DMRlink/dmrlink.py
2013-12-01 19:24:50 -06:00

808 lines
35 KiB
Python
Executable File

# Copyright (c) 2013 Cortney T. Buffington, N0MJS and the K0USY Group. n0mjs@me.com
#
# This work is licensed under the Creative Commons Attribution-ShareAlike
# 3.0 Unported License.To view a copy of this license, visit
# http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to
# Creative Commons, 444 Castro Street, Suite 900, Mountain View,
# California, 94041, USA.
from __future__ import print_function
from binascii import b2a_hex as h
import ConfigParser
import sys
import binascii
import hmac
import hashlib
import socket
import csv
from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor
from twisted.internet import task
#************************************************
# IMPORTING OTHER FILES - '#include'
#************************************************
# Import system logger configuration
#
try:
from ipsc.ipsc_logger import logger
except ImportError:
sys.exit('System logger configuration not found or invalid')
# Import IPSC message types and version information
#
try:
from ipsc.ipsc_message_types import *
except ImportError:
sys.exit('IPSC message types file not found or invalid')
# Import IPSC flag mask values
#
try:
from ipsc.ipsc_mask import *
except ImportError:
sys.exit('IPSC mask values file not found or invalid')
# Import the Alias files for numeric ids. This is split to save
# time making lookups in one huge dictionary
#
subscriber_ids = {}
peer_ids = {}
talkgroup_ids = {}
try:
with open('./subscriber_ids.csv', 'rU') as subscriber_ids_csv:
subscribers = csv.reader(subscriber_ids_csv, dialect='excel', delimiter=',')
for row in subscribers:
subscriber_ids[int(row[1])] = (row[0])
except ImportError:
logger.warning('subscriber_ids.csv not found: Subscriber aliases will not be available')
try:
with open('./peer_ids.csv', 'rU') as peer_ids_csv:
peers = csv.reader(peer_ids_csv, dialect='excel', delimiter=',')
for row in peers:
peer_ids[int(row[1])] = (row[0])
except ImportError:
logger.warning('peer_ids.csv not found: Peer aliases will not be available')
try:
with open('./talkgroup_ids.csv', 'rU') as talkgroup_ids_csv:
talkgroups = csv.reader(talkgroup_ids_csv, dialect='excel', delimiter=',')
for row in talkgroups:
talkgroup_ids[int(row[1])] = (row[0])
except ImportError:
logger.warning('talkgroup_ids.csv not found: Talkgroup aliases will not be available')
#************************************************
# PARSE THE CONFIG FILE AND BUILD STRUCTURE
#************************************************
networks = {}
NETWORK = {}
config = ConfigParser.ConfigParser()
try:
config.read('./dmrlink.cfg')
except:
logger.critical('Could not open configuration file, exiting...')
sys.exit('Could not open configuration file, exiting...')
try:
for section in config.sections():
if section == 'GLOBAL':
pass
else:
NETWORK.update({section: {'LOCAL': {}, 'MASTER': {}, 'PEERS': {}}})
NETWORK[section]['LOCAL'].update({
'MODE': '',
'PEER_OPER': True,
'PEER_MODE': 'DIGITAL',
'FLAGS': '',
'MAX_MISSED': 10,
'NUM_PEERS': 0,
'STATUS': {
'ACTIVE': False
},
'ENABLED': config.getboolean(section, 'ENABLED'),
'TS1_LINK': config.getboolean(section, 'TS1_LINK'),
'TS2_LINK': config.getboolean(section, 'TS2_LINK'),
'AUTH_ENABLED': config.getboolean(section, 'AUTH_ENABLED'),
'RADIO_ID': hex(int(config.get(section, 'RADIO_ID')))[2:].rjust(8,'0').decode('hex'),
