645 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			645 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/* Copyright (c) 2007-2008 CSIRO
							 | 
						||
| 
								 | 
							
								   Copyright (c) 2007-2009 Xiph.Org Foundation
							 | 
						||
| 
								 | 
							
								   Written by Jean-Marc Valin */
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								   Redistribution and use in source and binary forms, with or without
							 | 
						||
| 
								 | 
							
								   modification, are permitted provided that the following conditions
							 | 
						||
| 
								 | 
							
								   are met:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   - Redistributions of source code must retain the above copyright
							 | 
						||
| 
								 | 
							
								   notice, this list of conditions and the following disclaimer.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   - Redistributions in binary form must reproduce the above copyright
							 | 
						||
| 
								 | 
							
								   notice, this list of conditions and the following disclaimer in the
							 | 
						||
| 
								 | 
							
								   documentation and/or other materials provided with the distribution.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
							 | 
						||
| 
								 | 
							
								   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
							 | 
						||
| 
								 | 
							
								   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
							 | 
						||
| 
								 | 
							
								   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
							 | 
						||
| 
								 | 
							
								   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
							 | 
						||
| 
								 | 
							
								   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
							 | 
						||
| 
								 | 
							
								   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
							 | 
						||
| 
								 | 
							
								   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
							 | 
						||
| 
								 | 
							
								   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
							 | 
						||
| 
								 | 
							
								   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
							 | 
						||
| 
								 | 
							
								   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef HAVE_CONFIG_H
							 | 
						||
| 
								 | 
							
								#include "config.h"
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <math.h>
							 | 
						||
| 
								 | 
							
								#include "modes.h"
							 | 
						||
| 
								 | 
							
								#include "cwrs.h"
							 | 
						||
| 
								 | 
							
								#include "arch.h"
							 | 
						||
| 
								 | 
							
								#include "os_support.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "entcode.h"
							 | 
						||
| 
								 | 
							
								#include "rate.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const unsigned char LOG2_FRAC_TABLE[24]={
							 | 
						||
| 
								 | 
							
								   0,
							 | 
						||
| 
								 | 
							
								   8,13,
							 | 
						||
| 
								 | 
							
								  16,19,21,23,
							 | 
						||
| 
								 | 
							
								  24,26,27,28,29,30,31,32,
							 | 
						||
| 
								 | 
							
								  32,33,34,34,35,36,36,37,37
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef CUSTOM_MODES
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*Determines if V(N,K) fits in a 32-bit unsigned integer.
							 | 
						||
| 
								 | 
							
								  N and K are themselves limited to 15 bits.*/
							 | 
						||
| 
								 | 
							
								static int fits_in32(int _n, int _k)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   static const opus_int16 maxN[15] = {
							 | 
						||
| 
								 | 
							
								      32767, 32767, 32767, 1476, 283, 109,  60,  40,
							 | 
						||
| 
								 | 
							
								       29,  24,  20,  18,  16,  14,  13};
							 | 
						||
| 
								 | 
							
								   static const opus_int16 maxK[15] = {
							 | 
						||
| 
								 | 
							
								      32767, 32767, 32767, 32767, 1172, 238,  95,  53,
							 | 
						||
| 
								 | 
							
								       36,  27,  22,  18,  16,  15,  13};
							 | 
						||
| 
								 | 
							
								   if (_n>=14)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      if (_k>=14)
							 | 
						||
| 
								 | 
							
								         return 0;
							 | 
						||
| 
								 | 
							
								      else
							 | 
						||
| 
								 | 
							
								         return _n <= maxN[_k];
							 | 
						||
| 
								 | 
							
								   } else {
							 | 
						||
| 
								 | 
							
								      return _k <= maxK[_n];
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void compute_pulse_cache(CELTMode *m, int LM)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   int C;
							 | 
						||
| 
								 | 
							
								   int i;
							 | 
						||
| 
								 | 
							
								   int j;
							 | 
						||
| 
								 | 
							
								   int curr=0;
							 | 
						||
| 
								 | 
							
								   int nbEntries=0;
							 | 
						||
| 
								 | 
							
								   int entryN[100], entryK[100], entryI[100];
							 | 
						||
| 
								 | 
							
								   const opus_int16 *eBands = m->eBands;
							 | 
						||
| 
								 | 
							
								   PulseCache *cache = &m->cache;
							 | 
						||
| 
								 | 
							
								   opus_int16 *cindex;
							 | 
						||
| 
								 | 
							
								   unsigned char *bits;
							 | 
						||
| 
								 | 
							
								   unsigned char *cap;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   cindex = (opus_int16 *)opus_alloc(sizeof(cache->index[0])*m->nbEBands*(LM+2));
							 | 
						||
| 
								 | 
							
								   cache->index = cindex;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   /* Scan for all unique band sizes */
							 | 
						||
| 
								 | 
							
								   for (i=0;i<=LM+1;i++)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      for (j=0;j<m->nbEBands;j++)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         int k;
							 | 
						||
| 
								 | 
							
								         int N = (eBands[j+1]-eBands[j])<<i>>1;
							 | 
						||
| 
								 | 
							
								         cindex[i*m->nbEBands+j] = -1;
							 | 
						||
| 
								 | 
							
								         /* Find other bands that have the same size */
							 | 
						||
| 
								 | 
							
								         for (k=0;k<=i;k++)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            int n;
							 | 
						||
| 
								 | 
							
								            for (n=0;n<m->nbEBands && (k!=i || n<j);n++)
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               if (N == (eBands[n+1]-eBands[n])<<k>>1)
							 | 
						||
| 
								 | 
							
