202 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			202 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright (c) 2002-2008 Jean-Marc Valin
 | |
|    Copyright (c) 2007-2008 CSIRO
 | |
|    Copyright (c) 2007-2009 Xiph.Org Foundation
 | |
|    Written by Jean-Marc Valin */
 | |
| /**
 | |
|    @file mathops.h
 | |
|    @brief Various math functions
 | |
| */
 | |
| /*
 | |
|    Redistribution and use in source and binary forms, with or without
 | |
|    modification, are permitted provided that the following conditions
 | |
|    are met:
 | |
| 
 | |
|    - Redistributions of source code must retain the above copyright
 | |
|    notice, this list of conditions and the following disclaimer.
 | |
| 
 | |
|    - Redistributions in binary form must reproduce the above copyright
 | |
|    notice, this list of conditions and the following disclaimer in the
 | |
|    documentation and/or other materials provided with the distribution.
 | |
| 
 | |
|    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|    A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
 | |
|    CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 | |
|    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 | |
|    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 | |
|    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 | |
|    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | |
|    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | |
|    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| */
 | |
| 
 | |
| #ifdef HAVE_CONFIG_H
 | |
| #include "config.h"
 | |
| #endif
 | |
| 
 | |
| #include "mathops.h"
 | |
| 
 | |
| /*Compute floor(sqrt(_val)) with exact arithmetic.
 | |
|   This has been tested on all possible 32-bit inputs.*/
 | |
| unsigned isqrt32(celt_uint32 _val){
 | |
|   unsigned b;
 | |
|   unsigned g;
 | |
|   int      bshift;
 | |
|   /*Uses the second method from
 | |
|      http://www.azillionmonkeys.com/qed/sqroot.html
 | |
|     The main idea is to search for the largest binary digit b such that
 | |
|      (g+b)*(g+b) <= _val, and add it to the solution g.*/
 | |
|   g=0;
 | |
|   bshift=EC_ILOG(_val)-1>>1;
 | |
|   b=1U<<bshift;
 | |
|   do{
 | |
|     celt_uint32 t;
 | |
|     t=((celt_uint32)g<<1)+b<<bshift;
 | |
|     if(t<=_val){
 | |
|       g+=b;
 | |
|       _val-=t;
 | |
|     }
 | |
|     b>>=1;
 | |
|     bshift--;
 | |
|   }
 | |
|   while(bshift>=0);
 | |
|   return g;
 | |
| }
 | |
| 
 | |
| #ifdef FIXED_POINT
 | |
| 
 | |
| celt_word32 frac_div32(celt_word32 a, celt_word32 b)
 | |
| {
 | |
|    celt_word16 rcp;
 | |
|    celt_word32 result, rem;
 | |
|    int shift = celt_ilog2(b)-29;
 | |
|    a = VSHR32(a,shift);
 | |
|    b = VSHR32(b,shift);
 | |
|    /* 16-bit reciprocal */
 | |
|    rcp = ROUND16(celt_rcp(ROUND16(b,16)),3);
 | |
|    result = SHL32(MULT16_32_Q15(rcp, a),2);
 | |
|    rem = a-MULT32_32_Q31(result, b);
 | |
|    result += SHL32(MULT16_32_Q15(rcp, rem),2);
 | |
|    return result;
 | |
| }
 | |
| 
 | |
| /** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */
 | |
| celt_word16 celt_rsqrt_norm(celt_word32 x)
 | |
| {
 | |
|    celt_word16 n;
 | |
|    celt_word16 r;
 | |
|    celt_word16 r2;
 | |
|    celt_word16 y;
 | |
|    /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */
 | |
|    n = x-32768;
 | |
|    /* Get a rough initial guess for the root.
 | |
|       The optimal minimax quadratic approximation (using relative error) is
 | |
|        r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
 | |
|       Coefficients here, and the final result r, are Q14.*/
 | |
|    r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713))));
 | |
|    /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14.
 | |
|       We can compute the result from n and r using Q15 multiplies with some
 | |
|        adjustment, carefully done to avoid overflow.