'PORT': config.getint(section, 'PORT'),
'ALIVE_TIMER': config.getint(section, 'ALIVE_TIMER'),
'AUTH_KEY': (config.get(section, 'AUTH_KEY').rjust(40,'0')).decode('hex'),
})
NETWORK[section]['MASTER'].update({
'RADIO_ID': '\x00\x00\x00\x00',
'MODE': '\x00',
'PEER_OPER': False,
'PEER_MODE': '',
'TS1_LINK': False,
'TS2_LINK': False,
'FLAGS': '\x00\x00\x00\x00',
'STATUS': {
'CONNECTED': False,
'PEER_LIST': False,
'KEEP_ALIVES_SENT': 0,
'KEEP_ALIVES_MISSED': 0,
'KEEP_ALIVES_OUTSTANDING': 0
},
'IP': config.get(section, 'MASTER_IP'),
'PORT': config.getint(section, 'MASTER_PORT')
})
if NETWORK[section]['LOCAL']['AUTH_ENABLED']:
#0x60 - 3rd Party App & Repeater Monitoring, 0x1C - Voice and Data calls only, 0xDC - Voice, Data and XCMP/XNL
NETWORK[section]['LOCAL']['FLAGS'] = '\x00\x00\x60\x1C'
#NETWORK[section]['LOCAL']['FLAGS'] = '\x00\x00\x60\xDC'
else:
NETWORK[section]['LOCAL']['FLAGS'] = '\x00\x00\x60\x0C'
if not NETWORK[section]['LOCAL']['TS1_LINK'] and not NETWORK[section]['LOCAL']['TS2_LINK']:
NETWORK[section]['LOCAL']['MODE'] = '\x65'
elif NETWORK[section]['LOCAL']['TS1_LINK'] and not NETWORK[section]['LOCAL']['TS2_LINK']:
NETWORK[section]['LOCAL']['MODE'] = '\x66'
elif not NETWORK[section]['LOCAL']['TS1_LINK'] and NETWORK[section]['LOCAL']['TS2_LINK']:
NETWORK[section]['LOCAL']['MODE'] = '\x69'
else:
NETWORK[section]['LOCAL']['MODE'] = '\x6A'
except:
logger.critical('Could not parse configuration file, exiting...')
sys.exit('Could not parse configuration file, exiting...')
#************************************************
# UTILITY FUNCTIONS FOR INTERNAL USE
#************************************************
# Convert a hex string to an int (radio ID, etc.)
#
def int_id(_hex_string):
return int(h(_hex_string), 16)
# Re-Write Source Radio-ID (DMR NAT)
#
def dmr_nat(_data, _src_id, _nat_id):
_data = _data.replace(_src_id, _nat_id)
return _data
# Lookup text data for numeric IDs
#
def get_info(_id, _dict):
if _id in _dict:
return _dict[_id]
return _id
# Determine if the provided peer ID is valid for the provided network
#
def valid_peer(_peer_list, _peerid):
if _peerid in _peer_list:
return True
return False
# Determine if the provided master ID is valid for the provided network
#
def valid_master(_network, _peerid):
if NETWORK[_network]['MASTER']['RADIO_ID'] == _peerid:
return True
else:
return False
# Accept a complete packet, ready to be sent, and send it to all active peers + master in an IPSC
#
def send_to_ipsc(_target, _packet):
_network = NETWORK[_target]
_network_instance = networks[_target]
_peers = _network['PEERS']
# Send to the Master
_network_instance.transport.write(_packet, (_network['MASTER']['IP'], _network['MASTER']['PORT']))
# Send to each connected Peer
for peer in _peers.keys():
if _peers[peer]['STATUS']['CONNECTED']:
_network_instance.transport.write(_packet, (_peers[peer]['IP'], _peers[peer]['PORT']))
# De-register a peer from an IPSC by removing it's information
#
def de_register_peer(_network, _peerid):
# Iterate for the peer in our data
if _peerid in NETWORK[_network]['PEERS'].keys():
del NETWORK[_network]['PEERS'][_peerid]
logger.info('(%s) Peer De-Registration Requested for: %s', _network, h(_peerid))
return
else:
logger.warning('(%s) Peer De-Registration Requested for: %s, but we don\'t have a listing for this peer', _network, h(_peerid))