								               {
							 | 
						||
| 
								 | 
							
								                  cindex[i*m->nbEBands+j] = cindex[k*m->nbEBands+n];
							 | 
						||
| 
								 | 
							
								                  break;
							 | 
						||
| 
								 | 
							
								               }
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         if (cache->index[i*m->nbEBands+j] == -1 && N!=0)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            int K;
							 | 
						||
| 
								 | 
							
								            entryN[nbEntries] = N;
							 | 
						||
| 
								 | 
							
								            K = 0;
							 | 
						||
| 
								 | 
							
								            while (fits_in32(N,get_pulses(K+1)) && K<MAX_PSEUDO)
							 | 
						||
| 
								 | 
							
								               K++;
							 | 
						||
| 
								 | 
							
								            entryK[nbEntries] = K;
							 | 
						||
| 
								 | 
							
								            cindex[i*m->nbEBands+j] = curr;
							 | 
						||
| 
								 | 
							
								            entryI[nbEntries] = curr;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            curr += K+1;
							 | 
						||
| 
								 | 
							
								            nbEntries++;
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   bits = (unsigned char *)opus_alloc(sizeof(unsigned char)*curr);
							 | 
						||
| 
								 | 
							
								   cache->bits = bits;
							 | 
						||
| 
								 | 
							
								   cache->size = curr;
							 | 
						||
| 
								 | 
							
								   /* Compute the cache for all unique sizes */
							 | 
						||
| 
								 | 
							
								   for (i=0;i<nbEntries;i++)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      unsigned char *ptr = bits+entryI[i];
							 | 
						||
| 
								 | 
							
								      opus_int16 tmp[CELT_MAX_PULSES+1];
							 | 
						||
| 
								 | 
							
								      get_required_bits(tmp, entryN[i], get_pulses(entryK[i]), BITRES);
							 | 
						||
| 
								 | 
							
								      for (j=1;j<=entryK[i];j++)
							 | 
						||
| 
								 | 
							
								         ptr[j] = tmp[get_pulses(j)]-1;
							 | 
						||
| 
								 | 
							
								      ptr[0] = entryK[i];
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   /* Compute the maximum rate for each band at which we'll reliably use as
							 | 
						||
| 
								 | 
							
								       many bits as we ask for. */
							 | 
						||
| 
								 | 
							
								   cache->caps = cap = (unsigned char *)opus_alloc(sizeof(cache->caps[0])*(LM+1)*2*m->nbEBands);
							 | 
						||
| 
								 | 
							
								   for (i=0;i<=LM;i++)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      for (C=1;C<=2;C++)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         for (j=0;j<m->nbEBands;j++)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            int N0;
							 | 
						||
| 
								 | 
							
								            int max_bits;
							 | 
						||
| 
								 | 
							
								            N0 = m->eBands[j+1]-m->eBands[j];
							 | 
						||
| 
								 | 
							
								            /* N=1 bands only have a sign bit and fine bits. */
							 | 
						||
| 
								 | 
							
								            if (N0<<i == 1)
							 | 
						||
| 
								 | 
							
								               max_bits = C*(1+MAX_FINE_BITS)<<BITRES;
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               const unsigned char *pcache;
							 | 
						||
| 
								 | 
							
								               opus_int32           num;
							 | 
						||
| 
								 | 
							
								               opus_int32           den;
							 | 
						||
| 
								 | 
							
								               int                  LM0;
							 | 
						||
| 
								 | 
							
								               int                  N;
							 | 
						||
| 
								 | 
							
								               int                  offset;
							 | 
						||
| 
								 | 
							
								               int                  ndof;
							 | 
						||
| 
								 | 
							
								               int                  qb;
							 | 
						||
| 
								 | 
							
								               int                  k;
							 | 
						||
| 
								 | 
							
								               LM0 = 0;
							 | 
						||
| 
								 | 
							
								               /* Even-sized bands bigger than N=2 can be split one more time.
							 | 
						||
| 
								 | 
							
								                  As of commit 44203907 all bands >1 are even, including custom modes.*/
							 | 
						||
| 
								 | 
							
								               if (N0 > 2)
							 | 
						||
| 
								 | 
							
								               {
							 | 
						||
| 
								 | 
							
								                  N0>>=1;
							 | 
						||
| 
								 | 
							
								                  LM0--;
							 | 
						||
| 
								 | 
							
								               }
							 | 
						||
| 
								 | 
							
								               /* N0=1 bands can't be split down to N<2. */
							 | 
						||
| 
								 | 
							
								               else if (N0 <= 1)
							 | 
						||
| 
								 | 
							
								               {
							 | 
						||
| 
								 | 
							
								                  LM0=IMIN(i,1);
							 | 
						||
| 
								 | 
							
								                  N0<<=LM0;
							 | 
						||
| 
								 | 
							
								               }
							 | 
						||
| 
								 | 
							
								               /* Compute the cost for the lowest-level PVQ of a fully split
							 | 
						||
| 
								 | 
							
