DMRlink/dmrlink.py
2014-04-28 22:05:31 -05:00

1042 lines
45 KiB
Python
Executable File

#!/usr/bin/env python
#
# Copyright (c) 2013, 2014 Cortney T. Buffington, N0MJS and the K0USY Group. n0mjs@me.com
#
# This work is licensed under the Creative Commons Attribution-ShareAlike
# 3.0 Unported License.To view a copy of this license, visit
# http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to
# Creative Commons, 444 Castro Street, Suite 900, Mountain View,
# California, 94041, USA.
#NOTE: This program uses a configuration file specified on the command line
# if none is specified, then dmrlink.cfg in the same directory as this
# file will be tried. Finally, if that does not exist, this process
# will terminate
from __future__ import print_function
import ConfigParser
import argparse
import sys
import binascii
import csv
import os
import logging
from logging.config import dictConfig
from hmac import new as hmac_new
from binascii import b2a_hex as h
from hashlib import sha1
from socket import inet_ntoa as IPAddr
from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor
from twisted.internet import task
__author__ = 'Cortney T. Buffington, N0MJS'
__copyright__ = 'Copyright (c) 2013 Cortney T. Buffington, N0MJS and the K0USY Group'
__credits__ = 'Adam Fast, KC0YLK, Dave K, and he who wishes not to be named'
__license__ = 'Creative Commons Attribution-ShareAlike 3.0 Unported'
__version__ = '0.2a'
__maintainer__ = 'Cort Buffington, N0MJS'
__email__ = 'n0mjs@me.com'
__status__ = 'Production'
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', action='store', dest='CFG_FILE', help='/full/path/to/config.file (usually dmrlink.cfg)')
cli_args = parser.parse_args()
#************************************************
# PARSE THE CONFIG FILE AND BUILD STRUCTURE
#************************************************
NETWORK = {}
networks = {}
config = ConfigParser.ConfigParser()
if not cli_args.CFG_FILE:
cli_args.CFG_FILE = os.path.dirname(os.path.abspath(__file__))+'/dmrlink.cfg'
try:
if not config.read(cli_args.CFG_FILE):
sys.exit('Configuration file \''+cli_args.CFG_FILE+'\' is not a valid configuration file! Exiting...')
except:
sys.exit('Configuration file \''+cli_args.CFG_FILE+'\' is not a valid configuration file! Exiting...')
try:
for section in config.sections():
if section == 'GLOBAL':
# Process GLOBAL items in the configuration
PATH = config.get(section, 'PATH')
elif section == 'REPORTS':
# Process REPORTS items in the configuration
REPORTS = {
'REPORT_PEERS': config.getboolean(section, 'REPORT_PEERS'),
'PEER_REPORT_INC_MODE': config.getboolean(section, 'PEER_REPORT_INC_MODE'),
'PEER_REPORT_INC_FLAGS': config.getboolean(section, 'PEER_REPORT_INC_FLAGS')
}
elif section == 'LOGGER':
# Process LOGGER items in the configuration
LOGGER = {
'LOG_FILE': config.get(section, 'LOG_FILE'),
'LOG_HANDLERS': config.get(section, 'LOG_HANDLERS'),
'LOG_LEVEL': config.get(section, 'LOG_LEVEL')
}
else:
# All other sections define indiviual IPSC Networks we connect to
# Each IPSC network config will contain the following three sections
NETWORK.update({section: {'LOCAL': {}, 'MASTER': {}, 'PEERS': {}}})
# LOCAL means we need to know this stuff to be a peer in the network
NETWORK[section]['LOCAL'].update({
# In case we want to keep config, but not actually connect to the network
'ENABLED': config.getboolean(section, 'ENABLED'),
# These items are used to create the MODE byte
'PEER_OPER': config.getboolean(section, 'PEER_OPER'),
'IPSC_MODE': config.get(section, 'IPSC_MODE'),
'TS1_LINK': config.getboolean(section, 'TS1_LINK'),
'TS2_LINK': config.getboolean(section, 'TS2_LINK'),
'MODE': '',
# These items are used to create the multi-byte FLAGS field
'AUTH_ENABLED': config.getboolean(section, 'AUTH_ENABLED'),
'CSBK_CALL': config.getboolean(section, 'CSBK_CALL'),
'RCM': config.getboolean(section, 'RCM'),
'CON_APP': config.getboolean(section, 'CON_APP'),
'XNL_CALL': config.getboolean(section, 'XNL_CALL'),
'XNL_MASTER': config.getboolean(section, 'XNL_MASTER'),
'DATA_CALL': config.getboolean(section, 'DATA_CALL'),
'VOICE_CALL': config.getboolean(section, 'VOICE_CALL'),
'MASTER_PEER': config.getboolean(section, 'MASTER_PEER'),
'FLAGS': '',
# Things we need to know to connect and be a peer in this IPSC
'RADIO_ID': hex(int(config.get(section, 'RADIO_ID')))[2:].rjust(8,'0').decode('hex'),
'PORT': config.getint(section, 'PORT'),
'ALIVE_TIMER': config.getint(section, 'ALIVE_TIMER'),
'MAX_MISSED': config.getint(section, 'MAX_MISSED'),
'AUTH_KEY': (config.get(section, 'AUTH_KEY').rjust(40,'0')).decode('hex'),
'NUM_PEERS': 0,
})
# Master means things we need to know about the master peer of the network
NETWORK[section]['MASTER'].update({
