#!/usr/bin/env python # # This work is licensed under the Creative Commons Attribution-ShareAlike # 3.0 Unported License.To view a copy of this license, visit # http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to # Creative Commons, 444 Castro Street, Suite 900, Mountain View, # California, 94041, USA. #NOTE: This program uses a configuration file specified on the command line # if none is specified, then dmrlink.cfg in the same directory as this # file will be tried. Finally, if that does not exist, this process # will terminate from __future__ import print_function import ConfigParser import argparse import sys import binascii import csv import os import logging import time import signal from logging.config import dictConfig from hmac import new as hmac_new from binascii import b2a_hex as h from hashlib import sha1 from socket import inet_ntoa as IPAddr from socket import inet_aton as IPHexStr from twisted.internet.protocol import DatagramProtocol from twisted.internet import reactor from twisted.internet import task __author__ = 'Cortney T. Buffington, N0MJS' __copyright__ = 'Copyright (c) 2013, 2014 Cortney T. Buffington, N0MJS and the K0USY Group' __credits__ = 'Adam Fast, KC0YLK, Dave K, and he who wishes not to be named' __license__ = 'Creative Commons Attribution-ShareAlike 3.0 Unported' __version__ = '0.27b' __maintainer__ = 'Cort Buffington, N0MJS' __email__ = 'n0mjs@me.com' __status__ = 'beta' parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', action='store', dest='CFG_FILE', help='/full/path/to/config.file (usually dmrlink.cfg)') cli_args = parser.parse_args() #************************************************ # PARSE THE CONFIG FILE AND BUILD STRUCTURE #************************************************ NETWORK = {} networks = {} config = ConfigParser.ConfigParser() if not cli_args.CFG_FILE: cli_args.CFG_FILE = os.path.dirname(os.path.abspath(__file__))+'/dmrlink.cfg' try: if not config.read(cli_args.CFG_FILE): sys.exit('Configuration file \''+cli_args.CFG_FILE+'\' is not a valid configuration file! Exiting...') except: sys.exit('Configuration file \''+cli_args.CFG_FILE+'\' is not a valid configuration file! Exiting...') try: for section in config.sections(): if section == 'GLOBAL': # Process GLOBAL items in the configuration PATH = config.get(section, 'PATH') elif section == 'REPORTS': # Process REPORTS items in the configuration REPORTS = { 'REPORT_PEERS': config.getboolean(section, 'REPORT_PEERS'), 'REPORT_INTERVAL': config.getint(section, 'REPORT_INTERVAL'), 'PEER_REPORT_INC_MODE': config.getboolean(section, 'PEER_REPORT_INC_MODE'), 'PEER_REPORT_INC_FLAGS': config.getboolean(section, 'PEER_REPORT_INC_FLAGS') } elif section == 'LOGGER': # Process LOGGER items in the configuration LOGGER = { 'LOG_FILE': config.get(section, 'LOG_FILE'), 'LOG_HANDLERS': config.get(section, 'LOG_HANDLERS'), 'LOG_LEVEL': config.get(section, 'LOG_LEVEL'), 'LOG_NAME': config.get(section, 'LOG_NAME') } else: # All other sections define indiviual IPSC Networks we connect to # Each IPSC network config will contain the following three sections NETWORK.update({section: {'LOCAL': {}, 'MASTER': {}, 'PEERS': {}}}) # LOCAL means we need to know this stuff to be a peer in the network NETWORK[section]['LOCAL'].update({ # In case we want to keep config, but not actually connect to the network 'ENABLED': config.getboolean(section, 'ENABLED'), # These items are used to create the MODE byte 'PEER_OPER': config.getboolean(section, 'PEER_OPER'), 'IPSC_MODE': config.get(section, 'IPSC_MODE'), 'TS1_LINK': config.getboolean(section, 'TS1_LINK'), 'TS2_LINK': config.getboolean(section, 'TS2_LINK'), 'MODE': '', # These items are used to create the multi-byte FLAGS field 'AUTH_ENABLED': config.getboolean(section, 'AUTH_ENABLED'), 'CSBK_CALL': config.getboolean(section, 'CSBK_CALL'), 'RCM': config.getboolean(section, 'RCM'), 'CON_APP': config.getboolean(section, 'CON_APP'), 'XNL_CALL': config.getboolean(section, 'XNL_CALL'), 'XNL_MASTER': config.getboolean(section, 'XNL_MASTER'), 'DATA_CALL': config.getboolean(section, 'DATA_CALL'), 'VOICE_CALL': config.getboolean(section, 'VOICE_CALL'), 'MASTER_PEER': config.getboolean(section, 'MASTER_PEER'), 'FLAGS': '', # Things we need to know to connect and be a peer in this IPSC 'RADIO_ID': hex(int(config.get(section, 'RADIO_ID')))[2:].rjust(8,'0').decode('hex'), 'PORT': config.getint(section, 'PORT'), 'ALIVE_TIMER': config.getint(section, 'ALIVE_TIMER'), 'MAX_MISSED': config.getint(section, 'MAX_MISSED'), 'AUTH_KEY': (config.get(section, 'AUTH_KEY').rjust(40,'0')).decode('hex'), 'NUM_PEERS': 0, }) # Master means things we need to know about the master peer of the network NETWORK[section]['MASTER'].update({ 'RADIO_ID': '\x00\x00\x00\x00', 'MODE': '\x00', 'MODE_DECODE': '', 'FLAGS': '\x00\x00\x00\x00', 'FLAGS_DECODE': '', 'STATUS': { 'CONNECTED': False, 'PEER_LIST': False, 'KEEP_ALIVES_SENT': 0, 'KEEP_ALIVES_MISSED': 0, 'KEEP_ALIVES_OUTSTANDING': 0, 'KEEP_ALIVES_RECEIVED': 0, 'KEEP_ALIVE_RX_TIME': 0 }, 'IP': '', 'PORT': '' }) if not NETWORK[section]['LOCAL']['MASTER_PEER']: NETWORK[section]['MASTER'].update({ 'IP': config.get(section, 'MASTER_IP'), 'PORT': config.getint(section, 'MASTER_PORT') }) # Temporary locations for building MODE and FLAG data MODE_BYTE = 0 FLAG_1 = 0 FLAG_2 = 0 # Construct and store the MODE field if NETWORK[section]['LOCAL']['PEER_OPER']: MODE_BYTE |= 1 << 6 if NETWORK[section]['LOCAL']['IPSC_MODE'] == 'ANALOG': MODE_BYTE |= 1 << 4 elif NETWORK[section]['LOCAL']['IPSC_MODE'] == 'DIGITAL': MODE_BYTE |= 1 << 5 if NETWORK[section]['LOCAL']['TS1_LINK']: MODE_BYTE |= 1 << 3 else: MODE_BYTE |= 1 << 2 if NETWORK[section]['LOCAL']['TS2_LINK']: MODE_BYTE |= 1 << 1 else: MODE_BYTE |= 1 << 0 NETWORK[section]['LOCAL']['MODE'] = chr(MODE_BYTE) # Construct and store the FLAGS field if NETWORK[section]['LOCAL']['CSBK_CALL']: FLAG_1 |= 1 << 7 if NETWORK[section]['LOCAL']['RCM']: FLAG_1 |= 1 << 6 if NETWORK[section]['LOCAL']['CON_APP']: FLAG_1 |= 1 << 5 if NETWORK[section]['LOCAL']['XNL_CALL']: FLAG_2 |= 1 << 7 if NETWORK[section]['LOCAL']['XNL_CALL'] and NETWORK[section]['LOCAL']['XNL_MASTER']: FLAG_2 |= 1 << 6 elif NETWORK[section]['LOCAL']['XNL_CALL'] and not NETWORK[section]['LOCAL']['XNL_MASTER']: FLAG_2 |= 1 << 5 if NETWORK[section]['LOCAL']['AUTH_ENABLED']: FLAG_2 |= 1 << 4 if NETWORK[section]['LOCAL']['DATA_CALL']: FLAG_2 |= 1 << 3 if NETWORK[section]['LOCAL']['VOICE_CALL']: FLAG_2 |= 1 << 2 if NETWORK[section]['LOCAL']['MASTER_PEER']: FLAG_2 |= 1 << 0 NETWORK[section]['LOCAL']['FLAGS'] = '\x00\x00'+chr(FLAG_1)+chr(FLAG_2) except: sys.exit('Could not parse configuration file, exiting...') #************************************************ # CONFIGURE THE SYSTEM LOGGER #************************************************ dictConfig({ 'version': 1, 'disable_existing_loggers': False, 'filters': { }, 'formatters': { 'verbose': { 'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s' }, 'timed': { 'format': '%(levelname)s %(asctime)s %(message)s' }, 'simple': { 'format': '%(levelname)s %(message)s' }, 'syslog': { 'format': '%(name)s (%(process)d): %(levelname)s %(message)s' } }, 'handlers': { 'console': { 'class': 'logging.StreamHandler', 'formatter': 'simple' }, 'console-timed': { 'class': 'logging.StreamHandler', 'formatter': 'timed' }, 'file': { 'class': 'logging.FileHandler', 'formatter': 'simple', 'filename': LOGGER['LOG_FILE'], }, 'file-timed': { 'class': 'logging.FileHandler', 'formatter': 'timed', 'filename': LOGGER['LOG_FILE'], }, 'syslog': { 'class': 'logging.handlers.SysLogHandler', 'formatter': 'syslog', } }, 'loggers': { LOGGER['LOG_NAME']: { 'handlers': LOGGER['LOG_HANDLERS'].split(','), 'level': LOGGER['LOG_LEVEL'], 'propagate': True, } } }) logger = logging.getLogger(LOGGER['LOG_NAME']) #************************************************ # IMPORTING OTHER FILES - '#include' #************************************************ # Import IPSC message types and version information # try: from ipsc.ipsc_message_types import * except ImportError: sys.exit('IPSC message types file not found or invalid') # Import IPSC flag mask values # try: from ipsc.ipsc_mask import * except ImportError: sys.exit('IPSC mask values file not found or invalid') # Import the Alias files for numeric ids. This is split to save # time making lookups in one huge dictionary # curdir= os.path.dirname(__file__) subscriber_ids = {} peer_ids = {} talkgroup_ids = {} try: with open(PATH+'subscriber_ids.csv', 'rU') as subscriber_ids_csv: subscribers = csv.reader(subscriber_ids_csv, dialect='excel', delimiter=',') for row in subscribers: subscriber_ids[int(row[1])] = (row[0]) except ImportError: logger.warning('subscriber_ids.csv not found: Subscriber aliases will not be available') try: with open(PATH+'peer_ids.csv', 'rU') as peer_ids_csv: peers = csv.reader(peer_ids_csv, dialect='excel', delimiter=',') for row in peers: peer_ids[int(row[1])] = (row[0]) except ImportError: logger.warning('peer_ids.csv not found: Peer aliases will not be available') try: with open(PATH+'talkgroup_ids.csv', 'rU') as talkgroup_ids_csv: talkgroups = csv.reader(talkgroup_ids_csv, dialect='excel', delimiter=',') for row in talkgroups: talkgroup_ids[int(row[1])] = (row[0]) except ImportError: logger.warning('talkgroup_ids.csv not found: Talkgroup aliases will not be available') #************************************************ # UTILITY FUNCTIONS FOR INTERNAL USE #************************************************ # Create a 2 byte hex string from an integer # def hex_str_2(_int_id): try: return hex(_int_id)[2:].rjust(4,'0').decode('hex') except TypeError: logger.error('hex_str_2: invalid integer length') # Create a 3 byte hex string from an integer # def hex_str_3(_int_id): try: return hex(_int_id)[2:].rjust(6,'0').decode('hex') except TypeError: logger.error('hex_str_3: invalid integer length') # Create a 4 byte hex string from an integer # def hex_str_4(_int_id): try: return hex(_int_id)[2:].rjust(8,'0').decode('hex') except TypeError: logger.error('hex_str_4: invalid integer length') # Convert a hex string to an int (radio ID, etc.) # def int_id(_hex_string): return int(h(_hex_string), 16) # Re-Write Source Radio-ID (DMR NAT) # def dmr_nat(_data, _src_id, _nat_id): _data = _data.replace(_src_id, _nat_id) return _data # Lookup text data for numeric IDs # def get_info(_id, _dict): if _id in _dict: return _dict[_id] return _id # Determine if the provided peer ID is valid for the provided network # def valid_peer(_peer_list, _peerid): if _peerid in _peer_list: return True return False # Determine if the provided master ID is valid for the provided network # def valid_master(_network, _peerid): if NETWORK[_network]['MASTER']['RADIO_ID'] == _peerid: return True else: return False # Accept a complete packet, ready to be sent, and send it to all active peers + master in an IPSC # def send_to_ipsc(_target, _packet): _network = NETWORK[_target] _network_instance = networks[_target] _peers = _network['PEERS'] # Send to the Master if _network['MASTER']['STATUS']['CONNECTED']: _network_instance.transport.write(_packet, (_network['MASTER']['IP'], _network['MASTER']['PORT'])) # Send to each connected Peer for peer in _peers.keys(): if _peers[peer]['STATUS']['CONNECTED']: _network_instance.transport.write(_packet, (_peers[peer]['IP'], _peers[peer]['PORT'])) # De-register