1673 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1673 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright (c) 2007-2008 CSIRO
 | |
|    Copyright (c) 2007-2009 Xiph.Org Foundation
 | |
|    Copyright (c) 2008-2009 Gregory Maxwell
 | |
|    Written by Jean-Marc Valin and Gregory Maxwell */
 | |
| /*
 | |
|    Redistribution and use in source and binary forms, with or without
 | |
|    modification, are permitted provided that the following conditions
 | |
|    are met:
 | |
| 
 | |
|    - Redistributions of source code must retain the above copyright
 | |
|    notice, this list of conditions and the following disclaimer.
 | |
| 
 | |
|    - Redistributions in binary form must reproduce the above copyright
 | |
|    notice, this list of conditions and the following disclaimer in the
 | |
|    documentation and/or other materials provided with the distribution.
 | |
| 
 | |
|    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
 | |
|    OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 | |
|    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 | |
|    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 | |
|    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 | |
|    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | |
|    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | |
|    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| */
 | |
| 
 | |
| #ifdef HAVE_CONFIG_H
 | |
| #include "config.h"
 | |
| #endif
 | |
| 
 | |
| #include <math.h>
 | |
| #include "bands.h"
 | |
| #include "modes.h"
 | |
| #include "vq.h"
 | |
| #include "cwrs.h"
 | |
| #include "stack_alloc.h"
 | |
| #include "os_support.h"
 | |
| #include "mathops.h"
 | |
| #include "rate.h"
 | |
| #include "quant_bands.h"
 | |
| #include "pitch.h"
 | |
| 
 | |
| int hysteresis_decision(opus_val16 val, const opus_val16 *thresholds, const opus_val16 *hysteresis, int N, int prev)
 | |
| {
 | |
|    int i;
 | |
|    for (i=0;i<N;i++)
 | |
|    {
 | |
|       if (val < thresholds[i])
 | |
|          break;
 | |
|    }
 | |
|    if (i>prev && val < thresholds[prev]+hysteresis[prev])
 | |
|       i=prev;
 | |
|    if (i<prev && val > thresholds[prev-1]-hysteresis[prev-1])
 | |
|       i=prev;
 | |
|    return i;
 | |
| }
 | |
| 
 | |
| opus_uint32 celt_lcg_rand(opus_uint32 seed)
 | |
| {
 | |
|    return 1664525 * seed + 1013904223;
 | |
| }
 | |
| 
 | |
| /* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness
 | |
|    with this approximation is important because it has an impact on the bit allocation */
 | |
| opus_int16 bitexact_cos(opus_int16 x)
 | |
| {
 | |
|    opus_int32 tmp;
 | |
|    opus_int16 x2;
 | |
|    tmp = (4096+((opus_int32)(x)*(x)))>>13;
 | |
|    celt_sig_assert(tmp<=32767);
 | |
|    x2 = tmp;
 | |
|    x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2)))));
 | |
|    celt_sig_assert(x2<=32766);
 | |
|    return 1+x2;
 | |
| }
 | |
| 
 | |
| int bitexact_log2tan(int isin,int icos)
 | |
| {
 | |
|    int lc;
 | |
|    int ls;
 | |
|    lc=EC_ILOG(icos);
 | |
|    ls=EC_ILOG(isin);
 | |
|    icos<<=15-lc;
 | |
|    isin<<=15-ls;
 | |
|    return (ls-lc)*(1<<11)
 | |
|          +FRAC_MUL16(isin, FRAC_MUL16(isin, -2597) + 7932)
 | |
|          -FRAC_MUL16(icos, FRAC_MUL16(icos, -2597) + 7932);
 | |
| }
 | |
| 
 | |
| #ifdef FIXED_POINT
 | |
| /* Compute the amplitude (sqrt energy) in each of the bands */
 | |
| void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM, int arch)
 | |
| {
 | |
|    int i, c, N;
 | |
|    const opus_int16 *eBands = m->eBands;
 | |
|    (void)arch;
 | |
|    N = m->shortMdctSize<<LM;
 | |
|    c=0; do {
 | |
|       for (i=0;i<end;i++)
 | |
|       {
 | |
|          int j;
 | |
|          opus_val32 maxval=0;
 | |
|          opus_val32 sum = 0;
 | |
| 
 | |
|          maxval = celt_maxabs32(&X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM);
 | |
|          if (maxval > 0)
 | |
|          {
 | |
|             int shift = celt_ilog2(maxval) - 14 + (((m->logN[i]>>BITRES)+LM+1)>>1);
 | |
|             j=eBands[i]<<LM;
 | |
|             if (shift>0)
 | |
|             {
 | |
|                do {
 | |
|                   sum = MAC16_16(sum, EXTRACT16(SHR32(X[j+c*N],shift)),
 | |
|                         EXTRACT16(SHR32(X[j+c*N],shift)));
 | |
|                } while (++j<eBands[i+1]<<LM);
 | |
|             } else {
 | |
|                do {
 | |
|                   sum = MAC16_16(sum, EXTRACT16(SHL32(X[j+c*N],-shift)),
 | |
|                         EXTRACT16(SHL32(X[j+c*N],-shift)));