'RADIO_ID': '\x00\x00\x00\x00',
'MODE': '\x00',
'MODE_DECODE': '',
'FLAGS': '\x00\x00\x00\x00',
'FLAGS_DECODE': '',
'STATUS': {
'CONNECTED': False,
'PEER_LIST': False,
'KEEP_ALIVES_SENT': 0,
'KEEP_ALIVES_MISSED': 0,
'KEEP_ALIVES_OUTSTANDING': 0
},
'IP': config.get(section, 'MASTER_IP'),
'PORT': config.getint(section, 'MASTER_PORT')
})
# Temporary locations for building MODE and FLAG data
MODE_BYTE = 0
FLAG_1 = 0
FLAG_2 = 0
# Construct and store the MODE field
if NETWORK[section]['LOCAL']['PEER_OPER']:
MODE_BYTE |= 1 << 6
if NETWORK[section]['LOCAL']['IPSC_MODE'] == 'ANALOG':
MODE_BYTE |= 1 << 4
elif NETWORK[section]['LOCAL']['IPSC_MODE'] == 'DIGITAL':
MODE_BYTE |= 1 << 5
if NETWORK[section]['LOCAL']['TS1_LINK']:
MODE_BYTE |= 1 << 3
else:
MODE_BYTE |= 1 << 2
if NETWORK[section]['LOCAL']['TS2_LINK']:
MODE_BYTE |= 1 << 1
else:
MODE_BYTE |= 1 << 0
NETWORK[section]['LOCAL']['MODE'] = chr(MODE_BYTE)
# Construct and store the FLAGS field
if NETWORK[section]['LOCAL']['CSBK_CALL']:
FLAG_1 |= 1 << 7
if NETWORK[section]['LOCAL']['RCM']:
FLAG_1 |= 1 << 6
if NETWORK[section]['LOCAL']['CON_APP']:
FLAG_1 |= 1 << 5
if NETWORK[section]['LOCAL']['XNL_CALL']:
FLAG_2 |= 1 << 7
if NETWORK[section]['LOCAL']['XNL_CALL'] and NETWORK[section]['LOCAL']['XNL_MASTER']:
FLAG_2 |= 1 << 6
elif NETWORK[section]['LOCAL']['XNL_CALL'] and not NETWORK[section]['LOCAL']['XNL_MASTER']:
FLAG_2 |= 1 << 5
if NETWORK[section]['LOCAL']['AUTH_ENABLED']:
FLAG_2 |= 1 << 4
if NETWORK[section]['LOCAL']['DATA_CALL']:
FLAG_2 |= 1 << 3
if NETWORK[section]['LOCAL']['VOICE_CALL']:
FLAG_2 |= 1 << 2
if NETWORK[section]['LOCAL']['MASTER_PEER']:
FLAG_2 |= 1 << 0
NETWORK[section]['LOCAL']['FLAGS'] = '\x00\x00'+chr(FLAG_1)+chr(FLAG_2)
except:
sys.exit('Could not parse configuration file, exiting...')
#************************************************
# CONFIGURE THE SYSTEM LOGGER
#************************************************
dictConfig({
'version': 1,
'disable_existing_loggers': False,
'filters': {
},
'formatters': {
'verbose': {
'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s'
},
'timed': {
'format': '%(levelname)s %(asctime)s %(message)s'
},
'simple': {
'format': '%(levelname)s %(message)s'
},
},
'handlers': {
'console': {
'class': 'logging.StreamHandler',
'formatter': 'simple'
},
'console-timed': {
'class': 'logging.StreamHandler',
'formatter': 'timed'
},
'file': {
'class': 'logging.FileHandler',
'formatter': 'simple',
'filename': LOGGER['LOG_FILE'],
},
'file-timed': {
'class': 'logging.FileHandler',
'formatter': 'timed',
'filename': LOGGER['LOG_FILE'],
},
'syslog': {
'class': 'logging.handlers.SysLogHandler',
'formatter': 'verbose',
}
},
'loggers': {
'dmrlink': {
'handlers': LOGGER['LOG_HANDLERS'].split(','),
'level': LOGGER['LOG_LEVEL'],
'propagate': True,
}
}
})
logger = logging.getLogger('dmrlink')
#************************************************
# IMPORTING OTHER FILES - '#include'
#************************************************
# Import IPSC message types and version information
#
try:
from ipsc.ipsc_message_types import *
except ImportError:
sys.exit('IPSC message types file not found or invalid')
# Import IPSC flag mask values
#
try:
from ipsc.ipsc_mask import *
except ImportError:
sys.exit('IPSC mask values file not found or invalid')
# Import the Alias files for numeric ids. This is split to save
# time making lookups in one huge dictionary
#
curdir= os.path.dirname(__file__)
subscriber_ids = {}
peer_ids = {}
talkgroup_ids = {}
try:
with open(PATH+'subscriber_ids.csv', 'rU') as subscriber_ids_csv:
subscribers = csv.reader(subscriber_ids_csv, dialect='excel', delimiter=',')
for row in subscribers:
subscriber_ids[int(row[1])] = (row[0])
except ImportError:
logger.warning('subscriber_ids.csv not found: Subscriber aliases will not be available')
try:
with open(PATH+'peer_ids.csv', 'rU') as peer_ids_csv:
peers = csv.reader(peer_ids_csv, dialect='excel', delimiter=',')
for row in peers:
peer_ids[int(row[1])] = (row[0])
except ImportError:
logger.warning('peer_ids.csv not found: Peer aliases will not be available')
try:
with open(PATH+'talkgroup_ids.csv', 'rU') as talkgroup_ids_csv:
talkgroups = csv.reader(talkgroup_ids_csv, dialect='excel', delimiter=',')
for row in talkgroups:
talkgroup_ids[int(row[1])] = (row[0])
except ImportError:
logger.warning('talkgroup_ids.csv not found: Talkgroup aliases will not be available')
#************************************************
# UTILITY FUNCTIONS FOR INTERNAL USE
#************************************************
# Create a 3 byte TGID or UID from an integer
#
def hex_id(_int_id):
return hex(_int_id)[2:].rjust(6,'0').decode('hex')