a peer from an IPSC by removing it's information # def de_register_peer(_network, _peerid): # Iterate for the peer in our data if _peerid in NETWORK[_network]['PEERS'].keys(): del NETWORK[_network]['PEERS'][_peerid] logger.info('(%s) Peer De-Registration Requested for: %s', _network, int_id(_peerid)) return else: logger.warning('(%s) Peer De-Registration Requested for: %s, but we don\'t have a listing for this peer', _network, int_id(_peerid)) pass # Process the MODE byte in registration/peer list packets for determining master and peer capabilities # def process_mode_byte(_hex_mode): _mode = int(h(_hex_mode), 16) # Determine whether or not the peer is operational _peer_op = bool(_mode & PEER_OP_MSK) # Determine whether or not timeslot 1 is linked _ts1 = bool(_mode & IPSC_TS1_MSK) # Determine whether or not timeslot 2 is linked _ts2 = bool(_mode & IPSC_TS2_MSK) # Determine the operational mode of the peer if _mode & PEER_MODE_MSK == PEER_MODE_MSK: _peer_mode = 'UNKNOWN' elif not _mode & PEER_MODE_MSK: _peer_mode = 'NO_RADIO' elif _mode & PEER_MODE_ANALOG: _peer_mode = 'ANALOG' elif _mode & PEER_MODE_DIGITAL: _peer_mode = 'DIGITAL' return { 'PEER_OP': _peer_op, 'PEER_MODE': _peer_mode, 'TS_1': _ts1, 'TS_2': _ts2 } # Process the FLAGS bytes in registration replies for determining what services are available # def process_flags_bytes(_hex_flags): _byte3 = int(h(_hex_flags[2]), 16) _byte4 = int(h(_hex_flags[3]), 16) _csbk = bool(_byte3 & CSBK_MSK) _rpt_mon = bool(_byte3 & RPT_MON_MSK) _con_app = bool(_byte3 & CON_APP_MSK) _xnl_con = bool(_byte4 & XNL_STAT_MSK) _xnl_master = bool(_byte4 & XNL_MSTR_MSK) _xnl_slave = bool(_byte4 & XNL_SLAVE_MSK) _auth = bool(_byte4 & PKT_AUTH_MSK) _data = bool(_byte4 & DATA_CALL_MSK) _voice = bool(_byte4 & VOICE_CALL_MSK) _master = bool(_byte4 & MSTR_PEER_MSK) return { 'CSBK': _csbk, 'RCM': _rpt_mon, 'CON_APP': _con_app, 'XNL_CON': _xnl_con, 'XNL_MASTER': _xnl_master, 'XNL_SLAVE': _xnl_slave, 'AUTH': _auth, 'DATA': _data, 'VOICE': _voice, 'MASTER': _master } # Take a received peer list and the network it belongs to, process and populate the # data structure in my_ipsc_config with the results, and return a simple list of peers. # def process_peer_list(_data, _network): # Create a temporary peer list to track who we should have in our list -- used to find old peers we should remove. _temp_peers = [] # Determine the length of the peer list for the parsing iterator _peer_list_length = int(h(_data[5:7]), 16) # Record the number of peers in the data structure... we'll use it later (11 bytes per peer entry) NETWORK[_network]['LOCAL']['NUM_PEERS'] = _peer_list_length/11 logger.info('(%s) Peer List Received from Master: %s peers in this IPSC', _network, NETWORK[_network]['LOCAL']['NUM_PEERS']) # Iterate each peer entry in the peer list. Skip the header, then pull the next peer, the next, etc. for i in range(7, _peer_list_length +7, 11): # Extract various elements from each entry... _hex_radio_id = (_data[i:i+4]) _hex_address = (_data[i+4:i+8]) _ip_address = IPAddr(_hex_address) _hex_port = (_data[i+8:i+10]) _port = int(h(_hex_port), 16) _hex_mode = (_data[i+10:i+11]) # Add this peer to a temporary PeerID list - used to remove any old peers no longer with us _temp_peers.append(_hex_radio_id) # This is done elsewhere for the master too, so we use a separate function _decoded_mode = process_mode_byte(_hex_mode) # If this entry WAS already in our list, update everything except the stats # in case this was a re-registration with a different mode, flags, etc. if _hex_radio_id in NETWORK[_network]['PEERS'].keys(): NETWORK[_network]['PEERS'][_hex_radio_id]['IP'] = _ip_address NETWORK[_network]['PEERS'][_hex_radio_id]['PORT'] = _port NETWORK[_network]['PEERS'][_hex_radio_id]['MODE'] = _hex_mode NETWORK[_network]['PEERS'][_hex_radio_id]['MODE_DECODE'] = _decoded_mode NETWORK[_network]['PEERS'][_hex_radio_id]['FLAGS'] = '' NETWORK[_network]['PEERS'][_hex_radio_id]['FLAGS_DECODE'] = '' logger.debug('(%s) Peer Updated: %s', _network, int_id(NETWORK[_network]['PEERS'][_hex_radio_id])) # If this entry was NOT already in our list, add it. if _hex_radio_id not in NETWORK[_network]['PEERS'].keys(): NETWORK[_network]['PEERS'][_hex_radio_id] = { 'IP': _ip_address, 'PORT': _port, 'MODE': _hex_mode, 'MODE_DECODE': _decoded_mode, 'FLAGS': '', 'FLAGS_DECODE': '', 'STATUS': { 'CONNECTED': False, 'KEEP_ALIVES_SENT': 0, 'KEEP_ALIVES_MISSED': 0, 'KEEP_ALIVES_OUTSTANDING': 0, 'KEEP_ALIVES_RECEIVED': 0, 'KEEP_ALIVE_RX_TIME': 0 } } logger.debug('(%s) Peer Added: %s', _network, NETWORK[_network]['PEERS'][_hex_radio_id]) # Finally, check to see if there's a peer already in our list that was not in this peer list # and if so, delete it. for peer in NETWORK[_network]['PEERS'].keys(): if peer not in _temp_peers: de_register_peer(_network, peer) logger.warning('(%s) Peer Deleted (not in new peer list): %s', _network, int_id(peer)) # Build a peer list - used when a peer registers, re-regiseters or times out # def build_peer_list(_peers): concatenated_peers = '' for peer in _peers: hex_ip = IPHexStr(_peers[peer]['IP']) hex_port = hex_str_2(_peers[peer]['PORT']) mode = _peers[peer]['MODE'] concatenated_peers += peer + hex_ip + hex_port + mode peer_list = hex_str_2(len(concatenated_peers)) + concatenated_peers return peer_list # Gratuitous print-out of the peer list.. Pretty much debug stuff. # def print_peer_list(_network): _peers = NETWORK[_network]['PEERS'] _status = NETWORK[_network]['MASTER']['STATUS']['PEER_LIST'] #print('Peer List Status for {}: {}' .format(_network, _status)) if _status and not NETWORK[_network]['PEERS']: print('We are the only peer for: %s' % _network) print('') return