqMHLRzXRg8kghtGy9lrdtqxw5o5pmFmHORWa/pnCcmIC001uuukmYEPzF1988aWXXnr55ZefffbZI0eO8O8LL7wgGXPvvfeeffbZt956K4BkpQA2dahMnWeeeYZq1MeMoZMLL7yQytODWdIwhRxUFbRJ9EaoSHyoLLgXwMuUEHMQGvzjtsSSeZZtn3zySVRn7jNnVkHMHLBJLoqvXnXVVeeeey7rQk3xDPmAVIdfeYX4hUxNOVx3nJHezE4fVWrgJS3rEGTNDPwNEAJ5U999j1pkAnN1GL3PdgAhIpCZHDp0CMpznFhDiD83Wr+VKRNSDOOvABAmzrJWKAGZRrMBQuAnj0wKy/iL16qJHwf8he/LLUKBELlj/4oWpbOk1dBRzcmpyg6A1xqt009qVTu8sezBATkCwgPhCeeimgwMEB0kXX3gFLH5aBXxZO4C8OwVQE7MQE6M+KtbBn7po9mgQtNlJ7zs8cFFajLQFGaAE0Ow2xAMbYmQbtstVTBeOurnalEtCIEukyqlGyDU/B27ZEvzrHYLzMxfTAX+7XJF6gxh+i5MJ11MKCTu9QYWFrfKxvnQQw+lSukGCEXy5p3ZhRn6ggShaJEXWX7+kKjT0gJO4FyMpQ15Kx0lFj0u9XdvgFDehIjgBZu2XaA5SApHjF4EeFgC/6XUoWx7YGn/XcbAepp5hkSPY5hjl2P4pj6aDRAKVbvmhPyQcoKsWNSngo6KsytExa9i98gV1TGXTfp2GlKB+lZBrWQprjhO64rBtHhdSvRGT0Pi0Kn86quvpkppDsKuICT8/+CDD67Ol1hlRqYwBXGJo0ePQk/vvPMOVIgI4RcTEIUTacdNNB3Mo8OHD8v8wIPDBRaRKmA1co2BQT8QrnpbfcDqkP6vv/56H5Cpm2ZIT2zREtPxQNiNUl599dWoQ6uvCPMEAAqpAzDplgYw7gBgxSgAIU8JYQMbIMc8+WVWuIB5CsoDYCqwrG+++aYikdsDIct1wQUXdLVlAwa41fKclUtq8YbsEa/zGKkT+FdHVCDkwYrLsl6x0LmFJiwuoZs2hzJqY3dMLFnUnlZ2c8Vxpl0BEpCpi9BmHXaXN+2qpZQA2tTHljNSJ96Y8fcsMrftf6EtiMl/CwsE/WUpPFsdWFdJNn4rn0OXyaWL3HJTZ9Z9DkIng6qLa1utwGIh5HwNsHTrbHVI8c7NwHdSY8reWqYhMiJNv8hB2FVH4+NevaaSa5xuYe+pKbn6AKY7NLf1kL+7FXLPooYbIBx6wfR8phvCQF555RU54qsFGgWEcX1heiSjDVM9P04kLesehkQQ1HxsGyDsWhSjQ1+3vpJokHaOBPoVerpZhJQ24qKqFS+CG6eZ3RsgjEfqoXEL/WzvQoY5/etCzn4ULn6VHyUb3365UFbq9oaU9sx44hRvxBdxfgn1W+CA0gChicMNEEbChJhozz///OrpttUOITusOoYIYJRcihhg4ZQhjlyEInnEfeDKr0zD3Rmb3sJ78VhGEtTMqA/q/A4IkRcPPPBAHYQsUNfTf+mll9J4XQ7Z6g34kQWDYoaRjncG614p/fwLtLjDU6QjKMUFT+W4iSzoWuMH6UkBQQB3OzT+qdT1bn0qtNRXD4SRFA/W67HHHouMYHkdgJGmw5jPUyEby0nkPouifJnlLx3qAXjg64pYh2bdx3MSHRCmad0bjDSYOMra7Zr5nLmnoUhJIHFUmFIqDrmvHTZbNeetc8nFIMhNBMYdNC0QerIwCEJRwAkp2rukV8utyiKmI4FfISB3bWxB+FFtRRB6GmmEkcYHvY2aWX4bJIhoTIWffGzbePXCPidA2NJIs9yLDUa6EIRbCsulvFSJv3aHyWi7jN2Bi8q6316ZU5dWBCGcPE2f2QBhRCNtISPwAwOUhrubxZKAd+elEsMTFJkGKyKBYl5hbrnsdZ6PtNUmMmKpjpGaJ3UdSHAOhGZUxDNoWmENL1Ix5EfPIPEbAaGSjyew0NLXpDBHemjJNS9eOJTckQ1C7q7IyE7qOtMgnHCwtXZW4JbyEi+GUv9TYJyiQh81bWHjbu4Wy+3kzgzl55wCYZCjzGVAtbypnQw2U5yCg7Nqc4xUeSjZu3Snel8uNPnSpIvqQj1wIb1Uer8ecW3ZLqa1zhkGGlVQkqWTmgv5tnYldvJIp7cVzjFSLPHSR6ycM/zX2UJzk6LQPLu0ueaC7CMK4oGcRJpwzS+8BFc4U2XTKIajvOTwJRK3aAUWU20OinMgNLfXUES2xRG1BdN2iW7YhfyzJBsfKI7SrnIGs1asNaOv3tcZNNqrpsPCgBDXSjbUBYxEYUV60L804aluQkO8NHIKSnUukfTtsqFJNd4eTOhOo8RZh+yp8HJn4lHftF8mRr/dQFXapJoKzVRxmAEnVjxbLOoDLXqgjmKHyg4CTlwrBK14oVJscLPpFBuwgfu0AmzqXKDVmRmjOMfKMtNRpc/Ek7N9NxtJi17hyd7OJnpxgO/MlqXZs2dPPIQtSNAq6xPGCK+jsGU+3dZENQBGBhs3qUN0kGtYItnARFypDzy4VkwRjkoFgmIq5HrDUcV1eQpT5Sk1uUPDURBS/8orr7ztttuGGqapwEFRGrTrAWfOSPl/aA+V6RHEkYeoULn32UIoiwL6U6ghI3SemiKj5tRUQgag5YJpq5VFKkTKqkxb/pXuk+lBcXjQM/sRho6ZStXR+Nq2YlKdXb6acDysnM18QhbG1w4+WVItdx5//HEoEqri9ItIYnX8jWvJQnOyDHG4oEWRU6FofCjj2OY5p5HGF7Tq/JM2xGx1NlRQU4i/tKw5oZEaSURSk+yNLXUUEeOdeCFOOOdmm7MLl6zmCWk7AULb3RJPuWjRq9h4dpLehiy0vfZxJ9CuUeEJAdhyKkzpIS4IW/SK1O+chGj4Es/vOAVCH7fmjkto7aZAanSO0TNKH3IiaA6nGGkVlmYRDmVEtLgg5lAHhKgMphG09ie2kG7b6szJyEhTkRbfHOoorqjf5cHAG7KQf0wRGuWlvxEqHIra23FBQ+ZESxBmWU9NH6lpwKN66e7nzlhcosyaUYyimk3jPIpk3wzlzhg/HPLKtsKEuAPLw0gr3pnURzoaeFJW7u4UEBynWutdOri9fEorUk91bMZ0CYY4UqfM0Eq2LMKqIKw72MyhNySBd19WOdtF5dpu6RdD7rHpeRkxDfEzR5HkIN3sJFLx0lwW8r+FDMXBg0g3PdXphpBay6UH1iusUS06D2P6vZGG6dLFc+Tp2dmcXYVfHYRpKqIdbxkZ9y7XgVW2tjRAAQ6NAnjYqcX6tzHslIEN+UlahkDrOyN1EEovFfHNhQ+3sShln4r6Vt8Fkflp+T6Ml4/fwJZKxG63ThJoFqn3DnbWa9JgxXRCVHfECyswSPMIZl1BBEQHfREAHx6KjsVHm0Ii7hel/5Yuiv6FX636za0mFabEN2ogxqe6sCZwaoXdkQWA0E+S4CnsdBsBslT6DBFAS/PIsg69jxykKoB1N6RQLYTKUHPwrHVUcFDaoWiUMcihMZSVIX3TeIc2ODgxvieeeKL6taaKRgpfsnNbUl4a3+G/cP5DzVksdJYqt0QCQWGR7HLoeN0oY5odE3eqMfGW7UiHDvwqjJQGOvcD4rO5DcUqh8CwsHLLrgCu4GIkSyVeMzhU45xD3MsxB7PE39CX00BenQ1JMRwf4unB2S6vBg214ASHDJ5KQA9d3Sc41JQZDqVzttJ3Wf/0cIsSfk11hpasDgletkC/TqVGOaLV9R06al0nnwTh5FRLTcB4qMeh12qAsP/xOxsiC8QxINLZhnztrUnCLoQKKJNyQ+jf9EIn+yrf1ylqAvWAaroW1tuvkkV1Bxy3+5LxUt/tmkWk8kKXjQ4u0tyHtvk5hgcpltWPv/btQoOBDm/V3KZz9a03nRWhg2OE+KAqMBDfBmNYdx0sq8XlvWVR1i+KDK3IXdPJwejS/MsvzemQX3rml1egkfMuqinPX3d4ate8gt5YLMcnFyHQVOmLr5XjxQQvfUWm6SNNhytUZYasAi9rmdKRGVJHyZycyYyvgc+jcX4NvJql16d7yNklkfDRRx/lEbAUrZRFJyZQn70ToAKttJWCC6CiHF+dAk0GsHZfABvyg3VuFUjJHWbEJ4O45pcJ0uE555wT+ZqJw2BscYZ8yw4JsiGk+vHeAUbKcE0v1eHzINoSWxgQAgB9Eo21A2AEUFh6+0iaAKljnfwCSKgGkpKURxN1Yr88ooLuc00BnOnT9L6O5lt4pFWa9mmR3i5mO+LJ98gMMFIGAXLJwAJb9UHW7sgcVAUJtLKCkK5Z7qzovlNUn4w8chGq1SA4g67BUpAT+PVLMXm/ZF7pLou4X9vJum5FB0NGRTaTVFHm2kTj9ITXbYhsq5rwDHUJYxwaZEqCcUXG8YAzo/JTk1WLomlUZBNIfXe8GGG2UChGFkiZHCqKs+vCbuoCskacZDeFdqs7z6rDzmAWP+jQ8Xkh3SNSMKTOaNBZHFLH84Djc5vtIvADJCnHFvwiDa0OC7SWwe6/1wSNVIfgvjXHI8pk4yQYpcJsZBCitjEEnVhDS6/KHJmJrLKGUiYl/xBdkQ7Bs23HdaVjp7tNW9GibMDSYloEwBzjJBgFISPI+AMLpPQhlmn1qBsocskll8BMbOYyJGRHBnk4GBb0dEcQolUndcHEbQnHkJBTuxUaHHCwlSPOOL5pw6ASGvnEdlln4QAhdluQIx0+dAjxWPYmH0LE0z0NwszpGPRB+voOWnQ107ClywxQIfPMoiGp9QN96BNn08uRNWSe+i58i9scOHjwir17/3LGGX8988zjx45RDZaQdqIhBT3dE8PO9Mk4CTomR/Wz9Q7wBtQZzTD1AepOKslhDjoddGI5yibXXHON9F6inXSLFwY/jo5xVlLMnvPO+9Npp/3597/fd/HFwA9mjvFOXIai7dc4+K+44ortpd9lCN3KPMum5uy1Z6h88DziUfO8M10AZHpwholriUa6veiiiwAGSANHlXuPIjeKQhM33HDDzs7O73Z2/rCzc/TIEagWZk4FHbtOBY4+ps4q+FR2kvlfFKnvoovPQsG8IS3GAMnwWIr/FK66QcFyEBlaQRD6vtmSteMtOBB8+cp7zzzrrD+efvrfzj8fX2r5ulWCR9VZCHFTgAUVUYeFMh3SRIe0mDoII9H50nQtMwaY4ULRaEeUsIgs1oRjNhONS1Aqa5tBIphm6IMZv383qBT1znSjJKX1qjsZG5FOP61N8F1H/JlaO5AGU4n4A6ElStBt1hUKc0At7YFIYpF/fIGT5tvVZSoaqW91atqlTK4O0RI4JhbrsssuMxDSOcxZGiZ2ffDgpm2AsJxm5GiJKorbmixhoU2NNJI6V2YVVK0iJZlNiEbId6JViivTDKCFcNIDUmYTQXd687c1ETSdZqGeUdFVkauJ+i0Pb5rbGKdIc3MrJCs3aVkYqraiZY8iGYjxwSgzIzN8u0KH/v2V7GanzTBSm1U36FXKZ7DSSYZENM4lpyivt9WWlzISjMjtqaDVeUV4lV9nzpAfiBeWqnOJsyU7FbZWFUhu6gPYcdy3mkrtdZRMkB3zX98/mOjfb1JylwgLVWpoy1hEiPINwtZ+swjx1Y2KbCZdWV21VRk6tFh1tjEfnVTYtYI1Em2qpoAZyDZ9y5d/rbnOVKNAiDobUUlNK7r6qtySCXa9r6nrqkQRvE4LRWAIhLy4a7RW9z8KAVvrqEheV1bRnM6V9KaQLxDSB5voATgpWmLRYDit/oVouO4ucYRYq9srHSeZ9emfYzcaTvKJkpf+zztTnVV3n3gVT0WLLZNce95bWbwaBt1Wfdx0S4obyU433ngjqW8i1mzkvBd/1ZzoVVcQehV+ERHob+tl4nOOtKhpX0JR4s0P0FfBLCi2hBNPsfNaESWAtG/fPtYRSGDO4+CGcJF23EH55DjQm2++mXNB9+/fz4CpjDpDahYdUhMzhs4vv/xyAjcRUqtOucoqS7uibOt7uJjvaDiwKxc3qJBVqM65u9e3qnPTlXIYHStbXulSNAKb6667jh4gBWX98qsvbAHCvXv3YvvziO+hcgcMw/1NoYL84ICQoDEq+wQIFZAp+XxrjukrfBhDncBjFRWmmYSIgG05l9PN49V10eirxOpv2OdpqW2CrWniRfpGcOKWW25hqBywTCZqC+fmPANC1nIWjr1kA/BhTM+kTE7EksaocAJnTzX5NazAL+rMqT8n9Qr8G/IPYOaedKvyAAAAAElFTkSuQmCC