 | |
|                } while (++j<eBands[i+1]<<LM);
 | |
|             }
 | |
|             /* We're adding one here to ensure the normalized band isn't larger than unity norm */
 | |
|             bandE[i+c*m->nbEBands] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift);
 | |
|          } else {
 | |
|             bandE[i+c*m->nbEBands] = EPSILON;
 | |
|          }
 | |
|          /*printf ("%f ", bandE[i+c*m->nbEBands]);*/
 | |
|       }
 | |
|    } while (++c<C);
 | |
|    /*printf ("\n");*/
 | |
| }
 | |
| 
 | |
| /* Normalise each band such that the energy is one. */
 | |
| void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M)
 | |
| {
 | |
|    int i, c, N;
 | |
|    const opus_int16 *eBands = m->eBands;
 | |
|    N = M*m->shortMdctSize;
 | |
|    c=0; do {
 | |
|       i=0; do {
 | |
|          opus_val16 g;
 | |
|          int j,shift;
 | |
|          opus_val16 E;
 | |
|          shift = celt_zlog2(bandE[i+c*m->nbEBands])-13;
 | |
|          E = VSHR32(bandE[i+c*m->nbEBands], shift);
 | |
|          g = EXTRACT16(celt_rcp(SHL32(E,3)));
 | |
|          j=M*eBands[i]; do {
 | |
|             X[j+c*N] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g);
 | |
|          } while (++j<M*eBands[i+1]);
 | |
|       } while (++i<end);
 | |
|    } while (++c<C);
 | |
| }
 | |
| 
 | |
| #else /* FIXED_POINT */
 | |
| /* Compute the amplitude (sqrt energy) in each of the bands */
 | |
| void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM, int arch)
 | |
| {
 | |
|    int i, c, N;
 | |
|    const opus_int16 *eBands = m->eBands;
 | |
|    N = m->shortMdctSize<<LM;
 | |
|    c=0; do {
 | |
|       for (i=0;i<end;i++)
 | |
|       {
 | |
|          opus_val32 sum;
 | |
|          sum = 1e-27f + celt_inner_prod(&X[c*N+(eBands[i]<<LM)], &X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM, arch);
 | |
|          bandE[i+c*m->nbEBands] = celt_sqrt(sum);
 | |
|          /*printf ("%f ", bandE[i+c*m->nbEBands]);*/
 | |
|       }
 | |
|    } while (++c<C);
 | |
|    /*printf ("\n");*/
 | |
| }
 | |
| 
 | |
| /* Normalise each band such that the energy is one. */
 | |
| void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M)
 | |
| {
 | |
|    int i, c, N;
 | |
|    const opus_int16 *eBands = m->eBands;
 | |
|    N = M*m->shortMdctSize;
 | |
|    c=0; do {
 | |
|       for (i=0;i<end;i++)
 | |
|       {
 | |
|          int j;
 | |
|          opus_val16 g = 1.f/(1e-27f+bandE[i+c*m->nbEBands]);
 | |
|          for (j=M*eBands[i];j<M*eBands[i+1];j++)
 | |
|             X[j+c*N] = freq[j+c*N]*g;
 | |
|       }
 | |
|    } while (++c<C);
 | |
| }
 | |
| 
 | |
| #endif /* FIXED_POINT */
 | |
| 
 | |
| /* De-normalise the energy to produce the synthesis from the unit-energy bands */
 | |
| void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X,
 | |
|       celt_sig * OPUS_RESTRICT freq, const opus_val16 *bandLogE, int start,
 | |
|       int end, int M, int downsample, int silence)
 | |
| {
 | |
|    int i, N;
 | |
|    int bound;
 | |
|    celt_sig * OPUS_RESTRICT f;
 | |
|    const celt_norm * OPUS_RESTRICT x;
 | |
|    const opus_int16 *eBands = m->eBands;
 | |
|    N = M*m->shortMdctSize;
 | |
|    bound = M*eBands[end];
 | |
|    if (downsample!=1)
 | |
|       bound = IMIN(bound, N/downsample);
 | |
|    if (silence)
 | |
|    {
 | |
|       bound = 0;
 | |
|       start = end = 0;
 | |
|    }
 | |
|    f = freq;
 | |
|    x = X+M*eBands[start];
 | |
|    for (i=0;i<M*eBands[start];i++)
 | |
|       *f++ = 0;
 | |
|    for (i=start;i<end;i++)
 | |
|    {
 | |
|       int j, band_end;
 | |
|       opus_val16 g;
 | |
|       opus_val16 lg;
 | |
| #ifdef FIXED_POINT
 | |
|       int shift;
 | |
| #endif
 | |
|       j=M*eBands[i];
 | |
|       band_end = M*eBands[i+1];
 | |
|       lg = SATURATE16(ADD32(bandLogE[i], SHL32((opus_val32)eMeans[i],6)));
 | |
| #ifndef FIXED_POINT
 | |
|       g = celt_exp2(MIN32(32.f, lg));
 | |
| #else
 | |
|       /* Handle the integer part of the log energy */
 | |
|       shift = 16-(lg>>DB_SHIFT);
 | |
|       if (shift>31)
 | |
|       {
 | |
|          shift=0;
 | |
|          g=0;
 | |
|       } else {
 | |
|          /* Handle the fractional part. */
 | |
|          g = celt_exp2_frac(lg&((1<<DB_SHIFT)-1));
 | |
|       }
 | |
|       /* Handle extreme gains with negative shift. */
 | |
|       if (shift<0)
 | |
|       {
 | |
|          /* For shift <= -2 and g > 16384 we'd be likely to overflow, so we're
 | |
|             capping the gain here, which is equivalent to a cap of 18 on lg.