print('Peer List for: %s' % _network) for peer in _peers.keys(): _this_peer = _peers[peer] _this_peer_stat = _this_peer['STATUS'] if peer == NETWORK[_network]['LOCAL']['RADIO_ID']: me = '(self)' else: me = '' print('\tRADIO ID: {} {}' .format(int_id(peer), me)) print('\t\tIP Address: {}:{}' .format(_this_peer['IP'], _this_peer['PORT'])) if _this_peer['MODE_DECODE'] and REPORTS['PEER_REPORT_INC_MODE']: print('\t\tMode Values:') for name, value in _this_peer['MODE_DECODE'].items(): print('\t\t\t{}: {}' .format(name, value)) if _this_peer['FLAGS_DECODE'] and REPORTS['PEER_REPORT_INC_FLAGS']: print('\t\tService Flags:') for name, value in _this_peer['FLAGS_DECODE'].items(): print('\t\t\t{}: {}' .format(name, value)) print('\t\tStatus: {}, KeepAlives Sent: {}, KeepAlives Outstanding: {}, KeepAlives Missed: {}' .format(_this_peer_stat['CONNECTED'], _this_peer_stat['KEEP_ALIVES_SENT'], _this_peer_stat['KEEP_ALIVES_OUTSTANDING'], _this_peer_stat['KEEP_ALIVES_MISSED'])) print('\t\t KeepAlives Received: {}, Last KeepAlive Received at: {}' .format(_this_peer_stat['KEEP_ALIVES_RECEIVED'], _this_peer_stat['KEEP_ALIVE_RX_TIME'])) print('') # Gratuitous print-out of Master info.. Pretty much debug stuff. # def print_master(_network): if NETWORK[_network]['LOCAL']['MASTER_PEER']: print('DMRlink is the Master for %s' % _network) else: _master = NETWORK[_network]['MASTER'] print('Master for %s' % _network) print('\tRADIO ID: {}' .format(int(h(_master['RADIO_ID']), 16))) if _master['MODE_DECODE'] and REPORTS['PEER_REPORT_INC_MODE']: print('\t\tMode Values:') for name, value in _master['MODE_DECODE'].items(): print('\t\t\t{}: {}' .format(name, value)) if _master['FLAGS_DECODE'] and REPORTS['PEER_REPORT_INC_FLAGS']: print('\t\tService Flags:') for name, value in _master['FLAGS_DECODE'].items(): print('\t\t\t{}: {}' .format(name, value)) print('\t\tStatus: {}, KeepAlives Sent: {}, KeepAlives Outstanding: {}, KeepAlives Missed: {}' .format(_master['STATUS']['CONNECTED'], _master['STATUS']['KEEP_ALIVES_SENT'], _master['STATUS']['KEEP_ALIVES_OUTSTANDING'], _master['STATUS']['KEEP_ALIVES_MISSED'])) print('\t\t KeepAlives Received: {}, Last KeepAlive Received at: {}' .format(_master['STATUS']['KEEP_ALIVES_RECEIVED'], _master['STATUS']['KEEP_ALIVE_RX_TIME'])) # Shut ourselves down gracefully with the IPSC peers. # def handler(_signal, _frame): logger.info('*** DMRLINK IS TERMINATING WITH SIGNAL %s ***', str(_signal)) for network in networks: this_ipsc = networks[network] logger.info('De-Registering from IPSC %s', network) de_reg_req_pkt = this_ipsc.hashed_packet(this_ipsc._local['AUTH_KEY'], this_ipsc.DE_REG_REQ_PKT) send_to_ipsc(network, de_reg_req_pkt) reactor.stop() # Set signal handers so that we can gracefully exit if need be for sig in [signal.SIGTERM, signal.SIGINT, signal.SIGQUIT]: signal.signal(sig, handler) #************************************************ #******** *********** #******** IPSC Network 'Engine' *********** #******** *********** #************************************************ #************************************************ # Base Class (used nearly all of the time) #************************************************ class IPSC(DatagramProtocol): #************************************************ # IPSC INSTANCE INSTANTIATION #************************************************ # Modify the initializer to set up our environment and build the packets # we need to maintain connections # def __init__(self, *args, **kwargs): if len(args) == 1: # Housekeeping: create references to the configuration and status data for this IPSC instance. # Some configuration objects that are used frequently and have lengthy names are shortened # such as (self._master_sock) expands to (self._config['MASTER']['IP'], self._config['MASTER']['PORT']). # Note that many of them reference each other... this is the Pythonic way. # self._network = args[0] self._config = NETWORK[self._network] # self._local = self._config['LOCAL'] self._local_id = self._local['RADIO_ID'] # self._master = self._config['MASTER'] self._master_stat = self._master['STATUS'] self._master_sock = self._master['IP'], self._master['PORT'] # self._peers = self._config['PEERS'] # # This is a regular list to store peers for the IPSC. At times, parsing a simple list is much less # Spendy than iterating a list of dictionaries... Maybe I'll find a better way in the future. Also # We have to know when we have a new peer list, so a variable to indicate we do (or don't) # args = () # Packet 'constructors' - builds the necessary control packets for this IPSC instance. # This isn't really necessary for anything other than readability (reduction of code golf) # # General Items self.TS_FLAGS = (self._local['MODE'] + self._local['FLAGS']) # # Peer Link Maintenance Packets self.MASTER_REG_REQ_PKT = (MASTER_REG_REQ + self._local_id + self.TS_FLAGS + IPSC_VER) self.MASTER_ALIVE_PKT = (MASTER_ALIVE_REQ + self._local_id + self.TS_FLAGS + IPSC_VER) self.PEER_LIST_REQ_PKT = (PEER_LIST_REQ + self._local_id) self.PEER_REG_REQ_PKT = (PEER_REG_REQ + self._local_id + IPSC_VER) self.PEER_REG_REPLY_PKT = (PEER_REG_REPLY + self._local_id + IPSC_VER) self.PEER_ALIVE_REQ_PKT = (PEER_ALIVE_REQ + self._local_id + self.TS_FLAGS) self.PEER_ALIVE_REPLY_PKT = (PEER_ALIVE_REPLY + self._local_id + self.TS_FLAGS) # # Master Link Maintenance Packets # self.MASTER_REG_REPLY_PKT is not static and must be generated when it is sent self.MASTER_ALIVE_REPLY_PKT = (MASTER_ALIVE_REPLY + self._local_id + self.TS_FLAGS + IPSC_VER) self.PEER_LIST_REPLY_PKT = (PEER_LIST_REPLY + self._local_id) # # General Link Maintenance Packets self.DE_REG_REQ_PKT = (DE_REG_REQ + self._local_id) self.DE_REG_REPLY_PKT = (DE_REG_REPLY + self._local_id) # logger.info('(%s) IPSC Instance Created', self._network) else: # If we didn't get called correctly, log it! # logger.error('(%s) IPSC Instance Could Not be Created... Exiting', self._network) sys.exit() # Choose which set of fucntions to use - authenticated or not if self._local['AUTH_ENABLED']: self.hashed_packet = self.auth_hashed_packet self.strip_hash = self.auth_strip_hash self.validate_auth = self.auth_validate_auth else: self.hashed_packet = self.unauth_hashed_packet self.strip_hash = self.unauth_strip_hash self.validate_auth = self.unauth_validate_auth #************************************************ # CALLBACK FUNCTIONS FOR USER PACKET TYPES #************************************************ def call_mon_status(self, _network, _data): logger.debug('(%s) Repeater Call Monitor Origin Packet Received: %s',_network, h(_data)) def call_mon_rpt(self, _network, _data): logger.debug('(%s) Repeater Call Monitor Repeating Packet Received: %s', _network, h(_data)) def call_mon_nack(self, _network, _data): logger.debug('(%s) Repeater Call Monitor NACK Packet Received: %s', _network, h(_data)) def xcmp_xnl(self, _network, _data): logger.debug('(%s) XCMP/XNL Packet Received: %s', _network, h(_data)) def repeater_wake_up(self, _network, _data): logger.debug('(%s) Repeater Wake-Up Packet Received: %s', _network, h(_data)) def group_voice(self, _network, _src_sub, _dst_sub, _ts, _end, _peerid, _data): logger.debug('(%s) Group Voice Packet Received From: %s, IPSC Peer %s, Destination %s', _network, int_id(_src_sub), int_id(_peerid), int_id(_dst_sub)) def private_voice(self, _network, _src_sub, _dst_sub, _ts, _end, _peerid, _data): logger.debug('(%s) Private Voice Packet Received From: %s, IPSC Peer %s, Destination %s', _network, int_id(_src_sub), int_id(_peerid), int_id(_dst_sub)) def group_data(self, _network, _src_sub, _dst_sub, _ts, _end, _peerid, _data): logger.debug('(%s) Group Data Packet Received From: %s, IPSC Peer %s, Destination %s', _network, int_id(_src_sub), int_id(_peerid), int_id(_dst_sub)) def private_data(self, _network, _src_sub, _dst_sub, _ts, _end, _peerid, _data): logger.debug('(%s) Private Data Packet Received From: %s, IPSC Peer %s, Destination %s', _network, int_id(_src_sub), int_id(_peerid), int_id(_dst_sub)) def unknown_message(self, _network, _packettype, _peerid, _data): _packettype = h(_packettype) logger.error('(%s) Unknown message type encountered\n\tPacket Type: %s\n\tFrom: %s\n\tPacket: %s', _network, h(_packettype), int_id(_peerid), h(_data)) #************************************************ # IPSC SPECIFIC MAINTENANCE FUNCTIONS #************************************************ # FUNTIONS FOR IPSC MAINTENANCE ACTIVITIES WE RESPOND TO # def peer_alive_req(self, _data, _peerid, _host, _port): _hex_mode = (_data[5]) _hex_flags = (_data[6:10]) _decoded_mode = process_mode_byte(_hex_mode) _decoded_flags = process_flags_bytes(_hex_flags) self._peers[_peerid]['MODE'] = _hex_mode self._peers[_peerid]['MODE_DECODE'] = _decoded_mode self._peers[_peerid]['FLAGS'] = _hex_flags self._peers[_peerid]['FLAGS_DECODE'] = _decoded_flags # Generate a hashed packet from our template and send it. peer_alive_reply_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_ALIVE_REPLY_PKT) self.transport.write(peer_alive_reply_packet, (_host, _port)) self.reset_keep_alive(_peerid) # Might as well reset our own counter, we know it's out there... logger.debug('(%s) Keep-Alive reply sent to Peer %s', self._network, int_id(_peerid)) def peer_reg_req(self, _peerid, _host, _port): peer_reg_reply_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_REG_REPLY_PKT) self.transport.write(peer_reg_reply_packet, (_host, _port)) logger.info('(%s) Peer Registration Request From: %s', self._network, int_id(_peerid)) def peer_alive_reply(self, _peerid): self.reset_keep_alive(_peerid) self._peers[_peerid]['STATUS']['KEEP_ALIVES_RECEIVED'] += 1 self._peers[_peerid]['STATUS']['KEEP_ALIVE_RX_TIME'] = int(time.time()) logger.debug('(%s) Keep-Alive Reply (we sent the request) Received from Peer %s', self._network, int_id(_peerid)) def peer_reg_reply(self, _peerid): if _peerid in self._peers.keys(): self._peers[_peerid]['STATUS']['CONNECTED'] = True logger.info('(%s) Registration Reply From: %s', self._network, int_id(_peerid)) def master_alive_reply(self, _peerid): self.reset_keep_alive(_peerid) self._master['STATUS']['KEEP_ALIVES_RECEIVED'] += 1 self._master['STATUS']['KEEP_ALIVE_RX_TIME'] = int(time.time()) logger.debug('(%s) Keep-Alive Reply (we sent the request) Received from the Master %s', self._network, int_id(_peerid)) def peer_list_reply(self, _data, _peerid): NETWORK[self._network]['MASTER']['STATUS']['PEER_LIST'] = True if len(_data) > 18: process_peer_list(_data, self._network) logger.debug('(%s) Peer List Reply Recieved From Master %s', self._network, int_id(_peerid)) def master_reg_reply(self, _data, _peerid): _hex_mode = _data[5] _hex_flags = _data[6:10] _num_peers = _data[10:12] _decoded_mode = process_mode_byte(_hex_mode) _decoded_flags = process_flags_bytes(_hex_flags) self._local['NUM_PEERS'] = int(h(_num_peers), 16) self._master['RADIO_ID'] = _peerid self._master['MODE'] = _hex_mode self._master['MODE_DECODE'] = _decoded_mode self._master['FLAGS'] = _hex_flags self._master['FLAGS_DECODE'] = _decoded_flags self._master_stat['CONNECTED'] = True self._master_stat['KEEP_ALIVES_OUTSTANDING'] = 0 logger.warning('(%s) Registration response (we requested reg) from the Master %s (%s peers)', self._network, int_id(_peerid), self._local['NUM_PEERS']) def master_reg_req(self, _data, _peerid, _host, _port): _ip_address = _host _port = _port _hex_mode = _data[5] _hex_flags = _data[6:10] _decoded_mode = process_mode_byte(_hex_mode) _decoded_flags = process_flags_bytes(_hex_flags) self.MASTER_REG_REPLY_PKT = (MASTER_REG_REPLY + self._local_id + self.TS_FLAGS + hex_str_2(self._local['NUM_PEERS']) + IPSC_VER) master_reg_reply_packet = self.hashed_packet(self._local['AUTH_KEY'], self.MASTER_REG_REPLY_PKT) self.transport.write(master_reg_reply_packet, (_host, _port)) logger.debug('(%s) Master Registration Packet Received from peer %s', self._network, int_id(_peerid)) # If this entry was NOT already in our list, add it. if _peerid not in self._peers.keys(): self._peers[_peerid] = { 'IP': _ip_address, 'PORT': _port, 'MODE': _hex_mode, 'MODE_DECODE': _decoded_mode, 'FLAGS': _hex_flags, 'FLAGS_DECODE': _decoded_flags, 'STATUS': { 'CONNECTED': True, 'KEEP_ALIVES_SENT': 0, 'KEEP_ALIVES_MISSED': 0, 'KEEP_ALIVES_OUTSTANDING': 0, 'KEEP_ALIVES_RECEIVED': 0, 'KEEP_ALIVE_RX_TIME': int(time.time()) } } self._local['NUM_PEERS'] = len(self._peers) logger.debug('(%s) Peer Added To Peer List: %s (IPSC now has %s Peers)', self._network, self._peers[_peerid], self._local['NUM_PEERS']) def master_alive_req(self, _peerid, _host, _port): if _peerid in self._peers.keys(): self._peers[_peerid]['STATUS']['KEEP_ALIVES_RECEIVED'] += 1 self._peers[_peerid]['STATUS']['KEEP_ALIVE_RX_TIME'] = int(time.time()) master_alive_reply_packet = self.hashed_packet(self._local['AUTH_KEY'], self.MASTER_ALIVE_REPLY_PKT) self.transport.write(master_alive_reply_packet, (host, port)) logger.debug('(%s) Master Keep-Alive Request Received from peer %s', self._network, int_id(_peerid)) else: logger.warning('(%s) Master Keep-Alive Request Received from *UNREGISTERED* peer %s', self._network, int_id(_peerid)) def peer_list_req(self, _peerid): if _peerid in self._peers.keys(): logger.debug('(%s) Peer List Request from peer %s', self._network, int_id(_peerid)) peer_list_packet = self.PEER_LIST_REPLY_PKT + build_peer_list(self._peers) peer_list_packet = self.hashed_packet(self._local['AUTH_KEY'], peer_list_packet) send_to_ipsc(self._network, peer_list_packet) else: logger.warning('(%s) Peer List Request Received from *UNREGISTERED* peer %s', self._network, int_id(_peerid)) # Reset the outstanding keep-alive counter for _peerid... # Used when receiving acks OR when we see traffic from a repeater, since they ignore keep-alives when transmitting # def reset_keep_alive(self, _peerid): if _peerid in self._peers.keys(): self._peers[_peerid]['STATUS']['KEEP_ALIVES_OUTSTANDING'] = 0 self._peers[_peerid]['STATUS']['KEEP_ALIVE_RX_TIME'] = int(time.time()) if _peerid == self._master['RADIO_ID']: self._master_stat['KEEP_ALIVES_OUTSTANDING'] = 0 # # NEXT THREE FUNCITONS ARE FOR AUTHENTICATED PACKETS # # Take a packet to be SENT, calculate auth hash and return the whole thing # def auth_hashed_packet(self, _key, _data): _hash = binascii.a2b_hex((hmac_new(_key,_data,sha1)).hexdigest()[:20]) return _data + _hash # Remove the hash from a packet and return the payload # def auth_strip_hash(self, _data): return _data[:-10] # Take a RECEIVED packet, calculate the auth hash and verify authenticity # def auth_validate_auth(self, _key, _data): _payload = self.strip_hash(_data) _hash = _data[-10:] _chk_hash = binascii.a2b_hex((hmac_new(_key,_payload,sha1)).hexdigest()[:20]) if _chk_hash == _hash: return True else: return False # # NEXT THREE FUNCITONS ARE FOR UN-AUTHENTICATED PACKETS # # There isn't a hash to build, so just return the data # def unauth_hashed_packet(self, _key, _data): return _data # Remove the hash from a packet and return the payload... except don't # def unauth_strip_hash(self, _data): return _data # Everything is validated, so just return True # def unauth_validate_auth(self, _key, _data): return True #************************************************ # TIMED LOOP - CONNECTION MAINTENANCE #************************************************ # Timed loop initialization (called by the twisted reactor) # def startProtocol(self): # Timed loops for: # IPSC connection establishment and maintenance # Reporting/Housekeeping # if not self._local['MASTER_PEER']: self._peer_maintenance = task.LoopingCall(self.peer_maintenance_loop) self._peer_maintenance_loop = self._peer_maintenance.start(self._local['ALIVE_TIMER']) # if self._local['MASTER_PEER']: self._master_maintenance = task.LoopingCall(self.master_maintenance_loop) self._master_maintenance_loop = self._master_maintenance.start(self._local['ALIVE_TIMER']) # self._reporting = task.LoopingCall(self.reporting_loop) self._reporting_loop = self._reporting.start(REPORTS['REPORT_INTERVAL']) # Timed loop used for reporting IPSC status # def reporting_loop(self): # Right now, without this, we really don't know anything is happening. logger.debug('(%s) Periodic Reporting Loop Started', self._network) if REPORTS['REPORT_PEERS']: print_master(self._network) print_peer_list(self._network) # Timed loop used for IPSC connection Maintenance when we are the MASTER # def master_maintenance_loop(self): logger.debug('(%s) MASTER Connection Maintenance Loop Started', self._network) update_time = int(time.time()) for peer in self._peers.keys(): keep_alive_delta = update_time - self._peers[peer]['STATUS']['KEEP_ALIVE_RX_TIME'] logger.debug('(%s) Time Since Last KeepAlive Request from Peer %s: %s seconds', self._network, int_id(peer), keep_alive_delta) if keep_alive_delta > 120: de_register_peer(self._network, peer) peer_list_packet = self.PEER_LIST_REPLY_PKT + build_peer_list(self._peers) peer_list_packet = self.hashed_packet(self._local['AUTH_KEY'], peer_list_packet) send_to_ipsc(self._network, peer_list_packet) logger.warning('(%s) Timeout