# Convert a hex string to an int (radio ID, etc.)
#
def int_id(_hex_string):
return int(h(_hex_string), 16)
# Re-Write Source Radio-ID (DMR NAT)
#
def dmr_nat(_data, _src_id, _nat_id):
_data = _data.replace(_src_id, _nat_id)
return _data
# Lookup text data for numeric IDs
#
def get_info(_id, _dict):
if _id in _dict:
return _dict[_id]
return _id
# Determine if the provided peer ID is valid for the provided network
#
def valid_peer(_peer_list, _peerid):
if _peerid in _peer_list:
return True
return False
# Determine if the provided master ID is valid for the provided network
#
def valid_master(_network, _peerid):
if NETWORK[_network]['MASTER']['RADIO_ID'] == _peerid:
return True
else:
return False
# Accept a complete packet, ready to be sent, and send it to all active peers + master in an IPSC
#
def send_to_ipsc(_target, _packet):
_network = NETWORK[_target]
_network_instance = networks[_target]
_peers = _network['PEERS']
# Send to the Master
_network_instance.transport.write(_packet, (_network['MASTER']['IP'], _network['MASTER']['PORT']))
# Send to each connected Peer
for peer in _peers.keys():
if _peers[peer]['STATUS']['CONNECTED']:
_network_instance.transport.write(_packet, (_peers[peer]['IP'], _peers[peer]['PORT']))
# De-register a peer from an IPSC by removing it's information
#
def de_register_peer(_network, _peerid):
# Iterate for the peer in our data
if _peerid in NETWORK[_network]['PEERS'].keys():
del NETWORK[_network]['PEERS'][_peerid]
logger.info('(%s) Peer De-Registration Requested for: %s', _network, h(_peerid))
return
else:
logger.warning('(%s) Peer De-Registration Requested for: %s, but we don\'t have a listing for this peer', _network, h(_peerid))
pass
# Process the MODE byte in registration/peer list packets for determining master and peer capabilities
#
def process_mode_byte(_hex_mode):
_mode = int(h(_hex_mode), 16)
# Determine whether or not the peer is operational
_peer_op = bool(_mode & PEER_OP_MSK)
# Determine whether or not timeslot 1 is linked
_ts1 = bool(_mode & IPSC_TS1_MSK)
# Determine whether or not timeslot 2 is linked
_ts2 = bool(_mode & IPSC_TS2_MSK)
# Determine the operational mode of the peer
if _mode & PEER_MODE_MSK == PEER_MODE_MSK:
_peer_mode = 'UNKNOWN'
elif not _mode & PEER_MODE_MSK:
_peer_mode = 'NO_RADIO'
elif _mode & PEER_MODE_ANALOG:
_peer_mode = 'ANALOG'
elif _mode & PEER_MODE_DIGITAL:
_peer_mode = 'DIGITAL'
return {
'PEER_OP': _peer_op,
'PEER_MODE': _peer_mode,
'TS_1': _ts1,
'TS_2': _ts2
}
# Process the FLAGS bytes in registration replies for determining what services are available
#
def process_flags_bytes(_hex_flags):
_byte3 = int(h(_hex_flags[2]), 16)
_byte4 = int(h(_hex_flags[3]), 16)
_csbk = bool(_byte3 & CSBK_MSK)
_rpt_mon = bool(_byte3 & RPT_MON_MSK)
_con_app = bool(_byte3 & CON_APP_MSK)
_xnl_con = bool(_byte4 & XNL_STAT_MSK)
_xnl_master = bool(_byte4 & XNL_MSTR_MSK)
_xnl_slave = bool(_byte4 & XNL_SLAVE_MSK)
_auth = bool(_byte4 & PKT_AUTH_MSK)
_data = bool(_byte4 & DATA_CALL_MSK)
_voice = bool(_byte4 & VOICE_CALL_MSK)
_master = bool(_byte4 & MSTR_PEER_MSK)
return {
'CSBK': _csbk,
'RCM': _rpt_mon,
'CON_APP': _con_app,
'XNL_CON': _xnl_con,
'XNL_MASTER': _xnl_master,
'XNL_SLAVE': _xnl_slave,
'AUTH': _auth,
'DATA': _data,
'VOICE': _voice,
'MASTER': _master
}
# Take a received peer list and the network it belongs to, process and populate the
# data structure in my_ipsc_config with the results, and return a simple list of peers.
#
def process_peer_list(_data, _network):
