208 lines
10 KiB
C
208 lines
10 KiB
C
|
/***********************************************************************
|
||
|
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
||
|
Redistribution and use in source and binary forms, with or without
|
||
|
modification, are permitted provided that the following conditions
|
||
|
are met:
|
||
|
- Redistributions of source code must retain the above copyright notice,
|
||
|
this list of conditions and the following disclaimer.
|
||
|
- Redistributions in binary form must reproduce the above copyright
|
||
|
notice, this list of conditions and the following disclaimer in the
|
||
|
documentation and/or other materials provided with the distribution.
|
||
|
- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
||
|
names of specific contributors, may be used to endorse or promote
|
||
|
products derived from this software without specific prior written
|
||
|
permission.
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
POSSIBILITY OF SUCH DAMAGE.
|
||
|
***********************************************************************/
|
||
|
|
||
|
#ifdef HAVE_CONFIG_H
|
||
|
#include "config.h"
|
||
|
#endif
|
||
|
|
||
|
#include "main_FLP.h"
|
||
|
|
||
|
/* Wrappers. Calls flp / fix code */
|
||
|
|
||
|
/* Convert AR filter coefficients to NLSF parameters */
|
||
|
void silk_A2NLSF_FLP(
|
||
|
opus_int16 *NLSF_Q15, /* O NLSF vector [ LPC_order ] */
|
||
|
const silk_float *pAR, /* I LPC coefficients [ LPC_order ] */
|
||
|
const opus_int LPC_order /* I LPC order */
|
||
|
)
|
||
|
{
|
||
|
opus_int i;
|
||
|
opus_int32 a_fix_Q16[ MAX_LPC_ORDER ];
|
||
|
|
||
|
for( i = 0; i < LPC_order; i++ ) {
|
||
|
a_fix_Q16[ i ] = silk_float2int( pAR[ i ] * 65536.0f );
|
||
|
}
|
||
|
|
||
|
silk_A2NLSF( NLSF_Q15, a_fix_Q16, LPC_order );
|
||
|
}
|
||
|
|
||
|
/* Convert LSF parameters to AR prediction filter coefficients */
|
||
|
void silk_NLSF2A_FLP(
|
||
|
silk_float *pAR, /* O LPC coefficients [ LPC_order ] */
|
||
|
const opus_int16 *NLSF_Q15, /* I NLSF vector [ LPC_order ] */
|
||
|
const opus_int LPC_order, /* I LPC order */
|
||
|
int arch /* I Run-time architecture */
|
||
|
)
|
||
|
{
|
||
|
opus_int i;
|
||
|
opus_int16 a_fix_Q12[ MAX_LPC_ORDER ];
|
||
|
|
||
|
silk_NLSF2A( a_fix_Q12, NLSF_Q15, LPC_order, arch );
|
||
|
|
||
|
for( i = 0; i < LPC_order; i++ ) {
|
||
|
pAR[ i ] = ( silk_float )a_fix_Q12[ i ] * ( 1.0f / 4096.0f );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/******************************************/
|
||
|
/* Floating-point NLSF processing wrapper */
|
||
|
/******************************************/
|
||
|
void silk_process_NLSFs_FLP(
|
||
|
silk_encoder_state *psEncC, /* I/O Encoder state */
|
||
|
silk_float PredCoef[ 2 ][ MAX_LPC_ORDER ], /* O Prediction coefficients */
|
||
|
opus_int16 NLSF_Q15[ MAX_LPC_ORDER ], /* I/O Normalized LSFs (quant out) (0 - (2^15-1)) */
|
||
|
const opus_int16 prev_NLSF_Q15[ MAX_LPC_ORDER ] /* I Previous Normalized LSFs (0 - (2^15-1)) */