								                   band. */
							 | 
						||
| 
								 | 
							
								               pcache = bits + cindex[(LM0+1)*m->nbEBands+j];
							 | 
						||
| 
								 | 
							
								               max_bits = pcache[pcache[0]]+1;
							 | 
						||
| 
								 | 
							
								               /* Add in the cost of coding regular splits. */
							 | 
						||
| 
								 | 
							
								               N = N0;
							 | 
						||
| 
								 | 
							
								               for(k=0;k<i-LM0;k++){
							 | 
						||
| 
								 | 
							
								                  max_bits <<= 1;
							 | 
						||
| 
								 | 
							
								                  /* Offset the number of qtheta bits by log2(N)/2
							 | 
						||
| 
								 | 
							
								                      + QTHETA_OFFSET compared to their "fair share" of
							 | 
						||
| 
								 | 
							
								                      total/N */
							 | 
						||
| 
								 | 
							
								                  offset = ((m->logN[j]+((LM0+k)<<BITRES))>>1)-QTHETA_OFFSET;
							 | 
						||
| 
								 | 
							
								                  /* The number of qtheta bits we'll allocate if the remainder
							 | 
						||
| 
								 | 
							
								                      is to be max_bits.
							 | 
						||
| 
								 | 
							
								                     The average measured cost for theta is 0.89701 times qb,
							 | 
						||
| 
								 | 
							
								                      approximated here as 459/512. */
							 | 
						||
| 
								 | 
							
								                  num=459*(opus_int32)((2*N-1)*offset+max_bits);
							 | 
						||
| 
								 | 
							
								                  den=((opus_int32)(2*N-1)<<9)-459;
							 | 
						||
| 
								 | 
							
								                  qb = IMIN((num+(den>>1))/den, 57);
							 | 
						||
| 
								 | 
							
								                  celt_assert(qb >= 0);
							 | 
						||
| 
								 | 
							
								                  max_bits += qb;
							 | 
						||
| 
								 | 
							
								                  N <<= 1;
							 | 
						||
| 
								 | 
							
								               }
							 | 
						||
| 
								 | 
							
								               /* Add in the cost of a stereo split, if necessary. */
							 | 
						||
| 
								 | 
							
								               if (C==2)
							 | 
						||
| 
								 | 
							
								               {
							 | 
						||
| 
								 | 
							
								                  max_bits <<= 1;
							 | 
						||
| 
								 | 
							
								                  offset = ((m->logN[j]+(i<<BITRES))>>1)-(N==2?QTHETA_OFFSET_TWOPHASE:QTHETA_OFFSET);
							 | 
						||
| 
								 | 
							
								                  ndof = 2*N-1-(N==2);
							 | 
						||
| 
								 | 
							
								                  /* The average measured cost for theta with the step PDF is
							 | 
						||
| 
								 | 
							
								                      0.95164 times qb, approximated here as 487/512. */
							 | 
						||
| 
								 | 
							
								                  num = (N==2?512:487)*(opus_int32)(max_bits+ndof*offset);
							 | 
						||
| 
								 | 
							
								                  den = ((opus_int32)ndof<<9)-(N==2?512:487);
							 | 
						||
| 
								 | 
							
								                  qb = IMIN((num+(den>>1))/den, (N==2?64:61));
							 | 
						||
| 
								 | 
							
								                  celt_assert(qb >= 0);
							 | 
						||
| 
								 | 
							
								                  max_bits += qb;
							 | 
						||
| 
								 | 
							
								               }
							 | 
						||
| 
								 | 
							
								               /* Add the fine bits we'll use. */
							 | 
						||
| 
								 | 
							
								               /* Compensate for the extra DoF in stereo */
							 | 
						||
| 
								 | 
							
								               ndof = C*N + ((C==2 && N>2) ? 1 : 0);
							 | 
						||
| 
								 | 
							
								               /* Offset the number of fine bits by log2(N)/2 + FINE_OFFSET
							 | 
						||
| 
								 | 
							
								                   compared to their "fair share" of total/N */
							 | 
						||
| 
								 | 
							
								               offset = ((m->logN[j] + (i<<BITRES))>>1)-FINE_OFFSET;
							 | 
						||
| 
								 | 
							
								               /* N=2 is the only point that doesn't match the curve */
							 | 
						||
| 
								 | 
							
								               if (N==2)
							 | 
						||
| 
								 | 
							
								                  offset += 1<<BITRES>>2;
							 | 
						||
| 
								 | 
							
								               /* The number of fine bits we'll allocate if the remainder is
							 | 
						||
| 
								 | 
							