# Create a temporary peer list to track who we should have in our list -- used to find old peers we should remove.
_temp_peers = []
# Determine the length of the peer list for the parsing iterator
_peer_list_length = int(h(_data[5:7]), 16)
# Record the number of peers in the data structure... we'll use it later (11 bytes per peer entry)
NETWORK[_network]['LOCAL']['NUM_PEERS'] = _peer_list_length/11
logger.info('(%s) Peer List Received from Master: %s peers in this IPSC', _network, _peer_list_length/11)
# Iterate each peer entry in the peer list. Skip the header, then pull the next peer, the next, etc.
for i in range(7, _peer_list_length +7, 11):
# Extract various elements from each entry...
_hex_radio_id = (_data[i:i+4])
_hex_address = (_data[i+4:i+8])
_ip_address = IPAddr(_hex_address)
_hex_port = (_data[i+8:i+10])
_port = int(h(_hex_port), 16)
_hex_mode = (_data[i+10:i+11])
# Add this peer to a temporary PeerID list - used to remove any old peers no longer with us
_temp_peers.append(_hex_radio_id)
# This is done elsewhere for the master too, so we use a separate function
_decoded_mode = process_mode_byte(_hex_mode)
# If this entry was NOT already in our list, add it.
if _hex_radio_id not in NETWORK[_network]['PEERS'].keys():
NETWORK[_network]['PEERS'][_hex_radio_id] = {
'IP': _ip_address,
'PORT': _port,
'MODE': _hex_mode,
'MODE_DECODE': _decoded_mode,
'FLAGS': '',
'FLAGS_DECODE': '',
'STATUS': {
'CONNECTED': False,
'KEEP_ALIVES_SENT': 0,
'KEEP_ALIVES_MISSED': 0,
'KEEP_ALIVES_OUTSTANDING': 0
}
}
logger.debug('(%s) Peer Added: %s', _network, NETWORK[_network]['PEERS'][_hex_radio_id])
# Finally, check to see if there's a peer already in our list that was not in this peer list
# and if so, delete it.
for peerid in NETWORK[_network]['PEERS'].keys():
if peerid not in _temp_peers:
de_register_peer(_network, peerid)
logger.warning('(%s) Peer Deleted (not in new peer list): %s', _network, h(peerid))
# Gratuitous print-out of the peer list.. Pretty much debug stuff.
#
def print_peer_list(_network):
_peers = NETWORK[_network]['PEERS']
_status = NETWORK[_network]['MASTER']['STATUS']['PEER_LIST']
#print('Peer List Status for {}: {}' .format(_network, _status))
if _status and not NETWORK[_network]['PEERS']:
print('We are the only peer for: %s' % _network)
print('')
return
print('Peer List for: %s' % _network)
for peer in _peers.keys():
_this_peer = _peers[peer]
_this_peer_stat = _this_peer['STATUS']
if peer == NETWORK[_network]['LOCAL']['RADIO_ID']:
me = '(self)'
else:
me = ''
print('\tRADIO ID: {} {}' .format(int(h(peer), 16), me))
print('\t\tIP Address: {}:{}' .format(_this_peer['IP'], _this_peer['PORT']))
if _this_peer['MODE_DECODE'] and REPORTS['PEER_REPORT_INC_MODE']:
print('\t\tMode Values:')
for name, value in _this_peer['MODE_DECODE'].items():
print('\t\t\t{}: {}' .format(name, value))
if _this_peer['FLAGS_DECODE'] and REPORTS['PEER_REPORT_INC_FLAGS']:
print('\t\tService Flags:')
for name, value in _this_peer['FLAGS_DECODE'].items():
print('\t\t\t{}: {}' .format(name, value))
print('\t\tStatus: {}, KeepAlives Sent: {}, KeepAlives Outstanding: {}, KeepAlives Missed: {}' .format(_this_peer_stat['CONNECTED'], _this_peer_stat['KEEP_ALIVES_SENT'], _this_peer_stat['KEEP_ALIVES_OUTSTANDING'], _this_peer_stat['KEEP_ALIVES_MISSED']))
print('')
# Gratuitous print-out of Master info.. Pretty much debug stuff.
#
def print_master(_network):
_master = NETWORK[_network]['MASTER']
print('Master for %s' % _network)
print('\tRADIO ID: {}' .format(int(h(_master['RADIO_ID']), 16)))
if _master['MODE_DECODE'] and REPORTS['PEER_REPORT_INC_MODE']:
print('\t\tMode Values:')
for name, value in _master['MODE_DECODE'].items():
print('\t\t\t{}: {}' .format(name, value))
if _master['FLAGS_DECODE'] and REPORTS['PEER_REPORT_INC_FLAGS']:
print('\t\tService Flags:')
for name, value in _master['FLAGS_DECODE'].items():
print('\t\t\t{}: {}' .format(name, value))
print('\t\tStatus: {}, KeepAlives Sent: {}, KeepAlives Outstanding: {}, KeepAlives Missed: {}' .format(_master['STATUS']['CONNECTED'], _master['STATUS']['KEEP_ALIVES_SENT'], _master['STATUS']['KEEP_ALIVES_OUTSTANDING'], _master['STATUS']['KEEP_ALIVES_MISSED']))
#************************************************
#******** ***********
#******** IPSC Network 'Engine' ***********
#******** ***********
#************************************************
#************************************************
# Base Class (used nearly all of the time)
#************************************************
class IPSC(DatagramProtocol):
# Modify the initializer to set up our environment and build the packets
# we need to maintain connections
#
def __init__(self, *args, **kwargs):
if len(args) == 1:
# Housekeeping: create references to the configuration and status data for this IPSC instance.
# Some configuration objects that are used frequently and have lengthy names are shortened
# such as (self._master_sock) expands to (self._config['MASTER']['IP'], self._config['MASTER']['PORT']).
# Note that many of them reference each other... this is the Pythonic way.
#
self._network = args[0]
self._config = NETWORK[self._network]
#
self._local = self._config['LOCAL']
self._local_id = self._local['RADIO_ID']
#
self._master = self._config['MASTER']
self._master_stat = self._master['STATUS']
self._master_sock = self._master['IP'], self._master['PORT']
#
self._peers = self._config['PEERS']
#
# This is a regular list to store peers for the IPSC. At times, parsing a simple list is much less
# Spendy than iterating a list of dictionaries... Maybe I'll find a better way in the future. Also
# We have to know when we have a new peer list, so a variable to indicate we do (or don't)
#
args = ()
# Packet 'constructors' - builds the necessary control packets for this IPSC instance.
# This isn't really necessary for anything other than readability (reduction of code golf)
#
self.TS_FLAGS = (self._local['MODE'] + self._local['FLAGS'])
self.MASTER_REG_REQ_PKT = (MASTER_REG_REQ + self._local_id + self.TS_FLAGS + IPSC_VER)
self.MASTER_ALIVE_PKT = (MASTER_ALIVE_REQ + self._local_id + self.TS_FLAGS + IPSC_VER)
self.PEER_LIST_REQ_PKT = (PEER_LIST_REQ + self._local_id)
self.PEER_REG_REQ_PKT = (PEER_REG_REQ + self._local_id + IPSC_VER)
self.PEER_REG_REPLY_PKT = (PEER_REG_REPLY + self._local_id + IPSC_VER)
self.PEER_ALIVE_REQ_PKT = (PEER_ALIVE_REQ + self._local_id + self.TS_FLAGS)
self.PEER_ALIVE_REPLY_PKT = (PEER_ALIVE_REPLY + self._local_id + self.TS_FLAGS)
logger.info('(%s) IPSC Instance Created', self._network)
else:
# If we didn't get called correctly, log it!
#
logger.error('(%s) IPSC Instance Could Not be Created... Exiting', self._network)
sys.exit()
# Choose which set of fucntions to use - authenticated or not
if self._local['AUTH_ENABLED']:
self.hashed_packet = self.auth_hashed_packet
self.strip_hash = self.auth_strip_hash
self.validate_auth = self.auth_validate_auth
else:
self.hashed_packet = self.unauth_hashed_packet
self.strip_hash = self.unauth_strip_hash
self.validate_auth = self.unauth_validate_auth
# This is called by REACTOR when it starts, We use it to set up the timed
# loop for each instance of the IPSC engine
#
def startProtocol(self):
# Timed loops for:
# IPSC connection establishment and maintenance
# Reporting/Housekeeping
#
#
self._maintenance = task.LoopingCall(self.maintenance_loop)
self._maintenance_loop = self._maintenance.start(self._local['ALIVE_TIMER'])
#
self._reporting = task.LoopingCall(self.reporting_loop)
self._reporting_loop = self._reporting.start(10)
#************************************************
# CALLBACK FUNCTIONS FOR USER PACKET TYPES
#************************************************
def call_mon_origin(self, _network, _data):
logger.debug('(%s) Repeater Call Monitor Origin Packet Received: %s',_network, h(_data))
def call_mon_rpt(self, _network, _data):
logger.debug('(%s) Repeater Call Monitor Repeating Packet Received: %s', _network, h(_data))
def call_mon_nack(self, _network, _data):
logger.debug('(%s) Repeater Call Monitor NACK Packet Received: %s', _network, h(_data))
def xcmp_xnl(self, _network, _data):
logger.debug('(%s) XCMP/XNL Packet Received: %s', _network, h(_data))
def repeater_wake_up(self, _network, _data):
logger.debug('(%s) Repeater Wake-Up Packet Received: %s', _network, h(_data))
def group_voice(self, _network, _src_sub, _dst_sub, _ts, _end, _peerid, _data):
_dst_sub = get_info(int_id(_dst_sub), talkgroup_ids)
_peerid = get_info(int_id(_peerid), peer_ids)
_src_sub = get_info(int_id(_src_sub), subscriber_ids)
logger.debug('(%s) Group Voice Packet Received From: %s, IPSC Peer %s, Destination %s', _network, _src_sub, _peerid, _dst_sub)
def private_voice(self, _network, _src_sub, _dst_sub, _ts, _end, _peerid, _data):
_dst_sub = get_info(int_id(_dst_sub), subscriber_ids)
_peerid = get_info(int_id(_peerid), peer_ids)
_src_sub = get_info(int_id(_src_sub), subscriber_ids)
logger.debug('(%s) Private Voice Packet Received From: %s, IPSC Peer %s, Destination %s', _network, _src_sub, _peerid, _dst_sub)
def group_data(self, _network, _src_sub, _dst_sub, _ts, _end, _peerid, _data):
_dst_sub = get_info(int_id(_dst_sub), talkgroup_ids)
_peerid = get_info(int_id(_peerid), peer_ids)
_src_sub = get_info(int_id(_src_sub), subscriber_ids)
logger.debug('(%s) Group Data Packet Received From: %s, IPSC Peer %s, Destination %s', _network, _src_sub, _peerid, _dst_sub)
def private_data(self, _network, _src_sub, _dst_sub, _ts, _end, _peerid, _data):
_dst_sub = get_info(int_id(_dst_sub), subscriber_ids)
_peerid = get_info(int_id(_peerid), peer_ids)
_src_sub = get_info(int_id(_src_sub), subscriber_ids)
logger.debug('(%s) Private Data Packet Received From: %s, IPSC Peer %s, Destination %s', _network, _src_sub, _peerid, _dst_sub)
def unknown_message(self, _network, _packettype, _peerid, _data):
_packettype = h(_packettype)
_peerid = get_info(int_id(_peerid), peer_ids)
logger.error('(%s) Unknown message type encountered\n\tPacket Type: %s\n\tFrom: %s\n\tPacket: %s', _network, _packettype, _peerid, h(_data))