pass
# Take a received peer list and the network it belongs to, process and populate the
# data structure in my_ipsc_config with the results, and return a simple list of peers.
#
def process_peer_list(_data, _network):
# Determine the length of the peer list for the parsing iterator
_peer_list_length = int(h(_data[5:7]), 16)
# Record the number of peers in the data structure... we'll use it later (11 bytes per peer entry)
NETWORK[_network]['LOCAL']['NUM_PEERS'] = _peer_list_length/11
logger.info('(%s) Peer List Received from Master: %s peers in this IPSC', _network, _peer_list_length/11)
# Iterate each peer entry in the peer list. Skip the header, then pull the next peer, the next, etc.
for i in range(7, _peer_list_length +7, 11):
# Extract various elements from each entry...
_hex_radio_id = (_data[i:i+4])
_hex_address = (_data[i+4:i+8])
_ip_address = socket.inet_ntoa(_hex_address)
_hex_port = (_data[i+8:i+10])
_port = int(h(_hex_port), 16)
_hex_mode = (_data[i+10:i+11])
_mode = int(h(_hex_mode), 16)
# mask individual Mode parameters
_link_op = _mode & PEER_OP_MSK
_link_mode = _mode & PEER_MODE_MSK
_ts1 = _mode & IPSC_TS1_MSK
_ts2 = _mode & IPSC_TS2_MSK
# Determine whether or not the peer is operational
if _link_op == 0b01000000:
_peer_op = True
else:
_peer_op = False
# Determine the operational mode of the peer
if _link_mode == 0b00000000:
_peer_mode = 'NO_RADIO'
elif _link_mode == 0b00010000:
_peer_mode = 'ANALOG'
elif _link_mode == 0b00100000:
_peer_mode = 'DIGITAL'
else:
_peer_mode = 'NO_RADIO'
# Determine whether or not timeslot 1 is linked
if _ts1 == 0b00001000:
_ts1 = True
else:
_ts1 = False
# Determine whether or not timeslot 2 is linked
if _ts2 == 0b00000010:
_ts2 = True
else:
_ts2 = False
# If this entry was NOT already in our list, add it.
# Note: We keep a "simple" peer list in addition to the large data
# structure because sometimes, we just need to identify a
# peer quickly.
if _hex_radio_id not in NETWORK[_network]['PEERS'].keys():
NETWORK[_network]['PEERS'][_hex_radio_id] = {
'IP': _ip_address,
'PORT': _port,
'MODE': _hex_mode,
'PEER_OPER': _peer_op,
'PEER_MODE': _peer_mode,
'TS1_LINK': _ts1,
'TS2_LINK': _ts2,
'STATUS': {
'CONNECTED': False,
'KEEP_ALIVES_SENT': 0,
'KEEP_ALIVES_MISSED': 0,
'KEEP_ALIVES_OUTSTANDING': 0
}
}
# Gratuitous print-out of the peer list.. Pretty much debug stuff.
#
def print_peer_list(_network):
_peers = NETWORK[_network]['PEERS']
_status = NETWORK[_network]['MASTER']['STATUS']['PEER_LIST']
#print('Peer List Status for {}: {}' .format(_network, _status))
if _status and not NETWORK[_network]['PEERS']:
print('We are the only peer for: %s' % _network)
print('')
return
print('Peer List for: %s' % _network)
for peer in _peers.keys():
_this_peer = _peers[peer]
_this_peer_stat = _this_peer['STATUS']
if peer == NETWORK[_network]['LOCAL']['RADIO_ID']:
me = '(self)'
else:
me = ''
print('\tRADIO ID: {} {}' .format(int(h(peer), 16), me))
print('\t\tIP Address: {}:{}' .format(_this_peer['IP'], _this_peer['PORT']))
print('\t\tOperational: {}, Mode: {}, TS1 Link: {}, TS2 Link: {}' .format(_this_peer['PEER_OPER'], _this_peer['PEER_MODE'], _this_peer['TS1_LINK'], _this_peer['TS2_LINK']))
print('\t\tStatus: {}, KeepAlives Sent: {}, KeepAlives Outstanding: {}, KeepAlives Missed: {}' .format(_this_peer_stat['CONNECTED'], _this_peer_stat['KEEP_ALIVES_SENT'], _this_peer_stat['KEEP_ALIVES_OUTSTANDING'], _this_peer_stat['KEEP_ALIVES_MISSED']))
print('')