								                   to be max_bits. */
							 | 
						||
| 
								 | 
							
								               num = max_bits+ndof*offset;
							 | 
						||
| 
								 | 
							
								               den = (ndof-1)<<BITRES;
							 | 
						||
| 
								 | 
							
								               qb = IMIN((num+(den>>1))/den, MAX_FINE_BITS);
							 | 
						||
| 
								 | 
							
								               celt_assert(qb >= 0);
							 | 
						||
| 
								 | 
							
								               max_bits += C*qb<<BITRES;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            max_bits = (4*max_bits/(C*((m->eBands[j+1]-m->eBands[j])<<i)))-64;
							 | 
						||
| 
								 | 
							
								            celt_assert(max_bits >= 0);
							 | 
						||
| 
								 | 
							
								            celt_assert(max_bits < 256);
							 | 
						||
| 
								 | 
							
								            *cap++ = (unsigned char)max_bits;
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif /* CUSTOM_MODES */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define ALLOC_STEPS 6
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static OPUS_INLINE int interp_bits2pulses(const CELTMode *m, int start, int end, int skip_start,
							 | 
						||
| 
								 | 
							
								      const int *bits1, const int *bits2, const int *thresh, const int *cap, opus_int32 total, opus_int32 *_balance,
							 | 
						||
| 
								 | 
							
								      int skip_rsv, int *intensity, int intensity_rsv, int *dual_stereo, int dual_stereo_rsv, int *bits,
							 | 
						||
| 
								 | 
							
								      int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   opus_int32 psum;
							 | 
						||
| 
								 | 
							
								   int lo, hi;
							 | 
						||
| 
								 | 
							
								   int i, j;
							 | 
						||
| 
								 | 
							
								   int logM;
							 | 
						||
| 
								 | 
							
								   int stereo;
							 | 
						||
| 
								 | 
							
								   int codedBands=-1;
							 | 
						||
| 
								 | 
							
								   int alloc_floor;
							 | 
						||
| 
								 | 
							
								   opus_int32 left, percoeff;
							 | 
						||
| 
								 | 
							
								   int done;
							 | 
						||
| 
								 | 
							
								   opus_int32 balance;
							 | 
						||
| 
								 | 
							
								   SAVE_STACK;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   alloc_floor = C<<BITRES;
							 | 
						||
| 
								 | 
							
								   stereo = C>1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   logM = LM<<BITRES;
							 | 
						||
| 
								 | 
							
								   lo = 0;
							 | 
						||
| 
								 | 
							
								   hi = 1<<ALLOC_STEPS;
							 | 
						||
| 
								 | 
							
								   for (i=0;i<ALLOC_STEPS;i++)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      int mid = (lo+hi)>>1;
							 | 
						||
| 
								 | 
							
								      psum = 0;
							 | 
						||
| 
								 | 
							
								      done = 0;
							 | 
						||
| 
								 | 
							
								      for (j=end;j-->start;)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         int tmp = bits1[j] + (mid*(opus_int32)bits2[j]>>ALLOC_STEPS);
							 | 
						||
| 
								 | 
							
								         if (tmp >= thresh[j] || done)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            done = 1;
							 | 
						||
| 
								 | 
							
								            /* Don't allocate more than we can actually use */
							 | 
						||
| 
								 | 
							
								            psum += IMIN(tmp, cap[j]);
							 | 
						||
| 
								 | 
							
								         } else {
							 | 
						||
| 
								 | 
							
								            if (tmp >= alloc_floor)
							 | 
						||
| 
								 | 
							
								               psum += alloc_floor;
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      if (psum > total)
							 | 
						||
| 
								 | 
							
								         hi = mid;
							 | 
						||
| 
								 | 
							
								      else
							 | 
						||
| 
								 | 
							
								         lo = mid;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   psum = 0;
							 | 
						||
| 
								 | 
							
								   /*printf ("interp bisection gave %d\n", lo);*/
							 | 
						||
| 
								 | 
							
								   done = 0;
							 | 
						||
| 
								 | 
							
								   for (j=end;j-->start;)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      int tmp = bits1[j] + ((opus_int32)lo*bits2[j]>>ALLOC_STEPS);
							 | 
						||
| 
								 | 
							
								      if (tmp < thresh[j] && !done)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         if (tmp >= alloc_floor)
							 | 
						||
| 
								 | 
							
								            tmp = alloc_floor;
							 | 
						||
| 
								 | 
							
								         else
							 | 
						||
| 
								 | 
							
								            tmp = 0;
							 | 
						||
| 
								 | 
							
								      } else
							 | 
						||
| 
								 | 
							
								         done = 1;
							 | 
						||
| 
								 | 
							
								      /* Don't allocate more than we can actually use */
							 | 
						||
| 
								 | 
							
								      tmp = IMIN(tmp, cap[j]);
							 | 
						||
| 
								 | 
							
								      bits[j] = tmp;
							 | 
						||
| 
								 | 
							
								      psum += tmp;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   /* Decide which bands to skip, working backwards from the end. */
							 | 
						||
| 
								 | 
							
								   for (codedBands=end;;codedBands--)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      int band_width;
							 | 
						||
| 
								 | 
							
								      int band_bits;
							 | 
						||
| 
								 | 
							
								      int rem;
							 | 
						||
| 
								 | 
							
								      j = codedBands-1;
							 | 
						||
| 
								 | 
							
								      /* Never skip the first band, nor a band that has been boosted by
							 | 
						||
| 
								 | 
							
								          dynalloc.
							 | 
						||
| 
								 | 
							
								         In the first case, we'd be coding a bit to signal we're going to waste
							 | 
						||
| 
								 | 
							
								          all the other bits.
							 | 
						||
| 
								 | 
							
								         In the second case, we'd be coding a bit to redistribute all the bits
							 | 
						||
| 
								 | 
							
								          we just signaled should be cocentrated in this band. */
							 | 
						||
| 
								 | 
							
								      if (j<=skip_start)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         /* Give the bit we reserved to end skipping back. */
							 | 
						||
| 
								 | 
							
								         total += skip_rsv;
							 | 
						||
| 
								 | 
							
								         break;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      /*Figure out how many left-over bits we would be adding to this band.
							 | 
						||
| 
								 | 
							