|
||
|
)
|
||
|
{
|
||
|
opus_int i, j;
|
||
|
opus_int16 PredCoef_Q12[ 2 ][ MAX_LPC_ORDER ];
|
||
|
|
||
|
silk_process_NLSFs( psEncC, PredCoef_Q12, NLSF_Q15, prev_NLSF_Q15);
|
||
|
|
||
|
for( j = 0; j < 2; j++ ) {
|
||
|
for( i = 0; i < psEncC->predictLPCOrder; i++ ) {
|
||
|
PredCoef[ j ][ i ] = ( silk_float )PredCoef_Q12[ j ][ i ] * ( 1.0f / 4096.0f );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/****************************************/
|
||
|
/* Floating-point Silk NSQ wrapper */
|
||
|
/****************************************/
|
||
|
void silk_NSQ_wrapper_FLP(
|
||
|
silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */
|
||
|
silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */
|
||
|
SideInfoIndices *psIndices, /* I/O Quantization indices */
|
||
|
silk_nsq_state *psNSQ, /* I/O Noise Shaping Quantzation state */
|
||
|
opus_int8 pulses[], /* O Quantized pulse signal */
|
||
|
const silk_float x[] /* I Prefiltered input signal */
|
||
|
)
|
||
|
{
|
||
|
opus_int i, j;
|
||
|
opus_int16 x16[ MAX_FRAME_LENGTH ];
|
||
|
opus_int32 Gains_Q16[ MAX_NB_SUBFR ];
|
||
|
silk_DWORD_ALIGN opus_int16 PredCoef_Q12[ 2 ][ MAX_LPC_ORDER ];
|
||
|
opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ];
|
||
|
opus_int LTP_scale_Q14;
|
||
|
|
||
|
/* Noise shaping parameters */
|
||
|
opus_int16 AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ];
|
||
|
opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ]; /* Packs two int16 coefficients per int32 value */
|
||
|
opus_int Lambda_Q10;
|
||
|
opus_int Tilt_Q14[ MAX_NB_SUBFR ];
|
||
|
opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ];
|
||
|
|
||
|
/* Convert control struct to fix control struct */
|
||
|
/* Noise shape parameters */
|
||
|
for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
|
||
|
for( j = 0; j < psEnc->sCmn.shapingLPCOrder; j++ ) {
|
||
|
AR_Q13[ i * MAX_SHAPE_LPC_ORDER + j ] = silk_float2int( psEncCtrl->AR[ i * MAX_SHAPE_LPC_ORDER + j ] * 8192.0f );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
|
||
|
LF_shp_Q14[ i ] = silk_LSHIFT32( silk_float2int( psEncCtrl->LF_AR_shp[ i ] * 16384.0f ), 16 ) |
|
||
|
(opus_uint16)silk_float2int( psEncCtrl->LF_MA_shp[ i ] * 16384.0f );
|
||
|
Tilt_Q14[ i ] = (opus_int)silk_float2int( psEncCtrl->Tilt[ i ] * 16384.0f );
|
||
|
HarmShapeGain_Q14[ i ] = (opus_int)silk_float2int( psEncCtrl->HarmShapeGain[ i ] * 16384.0f );
|
||
|
}
|
||
|
Lambda_Q10 = ( opus_int )silk_float2int( psEncCtrl->Lambda * 1024.0f );
|
||
|
|
||
|
/* prediction and coding parameters */
|
||
|
for( i = 0; i < psEnc->sCmn.nb_subfr * LTP_ORDER; i++ ) {
|
||
|
LTPCoef_Q14[ i ] = (opus_int16)silk_float2int( psEncCtrl->LTPCoef[ i ] * 16384.0f );
|
||
|
}
|
||
|
|
||
|
for( j = 0; j < 2; j++ ) {
|
||
|
for( i = 0; i < psEnc->sCmn.predictLPCOrder; i++ ) {
|
||
|
PredCoef_Q12[ j ][ i ] = (opus_int16)silk_float2int( psEncCtrl->PredCoef[ j ][ i ] * 4096.0f );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