# Gratuitous print-out of Master info.. Pretty much debug stuff.
#
def print_master(_network):
_master = NETWORK[_network]['MASTER']
print('Master for %s' % _network)
print('\tRADIO ID: {}' .format(int(h(_master['RADIO_ID']), 16)))
print('\t\tIP Address: {}:{}' .format(_master['IP'], _master['PORT']))
print('\t\tOperational: {}, Mode: {}, TS1 Link: {}, TS2 Link: {}' .format(_master['PEER_OPER'], _master['PEER_MODE'], _master['TS1_LINK'], _master['TS2_LINK']))
print('\t\tStatus: {}, KeepAlives Sent: {}, KeepAlives Outstanding: {}, KeepAlives Missed: {}' .format(_master['STATUS']['CONNECTED'], _master['STATUS']['KEEP_ALIVES_SENT'], _master['STATUS']['KEEP_ALIVES_OUTSTANDING'], _master['STATUS']['KEEP_ALIVES_MISSED']))
#************************************************
#******** ***********
#******** IPSC Network 'Engine' ***********
#******** ***********
#************************************************
#************************************************
# Base Class (used nearly all of the time)
#************************************************
class IPSC(DatagramProtocol):
# Modify the initializer to set up our environment and build the packets
# we need to maintain connections
#
def __init__(self, *args, **kwargs):
if len(args) == 1:
# Housekeeping: create references to the configuration and status data for this IPSC instance.
# Some configuration objects that are used frequently and have lengthy names are shortened
# such as (self._master_sock) expands to (self._config['MASTER']['IP'], self._config['MASTER']['PORT']).
# Note that many of them reference each other... this is the Pythonic way.
#
self._network = args[0]
self._config = NETWORK[self._network]
#
self._local = self._config['LOCAL']
self._local_stat = self._local['STATUS']
self._local_id = self._local['RADIO_ID']
#
self._master = self._config['MASTER']
self._master_stat = self._master['STATUS']
self._master_sock = self._master['IP'], self._master['PORT']
#
self._peers = self._config['PEERS']
#
# This is a regular list to store peers for the IPSC. At times, parsing a simple list is much less
# Spendy than iterating a list of dictionaries... Maybe I'll find a better way in the future. Also
# We have to know when we have a new peer list, so a variable to indicate we do (or don't)
#
args = ()
# Packet 'constructors' - builds the necessary control packets for this IPSC instance.
# This isn't really necessary for anything other than readability (reduction of code golf)
#
self.TS_FLAGS = (self._local['MODE'] + self._local['FLAGS'])
self.MASTER_REG_REQ_PKT = (MASTER_REG_REQ + self._local_id + self.TS_FLAGS + IPSC_VER)
self.MASTER_ALIVE_PKT = (MASTER_ALIVE_REQ + self._local_id + self.TS_FLAGS + IPSC_VER)
self.PEER_LIST_REQ_PKT = (PEER_LIST_REQ + self._local_id)
self.PEER_REG_REQ_PKT = (PEER_REG_REQ + self._local_id + IPSC_VER)
self.PEER_REG_REPLY_PKT = (PEER_REG_REPLY + self._local_id + IPSC_VER)
self.PEER_ALIVE_REQ_PKT = (PEER_ALIVE_REQ + self._local_id + self.TS_FLAGS)
self.PEER_ALIVE_REPLY_PKT = (PEER_ALIVE_REPLY + self._local_id + self.TS_FLAGS)
logger.info('(%s) IPSC Instance Created', self._network)
else:
# If we didn't get called correctly, log it!
#
logger.error('(%s) IPSC Instance Could Not be Created... Exiting', self._network)
sys.exit()
# This is called by REACTOR when it starts, We use it to set up the timed
# loop for each instance of the IPSC engine
#
def startProtocol(self):
# Timed loops for:
# IPSC connection establishment and maintenance
# Reporting/Housekeeping
#
#
self._maintenance = task.LoopingCall(self.maintenance_loop)
self._maintenance_loop = self._maintenance.start(self._local['ALIVE_TIMER'])
#
self._reporting = task.LoopingCall(self.reporting_loop)
self._reporting_loop = self._reporting.start(10)
#************************************************
# CALLBACK FUNCTIONS FOR USER PACKET TYPES
#************************************************
def call_mon_origin(self, _network, _data):
print('({}) Repeater Call Monitor Origin Packet Received: {}' .format(_network, h(_data)))
def call_mon_rpt(self, _network, _data):
print('({}) Repeater Call Monitor Repeating Packet Received: {}' .format(_network, h(_data)))
def call_mon_nack(self, _network, _data):
print('({}) Repeater Call Monitor NACK Packet Received: {}' .format(_network, h(_data)))
def xcmp_xnl(self, _network, _data):
#print('({}) XCMP/XNL Packet Received' .format(_network))
pass
def repeater_wake_up(self, _network, _data):
print('({}) Repeater Wake-Up Packet Received: {}' .format(_network, h(_data)))
def group_voice(self, _network, _src_sub, _dst_sub, _ts, _end, _peerid, _data):
_dst_sub = get_info(int_id(_dst_sub), talkgroup_ids)
_peerid = get_info(int_id(_peerid), peer_ids)
_src_sub = get_info(int_id(_src_sub), subscriber_ids)
print('({}) Group Voice Packet Received From: {}, IPSC Peer {}, Destination {}' .format(_network, _src_sub, _peerid, _dst_sub))
def private_voice(self, _network, _src_sub, _dst_sub, _ts, _end, _peerid, _data):
_dst_sub = get_info(int_id(_dst_sub), subscriber_ids)
_peerid = get_info(int_id(_peerid), peer_ids)
_src_sub = get_info(int_id(_src_sub), subscriber_ids)
print('({}) Private Voice Packet Received From: {}, IPSC Peer {}, Destination {}' .format(_network, _src_sub, _peerid, _dst_sub))
def group_data(self, _network, _src_sub, _dst_sub, _ts, _end, _peerid, _data):
_dst_sub = get_info(int_id(_dst_sub), talkgroup_ids)
_peerid = get_info(int_id(_peerid), peer_ids)
_src_sub = get_info(int_id(_src_sub), subscriber_ids)
print('({}) Group Data Packet Received From: {}, IPSC Peer {}, Destination {}' .format(_network, _src_sub, _peerid, _dst_sub))
def private_data(self, _network, _src_sub, _dst_sub, _ts, _end, _peerid, _data):
_dst_sub = get_info(int_id(_dst_sub), subscriber_ids)
_peerid = get_info(int_id(_peerid), peer_ids)
_src_sub = get_info(int_id(_src_sub), subscriber_ids)
print('({}) Private Data Packet Received From: {}, IPSC Peer {}, Destination {}' .format(_network, _src_sub, _peerid, _dst_sub))
def unknown_message(self, _network, _packettype, _peerid, _data):
_packettype = h(_packettype)
_peerid = get_info(int_id(_peerid), peer_ids)
print('{} ({}) Unknown message type encountered\n\tPacket Type: {}\n\tFrom: {}' .format(_network, _packettype, _peerid))
print('\t', h(_data))
# Take a packet to be SENT, calculate auth hash and return the whole thing
#
def hashed_packet(self, _key, _data):
_hash = binascii.a2b_hex((hmac.new(_key,_data,hashlib.sha1)).hexdigest()[:20])
return _data + _hash
# Remove the hash from a packet and return the payload
#
def strip_hash(self, _data):
return _data[:-10]
# Take a RECEIVED packet, calculate the auth hash and verify authenticity
#
def validate_auth(self, _key, _data):
_payload = self.strip_hash(_data)
_hash = _data[-10:]
_chk_hash = binascii.a2b_hex((hmac.new(_key,_payload,hashlib.sha1)).hexdigest()[:20])
if _chk_hash == _hash:
return True
else:
return False
#************************************************
# TIMED LOOP - MY CONNECTION MAINTENANCE
#************************************************
def reporting_loop(self):