# Reset the outstanding keep-alive counter for _peerid...
# Used when receiving acks OR when we see traffic from a repeater, since they ignore keep-alives when transmitting
#
def reset_keep_alive(self, _peerid):
if _peerid in self._peers.keys():
self._peers[_peerid]['STATUS']['KEEP_ALIVES_OUTSTANDING'] = 0
if _peerid == self._master['RADIO_ID']:
self._master_stat['KEEP_ALIVES_OUTSTANDING'] = 0
#
# NEXT THREE FUNCITONS ARE FOR AUTHENTICATED PACKETS
#
# Take a packet to be SENT, calculate auth hash and return the whole thing
#
def auth_hashed_packet(self, _key, _data):
_hash = binascii.a2b_hex((hmac_new(_key,_data,sha1)).hexdigest()[:20])
return _data + _hash
# Remove the hash from a packet and return the payload
#
def auth_strip_hash(self, _data):
return _data[:-10]
# Take a RECEIVED packet, calculate the auth hash and verify authenticity
#
def auth_validate_auth(self, _key, _data):
_payload = self.strip_hash(_data)
_hash = _data[-10:]
_chk_hash = binascii.a2b_hex((hmac_new(_key,_payload,sha1)).hexdigest()[:20])
if _chk_hash == _hash:
return True
else:
return False
#
# NEXT THREE FUNCITONS ARE FOR UN-AUTHENTICATED PACKETS
#
# There isn't a hash to build, so just return the data
#
def unauth_hashed_packet(self, _key, _data):
return _data
# Remove the hash from a packet and return the payload... except don't
#
def unauth_strip_hash(self, _data):
return _data
# Everything is validated, so just return True
#
def unauth_validate_auth(self, _key, _data):
return True
#************************************************
# TIMED LOOP - MY CONNECTION MAINTENANCE
#************************************************
def reporting_loop(self):
# Right now, without this, we really don't know anything is happening.
logger.debug('(%s) Periodic Reporting Loop Started', self._network)
if REPORTS['REPORT_PEERS']:
print_master(self._network)
print_peer_list(self._network)
def maintenance_loop(self):
logger.debug('(%s) Periodic Connection Maintenance Loop Started', self._network)
# If the master isn't connected, we have to do that before we can do anything else!
#
if not self._master_stat['CONNECTED']:
reg_packet = self.hashed_packet(self._local['AUTH_KEY'], self.MASTER_REG_REQ_PKT)
self.transport.write(reg_packet, self._master_sock)
logger.info('(%s) Registering with the Master', self._network)
# Once the master is connected, we have to send keep-alives.. and make sure we get them back
elif self._master_stat['CONNECTED']:
# Send keep-alive to the master
master_alive_packet = self.hashed_packet(self._local['AUTH_KEY'], self.MASTER_ALIVE_PKT)
self.transport.write(master_alive_packet, self._master_sock)
logger.debug('(%s) Keep Alive Sent to the Master', self._network)
# If we had a keep-alive outstanding by the time we send another, mark it missed.
if (self._master_stat['KEEP_ALIVES_OUTSTANDING']) > 0:
self._master_stat['KEEP_ALIVES_MISSED'] += 1
logger.info('(%s) Master Keep-Alive Missed', self._network)
# If we have missed too many keep-alives, de-register the master and start over.
if self._master_stat['KEEP_ALIVES_OUTSTANDING'] >= self._local['MAX_MISSED']:
self._master_stat['CONNECTED'] = False
self._master_stat['KEEP_ALIVES_OUTSTANDING'] = 0
logger.error('(%s) Maximum Master Keep-Alives Missed -- De-registering the Master', self._network)
# Update our stats before we move on...
self._master_stat['KEEP_ALIVES_SENT'] += 1
self._master_stat['KEEP_ALIVES_OUTSTANDING'] += 1
else:
# This is bad. If we get this message, we need to reset the state and try again
logger.error('->> (%s) Master in UNKOWN STATE:%s:%s', self._network, self._master_sock)
self._master_stat['CONNECTED'] = False
# If the master is connected and we don't have a peer-list yet....
#
if (self._master_stat['CONNECTED'] == True) and (self._master_stat['PEER_LIST'] == False):
# Ask the master for a peer-list
peer_list_req_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_LIST_REQ_PKT)
self.transport.write(peer_list_req_packet, self._master_sock)
logger.info('(%s), No Peer List - Requesting One From the Master', self._network)