Exceeded for Peer %s, De-registering', self._network, int_id(peer)) # Timed loop used for IPSC connection Maintenance when we are a PEER # def peer_maintenance_loop(self): logger.debug('(%s) PEER Connection Maintenance Loop Started', self._network) # If the master isn't connected, we have to do that before we can do anything else! # if not self._master_stat['CONNECTED']: reg_packet = self.hashed_packet(self._local['AUTH_KEY'], self.MASTER_REG_REQ_PKT) self.transport.write(reg_packet, self._master_sock) logger.info('(%s) Registering with the Master', self._network) # Once the master is connected, we have to send keep-alives.. and make sure we get them back elif self._master_stat['CONNECTED']: # Send keep-alive to the master master_alive_packet = self.hashed_packet(self._local['AUTH_KEY'], self.MASTER_ALIVE_PKT) self.transport.write(master_alive_packet, self._master_sock) logger.debug('(%s) Keep Alive Sent to the Master', self._network) # If we had a keep-alive outstanding by the time we send another, mark it missed. if (self._master_stat['KEEP_ALIVES_OUTSTANDING']) > 0: self._master_stat['KEEP_ALIVES_MISSED'] += 1 logger.info('(%s) Master Keep-Alive Missed', self._network) # If we have missed too many keep-alives, de-register the master and start over. if self._master_stat['KEEP_ALIVES_OUTSTANDING'] >= self._local['MAX_MISSED']: self._master_stat['CONNECTED'] = False self._master_stat['KEEP_ALIVES_OUTSTANDING'] = 0 logger.error('(%s) Maximum Master Keep-Alives Missed -- De-registering the Master', self._network) # Update our stats before we move on... self._master_stat['KEEP_ALIVES_SENT'] += 1 self._master_stat['KEEP_ALIVES_OUTSTANDING'] += 1 else: # This is bad. If we get this message, we need to reset the state and try again logger.error('->> (%s) Master in UNKOWN STATE:%s:%s', self._network, self._master_sock) self._master_stat['CONNECTED'] = False # If the master is connected and we don't have a peer-list yet.... # if (self._master_stat['CONNECTED'] == True) and (self._master_stat['PEER_LIST'] == False): # Ask the master for a peer-list if self._local['NUM_PEERS']: peer_list_req_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_LIST_REQ_PKT) self.transport.write(peer_list_req_packet, self._master_sock) logger.info('(%s), No Peer List - Requesting One From the Master', self._network) else: self._master_stat['PEER_LIST'] = True logger.debug('(%s), Skip asking for a Peer List, we are the only Peer', self._network) # If we do have a peer-list, we need to register with the peers and send keep-alives... # if self._master_stat['PEER_LIST']: # Iterate the list of peers... so we do this for each one. for peer in self._peers.keys(): # We will show up in the peer list, but shouldn't try to talk to ourselves. if peer == self._local_id: continue # If we haven't registered to a peer, send a registration if not self._peers[peer]['STATUS']['CONNECTED']: peer_reg_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_REG_REQ_PKT) self.transport.write(peer_reg_packet, (self._peers[peer]['IP'], self._peers[peer]['PORT'])) logger.info('(%s) Registering with Peer %s', self._network, int_id(peer)) # If we have registered with the peer, then send a keep-alive elif self._peers[peer]['STATUS']['CONNECTED']: peer_alive_req_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_ALIVE_REQ_PKT) self.transport.write(peer_alive_req_packet, (self._peers[peer]['IP'], self._peers[peer]['PORT'])) logger.debug('(%s) Keep-Alive Sent to the Peer %s', self._network, int_id(peer)) # If we have a keep-alive outstanding by the time we send another, mark it missed. if self._peers[peer]['STATUS']['KEEP_ALIVES_OUTSTANDING'] > 0: self._peers[peer]['STATUS']['KEEP_ALIVES_MISSED'] += 1 logger.info('(%s) Peer Keep-Alive Missed for %s', self._network, int_id(peer)) # If we have missed too many keep-alives, de-register the peer and start over. if self._peers[peer]['STATUS']['KEEP_ALIVES_OUTSTANDING'] >= self._local['MAX_MISSED']: self._peers[peer]['STATUS']['CONNECTED'] = False #del peer # Becuase once it's out of the dictionary, you can't use it for anything else. logger.warning('(%s) Maximum Peer Keep-Alives Missed -- De-registering the Peer: %s', self._network, int_id(peer)) # Update our stats before moving on... self._peers[peer]['STATUS']['KEEP_ALIVES_SENT'] += 1 self._peers[peer]['STATUS']['KEEP_ALIVES_OUTSTANDING'] += 1 # For public display of information, etc. - anything not part of internal logging/diagnostics # def _notify_event(self, network, event, info): """ Used internally whenever an event happens that may be useful to notify the outside world about. Arguments: network: string, network name to look up in config event: string, basic description info: dict, in the interest of accomplishing as much as possible without code changes. The dict will typically contain the ID of a peer so the origin of the event is known. """ pass #************************************************ # MESSAGE RECEIVED - TAKE ACTION #************************************************ # Actions for received packets by type: For every packet received, there are some things that we need to do: # Decode some of the info # Check for auth and authenticate the packet # Strip the hash from the end... we don't need it anymore # # Once they're done, we move on to the processing or callbacks for each packet type. # # Callbacks are iterated in the order of "more likely" to "less likely" to reduce processing time # def datagramReceived(self, data, (host, port)): _packettype = data[0:1] _peerid = data[1:5] _ipsc_seq = data[5:6] # AUTHENTICATE THE PACKET if not self.validate_auth(self._local['AUTH_KEY'], data): logger.warning('(%s) AuthError: IPSC packet failed authentication. Type %s: Peer ID: %s', self._network, h(_packettype), int_id(_peerid)) return # REMOVE SHA-1 AUTHENTICATION HASH: WE NO LONGER NEED IT data = self.strip_hash(data) # PACKETS THAT WE RECEIVE FROM ANY VALID PEER OR VALID MASTER if _packettype in ANY_PEER_REQUIRED: if not(valid_master(self._network, _peerid) == False or valid_peer(self._peers.keys(), _peerid) == False): logger.warning('(%s) PeerError: Peer not in peer-list: %s', self._network, int_id(_peerid)) return # ORIGINATED BY SUBSCRIBER UNITS - a.k.a someone transmitted if _packettype in USER_PACKETS: # Extract IPSC header not already extracted _src_sub = data[6:9] _dst_sub = data[9:12] _call_type = data[12:13] _unknown_1 = data[13:17] _call_info = int_id(data[17:18]) _ts = bool(_call_info & TS_CALL_MSK) _end = bool(_call_info & END_MSK) # Extract RTP header fields ''' Coming soon kids!!! Looks like version, padding, extention, CSIC, payload type and SSID never change. The things we might care about are below. _rtp_byte_1 = int_id(data[18:19]) _rtp_byte_2 = int_id(data[19:20]) _rtp_seq = int_id(data[20:22]) _rtp_tmstmp = int_id(data[22:26]) ''' # User Voice and Data Call Types: if _packettype == GROUP_VOICE: self.reset_keep_alive(_peerid) self.group_voice(self._network, _src_sub, _dst_sub, _ts, _end, _peerid, data) self._notify_event(self._network, 'group_voice', {'peer': int_id(_peerid)}) return elif _packettype == PVT_VOICE: self.reset_keep_alive(_peerid) self.private_voice(self._network, _src_sub, _dst_sub, _ts, _end, _peerid, data) self._notify_event(self._network, 'private_voice', {'peer': int_id(_peerid)}) return elif _packettype == GROUP_DATA: self.reset_keep_alive(_peerid) self.group_data(self._network, _src_sub, _dst_sub, _ts, _end, _peerid, data) self._notify_event(self._network, 'group_data', {'peer': int_id(_peerid)}) return elif _packettype == PVT_DATA: self.reset_keep_alive(_peerid) self.private_data(self._network, _src_sub, _dst_sub, _ts, _end, _peerid, data) self._notify_event(self._network, 'private_voice', {'peer': int_id(_peerid)}) return return # MOTOROLA XCMP/XNL CONTROL PROTOCOL: We don't process these (yet) elif _packettype == XCMP_XNL: self.xcmp_xnl(self._network, data) return # ORIGINATED BY PEERS, NOT IPSC MAINTENANCE: Call monitoring is all we've found here so far elif _packettype == CALL_MON_STATUS: self.call_mon_status(self._network, data) return elif _packettype == CALL_MON_RPT: self.call_mon_rpt(self._network, data) return elif _packettype == CALL_MON_NACK: self.call_mon_nack(self._network, data) return # IPSC CONNECTION MAINTENANCE MESSAGES elif _packettype == DE_REG_REQ: de_register_peer(self._network, _peerid) logger.warning('(%s) Peer De-Registration Request From: %s', self._network, int_id(_peerid)) return elif _packettype == DE_REG_REPLY: logger.warning('(%s) Peer De-Registration Reply From: %s', self._network, int_id(_peerid)) return elif _packettype == RPT_WAKE_UP: self.repeater_wake_up(self._network, data) logger.debug('(%s) Repeater Wake-Up Packet From: %s', self._network, int_id(_peerid)) return return # # THE FOLLOWING PACKETS ARE RECEIVED ONLY IF WE ARE OPERATING AS A PEER # # ONLY ACCEPT FROM A PREVIOUSLY VALIDATED PEER if _packettype in PEER_REQUIRED: if not valid_peer(self._peers.keys(), _peerid): logger.warning('(%s) PeerError: Peer %s not in peer-list', self._network, int_id(_peerid)) return # REQUESTS FROM PEERS: WE MUST REPLY IMMEDIATELY FOR IPSC MAINTENANCE if _packettype == PEER_ALIVE_REQ: self.peer_alive_req(data, _peerid, host, port) return elif _packettype == PEER_REG_REQ: self.peer_reg_req(_peerid, host, port) return # ANSWERS FROM REQUESTS WE SENT TO PEERS: WE DO NOT REPLY elif _packettype == PEER_ALIVE_REPLY: self.peer_alive_reply(_peerid) return elif _packettype == PEER_REG_REPLY: self.peer_reg_reply(_peerid) return return # PACKETS ONLY ACCEPTED FROM OUR MASTER # PACKETS WE ONLY ACCEPT IF WE HAVE FINISHED REGISTERING WITH OUR MASTER if _packettype in MASTER_REQUIRED: if not valid_master(self._network, _peerid): logger.warning('(%s) MasterError: %s is not the master peer', self._network, int_id(_peerid)) return # ANSWERS FROM REQUESTS WE SENT TO THE MASTER: WE DO NOT REPLY if _packettype == MASTER_ALIVE_REPLY: self.master_alive_reply(_peerid) return elif _packettype == PEER_LIST_REPLY: self.peer_list_reply(data, _peerid) return return # THIS MEANS WE HAVE SUCCESSFULLY REGISTERED TO OUR MASTER - RECORD MASTER INFORMATION elif _packettype == MASTER_REG_REPLY: self.master_reg_reply(data, _peerid) return # THE FOLLOWING PACKETS ARE RECEIVED ONLLY IF WE ARE OPERATING AS A MASTER # REQUESTS FROM PEERS: WE MUST REPLY IMMEDIATELY FOR IPSC MAINTENANCE # REQUEST TO REGISTER TO THE IPSC elif _packettype == MASTER_REG_REQ: self.master_reg_req(data, peerid, host, port) return # REQUEST FOR A KEEP-ALIVE REPLY (WE KNOW THE PEER IS STILL ALIVE TOO) elif _packettype == MASTER_ALIVE_REQ: self.master_alive_req(_peerid, host, port) return # REQUEST FOR A PEER LIST elif _packettype == PEER_LIST_REQ: self.peer_list_req(_peerid) return # PACKET IS OF AN UNKNOWN TYPE. LOG IT AND IDENTTIFY IT! else: self.unknown_message(self._network, _packettype, _peerid, data) return #************************************************ # MAIN PROGRAM LOOP STARTS HERE #************************************************ if __name__ == '__main__': logger.info('DMRlink \'dmrlink.py\' (c) 2013, 2014 N0MJS & the K0USY Group - SYSTEM STARTING...') networks = {} for ipsc_network in NETWORK: if NETWORK[ipsc_network]['LOCAL']['ENABLED']: networks[ipsc_network] = IPSC(ipsc_network) reactor.listenUDP(NETWORK[ipsc_network]['LOCAL']['PORT'], networks[ipsc_network]) reactor.run()