								        This can include bits we've stolen back from higher, skipped bands.*/
							 | 
						||
| 
								 | 
							
								      left = total-psum;
							 | 
						||
| 
								 | 
							
								      percoeff = celt_udiv(left, m->eBands[codedBands]-m->eBands[start]);
							 | 
						||
| 
								 | 
							
								      left -= (m->eBands[codedBands]-m->eBands[start])*percoeff;
							 | 
						||
| 
								 | 
							
								      rem = IMAX(left-(m->eBands[j]-m->eBands[start]),0);
							 | 
						||
| 
								 | 
							
								      band_width = m->eBands[codedBands]-m->eBands[j];
							 | 
						||
| 
								 | 
							
								      band_bits = (int)(bits[j] + percoeff*band_width + rem);
							 | 
						||
| 
								 | 
							
								      /*Only code a skip decision if we're above the threshold for this band.
							 | 
						||
| 
								 | 
							
								        Otherwise it is force-skipped.
							 | 
						||
| 
								 | 
							
								        This ensures that we have enough bits to code the skip flag.*/
							 | 
						||
| 
								 | 
							
								      if (band_bits >= IMAX(thresh[j], alloc_floor+(1<<BITRES)))
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         if (encode)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            /*This if() block is the only part of the allocation function that
							 | 
						||
| 
								 | 
							
								               is not a mandatory part of the bitstream: any bands we choose to
							 | 
						||
| 
								 | 
							
								               skip here must be explicitly signaled.*/
							 | 
						||
| 
								 | 
							
								            int depth_threshold;
							 | 
						||
| 
								 | 
							
								            /*We choose a threshold with some hysteresis to keep bands from
							 | 
						||
| 
								 | 
							
								               fluctuating in and out, but we try not to fold below a certain point. */
							 | 
						||
| 
								 | 
							
								            if (codedBands > 17)
							 | 
						||
| 
								 | 
							
								               depth_threshold = j<prev ? 7 : 9;
							 | 
						||
| 
								 | 
							
								            else
							 | 
						||
| 
								 | 
							
								               depth_threshold = 0;
							 | 
						||
| 
								 | 
							
								#ifdef FUZZING
							 | 
						||
| 
								 | 
							
								            if ((rand()&0x1) == 0)
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								            if (codedBands<=start+2 || (band_bits > (depth_threshold*band_width<<LM<<BITRES)>>4 && j<=signalBandwidth))
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               ec_enc_bit_logp(ec, 1, 1);
							 | 
						||
| 
								 | 
							
								               break;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            ec_enc_bit_logp(ec, 0, 1);
							 | 
						||
| 
								 | 
							
								         } else if (ec_dec_bit_logp(ec, 1)) {
							 | 
						||
| 
								 | 
							
								            break;
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         /*We used a bit to skip this band.*/
							 | 
						||
| 
								 | 
							
								         psum += 1<<BITRES;
							 | 
						||
| 
								 | 
							
								         band_bits -= 1<<BITRES;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      /*Reclaim the bits originally allocated to this band.*/
							 | 
						||
| 
								 | 
							
								      psum -= bits[j]+intensity_rsv;
							 | 
						||
| 
								 | 
							
								      if (intensity_rsv > 0)
							 | 
						||
| 
								 | 
							
								         intensity_rsv = LOG2_FRAC_TABLE[j-start];
							 | 
						||
| 
								 | 
							
								      psum += intensity_rsv;
							 | 
						||
| 
								 | 
							
								      if (band_bits >= alloc_floor)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         /*If we have enough for a fine energy bit per channel, use it.*/
							 | 
						||
| 
								 | 
							
								         psum += alloc_floor;
							 | 
						||
| 
								 | 
							
								         bits[j] = alloc_floor;
							 | 
						||
| 
								 | 
							
								      } else {
							 | 
						||
| 
								 | 
							
								         /*Otherwise this band gets nothing at all.*/
							 | 
						||
| 
								 | 
							
								         bits[j] = 0;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   celt_assert(codedBands > start);
							 | 
						||
| 
								 | 
							
								   /* Code the intensity and dual stereo parameters. */
							 | 
						||
| 
								 | 
							
								   if (intensity_rsv > 0)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      if (encode)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         *intensity = IMIN(*intensity, codedBands);
							 | 
						||
| 
								 | 
							
								         ec_enc_uint(ec, *intensity-start, codedBands+1-start);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      else
							 | 
						||
| 
								 | 
							
								         *intensity = start+ec_dec_uint(ec, codedBands+1-start);
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   else
							 | 
						||
| 
								 | 
							
