HBLink/bptc.py
2016-10-19 16:11:45 -05:00

245 lines
9.4 KiB
Python
Executable File

#!/usr/bin/env python
#
# This work is licensed under the Creative Attribution-NonCommercial-ShareAlike
# 3.0 Unported License.To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to
# Creative Commons, 444 Castro Street, Suite 900, Mountain View,
# California, 94041, USA.
from __future__ import print_function
from bitarray import bitarray
import hamming
from time import time
# Does anybody read this stuff? There's a PEP somewhere that says I should do this.
__author__ = 'Cortney T. Buffington, N0MJS'
__copyright__ = 'Copyright (c) 2016 Cortney T. Buffington, N0MJS and the K0USY Group'
__credits__ = 'Jonathan Naylor, G4KLX; Ian Wraith'
__license__ = 'Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported'
__maintainer__ = 'Cort Buffington, N0MJS'
__email__ = 'n0mjs@me.com'
#------------------------------------------------------------------------------
# Interleaver Index
#------------------------------------------------------------------------------
INDEX_181 = (
0, 181, 166, 151, 136, 121, 106, 91, 76, 61, 46, 31, 16, 1, 182, 167, 152, 137,
122, 107, 92, 77, 62, 47, 32, 17, 2, 183, 168, 153, 138, 123, 108, 93, 78, 63,
48, 33, 18, 3, 184, 169, 154, 139, 124, 109, 94, 79, 64, 49, 34, 19, 4, 185, 170,
155, 140, 125, 110, 95, 80, 65, 50, 35, 20, 5, 186, 171, 156, 141, 126, 111, 96,
81, 66, 51, 36, 21, 6, 187, 172, 157, 142, 127, 112, 97, 82, 67, 52, 37, 22, 7,
188, 173, 158, 143, 128, 113, 98, 83, 68, 53, 38, 23, 8, 189, 174, 159, 144, 129,
114, 99, 84, 69, 54, 39, 24, 9, 190, 175, 160, 145, 130, 115, 100, 85, 70, 55, 40,
25, 10, 191, 176, 161, 146, 131, 116, 101, 86, 71, 56, 41, 26, 11, 192, 177, 162,
147, 132, 117, 102, 87, 72, 57, 42, 27, 12, 193, 178, 163, 148, 133, 118, 103, 88,
73, 58, 43, 28, 13, 194, 179, 164, 149, 134, 119, 104, 89, 74, 59, 44, 29, 14,
195, 180, 165, 150, 135, 120, 105, 90, 75, 60, 45, 30, 15)
#------------------------------------------------------------------------------
# BPTC(196,96) Decoding Routings
#------------------------------------------------------------------------------
# Converts a DMR frame using 98-68-98 (info-sync/EMB-info) into 196 bit array
# Applies interleave indecies de-interleave 196 bit array
def deinterleave_19696(_data):
deint = bitarray(196, endian='big')
for index in xrange(196):
deint[index] = _data[INDEX_181[index]] # the real math is slower: deint[index] = _data[(index * 181) % 196]
return deint
# Applies BTPC error detection/correction routines
# This routine, in practice, will not be used in HBlink or DMRlink - it's only usefull for OTA direct data
def error_check_19696(_data):
count = 0
column = bitarray(13, endian='big')
while True:
errors = False
for col in xrange(15):
pos = col + 1
for index in xrange(13):
column[index] = _data[pos]
pos += 15
result_1393 = hamming.dec_1393(column)
if result_1393[1]:
pos = col + 1
for index in xrange(13):
_data[pos] = result_1393[0][index]
pos += 15
errors = True
for index in xrange(9):
pos = (index*15) + 1
result_15113 = hamming.dec_15113(_data[pos:(pos+15)])
if result_15113[1]:
errors = True
_data[pos:(pos+15)] = result_15113[0]
count += 1
if not errors or count > 4: break
return (errors)
#------------------------------------------------------------------------------
# BPTC(196,96) Encoding Routings
#------------------------------------------------------------------------------
def interleave_19696(_data):
inter = bitarray(196, endian='big')
for index in xrange(196):
inter[INDEX_181[index]] = _data[index] # the real math is slower: deint[index] = _data[(index * 181) % 196]
return inter
# Accepts 12 byte LC header + RS1293, converts to binary and pads for 196 bit
# encode hamming 15113 to rows and 1393 to columns
def encode_19696(_data):
# Create a bitarray from the 4 bytes of LC data (includes RS1293 ECC)
_bdata = bitarray(endian='big')
_bdata.frombytes(_data)
# Insert R0-R3 bits
for i in xrange(4):
_bdata.insert(0, 0)
# Get row hamming 15,11,3 and append. +1 is to account for R3 that makes an even 196bit string
for index in xrange(9):
spos = (index*15) + 1
epos= spos + 11
_rowp = hamming.enc_15113(_bdata[spos:epos])
for pbit in xrange(4):
_bdata.insert(epos+pbit,_rowp[pbit])
# Get column hamming 13,9,3 and append. +1 is to account for R3 that makes an even 196bit string
# Pad out the bitarray to a full 196 bits. Can't insert into 'columns'
for i in xrange(60):
_bdata.append(0)
column = bitarray(9, endian='big') # Temporary bitarray to hold column data
for col in xrange(15):
spos = col + 1
for index in xrange(9):
column[index] = _bdata[spos]
spos += 15
_colp = hamming.enc_1393(column)