# If we do have a peer-list, we need to register with the peers and send keep-alives...
#
if self._master_stat['PEER_LIST']:
# Iterate the list of peers... so we do this for each one.
for peer_id in self._peers.keys():
peer = self._peers[peer_id]
# We will show up in the peer list, but shouldn't try to talk to ourselves.
if peer_id == self._local_id:
continue
# If we haven't registered to a peer, send a registration
if not peer['STATUS']['CONNECTED']:
peer_reg_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_REG_REQ_PKT)
self.transport.write(peer_reg_packet, (peer['IP'], peer['PORT']))
logger.info('(%s) Registering with Peer %s', self._network, int_id(peer_id))
# If we have registered with the peer, then send a keep-alive
elif peer['STATUS']['CONNECTED']:
peer_alive_req_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_ALIVE_REQ_PKT)
self.transport.write(peer_alive_req_packet, (peer['IP'], peer['PORT']))
logger.debug('(%s) Keep-Alive Sent to the Peer %s', self._network, int_id(peer_id))
# If we have a keep-alive outstanding by the time we send another, mark it missed.
if peer['STATUS']['KEEP_ALIVES_OUTSTANDING'] > 0:
peer['STATUS']['KEEP_ALIVES_MISSED'] += 1
logger.info('(%s) Peer Keep-Alive Missed for %s', self._network, int_id(peer_id))
# If we have missed too many keep-alives, de-register the peer and start over.
if peer['STATUS']['KEEP_ALIVES_OUTSTANDING'] >= self._local['MAX_MISSED']:
peer['STATUS']['CONNECTED'] = False
#del peer # Becuase once it's out of the dictionary, you can't use it for anything else.
logger.warning('(%s) Maximum Peer Keep-Alives Missed -- De-registering the Peer: %s', self._network, int_id(peer_id))
# Update our stats before moving on...
peer['STATUS']['KEEP_ALIVES_SENT'] += 1
peer['STATUS']['KEEP_ALIVES_OUTSTANDING'] += 1
# For public display of information, etc. - anything not part of internal logging/diagnostics
#
def _notify_event(self, network, event, info):
"""
Used internally whenever an event happens that may be useful to notify the outside world about.
Arguments:
network: string, network name to look up in config
event: string, basic description
info: dict, in the interest of accomplishing as much as possible without code changes.
The dict will typically contain a peer_id so the origin of the event is known.
"""
pass
#************************************************
# RECEIVED DATAGRAM - ACT IMMEDIATELY!!!
#************************************************
# Actions for received packets by type: For every packet received, there are some things that we need to do:
# Decode some of the info
# Check for auth and authenticate the packet
# Strip the hash from the end... we don't need it anymore
#
# Once they're done, we move on to the processing or callbacks for each packet type.
#
def datagramReceived(self, data, (host, port)):
_packettype = data[0:1]
_peerid = data[1:5]
# Authenticate the packet
if not self.validate_auth(self._local['AUTH_KEY'], data):
logger.warning('(%s) AuthError: IPSC packet failed authentication. Type %s: Peer ID: %s', self._network, h(_packettype), int(h(_peerid), 16))
return
# Strip the hash, we won't need it anymore
data = self.strip_hash(data)
# Packets types that must be originated from a peer (including master peer)
if _packettype in ANY_PEER_REQUIRED:
if not(valid_master(self._network, _peerid) == False or valid_peer(self._peers.keys(), _peerid) == False):
logger.warning('(%s) PeerError: Peer not in peer-list: %s', self._network, int(h(_peerid), 16))
return
# User, as in "subscriber" generated packets - a.k.a someone transmitted
if _packettype in USER_PACKETS:
# Extract commonly used items from the packet header
_src_sub = data[6:9]
_dst_sub = data[9:12]
_call = int_id(data[17:18])
_ts = bool(_call & TS_CALL_MSK)
_end = bool(_call & END_MSK)
# User Voice and Data Call Types:
if _packettype == GROUP_VOICE:
self.reset_keep_alive(_peerid)
self.group_voice(self._network, _src_sub, _dst_sub, _ts, _end, _peerid, data)
self._notify_event(self._network, 'group_voice', {'peer_id': int(h(_peerid), 16)})
return
elif _packettype == PVT_VOICE:
self.reset_keep_alive(_peerid)
self.private_voice(self._network, _src_sub, _dst_sub, _ts, _end, _peerid, data)
self._notify_event(self._network, 'private_voice', {'peer_id': int(h(_peerid), 16)})
return
elif _packettype == GROUP_DATA:
self.reset_keep_alive(_peerid)
self.group_data(self._network, _src_sub, _dst_sub, _ts, _end, _peerid, data)
self._notify_event(self._network, 'group_data', {'peer_id': int(h(_peerid), 16)})
return
elif _packettype == PVT_DATA:
self.reset_keep_alive(_peerid)
self.private_data(self._network, _src_sub, _dst_sub, _ts, _end, _peerid, data)
self._notify_event(self._network, 'private_voice', {'peer_id': int(h(_peerid), 16)})
return
return
# Other peer-required types that we don't do much or anything with yet
elif _packettype == XCMP_XNL:
self.xcmp_xnl(self._network, data)
return
elif _packettype == CALL_MON_ORIGIN:
self.call_mon_origin(self._network, data)
return
elif _packettype == CALL_MON_RPT:
self.call_mon_rpt(self._network, data)
return
elif _packettype == CALL_MON_NACK:
self.call_mon_nack(self._network, data)
return
# Connection maintenance packets that fall into this category
elif _packettype == DE_REG_REQ:
de_register_peer(self._network, _peerid)
logger.warning('(%s) Peer De-Registration Request From: %s', self._network, int(h(_peerid), 16))
return
elif _packettype == DE_REG_REPLY:
logger.warning('(%s) Peer De-Registration Reply From: %s', self._network, int(h(_peerid), 16))
return
elif _packettype == RPT_WAKE_UP:
self.repeater_wake_up(self._network, data)
logger.debug('(%s) Repeater Wake-Up Packet From: %s', self._network, int(h(_peerid), 16))
return
return
# Packets types that must be originated from a peer
if _packettype in PEER_REQUIRED:
if not valid_peer(self._peers.keys(), _peerid):
logger.warning('(%s) PeerError: Peer %s not in peer-list', self._network, int(h(_peerid), 16))