|
||
|
Gains_Q16[ i ] = silk_float2int( psEncCtrl->Gains[ i ] * 65536.0f );
|
||
|
silk_assert( Gains_Q16[ i ] > 0 );
|
||
|
}
|
||
|
|
||
|
if( psIndices->signalType == TYPE_VOICED ) {
|
||
|
LTP_scale_Q14 = silk_LTPScales_table_Q14[ psIndices->LTP_scaleIndex ];
|
||
|
} else {
|
||
|
LTP_scale_Q14 = 0;
|
||
|
}
|
||
|
|
||
|
/* Convert input to fix */
|
||
|
for( i = 0; i < psEnc->sCmn.frame_length; i++ ) {
|
||
|
x16[ i ] = silk_float2int( x[ i ] );
|
||
|
}
|
||
|
|
||
|
/* Call NSQ */
|
||
|
if( psEnc->sCmn.nStatesDelayedDecision > 1 || psEnc->sCmn.warping_Q16 > 0 ) {
|
||
|
silk_NSQ_del_dec( &psEnc->sCmn, psNSQ, psIndices, x16, pulses, PredCoef_Q12[ 0 ], LTPCoef_Q14,
|
||
|
AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, psEncCtrl->pitchL, Lambda_Q10, LTP_scale_Q14, psEnc->sCmn.arch );
|
||
|
} else {
|
||
|
silk_NSQ( &psEnc->sCmn, psNSQ, psIndices, x16, pulses, PredCoef_Q12[ 0 ], LTPCoef_Q14,
|
||
|
AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, psEncCtrl->pitchL, Lambda_Q10, LTP_scale_Q14, psEnc->sCmn.arch );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/***********************************************/
|
||
|
/* Floating-point Silk LTP quantiation wrapper */
|
||
|
/***********************************************/
|
||
|
void silk_quant_LTP_gains_FLP(
|
||
|
silk_float B[ MAX_NB_SUBFR * LTP_ORDER ], /* O Quantized LTP gains */
|
||
|
opus_int8 cbk_index[ MAX_NB_SUBFR ], /* O Codebook index */
|
||
|
opus_int8 *periodicity_index, /* O Periodicity index */
|
||
|
opus_int32 *sum_log_gain_Q7, /* I/O Cumulative max prediction gain */
|
||
|
silk_float *pred_gain_dB, /* O LTP prediction gain */
|
||
|
const silk_float XX[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* I Correlation matrix */
|
||
|
const silk_float xX[ MAX_NB_SUBFR * LTP_ORDER ], /* I Correlation vector */
|
||
|
const opus_int subfr_len, /* I Number of samples per subframe */
|
||
|
const opus_int nb_subfr, /* I Number of subframes */
|
||
|
int arch /* I Run-time architecture */
|
||
|
)
|
||
|
{
|
||
|
opus_int i, pred_gain_dB_Q7;
|
||
|
opus_int16 B_Q14[ MAX_NB_SUBFR * LTP_ORDER ];
|
||
|
opus_int32 XX_Q17[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ];
|
||
|
opus_int32 xX_Q17[ MAX_NB_SUBFR * LTP_ORDER ];
|
||
|
|
||
|
for( i = 0; i < nb_subfr * LTP_ORDER * LTP_ORDER; i++ ) {
|
||
|
XX_Q17[ i ] = (opus_int32)silk_float2int( XX[ i ] * 131072.0f );
|
||
|
}
|
||
|
for( i = 0; i < nb_subfr * LTP_ORDER; i++ ) {
|
||
|
xX_Q17[ i ] = (opus_int32)silk_float2int( xX[ i ] * 131072.0f );
|
||
|
}
|
||
|
|
||
|
silk_quant_LTP_gains( B_Q14, cbk_index, periodicity_index, sum_log_gain_Q7, &pred_gain_dB_Q7, XX_Q17, xX_Q17, subfr_len, nb_subfr, arch );
|
||
|
|
||
|
for( i = 0; i < nb_subfr * LTP_ORDER; i++ ) {
|
||
|
B[ i ] = (silk_float)B_Q14[ i ] * ( 1.0f / 16384.0f );
|
||
|
}
|
||
|
|
||
|
*pred_gain_dB = (silk_float)pred_gain_dB_Q7 * ( 1.0f / 128.0f );
|
||
|
}
|