# Insert bits into matrix...
cpar = 136 + col # Starting location in the matrix for column bits
for pbit in xrange(4):
_bdata[cpar] = _colp[pbit]
cpar += 15
return _bdata
#------------------------------------------------------------------------------
# BPTC Embedded LC Decoding Routines
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
# BPTC Embedded LC Encoding Routines
#------------------------------------------------------------------------------
# Accepts 12 byte LC header + 5-bit checksum, converts to binary and builts out the BPTC
# encoded result with hamming(16,11,4) and parity.
def encode_emblc(_lc, _csum5):
# Create a bitarray from the 4 bytes of LC data (includes 5-bit checksum).
_binlc = bitarray(endian='big')
_binlc.frombytes(_lc)
# Insert the checksum bits at the right location in the matrix (this is actually faster than with a for loop)
_binlc.insert(32,_csum5[0])
_binlc.insert(43,_csum5[1])
_binlc.insert(54,_csum5[2])
_binlc.insert(65,_csum5[3])
_binlc.insert(76,_csum5[4])
# Insert the hamming bits at the right location in the matrix
for index in xrange(0,112,16):
for hindex,hbit in zip(xrange(index+11,index+16), hamming.enc_16114(_binlc[index:index+11])):
_binlc.insert(hindex,hbit)
print(_binlc, len(_binlc))
for index in xrange(0,16):
_binlc.insert(index+112, _binlc[index+0] ^ _binlc[index+16] ^ _binlc[index+32] ^ _binlc[index+48] ^ _binlc[index+64] ^ _binlc[index+80] ^ _binlc[index+96])
print(_binlc, len(_binlc))
# TO DO NEXT:
# INTERLEAVE, RETURN A TUPLE OR LIBRARY OR EACH SEGMENT OF THE LC
# EACH SEGMENT IS 4 COLUMNS, TOP TO BOTTOM, LEFT TO RIGHT (PAGE 124 ETSI)
#------------------------------------------------------------------------------
# Used to execute the module directly to run built-in tests
#------------------------------------------------------------------------------
if __name__ == '__main__':
from binascii import b2a_hex as h
from time import time
import crc
def to_bytes(_bits):
#add_bits = 8 - (len(_bits) % 8)
#if add_bits < 8:
# for bit in xrange(add_bits):
# _bits.insert(0,0)
_string = _bits.tobytes()
return _string
# Validation Example
orig_data = '\x00\x10\x20\x00\x0c\x30\x2f\x9b\xe5\xda\xd4\x5a'
t0 = time()
enc_data = encode_19696(orig_data)
inter_data = interleave_19696(enc_data)
t1 = time()
encode_time = t1-t0
# Good Data
dec_data = '\x2b\x60\x04\x10\x1f\x84\x2d\xd0\x0d\xf0\x7d\x41\x04\x6d\xff\x57\xd7\x5d\xf5\xde\x30\x15\x2e\x20\x70\xb2\x0f\x80\x3f\x88\xc6\x95\xe2'
# Bad Data
#dec_data = '\x2b\x60\xff\xff\xff\x85\x2d\xd0\x0d\xf0\x7d\x41\x04\x6d\xff\x57\xd7\x5d\xf5\xde\x30\x15\x2e\x20\x70\xb2\x0f\x80\x3f\x88\xc6\x95\xe2'
dec_bits = bitarray(endian='big')
dec_bits.frombytes(dec_data)
dec_bits = dec_bits[0:98] + dec_bits[166:264]
t0 = time()
deint_data = deinterleave_19696(dec_bits)
err_corrected = error_check_19696(deint_data) # This corrects deint_data in place -- it does not return a new array!!!
ext_data = to_bytes(deint_data)
t1 = time()
decode_time = t1-t0
print('VALIDATION ROUTINE:')
print()
print('ENCODER TEST:')
print('Original Data: {}, {} bytes'.format(h(orig_data), len(orig_data)))
print('Encoding time: {} seconds'.format(encode_time))
print('Encoded data: {}, {} bits'.format(enc_data, len(enc_data)))
print()
print('DECODER TEST:')
print('Encoded data: {}, {} bytes'.format(h(dec_data), len(dec_data)))
print('Decoding Time: {} seconds'.format(t1-t0))
if err_corrected:
print('WARNING DATA COULD NOT BE CORRECTED')
else:
print('Decoded Data: {}, {} bytes'.format(h(ext_data), len(ext_data)))
print()
print('ENCODED vs. DECODED:')
print('enc:', enc_data)
print('dec:', deint_data)
print(enc_data == deint_data)
orig_data = '\x00\x10\x20\x00\x0c\x30\x2f\x9b\xe5'
orig_csum = crc.csum5(orig_data)
emblc = encode_emblc(orig_data, orig_csum)