# Right now, without this, we really don't know anything is happening.
#print_master(self._network)
#print_peer_list(self._network)
logger.debug('(%s) Periodic Connection Maintenance Loop Started', self._network)
pass
def maintenance_loop(self):
# If the master isn't connected, we have to do that before we can do anything else!
#
if not self._master_stat['CONNECTED']:
reg_packet = self.hashed_packet(self._local['AUTH_KEY'], self.MASTER_REG_REQ_PKT)
self.transport.write(reg_packet, self._master_sock)
logger.info('(%s) Registering to the Master', self._network)
# Once the master is connected, we have to send keep-alives.. and make sure we get them back
elif self._master_stat['CONNECTED']:
# Send keep-alive to the master
master_alive_packet = self.hashed_packet(self._local['AUTH_KEY'], self.MASTER_ALIVE_PKT)
self.transport.write(master_alive_packet, self._master_sock)
# If we had a keep-alive outstanding by the time we send another, mark it missed.
if (self._master_stat['KEEP_ALIVES_OUTSTANDING']) > 0:
self._master_stat['KEEP_ALIVES_MISSED'] += 1
logger.info('(%s) Master Keep-Alive Missed', self._network)
# If we have missed too many keep-alives, de-register the master and start over.
if self._master_stat['KEEP_ALIVES_OUTSTANDING'] >= self._local['MAX_MISSED']:
self._master_stat['CONNECTED'] = False
logger.error('(%s) Maximum Master Keep-Alives Missed -- De-registering the Master', self._network)
# Update our stats before we move on...
self._master_stat['KEEP_ALIVES_SENT'] += 1
self._master_stat['KEEP_ALIVES_OUTSTANDING'] += 1
else:
# This is bad. If we get this message, we need to reset the state and try again
logger.error('->> (%s) Master in UNKOWN STATE:%s:%s', self._network, self._master_sock)
self._master_stat['CONNECTED'] = False
# If the master is connected and we don't have a peer-list yet....
#
if (self._master_stat['CONNECTED'] == True) and (self._master_stat['PEER_LIST'] == False):
# Ask the master for a peer-list
peer_list_req_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_LIST_REQ_PKT)
self.transport.write(peer_list_req_packet, self._master_sock)
logger.info('(%s), No Peer List - Requesting One From the Master', self._network)
# If we do have a peer-list, we need to register with the peers and send keep-alives...
#
if self._master_stat['PEER_LIST']:
# Iterate the list of peers... so we do this for each one.
for peer_id in self._peers.keys():
peer = self._peers[peer_id]
# We will show up in the peer list, but shouldn't try to talk to ourselves.
if peer_id == self._local_id:
continue
# If we haven't registered to a peer, send a registration
if not peer['STATUS']['CONNECTED']:
peer_reg_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_REG_REQ_PKT)
self.transport.write(peer_reg_packet, (peer['IP'], peer['PORT']))
logger.info('(%s) Registering with Peer %s', self._network, int_id(peer_id))
# If we have registered with the peer, then send a keep-alive
elif peer['STATUS']['CONNECTED']:
peer_alive_req_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_ALIVE_REQ_PKT)
self.transport.write(peer_alive_req_packet, (peer['IP'], peer['PORT']))
# If we have a keep-alive outstanding by the time we send another, mark it missed.
if peer['STATUS']['KEEP_ALIVES_OUTSTANDING'] > 0:
peer['STATUS']['KEEP_ALIVES_MISSED'] += 1
logger.info('(%s) Peer Keep-Alive Missed for %s', self._network, int_id(peer_id))
# If we have missed too many keep-alives, de-register the peer and start over.
if peer['STATUS']['KEEP_ALIVES_OUTSTANDING'] >= self._local['MAX_MISSED']:
peer['STATUS']['CONNECTED'] = False
del peer # Because once it's out of the dictionary, you can't use it for anything else.
logger.warning('(%s) Maximum Peer Keep-Alives Missed -- De-registering the Peer: %s', self._network, int_id(peer_id))
# Update our stats before moving on...
peer['STATUS']['KEEP_ALIVES_SENT'] += 1
peer['STATUS']['KEEP_ALIVES_OUTSTANDING'] += 1
# For public display of information, etc. - anything not part of internal logging/diagnostics
#
def _notify_event(self, network, event, info):
"""
Used internally whenever an event happens that may be useful to notify the outside world about.