								      *intensity = 0;
							 | 
						||
| 
								 | 
							
								   if (*intensity <= start)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      total += dual_stereo_rsv;
							 | 
						||
| 
								 | 
							
								      dual_stereo_rsv = 0;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   if (dual_stereo_rsv > 0)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      if (encode)
							 | 
						||
| 
								 | 
							
								         ec_enc_bit_logp(ec, *dual_stereo, 1);
							 | 
						||
| 
								 | 
							
								      else
							 | 
						||
| 
								 | 
							
								         *dual_stereo = ec_dec_bit_logp(ec, 1);
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   else
							 | 
						||
| 
								 | 
							
								      *dual_stereo = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   /* Allocate the remaining bits */
							 | 
						||
| 
								 | 
							
								   left = total-psum;
							 | 
						||
| 
								 | 
							
								   percoeff = celt_udiv(left, m->eBands[codedBands]-m->eBands[start]);
							 | 
						||
| 
								 | 
							
								   left -= (m->eBands[codedBands]-m->eBands[start])*percoeff;
							 | 
						||
| 
								 | 
							
								   for (j=start;j<codedBands;j++)
							 | 
						||
| 
								 | 
							
								      bits[j] += ((int)percoeff*(m->eBands[j+1]-m->eBands[j]));
							 | 
						||
| 
								 | 
							
								   for (j=start;j<codedBands;j++)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      int tmp = (int)IMIN(left, m->eBands[j+1]-m->eBands[j]);
							 | 
						||
| 
								 | 
							
								      bits[j] += tmp;
							 | 
						||
| 
								 | 
							
								      left -= tmp;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   /*for (j=0;j<end;j++)printf("%d ", bits[j]);printf("\n");*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   balance = 0;
							 | 
						||
| 
								 | 
							
								   for (j=start;j<codedBands;j++)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      int N0, N, den;
							 | 
						||
| 
								 | 
							
								      int offset;
							 | 
						||
| 
								 | 
							
								      int NClogN;
							 | 
						||
| 
								 | 
							
								      opus_int32 excess, bit;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      celt_assert(bits[j] >= 0);
							 | 
						||
| 
								 | 
							
								      N0 = m->eBands[j+1]-m->eBands[j];
							 | 
						||
| 
								 | 
							
								      N=N0<<LM;
							 | 
						||
| 
								 | 
							
								      bit = (opus_int32)bits[j]+balance;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      if (N>1)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         excess = MAX32(bit-cap[j],0);
							 | 
						||
| 
								 | 
							
								         bits[j] = bit-excess;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         /* Compensate for the extra DoF in stereo */
							 | 
						||
| 
								 | 
							
								         den=(C*N+ ((C==2 && N>2 && !*dual_stereo && j<*intensity) ? 1 : 0));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         NClogN = den*(m->logN[j] + logM);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         /* Offset for the number of fine bits by log2(N)/2 + FINE_OFFSET
							 | 
						||
| 
								 | 
							
								            compared to their "fair share" of total/N */
							 | 
						||
| 
								 | 
							
								         offset = (NClogN>>1)-den*FINE_OFFSET;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         /* N=2 is the only point that doesn't match the curve */
							 | 
						||
| 
								 | 
							
								         if (N==2)
							 | 
						||
| 
								 | 
							
								            offset += den<<BITRES>>2;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         /* Changing the offset for allocating the second and third
							 | 
						||
| 
								 | 
							
								             fine energy bit */
							 | 
						||
| 
								 | 
							
								         if (bits[j] + offset < den*2<<BITRES)
							 | 
						||
| 
								 | 
							
								            offset += NClogN>>2;
							 | 
						||
| 
								 | 
							
								         else if (bits[j] + offset < den*3<<BITRES)
							 | 
						||
| 
								 | 
							
								            offset += NClogN>>3;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         /* Divide with rounding */
							 | 
						||
| 
								 | 
							
								         ebits[j] = IMAX(0, (bits[j] + offset + (den<<(BITRES-1))));
							 | 
						||
| 
								 | 
							
								         ebits[j] = celt_udiv(ebits[j], den)>>BITRES;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         /* Make sure not to bust */
							 | 
						||
| 
								 | 
							
								         if (C*ebits[j] > (bits[j]>>BITRES))
							 | 
						||
| 
								 | 
							
								            ebits[j] = bits[j] >> stereo >> BITRES;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         /* More than that is useless because that's about as far as PVQ can go */
							 | 
						||
| 
								 | 
							
								         ebits[j] = IMIN(ebits[j], MAX_FINE_BITS);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         /* If we rounded down or capped this band, make it a candidate for the
							 | 
						||
| 
								 | 
							
								             final fine energy pass */
							 | 
						||
| 
								 | 
							
								         fine_priority[j] = ebits[j]*(den<<BITRES) >= bits[j]+offset;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								         /* Remove the allocated fine bits; the rest are assigned to PVQ */
							 | 
						||
| 
								 | 
							
								         bits[j] -= C*ebits[j]<<BITRES;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      } else {
							 | 
						||
| 
								 | 
							