 | |
|             This shouldn't trigger unless the bitstream is already corrupted. */
 | |
|          if (shift <= -2)
 | |
|          {
 | |
|             g = 16384;
 | |
|             shift = -2;
 | |
|          }
 | |
|          do {
 | |
|             *f++ = SHL32(MULT16_16(*x++, g), -shift);
 | |
|          } while (++j<band_end);
 | |
|       } else
 | |
| #endif
 | |
|          /* Be careful of the fixed-point "else" just above when changing this code */
 | |
|          do {
 | |
|             *f++ = SHR32(MULT16_16(*x++, g), shift);
 | |
|          } while (++j<band_end);
 | |
|    }
 | |
|    celt_assert(start <= end);
 | |
|    OPUS_CLEAR(&freq[bound], N-bound);
 | |
| }
 | |
| 
 | |
| /* This prevents energy collapse for transients with multiple short MDCTs */
 | |
| void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_masks, int LM, int C, int size,
 | |
|       int start, int end, const opus_val16 *logE, const opus_val16 *prev1logE,
 | |
|       const opus_val16 *prev2logE, const int *pulses, opus_uint32 seed, int arch)
 | |
| {
 | |
|    int c, i, j, k;
 | |
|    for (i=start;i<end;i++)
 | |
|    {
 | |
|       int N0;
 | |
|       opus_val16 thresh, sqrt_1;
 | |
|       int depth;
 | |
| #ifdef FIXED_POINT
 | |
|       int shift;
 | |
|       opus_val32 thresh32;
 | |
| #endif
 | |
| 
 | |
|       N0 = m->eBands[i+1]-m->eBands[i];
 | |
|       /* depth in 1/8 bits */
 | |
|       celt_sig_assert(pulses[i]>=0);
 | |
|       depth = celt_udiv(1+pulses[i], (m->eBands[i+1]-m->eBands[i]))>>LM;
 | |
| 
 | |
| #ifdef FIXED_POINT
 | |
|       thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1);
 | |
|       thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32));
 | |
|       {
 | |
|          opus_val32 t;
 | |
|          t = N0<<LM;
 | |
|          shift = celt_ilog2(t)>>1;
 | |
|          t = SHL32(t, (7-shift)<<1);
 | |
|          sqrt_1 = celt_rsqrt_norm(t);
 | |
|       }
 | |
| #else
 | |
|       thresh = .5f*celt_exp2(-.125f*depth);
 | |
|       sqrt_1 = celt_rsqrt(N0<<LM);
 | |
| #endif
 | |
| 
 | |
|       c=0; do
 | |
|       {
 | |
|          celt_norm *X;
 | |
|          opus_val16 prev1;
 | |
|          opus_val16 prev2;
 | |
|          opus_val32 Ediff;
 | |
|          opus_val16 r;
 | |
|          int renormalize=0;
 | |
|          prev1 = prev1logE[c*m->nbEBands+i];
 | |
|          prev2 = prev2logE[c*m->nbEBands+i];
 | |
|          if (C==1)
 | |
|          {
 | |
|             prev1 = MAX16(prev1,prev1logE[m->nbEBands+i]);
 | |
|             prev2 = MAX16(prev2,prev2logE[m->nbEBands+i]);
 | |
|          }
 | |
|          Ediff = EXTEND32(logE[c*m->nbEBands+i])-EXTEND32(MIN16(prev1,prev2));
 | |
|          Ediff = MAX32(0, Ediff);
 | |
| 
 | |
| #ifdef FIXED_POINT
 | |
|          if (Ediff < 16384)
 | |
|          {
 | |
|             opus_val32 r32 = SHR32(celt_exp2(-EXTRACT16(Ediff)),1);
 | |
|             r = 2*MIN16(16383,r32);
 | |
|          } else {
 | |
|             r = 0;
 | |
|          }
 | |
|          if (LM==3)
 | |
|             r = MULT16_16_Q14(23170, MIN32(23169, r));
 | |
|          r = SHR16(MIN16(thresh, r),1);
 | |
|          r = SHR32(MULT16_16_Q15(sqrt_1, r),shift);
 | |
| #else
 | |
|          /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because
 | |
|             short blocks don't have the same energy as long */
 | |
|          r = 2.f*celt_exp2(-Ediff);
 | |
|          if (LM==3)
 | |
|             r *= 1.41421356f;
 | |
|          r = MIN16(thresh, r);
 | |
|          r = r*sqrt_1;
 | |
| #endif
 | |
|          X = X_+c*size+(m->eBands[i]<<LM);
 | |
|          for (k=0;k<1<<LM;k++)
 | |
|          {
 | |
|             /* Detect collapse */
 | |
|             if (!(collapse_masks[i*C+c]&1<<k))
 | |
|             {
 | |
|                /* Fill with noise */
 | |
|                for (j=0;j<N0;j++)
 | |
|                {
 | |
|                   seed = celt_lcg_rand(seed);
 | |
|                   X[(j<<LM)+k] = (seed&0x8000 ? r : -r);
 | |
|                }
 | |
|                renormalize = 1;
 | |
|             }
 | |
|          }
 | |
|          /* We just added some energy, so we need to renormalise */
 | |
|          if (renormalize)
 | |
|             renormalise_vector(X, N0<<LM, Q15ONE, arch);
 | |
|       } while (++c<C);
 | |
|    }
 | |
| }
 | |
| 
 | |
| /* Compute the weights to use for optimizing normalized distortion across
 | |
|    channels. We use the amplitude to weight square distortion, which means
 | |
|    that we use the square root of the value we would have been using if we
 | |
|    wanted to minimize the MSE in the non-normalized domain. This roughly
 | |
|    corresponds to some quick-and-dirty perceptual experiments I ran to
 | |
|    measure inter-aural masking (there doesn't seem to be any published data
 | |
|    on the topic). */
 | |
| static void compute_channel_weights(celt_ener Ex, celt_ener Ey, opus_val16 w[2])
 | |
| {
 | |
|    celt_ener minE;
 | |
| #ifdef FIXED_POINT
 | |
|    int shift;
 | |
| #endif
 | |
|    minE = MIN32(Ex, Ey);
 | |
|    /* Adjustment to make the weights a bit more conservative. */
 | |
|    Ex = ADD32(Ex, minE/3);
 | |
|    Ey = ADD32(Ey, minE/3);
 | |
| #ifdef FIXED_POINT
 | |
|    shift = celt_ilog2(EPSILON+MAX32(Ex, Ey))-14;
 | |
| #endif
 | |
|    w[0] = VSHR32(Ex, shift);
 | |
|    w[1] = VSHR32(Ey, shift);
 | |
| }
 | |
| 
 | |
| static void intensity_stereo(const CELTMode *m, celt_norm * OPUS_RESTRICT X, const celt_norm * OPUS_RESTRICT Y, const celt_ener *bandE, int bandID, int N)
 | |
| {
 | |
|    int i = bandID;
 | |
|    int j;
 | |
|    opus_val16 a1, a2;
 | |
|    opus_val16 left, right;
 | |
|    opus_val16 norm;
 | |
| #ifdef FIXED_POINT
 | |
|    int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands]))-13;
 | |
| #endif
 | |
|    left = VSHR32(bandE[i],shift);
 | |
|    right = VSHR32(bandE[i+m->nbEBands],shift);
 | |
|    norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right));
 | |
|    a1 = DIV32_16(SHL32(EXTEND32(left),14),norm);
 | |
|    a2 = DIV32_16(SHL32(EXTEND32(right),14),norm);
 | |
|    for (j=0;j<N;j++)
 | |
|    {
 | |
|       celt_norm r, l;
 | |
|       l = X[j];
 | |
|       r = Y[j];
 | |
|       X[j] = EXTRACT16(SHR32(MAC16_16(MULT16_16(a1, l), a2, r), 14));
 | |
|       /* Side is not encoded, no need to calculate */
 | |
|    }
 | |
| }
 | |
| 
 | |
| static void stereo_split(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, int N)
 | |
| {
 | |
|    int j;
 | |
|    for (j=0;j<N;j++)
 | |
|    {
 | |
|       opus_val32 r, l;
 | |
|       l = MULT16_16(QCONST16(.70710678f, 15), X[j]);
 | |
|       r = MULT16_16(QCONST16(.70710678f, 15), Y[j]);
 | |
|       X[j] = EXTRACT16(SHR32(ADD32(l, r), 15));
 | |
|       Y[j] = EXTRACT16(SHR32(SUB32(r, l), 15));
 | |
|    }
 | |
| }
 | |
| 
 | |
| static void stereo_merge(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, opus_val16 mid, int N, int arch)
 | |
| {
 | |
|    int j;
 | |
|    opus_val32 xp=0, side=0;
 | |
|    opus_val32 El, Er;
 | |
|    opus_val16 mid2;
 | |
| #ifdef FIXED_POINT
 | |
|    int kl, kr;
 | |
| #endif
 | |
|    opus_val32 t, lgain, rgain;
 | |
| 
 | |
|    /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
 | |
|    dual_inner_prod(Y, X, Y, N, &xp, &side, arch);
 | |
|    /* Compensating for the mid normalization */
 | |
|    xp = MULT16_32_Q15(mid, xp);
 | |
|    /* mid and side are in Q15, not Q14 like X and Y */
 | |
|    mid2 = SHR16(mid, 1);
 | |
|    El = MULT16_16(mid2, mid2) + side - 2*xp;
 | |
|    Er = MULT16_16(mid2, mid2) + side + 2*xp;
 | |
|    if (Er < QCONST32(6e-4f, 28) || El < QCONST32(6e-4f, 28))
 | |
|    {
 | |
|       OPUS_COPY(Y, X, N);
 | |
|       return;
 | |
|    }
 | |
| 
 | |
| #ifdef FIXED_POINT
 | |
|    kl = celt_ilog2(El)>>1;
 | |
|    kr = celt_ilog2(Er)>>1;
 | |
| #endif
 | |
|    t = VSHR32(El, (kl-7)<<1);
 | |
|    lgain = celt_rsqrt_norm(t);
 | |
|    t = VSHR32(Er, (kr-7)<<1);
 | |
|    rgain = celt_rsqrt_norm(t);
 | |
| 
 | |
| #ifdef FIXED_POINT
 | |
|    if (kl < 7)
 | |
|       kl = 7;
 | |
|    if (kr < 7)
 | |
|       kr = 7;
 | |
| #endif
 | |
| 
 | |
|    for (j=0;j<N;j++)
 | |
|    {
 | |
|       celt_norm r, l;
 | |
|       /* Apply mid scaling (side is already scaled) */
 | |
|       l = MULT16_16_P15(mid, X[j]);
 | |
|       r = Y[j];
 | |
|       X[j] = EXTRACT16(PSHR32(MULT16_16(lgain, SUB16(l,r)), kl+1));
 | |
|       Y[j] = EXTRACT16(PSHR32(MULT16_16(rgain, ADD16(l,r)), kr+1));
 | |
|    }
 | |
| }
 | |
| 
 | |
| /* Decide whether we should spread the pulses in the current frame */
 | |
| int spreading_decision(const CELTMode *m, const celt_norm *X, int *average,
 | |
|       int last_decision, int *hf_average, int *tapset_decision, int update_hf,
 | |
|       int end, int C, int M, const int *spread_weight)
 | |
| {
 | |
|    int i, c, N0;
 | |
|    int sum = 0, nbBands=0;
 | |
|    const opus_int16 * OPUS_RESTRICT eBands = m->eBands;
 | |
|    int decision;
 | |
|    int hf_sum=0;
 | |
| 
 | |
|    celt_assert(end>0);
 | |
| 
 | |
|    N0 = M*m->shortMdctSize;
 | |
| 
 | |
|    if (M*(eBands[end]-eBands[end-1]) <= 8)
 | |
|       return SPREAD_NONE;
