// // cagc.cpp // ambed // // Created by Jean-Luc Deltombe (LX3JL) on 28/04/2017. // Copyright © 2015 Jean-Luc Deltombe (LX3JL). All rights reserved. // // ---------------------------------------------------------------------------- // This file is part of ambed. // // xlxd is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // xlxd is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with Foobar. If not, see . // ---------------------------------------------------------------------------- // Geoffrey Merck F4FXL / KC3FRA AGC code borrowed from Liquid DSP // Only took the parts we need qnd recoeded it to be close the XLX coding style // https://github.com/jgaeddert/liquid-dsp/blob/master/src/agc/src/agc.c #include #include "cagc.h" #include "main.h" //////////////////////////////////////////////////////////////////////////////////////// // constructor CAGC::CAGC(float initialLeveldB) { // set internal gain appropriately m_Gain = pow(10.0f, initialLeveldB/20.0f); //+- 10dB Margin, TODO Move margin to constant m_GainMax = pow(10.0f, (initialLeveldB + AGC_CLAMPING)/20.0f); m_GainMin = pow(10.0f, (initialLeveldB - AGC_CLAMPING)/20.0f); m_EnergyPrime = 1.0f; // We do not target full scale to avoid stauration m_targetEnergy = 32767.0f * pow(10.0f, (initialLeveldB - 25.0)/20.0f);//25 dB below saturation as stated in docs //we also substract our target gain //this is the time constant of our AGC... m_Bandwidth = 1e-2f;//TODO : Move to parameter ? m_Alpha = m_Bandwidth; } //////////////////////////////////////////////////////////////////////////////////////// // get float CAGC::GetGain() { return 20.0f*log10(m_Gain); } //////////////////////////////////////////////////////////////////////////////////////// // process inline void CAGC::ProcessSampleBlock(uint8* voice, int length) { for(int i = 0; i < length; i += 2) { float input = (float)(short)MAKEWORD(voice[i+1], voice[i]); //apply AGC // apply gain to input sample float output = input * m_Gain; // compute output signal energy, scaled to 0 to 1 float instantEnergy = abs(output) / m_targetEnergy; // smooth energy estimate using single-pole low-pass filter m_EnergyPrime = (1.0f - m_Alpha) * m_EnergyPrime + m_Alpha * instantEnergy; // update gain according to output energy if (m_EnergyPrime > 1e-6f) m_Gain *= exp( -0.5f * m_Alpha * log(m_EnergyPrime) ); // clamp gain if (m_Gain > m_GainMax) m_Gain = m_GainMax; else if(m_Gain < m_GainMin) m_Gain = m_GainMin; //write processed sample back voice[i] = HIBYTE((short)output); voice[i+1] = LOBYTE((short)output); } }