								         /* For N=1, all bits go to fine energy except for a single sign bit */
							 | 
						||
| 
								 | 
							
								         excess = MAX32(0,bit-(C<<BITRES));
							 | 
						||
| 
								 | 
							
								         bits[j] = bit-excess;
							 | 
						||
| 
								 | 
							
								         ebits[j] = 0;
							 | 
						||
| 
								 | 
							
								         fine_priority[j] = 1;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      /* Fine energy can't take advantage of the re-balancing in
							 | 
						||
| 
								 | 
							
								          quant_all_bands().
							 | 
						||
| 
								 | 
							
								         Instead, do the re-balancing here.*/
							 | 
						||
| 
								 | 
							
								      if(excess > 0)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         int extra_fine;
							 | 
						||
| 
								 | 
							
								         int extra_bits;
							 | 
						||
| 
								 | 
							
								         extra_fine = IMIN(excess>>(stereo+BITRES),MAX_FINE_BITS-ebits[j]);
							 | 
						||
| 
								 | 
							
								         ebits[j] += extra_fine;
							 | 
						||
| 
								 | 
							
								         extra_bits = extra_fine*C<<BITRES;
							 | 
						||
| 
								 | 
							
								         fine_priority[j] = extra_bits >= excess-balance;
							 | 
						||
| 
								 | 
							
								         excess -= extra_bits;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      balance = excess;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      celt_assert(bits[j] >= 0);
							 | 
						||
| 
								 | 
							
								      celt_assert(ebits[j] >= 0);
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   /* Save any remaining bits over the cap for the rebalancing in
							 | 
						||
| 
								 | 
							
								       quant_all_bands(). */
							 | 
						||
| 
								 | 
							
								   *_balance = balance;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   /* The skipped bands use all their bits for fine energy. */
							 | 
						||
| 
								 | 
							
								   for (;j<end;j++)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      ebits[j] = bits[j] >> stereo >> BITRES;
							 | 
						||
| 
								 | 
							
								      celt_assert(C*ebits[j]<<BITRES == bits[j]);
							 | 
						||
| 
								 | 
							
								      bits[j] = 0;
							 | 
						||
| 
								 | 
							
								      fine_priority[j] = ebits[j]<1;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   RESTORE_STACK;
							 | 
						||
| 
								 | 
							
								   return codedBands;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								int clt_compute_allocation(const CELTMode *m, int start, int end, const int *offsets, const int *cap, int alloc_trim, int *intensity, int *dual_stereo,
							 | 
						||
| 
								 | 
							
								      opus_int32 total, opus_int32 *balance, int *pulses, int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   int lo, hi, len, j;
							 | 
						||
| 
								 | 
							
								   int codedBands;
							 | 
						||
| 
								 | 
							
								   int skip_start;
							 | 
						||
| 
								 | 
							
								   int skip_rsv;
							 | 
						||
| 
								 | 
							
								   int intensity_rsv;
							 | 
						||
| 
								 | 
							
								   int dual_stereo_rsv;
							 | 
						||
| 
								 | 
							
								   VARDECL(int, bits1);
							 | 
						||
| 
								 | 
							
								   VARDECL(int, bits2);
							 | 
						||
| 
								 | 
							
								   VARDECL(int, thresh);
							 | 
						||
| 
								 | 
							
								   VARDECL(int, trim_offset);
							 | 
						||
| 
								 | 
							
								   SAVE_STACK;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   total = IMAX(total, 0);
							 | 
						||
| 
								 | 
							
								   len = m->nbEBands;
							 | 
						||
| 
								 | 
							
								   skip_start = start;
							 | 
						||
| 
								 | 
							
								   /* Reserve a bit to signal the end of manually skipped bands. */
							 | 
						||
| 
								 | 
							
								   skip_rsv = total >= 1<<BITRES ? 1<<BITRES : 0;
							 | 
						||
| 
								 | 
							
								   total -= skip_rsv;
							 | 
						||
| 
								 | 
							
								   /* Reserve bits for the intensity and dual stereo parameters. */
							 | 
						||
| 
								 | 
							
								   intensity_rsv = dual_stereo_rsv = 0;
							 | 
						||
| 
								 | 
							
								   if (C==2)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      intensity_rsv = LOG2_FRAC_TABLE[end-start];
							 | 
						||
| 
								 | 
							
								      if (intensity_rsv>total)
							 | 
						||
| 
								 | 
							
								         intensity_rsv = 0;
							 | 
						||
| 
								 | 
							
								      else
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         total -= intensity_rsv;
							 | 
						||
| 
								 | 
							
								         dual_stereo_rsv = total>=1<<BITRES ? 1<<BITRES : 0;
							 | 
						||
| 
								 | 
							
								         total -= dual_stereo_rsv;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   ALLOC(bits1, len, int);
							 | 
						||
| 
								 | 
							
								   ALLOC(bits2, len, int);
							 | 
						||
| 
								 | 
							
								   ALLOC(thresh, len, int);
							 | 
						||
| 
								 | 
							
								   ALLOC(trim_offset, len, int);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   for (j=start;j<end;j++)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      /* Below this threshold, we're sure not to allocate any PVQ bits */
							 | 
						||
| 
								 | 
							
								      thresh[j] = IMAX((C)<<BITRES, (3*(m->eBands[j+1]-m->eBands[j])<<LM<<BITRES)>>4);
							 | 
						||
| 
								 | 
							