 | |
|       Range of y is [-1564,1594]. */
 | |
|    r2 = MULT16_16_Q15(r, r);
 | |
|    y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1);
 | |
|    /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
 | |
|       This yields the Q14 reciprocal square root of the Q16 x, with a maximum
 | |
|        relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a
 | |
|        peak absolute error of 2.26591/16384. */
 | |
|    return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y,
 | |
|               SUB16(MULT16_16_Q15(y, 12288), 16384))));
 | |
| }
 | |
| 
 | |
| /** Sqrt approximation (QX input, QX/2 output) */
 | |
| celt_word32 celt_sqrt(celt_word32 x)
 | |
| {
 | |
|    int k;
 | |
|    celt_word16 n;
 | |
|    celt_word32 rt;
 | |
|    static const celt_word16 C[5] = {23175, 11561, -3011, 1699, -664};
 | |
|    if (x==0)
 | |
|       return 0;
 | |
|    k = (celt_ilog2(x)>>1)-7;
 | |
|    x = VSHR32(x, (k<<1));
 | |
|    n = x-32768;
 | |
|    rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
 | |
|               MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
 | |
|    rt = VSHR32(rt,7-k);
 | |
|    return rt;
 | |
| }
 | |
| 
 | |
| #define L1 32767
 | |
| #define L2 -7651
 | |
| #define L3 8277
 | |
| #define L4 -626
 | |
| 
 | |
| static inline celt_word16 _celt_cos_pi_2(celt_word16 x)
 | |
| {
 | |
|    celt_word16 x2;
 | |
| 
 | |
|    x2 = MULT16_16_P15(x,x);
 | |
|    return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
 | |
|                                                                                 ))))))));
 | |
| }
 | |
| 
 | |
| #undef L1
 | |
| #undef L2
 | |
| #undef L3
 | |
| #undef L4
 | |
| 
 | |
| celt_word16 celt_cos_norm(celt_word32 x)
 | |
| {
 | |
|    x = x&0x0001ffff;
 | |
|    if (x>SHL32(EXTEND32(1), 16))
 | |
|       x = SUB32(SHL32(EXTEND32(1), 17),x);
 | |
|    if (x&0x00007fff)
 | |
|    {
 | |
|       if (x<SHL32(EXTEND32(1), 15))
 | |
|       {
 | |
|          return _celt_cos_pi_2(EXTRACT16(x));
 | |
|       } else {
 | |
|          return NEG32(_celt_cos_pi_2(EXTRACT16(65536-x)));
 | |
|       }
 | |
|    } else {
 | |
|       if (x&0x0000ffff)
 | |
|          return 0;
 | |
|       else if (x&0x0001ffff)
 | |
|          return -32767;
 | |
|       else
 | |
|          return 32767;
 | |
|    }
 | |
| }
 | |
| 
 | |
| /** Reciprocal approximation (Q15 input, Q16 output) */
 | |
| celt_word32 celt_rcp(celt_word32 x)
 | |
| {
 | |
|    int i;
 | |
|    celt_word16 n;
 | |
|    celt_word16 r;
 | |
|    celt_assert2(x>0, "celt_rcp() only defined for positive values");
 | |
|    i = celt_ilog2(x);
 | |
|    /* n is Q15 with range [0,1). */
 | |
|    n = VSHR32(x,i-15)-32768;
 | |
|    /* Start with a linear approximation:
 | |
|       r = 1.8823529411764706-0.9411764705882353*n.
 | |
|       The coefficients and the result are Q14 in the range [15420,30840].*/
 | |
|    r = ADD16(30840, MULT16_16_Q15(-15420, n));
 | |
|    /* Perform two Newton iterations:
 | |
|       r -= r*((r*n)-1.Q15)
 | |
|          = r*((r*n)+(r-1.Q15)). */
 | |
|    r = SUB16(r, MULT16_16_Q15(r,
 | |
|              ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))));
 | |
|    /* We subtract an extra 1 in the second iteration to avoid overflow; it also
 | |
|        neatly compensates for truncation error in the rest of the process. */
 | |
|    r = SUB16(r, ADD16(1, MULT16_16_Q15(r,
 | |
|              ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))));
 | |
|    /* r is now the Q15 solution to 2/(n+1), with a maximum relative error
 | |
|        of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
 | |
|        error of 1.24665/32768. */
 | |
|    return VSHR32(EXTEND32(r),i-16);
 | |
| }
 | |
| 
 | |
| #endif
 |