 | |
|    c=0; do {
 | |
|       for (i=0;i<end;i++)
 | |
|       {
 | |
|          int j, N, tmp=0;
 | |
|          int tcount[3] = {0,0,0};
 | |
|          const celt_norm * OPUS_RESTRICT x = X+M*eBands[i]+c*N0;
 | |
|          N = M*(eBands[i+1]-eBands[i]);
 | |
|          if (N<=8)
 | |
|             continue;
 | |
|          /* Compute rough CDF of |x[j]| */
 | |
|          for (j=0;j<N;j++)
 | |
|          {
 | |
|             opus_val32 x2N; /* Q13 */
 | |
| 
 | |
|             x2N = MULT16_16(MULT16_16_Q15(x[j], x[j]), N);
 | |
|             if (x2N < QCONST16(0.25f,13))
 | |
|                tcount[0]++;
 | |
|             if (x2N < QCONST16(0.0625f,13))
 | |
|                tcount[1]++;
 | |
|             if (x2N < QCONST16(0.015625f,13))
 | |
|                tcount[2]++;
 | |
|          }
 | |
| 
 | |
|          /* Only include four last bands (8 kHz and up) */
 | |
|          if (i>m->nbEBands-4)
 | |
|             hf_sum += celt_udiv(32*(tcount[1]+tcount[0]), N);
 | |
|          tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N);
 | |
|          sum += tmp*spread_weight[i];
 | |
|          nbBands+=spread_weight[i];
 | |
|       }
 | |
|    } while (++c<C);
 | |
| 
 | |
|    if (update_hf)
 | |
|    {
 | |
|       if (hf_sum)
 | |
|          hf_sum = celt_udiv(hf_sum, C*(4-m->nbEBands+end));
 | |
|       *hf_average = (*hf_average+hf_sum)>>1;
 | |
|       hf_sum = *hf_average;
 | |
|       if (*tapset_decision==2)
 | |
|          hf_sum += 4;
 | |
|       else if (*tapset_decision==0)
 | |
|          hf_sum -= 4;
 | |
|       if (hf_sum > 22)
 | |
|          *tapset_decision=2;
 | |
|       else if (hf_sum > 18)
 | |
|          *tapset_decision=1;
 | |
|       else
 | |
|          *tapset_decision=0;
 | |
|    }
 | |
|    /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/
 | |
|    celt_assert(nbBands>0); /* end has to be non-zero */
 | |
|    celt_assert(sum>=0);
 | |
|    sum = celt_udiv((opus_int32)sum<<8, nbBands);
 | |
|    /* Recursive averaging */
 | |
|    sum = (sum+*average)>>1;
 | |
|    *average = sum;
 | |
|    /* Hysteresis */
 | |
|    sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2;
 | |
|    if (sum < 80)
 | |
|    {
 | |
|       decision = SPREAD_AGGRESSIVE;
 | |
|    } else if (sum < 256)
 | |
|    {
 | |
|       decision = SPREAD_NORMAL;
 | |
|    } else if (sum < 384)
 | |
|    {
 | |
|       decision = SPREAD_LIGHT;
 | |
|    } else {
 | |
|       decision = SPREAD_NONE;
 | |
|    }
 | |
| #ifdef FUZZING
 | |
|    decision = rand()&0x3;
 | |
|    *tapset_decision=rand()%3;
 | |
| #endif
 | |
|    return decision;
 | |
| }
 | |
| 
 | |
| /* Indexing table for converting from natural Hadamard to ordery Hadamard
 | |
|    This is essentially a bit-reversed Gray, on top of which we've added
 | |
|    an inversion of the order because we want the DC at the end rather than
 | |
|    the beginning. The lines are for N=2, 4, 8, 16 */
 | |
| static const int ordery_table[] = {
 | |
|        1,  0,
 | |
|        3,  0,  2,  1,
 | |
|        7,  0,  4,  3,  6,  1,  5,  2,
 | |
|       15,  0,  8,  7, 12,  3, 11,  4, 14,  1,  9,  6, 13,  2, 10,  5,
 | |
| };
 | |
| 
 | |
| static void deinterleave_hadamard(celt_norm *X, int N0, int stride, int hadamard)
 | |
| {
 | |
|    int i,j;
 | |
|    VARDECL(celt_norm, tmp);
 | |
|    int N;
 | |
|    SAVE_STACK;
 | |
|    N = N0*stride;
 | |
|    ALLOC(tmp, N, celt_norm);
 | |
|    celt_assert(stride>0);
 | |
|    if (hadamard)
 | |
|    {
 | |
|       const int *ordery = ordery_table+stride-2;
 | |
|       for (i=0;i<stride;i++)
 | |
|       {
 | |
|          for (j=0;j<N0;j++)
 | |
|             tmp[ordery[i]*N0+j] = X[j*stride+i];
 | |
|       }
 | |
|    } else {
 | |
|       for (i=0;i<stride;i++)
 | |
|          for (j=0;j<N0;j++)
 | |
|             tmp[i*N0+j] = X[j*stride+i];
 | |
|    }
 | |
|    OPUS_COPY(X, tmp, N);
 | |
|    RESTORE_STACK;
 | |
| }
 | |
| 
 | |
| static void interleave_hadamard(celt_norm *X, int N0, int stride, int hadamard)
 | |
| {
 | |
|    int i,j;
 | |
|    VARDECL(celt_norm, tmp);
 | |
|    int N;
 | |
|    SAVE_STACK;
 | |
|    N = N0*stride;
 | |
|    ALLOC(tmp, N, celt_norm);
 | |
|    if (hadamard)
 | |
|    {
 | |
|       const int *ordery = ordery_table+stride-2;
 | |
|       for (i=0;i<stride;i++)
 | |
|          for (j=0;j<N0;j++)
 | |
|             tmp[j*stride+i] = X[ordery[i]*N0+j];
 | |
|    } else {
 | |
|       for (i=0;i<stride;i++)
 | |
|          for (j=0;j<N0;j++)
 | |
|             tmp[j*stride+i] = X[i*N0+j];
 | |
|    }
 | |
|    OPUS_COPY(X, tmp, N);
 | |