Arguments:
network: string, network name to look up in config
event: string, basic description
info: dict, in the interest of accomplishing as much as possible without code changes.
The dict will typically contain a peer_id so the origin of the event is known.
"""
pass
#************************************************
# RECEIVED DATAGRAM - ACT IMMEDIATELY!!!
#************************************************
# Actions for received packets by type: For every packet received, there are some things that we need to do:
# Decode some of the info
# Check for auth and authenticate the packet
# Strip the hash from the end... we don't need it anymore
#
# Once they're done, we move on to the processing or callbacks for each packet type.
#
def datagramReceived(self, data, (host, port)):
_packettype = data[0:1]
_peerid = data[1:5]
# Authenticate the packet
if not self.validate_auth(self._local['AUTH_KEY'], data):
logger.warning('(%s) AuthError: IPSC packet failed authentication. Type %s: Peer ID: %s', self._network, h(_packettype), int(h(_peerid), 16))
return
# Strip the hash, we won't need it anymore
data = self.strip_hash(data)
# Packets types that must be originated from a peer (including master peer)
if _packettype in ANY_PEER_REQUIRED:
if not(valid_master(self._network, _peerid) == False or valid_peer(self._peers.keys(), _peerid) == False):
logger.warning('(%s) PeerError: Peer not in peer-list: %s', self._network, int(h(_peerid), 16))
return
# User, as in "subscriber" generated packets - a.k.a someone transmitted
if _packettype in USER_PACKETS:
# Extract commonly used items from the packet header
_src_sub = data[6:9]
_dst_sub = data[9:12]
_call = int_id(data[17:18])
_ts = bool(_call & TS_CALL_MSK)
_end = bool(_call & END_MSK)
# User Voice and Data Call Types:
if _packettype == GROUP_VOICE:
self._notify_event(self._network, 'group_voice', {'peer_id': int(h(_peerid), 16)})
self.group_voice(self._network, _src_sub, _dst_sub, _ts, _end, _peerid, data)
return
elif _packettype == PVT_VOICE:
self._notify_event(self._network, 'private_voice', {'peer_id': int(h(_peerid), 16)})
self.private_voice(self._network, _src_sub, _dst_sub, _ts, _end, _peerid, data)
return
elif _packettype == GROUP_DATA:
self._notify_event(self._network, 'group_data', {'peer_id': int(h(_peerid), 16)})
self.group_data(self._network, _src_sub, _dst_sub, _ts, _end, _peerid, data)
return
elif _packettype == PVT_DATA:
self._notify_event(self._network, 'private_voice', {'peer_id': int(h(_peerid), 16)})
self.private_data(self._network, _src_sub, _dst_sub, _ts, _end, _peerid, data)
return
return
# Other peer-required types that we don't do much or anything with yet
elif _packettype == XCMP_XNL:
self.xcmp_xnl(self._network, data)
return
elif _packettype == CALL_MON_ORIGIN:
self.call_mon_origin(self._network, data)
return
elif _packettype == CALL_MON_RPT:
self.call_mon_rpt(self._network, data)
return
elif _packettype == CALL_MON_NACK:
self.call_mon_nack(self._network, data)
return
# Connection maintenance packets that fall into this category
elif _packettype == DE_REG_REQ:
de_register_peer(self._network, _peerid)
logger.warning('(%s) Peer De-Registration Request From:%s:%s', self._network, host, port)
return
elif _packettype == DE_REG_REPLY:
logger.warning('(%s) Peer De-Registration Reply From:%s:%s', self._network, host, port)
return
elif _packettype == RPT_WAKE_UP:
self.repeater_wake_up(self._network, data)
logger.debug('(%s) Repeater Wake-Up Packet From:%s:%s', self._network, host, port)
return
return
# Packets types that must be originated from a peer
if _packettype in PEER_REQUIRED:
if not valid_peer(self._peers.keys(), _peerid):
logger.warning('(%s) PeerError: Peer %s not in peer-list: %s', self._network, int(h(_peerid), 16), self._peers.keys())