return
# Packets we send...
if _packettype == PEER_ALIVE_REQ:
_hex_mode = (data[5])
_hex_flags = (data[6:10])
_decoded_mode = process_mode_byte(_hex_mode)
_decoded_flags = process_flags_bytes(_hex_flags)
self._peers[_peerid]['MODE'] = _hex_mode
self._peers[_peerid]['MODE_DECODE'] = _decoded_mode
self._peers[_peerid]['FLAGS'] = _hex_flags
self._peers[_peerid]['FLAGS_DECODE'] = _decoded_flags
# Generate a hashed packet from our template and send it.
peer_alive_reply_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_ALIVE_REPLY_PKT)
self.transport.write(peer_alive_reply_packet, (host, port))
self.reset_keep_alive(_peerid) # Might as well reset our own counter, we know it's out there...
logger.debug('(%s) Keep-Alive reply sent to Peer %s', self._network, int(h(_peerid), 16))
return
elif _packettype == PEER_REG_REQ:
peer_reg_reply_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_REG_REPLY_PKT)
self.transport.write(peer_reg_reply_packet, (host, port))
logger.info('(%s) Peer Registration Request From: %s', self._network, int(h(_peerid), 16))
return
# Packets we receive...
elif _packettype == PEER_ALIVE_REPLY:
self.reset_keep_alive(_peerid)
logger.debug('(%s) Keep-Alive Reply (we sent the request) Received from Peer %s', self._network, int(h(_peerid), 16))
return
elif _packettype == PEER_REG_REPLY:
if _peerid in self._peers.keys():
self._peers[_peerid]['STATUS']['CONNECTED'] = True
logger.info('(%s) Registration Reply From: %s', self._network, int(h(_peerid), 16))
return
return
# Packets types that must be originated from a Master
# Packets we receive...
if _packettype in MASTER_REQUIRED:
if not valid_master(self._network, _peerid):
logger.warning('(%s) MasterError: %s is not the master peer', self._network, int(h(_peerid), 16))
return
if _packettype == MASTER_ALIVE_REPLY:
self.reset_keep_alive(_peerid)
logger.debug('(%s) Keep-Alive Reply (we sent the request) Received from the Master %s', self._network, int(h(_peerid), 16))
return
elif _packettype == PEER_LIST_REPLY:
NETWORK[self._network]['MASTER']['STATUS']['PEER_LIST'] = True
if len(data) > 18:
process_peer_list(data, self._network)
logger.debug('(%s) Peer List Reply Recieved From Master %s', self._network, int(h(_peerid), 16))
return
return
# When we hear from the master, record it's ID, flag that we're connected, and reset the dead counter.
elif _packettype == MASTER_REG_REPLY:
_hex_mode = (data[5])
_hex_flags = (data[6:10])
_decoded_mode = process_mode_byte(_hex_mode)
_decoded_flags = process_flags_bytes(_hex_flags)
self._master['RADIO_ID'] = _peerid
self._master['MODE'] = _hex_mode
self._master['MODE_DECODE'] = _decoded_mode
self._master['FLAGS'] = _hex_flags
self._master['FLAGS_DECODE'] = _decoded_flags
self._master_stat['CONNECTED'] = True
self._master_stat['KEEP_ALIVES_OUTSTANDING'] = 0
logger.debug('(%s) Registration response (we requested reg) from the Master %s', self._network, int(h(_peerid), 16))
return
# We know about these types, but absolutely don't take an action
elif _packettype == MASTER_REG_REQ:
# We can't operate as a master as of now, so we should never receive one of these.
logger.debug('(%s) Master Registration Packet Received - WE ARE NOT A MASTER!', self._network)
return
# If there's a packet type we don't know about, it should be logged so we can figure it out and take an appropriate action!
else:
self.unknown_message(self._network, _packettype, _peerid, data)
return
#************************************************
# MAIN PROGRAM LOOP STARTS HERE
#************************************************
if __name__ == '__main__':
logger.info('DMRlink \'dmrlink.py\' (c) 2013, 2014 N0MJS & the K0USY Group - SYSTEM STARTING...')
networks = {}
for ipsc_network in NETWORK:
if NETWORK[ipsc_network]['LOCAL']['ENABLED']:
networks[ipsc_network] = IPSC(ipsc_network)
reactor.listenUDP(NETWORK[ipsc_network]['LOCAL']['PORT'], networks[ipsc_network])
reactor.run()