|    RESTORE_STACK;
 | |
| }
 | |
| 
 | |
| void haar1(celt_norm *X, int N0, int stride)
 | |
| {
 | |
|    int i, j;
 | |
|    N0 >>= 1;
 | |
|    for (i=0;i<stride;i++)
 | |
|       for (j=0;j<N0;j++)
 | |
|       {
 | |
|          opus_val32 tmp1, tmp2;
 | |
|          tmp1 = MULT16_16(QCONST16(.70710678f,15), X[stride*2*j+i]);
 | |
|          tmp2 = MULT16_16(QCONST16(.70710678f,15), X[stride*(2*j+1)+i]);
 | |
|          X[stride*2*j+i] = EXTRACT16(PSHR32(ADD32(tmp1, tmp2), 15));
 | |
|          X[stride*(2*j+1)+i] = EXTRACT16(PSHR32(SUB32(tmp1, tmp2), 15));
 | |
|       }
 | |
| }
 | |
| 
 | |
| static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo)
 | |
| {
 | |
|    static const opus_int16 exp2_table8[8] =
 | |
|       {16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048};
 | |
|    int qn, qb;
 | |
|    int N2 = 2*N-1;
 | |
|    if (stereo && N==2)
 | |
|       N2--;
 | |
|    /* The upper limit ensures that in a stereo split with itheta==16384, we'll
 | |
|        always have enough bits left over to code at least one pulse in the
 | |
|        side; otherwise it would collapse, since it doesn't get folded. */
 | |
|    qb = celt_sudiv(b+N2*offset, N2);
 | |
|    qb = IMIN(b-pulse_cap-(4<<BITRES), qb);
 | |
| 
 | |
|    qb = IMIN(8<<BITRES, qb);
 | |
| 
 | |
|    if (qb<(1<<BITRES>>1)) {
 | |
|       qn = 1;
 | |
|    } else {
 | |
|       qn = exp2_table8[qb&0x7]>>(14-(qb>>BITRES));
 | |
|       qn = (qn+1)>>1<<1;
 | |
|    }
 | |
|    celt_assert(qn <= 256);
 | |
|    return qn;
 | |
| }
 | |
| 
 | |
| struct band_ctx {
 | |
|    int encode;
 | |
|    int resynth;
 | |
|    const CELTMode *m;
 | |
|    int i;
 | |
|    int intensity;
 | |
|    int spread;
 | |
|    int tf_change;
 | |
|    ec_ctx *ec;
 | |
|    opus_int32 remaining_bits;
 | |
|    const celt_ener *bandE;
 | |
|    opus_uint32 seed;
 | |
|    int arch;
 | |
|    int theta_round;
 | |
|    int disable_inv;
 | |
|    int avoid_split_noise;
 | |
| };
 | |
| 
 | |
| struct split_ctx {
 | |
|    int inv;
 | |
|    int imid;
 | |
|    int iside;
 | |
|    int delta;
 | |
|    int itheta;
 | |
|    int qalloc;
 | |
| };
 | |
| 
 | |
| static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx,
 | |
|       celt_norm *X, celt_norm *Y, int N, int *b, int B, int B0,
 | |
|       int LM,
 | |
|       int stereo, int *fill)
 | |
| {
 | |
|    int qn;
 | |
|    int itheta=0;
 | |
|    int delta;
 | |
|    int imid, iside;
 | |
|    int qalloc;
 | |
|    int pulse_cap;
 | |
|    int offset;
 | |
|    opus_int32 tell;
 | |
|    int inv=0;
 | |
|    int encode;
 | |
|    const CELTMode *m;
 | |
|    int i;
 | |
|    int intensity;
 | |
|    ec_ctx *ec;
 | |
|    const celt_ener *bandE;
 | |
| 
 | |
|    encode = ctx->encode;
 | |
|    m = ctx->m;
 | |
|    i = ctx->i;
 | |
|    intensity = ctx->intensity;
 | |
|    ec = ctx->ec;
 | |
|    bandE = ctx->bandE;
 | |
| 
 | |
|    /* Decide on the resolution to give to the split parameter theta */
 | |
|    pulse_cap = m->logN[i]+LM*(1<<BITRES);
 | |
|    offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET);
 | |
|    qn = compute_qn(N, *b, offset, pulse_cap, stereo);
 | |
|    if (stereo && i>=intensity)
 | |
|       qn = 1;
 | |
|    if (encode)
 | |
|    {
 | |
|       /* theta is the atan() of the ratio between the (normalized)
 | |
|          side and mid. With just that parameter, we can re-scale both
 | |
|          mid and side because we know that 1) they have unit norm and
 | |
|          2) they are orthogonal. */
 | |
|       itheta = stereo_itheta(X, Y, stereo, N, ctx->arch);
 | |
|    }
 | |
|    tell = ec_tell_frac(ec);
 | |
|    if (qn!=1)
 | |
|    {
 | |
|       if (encode)
 | |
|       {
 | |
|          if (!stereo || ctx->theta_round == 0)
 | |
|          {
 | |
|             itheta = (itheta*(opus_int32)qn+8192)>>14;
 | |
|             if (!stereo && ctx->avoid_split_noise && itheta > 0 && itheta < qn)
 | |
|             {
 | |
|                /* Check if the selected value of theta will cause the bit allocation
 | |
|                   to inject noise on one side. If so, make sure the energy of that side
 | |
|                   is zero. */
 | |
|                int unquantized = celt_udiv((opus_int32)itheta*16384, qn);
 | |
|                imid = bitexact_cos((opus_int16)unquantized);
 | |
|                iside = bitexact_cos((opus_int16)(16384-unquantized));
 | |
|                delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid));
 | |
|                if (delta > *b)
 | |
|                   itheta = qn;
 | |
|                else if (delta < -*b)