return
# Packets we send...
if _packettype == PEER_ALIVE_REQ:
# Generate a hashed packet from our template and send it.
peer_alive_reply_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_ALIVE_REPLY_PKT)
self.transport.write(peer_alive_reply_packet, (host, port))
return
elif _packettype == PEER_REG_REQ:
peer_reg_reply_packet = self.hashed_packet(self._local['AUTH_KEY'], self.PEER_REG_REPLY_PKT)
self.transport.write(peer_reg_reply_packet, (host, port))
return
# Packets we receive...
elif _packettype == PEER_ALIVE_REPLY:
if _peerid in self._peers.keys():
self._peers[_peerid]['STATUS']['KEEP_ALIVES_OUTSTANDING'] = 0
return
elif _packettype == PEER_REG_REPLY:
if _peerid in self._peers.keys():
self._peers[_peerid]['STATUS']['CONNECTED'] = True
return
return
# Packets types that must be originated from a Master
# Packets we receive...
if _packettype in MASTER_REQUIRED:
if not valid_master(self._network, _peerid):
logger.warning('(%s) MasterError: %s is not the master peer', self._network, int(h(_peerid), 16))
return
if _packettype == MASTER_ALIVE_REPLY:
# This action is so simple, it doesn't require a callback function, master is responding, we're good.
self._master_stat['KEEP_ALIVES_OUTSTANDING'] = 0
return
elif _packettype == PEER_LIST_REPLY:
NETWORK[self._network]['MASTER']['STATUS']['PEER_LIST'] = True
if len(data) > 18:
process_peer_list(data, self._network)
return
return
# When we hear from the master, record it's ID, flag that we're connected, and reset the dead counter.
elif _packettype == MASTER_REG_REPLY:
self._master['RADIO_ID'] = _peerid
self._master_stat['CONNECTED'] = True
self._master_stat['KEEP_ALIVES_OUTSTANDING'] = 0
return
# We know about these types, but absolutely don't take an action
elif _packettype == MASTER_REG_REQ:
# We can't operate as a master as of now, so we should never receive one of these.
logger.debug('(%s) Master Registration Packet Received - WE ARE NOT A MASTER!', self._network)
return
# If there's a packet type we don't know about, it should be logged so we can figure it out and take an appropriate action!
else:
self.unknown_message(self._network, _packettype, _peerid, data)
return
#************************************************
# Derived Class
# used in the rare event of an
# unauthenticated IPSC network.
#************************************************
class UnauthIPSC(IPSC):
# There isn't a hash to build, so just return the data
#
def hashed_packet(self, _key, _data):
return _data
# Remove the hash from a packet and return the payload... except don't
#
def strip_hash(self, _data):
return _data
# Everything is validated, so just return True
#
def validate_auth(self, _key, _data):
return True
#************************************************
# MAIN PROGRAM LOOP STARTS HERE
#************************************************
if __name__ == '__main__':
logger.info('DMRlink \'dmrlink.py\' (c) 2013 N0MJS & the K0USY Group - SYSTEM STARTING...')
networks = {}
for ipsc_network in NETWORK:
if NETWORK[ipsc_network]['LOCAL']['ENABLED']:
if NETWORK[ipsc_network]['LOCAL']['AUTH_ENABLED']:
networks[ipsc_network] = IPSC(ipsc_network)
else:
networks[ipsc_network] = UnauthIPSC(ipsc_network)
reactor.listenUDP(NETWORK[ipsc_network]['LOCAL']['PORT'], networks[ipsc_network])
reactor.run()