								      /* Tilt of the allocation curve */
							 | 
						||
| 
								 | 
							
								      trim_offset[j] = C*(m->eBands[j+1]-m->eBands[j])*(alloc_trim-5-LM)*(end-j-1)
							 | 
						||
| 
								 | 
							
								            *(1<<(LM+BITRES))>>6;
							 | 
						||
| 
								 | 
							
								      /* Giving less resolution to single-coefficient bands because they get
							 | 
						||
| 
								 | 
							
								         more benefit from having one coarse value per coefficient*/
							 | 
						||
| 
								 | 
							
								      if ((m->eBands[j+1]-m->eBands[j])<<LM==1)
							 | 
						||
| 
								 | 
							
								         trim_offset[j] -= C<<BITRES;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   lo = 1;
							 | 
						||
| 
								 | 
							
								   hi = m->nbAllocVectors - 1;
							 | 
						||
| 
								 | 
							
								   do
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      int done = 0;
							 | 
						||
| 
								 | 
							
								      int psum = 0;
							 | 
						||
| 
								 | 
							
								      int mid = (lo+hi) >> 1;
							 | 
						||
| 
								 | 
							
								      for (j=end;j-->start;)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         int bitsj;
							 | 
						||
| 
								 | 
							
								         int N = m->eBands[j+1]-m->eBands[j];
							 | 
						||
| 
								 | 
							
								         bitsj = C*N*m->allocVectors[mid*len+j]<<LM>>2;
							 | 
						||
| 
								 | 
							
								         if (bitsj > 0)
							 | 
						||
| 
								 | 
							
								            bitsj = IMAX(0, bitsj + trim_offset[j]);
							 | 
						||
| 
								 | 
							
								         bitsj += offsets[j];
							 | 
						||
| 
								 | 
							
								         if (bitsj >= thresh[j] || done)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            done = 1;
							 | 
						||
| 
								 | 
							
								            /* Don't allocate more than we can actually use */
							 | 
						||
| 
								 | 
							
								            psum += IMIN(bitsj, cap[j]);
							 | 
						||
| 
								 | 
							
								         } else {
							 | 
						||
| 
								 | 
							
								            if (bitsj >= C<<BITRES)
							 | 
						||
| 
								 | 
							
								               psum += C<<BITRES;
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      if (psum > total)
							 | 
						||
| 
								 | 
							
								         hi = mid - 1;
							 | 
						||
| 
								 | 
							
								      else
							 | 
						||
| 
								 | 
							
								         lo = mid + 1;
							 | 
						||
| 
								 | 
							
								      /*printf ("lo = %d, hi = %d\n", lo, hi);*/
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   while (lo <= hi);
							 | 
						||
| 
								 | 
							
								   hi = lo--;
							 | 
						||
| 
								 | 
							
								   /*printf ("interp between %d and %d\n", lo, hi);*/
							 | 
						||
| 
								 | 
							
								   for (j=start;j<end;j++)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      int bits1j, bits2j;
							 | 
						||
| 
								 | 
							
								      int N = m->eBands[j+1]-m->eBands[j];
							 | 
						||
| 
								 | 
							
								      bits1j = C*N*m->allocVectors[lo*len+j]<<LM>>2;
							 | 
						||
| 
								 | 
							
								      bits2j = hi>=m->nbAllocVectors ?
							 | 
						||
| 
								 | 
							
								            cap[j] : C*N*m->allocVectors[hi*len+j]<<LM>>2;
							 | 
						||
| 
								 | 
							
								      if (bits1j > 0)
							 | 
						||
| 
								 | 
							
								         bits1j = IMAX(0, bits1j + trim_offset[j]);
							 | 
						||
| 
								 | 
							
								      if (bits2j > 0)
							 | 
						||
| 
								 | 
							
								         bits2j = IMAX(0, bits2j + trim_offset[j]);
							 | 
						||
| 
								 | 
							
								      if (lo > 0)
							 | 
						||
| 
								 | 
							
								         bits1j += offsets[j];
							 | 
						||
| 
								 | 
							
								      bits2j += offsets[j];
							 | 
						||
| 
								 | 
							
								      if (offsets[j]>0)
							 | 
						||
| 
								 | 
							
								         skip_start = j;
							 | 
						||
| 
								 | 
							
								      bits2j = IMAX(0,bits2j-bits1j);
							 | 
						||
| 
								 | 
							
								      bits1[j] = bits1j;
							 | 
						||
| 
								 | 
							
								      bits2[j] = bits2j;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   codedBands = interp_bits2pulses(m, start, end, skip_start, bits1, bits2, thresh, cap,
							 | 
						||
| 
								 | 
							
								         total, balance, skip_rsv, intensity, intensity_rsv, dual_stereo, dual_stereo_rsv,
							 | 
						||
| 
								 | 
							
								         pulses, ebits, fine_priority, C, LM, ec, encode, prev, signalBandwidth);
							 | 
						||
| 
								 | 
							
								   RESTORE_STACK;
							 | 
						||
| 
								 | 
							
								   return codedBands;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 |