 | |
|                   itheta = 0;
 | |
|             }
 | |
|          } else {
 | |
|             int down;
 | |
|             /* Bias quantization towards itheta=0 and itheta=16384. */
 | |
|             int bias = itheta > 8192 ? 32767/qn : -32767/qn;
 | |
|             down = IMIN(qn-1, IMAX(0, (itheta*(opus_int32)qn + bias)>>14));
 | |
|             if (ctx->theta_round < 0)
 | |
|                itheta = down;
 | |
|             else
 | |
|                itheta = down+1;
 | |
|          }
 | |
|       }
 | |
|       /* Entropy coding of the angle. We use a uniform pdf for the
 | |
|          time split, a step for stereo, and a triangular one for the rest. */
 | |
|       if (stereo && N>2)
 | |
|       {
 | |
|          int p0 = 3;
 | |
|          int x = itheta;
 | |
|          int x0 = qn/2;
 | |
|          int ft = p0*(x0+1) + x0;
 | |
|          /* Use a probability of p0 up to itheta=8192 and then use 1 after */
 | |
|          if (encode)
 | |
|          {
 | |
|             ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft);
 | |
|          } else {
 | |
|             int fs;
 | |
|             fs=ec_decode(ec,ft);
 | |
|             if (fs<(x0+1)*p0)
 | |
|                x=fs/p0;
 | |
|             else
 | |
|                x=x0+1+(fs-(x0+1)*p0);
 | |
|             ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft);
 | |
|             itheta = x;
 | |
|          }
 | |
|       } else if (B0>1 || stereo) {
 | |
|          /* Uniform pdf */
 | |
|          if (encode)
 | |
|             ec_enc_uint(ec, itheta, qn+1);
 | |
|          else
 | |
|             itheta = ec_dec_uint(ec, qn+1);
 | |
|       } else {
 | |
|          int fs=1, ft;
 | |
|          ft = ((qn>>1)+1)*((qn>>1)+1);
 | |
|          if (encode)
 | |
|          {
 | |
|             int fl;
 | |
| 
 | |
|             fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta;
 | |
|             fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 :
 | |
|              ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
 | |
| 
 | |
|             ec_encode(ec, fl, fl+fs, ft);
 | |
|          } else {
 | |
|             /* Triangular pdf */
 | |
|             int fl=0;
 | |
|             int fm;
 | |
|             fm = ec_decode(ec, ft);
 | |
| 
 | |
|             if (fm < ((qn>>1)*((qn>>1) + 1)>>1))
 | |
|             {
 | |
|                itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1;
 | |
|                fs = itheta + 1;
 | |
|                fl = itheta*(itheta + 1)>>1;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                itheta = (2*(qn + 1)
 | |
|                 - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1;
 | |
|                fs = qn + 1 - itheta;
 | |
|                fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
 | |
|             }
 | |
| 
 | |
|             ec_dec_update(ec, fl, fl+fs, ft);
 | |
|          }
 | |
|       }
 | |
|       celt_assert(itheta>=0);
 | |
|       itheta = celt_udiv((opus_int32)itheta*16384, qn);
 | |
|       if (encode && stereo)
 | |
|       {
 | |
|          if (itheta==0)
 | |
|             intensity_stereo(m, X, Y, bandE, i, N);
 | |
|          else
 | |
|             stereo_split(X, Y, N);
 | |
|       }
 | |
|       /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
 | |
|                Let's do that at higher complexity */
 | |
|    } else if (stereo) {
 | |
|       if (encode)
 | |
|       {
 | |
|          inv = itheta > 8192 && !ctx->disable_inv;
 | |
|          if (inv)
 | |
|          {
 | |
|             int j;
 | |
|             for (j=0;j<N;j++)
 | |
|                Y[j] = -Y[j];
 | |
|          }
 | |
|          intensity_stereo(m, X, Y, bandE, i, N);
 | |
|       }
 | |
|       if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES)
 | |
|       {
 | |
|          if (encode)
 | |
|             ec_enc_bit_logp(ec, inv, 2);
 | |
|          else
 | |
|             inv = ec_dec_bit_logp(ec, 2);
 | |
|       } else
 | |
|          inv = 0;
 | |
|       /* inv flag override to avoid problems with downmixing. */
 | |
|       if (ctx->disable_inv)
 | |
|          inv = 0;
 | |
|       itheta = 0;
 | |
|    }
 | |
|    qalloc = ec_tell_frac(ec) - tell;
 | |
|    *b -= qalloc;
 | |
| 
 | |
|    if (itheta == 0)
 | |
|    {
 | |
|       imid = 32767;
 | |
|       iside = 0;
 | |
|       *fill &= (1<<B)-1;
 | |
|       delta = -16384;
 | |
|    } else if (itheta == 16384)
 | |
|    {
 | |
|       imid = 0;
 | |
|       iside = 32767;
 | |
|       *fill &= ((1<<B)-1)<<B;
 | |
