//
// cagc.cpp
// ambed
//
// Created by Jean-Luc Deltombe (LX3JL) on 28/04/2017.
// Copyright © 2015 Jean-Luc Deltombe (LX3JL). All rights reserved.
//
// ----------------------------------------------------------------------------
// This file is part of ambed.
//
// xlxd is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// xlxd is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Foobar. If not, see .
// ----------------------------------------------------------------------------
// Geoffrey Merck F4FXL / KC3FRA AGC code borrowed from Liquid DSP
// Only took the parts we need qnd recoeded it to be close the XLX coding style
// https://github.com/jgaeddert/liquid-dsp/blob/master/src/agc/src/agc.c
#include
#include "cagc.h"
#include "main.h"
////////////////////////////////////////////////////////////////////////////////////////
// constructor
CAGC::CAGC(float initialLeveldB)
{
// set internal gain appropriately
m_Gain = pow(10.0f, initialLeveldB/20.0f);
//+- 10dB Margin, TODO Move margin to constant
m_GainMax = pow(10.0f, (initialLeveldB + AGC_CLAMPING)/20.0f);
m_GainMin = pow(10.0f, (initialLeveldB - AGC_CLAMPING)/20.0f);
m_EnergyPrime = 1.0f;
// We do not target full scale to avoid stauration
m_targetEnergy = 32767.0f * pow(10.0f, (initialLeveldB - 25.0)/20.0f);//25 dB below saturation as stated in docs
//we also substract our target gain
//this is the time constant of our AGC...
m_Bandwidth = 1e-2f;//TODO : Move to parameter ?
m_Alpha = m_Bandwidth;
}
////////////////////////////////////////////////////////////////////////////////////////
// get
float CAGC::GetGain()
{
return 20.0f*log10(m_Gain);
}
////////////////////////////////////////////////////////////////////////////////////////
// process
inline float CAGC::ProcessSample(float input)
{
//apply AGC
// apply gain to input sample
float output = input * m_Gain;
// compute output signal energy, scaled to 0 to 1
float instantEnergy = abs(output) / m_targetEnergy;
// smooth energy estimate using single-pole low-pass filter
m_EnergyPrime = (1.0f - m_Alpha) * m_EnergyPrime + m_Alpha * instantEnergy;
// update gain according to output energy
if (m_EnergyPrime > 1e-6f)
m_Gain *= exp( -0.5f * m_Alpha * log(m_EnergyPrime) );
// clamp gain
if (m_Gain > m_GainMax)
m_Gain = m_GainMax;
else if(m_Gain < m_GainMin)
m_Gain = m_GainMin;
return output;
}