|       delta = 16384;
 | |
|    } else {
 | |
|       imid = bitexact_cos((opus_int16)itheta);
 | |
|       iside = bitexact_cos((opus_int16)(16384-itheta));
 | |
|       /* This is the mid vs side allocation that minimizes squared error
 | |
|          in that band. */
 | |
|       delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid));
 | |
|    }
 | |
| 
 | |
|    sctx->inv = inv;
 | |
|    sctx->imid = imid;
 | |
|    sctx->iside = iside;
 | |
|    sctx->delta = delta;
 | |
|    sctx->itheta = itheta;
 | |
|    sctx->qalloc = qalloc;
 | |
| }
 | |
| static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, int b,
 | |
|       celt_norm *lowband_out)
 | |
| {
 | |
|    int c;
 | |
|    int stereo;
 | |
|    celt_norm *x = X;
 | |
|    int encode;
 | |
|    ec_ctx *ec;
 | |
| 
 | |
|    encode = ctx->encode;
 | |
|    ec = ctx->ec;
 | |
| 
 | |
|    stereo = Y != NULL;
 | |
|    c=0; do {
 | |
|       int sign=0;
 | |
|       if (ctx->remaining_bits>=1<<BITRES)
 | |
|       {
 | |
|          if (encode)
 | |
|          {
 | |
|             sign = x[0]<0;
 | |
|             ec_enc_bits(ec, sign, 1);
 | |
|          } else {
 | |
|             sign = ec_dec_bits(ec, 1);
 | |
|          }
 | |
|          ctx->remaining_bits -= 1<<BITRES;
 | |
|          b-=1<<BITRES;
 | |
|       }
 | |
|       if (ctx->resynth)
 | |
|          x[0] = sign ? -NORM_SCALING : NORM_SCALING;
 | |
|       x = Y;
 | |
|    } while (++c<1+stereo);
 | |
|    if (lowband_out)
 | |
|       lowband_out[0] = SHR16(X[0],4);
 | |
|    return 1;
 | |
| }
 | |
| 
 | |
| /* This function is responsible for encoding and decoding a mono partition.
 | |
|    It can split the band in two and transmit the energy difference with
 | |
|    the two half-bands. It can be called recursively so bands can end up being
 | |
|    split in 8 parts. */
 | |
| static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X,
 | |
|       int N, int b, int B, celt_norm *lowband,
 | |
|       int LM,
 | |
|       opus_val16 gain, int fill)
 | |
| {
 | |
|    const unsigned char *cache;
 | |
|    int q;
 | |
|    int curr_bits;
 | |
|    int imid=0, iside=0;
 | |
|    int B0=B;
 | |
|    opus_val16 mid=0, side=0;
 | |
|    unsigned cm=0;
 | |
|    celt_norm *Y=NULL;
 | |
|    int encode;
 | |
|    const CELTMode *m;
 | |
|    int i;
 | |
|    int spread;
 | |
|    ec_ctx *ec;
 | |
| 
 | |
|    encode = ctx->encode;
 | |
|    m = ctx->m;
 | |
|    i = ctx->i;
 | |
|    spread = ctx->spread;
 | |
|    ec = ctx->ec;
 | |
| 
 | |
|    /* If we need 1.5 more bit than we can produce, split the band in two. */
 | |
|    cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i];
 | |
|    if (LM != -1 && b > cache[cache[0]]+12 && N>2)
 | |
|    {
 | |
|       int mbits, sbits, delta;
 | |
|       int itheta;
 | |
|       int qalloc;
 | |
|       struct split_ctx sctx;
 | |
|       celt_norm *next_lowband2=NULL;
 | |
|       opus_int32 rebalance;
 | |
| 
 | |
|       N >>= 1;
 | |
|       Y = X+N;
 | |
|       LM -= 1;
 | |
|       if (B==1)
 | |
|          fill = (fill&1)|(fill<<1);
 | |
|       B = (B+1)>>1;
 | |
| 
 | |
|       compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, LM, 0, &fill);
 | |
|       imid = sctx.imid;
 | |
|       iside = sctx.iside;
 | |
|       delta = sctx.delta;
 | |
|       itheta = sctx.itheta;
 | |
|       qalloc = sctx.qalloc;
 | |
| #ifdef FIXED_POINT
 | |
|       mid = imid;
 | |
|       side = iside;
 | |
| #else
 | |
|       mid = (1.f/32768)*imid;
 | |
|       side = (1.f/32768)*iside;
 | |
| #endif
 | |
| 
 | |
|       /* Give more bits to low-energy MDCTs than they would otherwise deserve */
 | |
|       if (B0>1 && (itheta&0x3fff))
 | |
|       {
 | |
|          if (itheta > 8192)
 | |
|             /* Rough approximation for pre-echo masking */
 | |
|             delta -= delta>>(4-LM);
 | |
|          else
 | |
|             /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */
 | |
|             delta = IMIN(0, delta + (N<<BITRES>>(5-LM)));
 | |
|       }
 | |
|       mbits = IMAX(0, IMIN(b, (b-delta)/2));
 | |
|       sbits = b-mbits;
 | |
|       ctx->remaining_bits -= qalloc;
 | |
| 
 | |
|       if (lowband)
 | |
|          next_lowband2 = lowband+N; /* >32-bit split case */
 | |
| 
 | |
|       rebalance = ctx->remaining_bits;
 | |
|       if (mbits >= sbits)
 | |
|       {
 | |
|          cm = quant_partition(ctx, X, N, mbits, B, lowband, LM,
 | |
|                MULT16_16_P15(gain,mid), fill);
 | |
|          rebalance = mbits - (rebalance-ctx->remaining_bits);
 | |
|          if (rebalance > 3<<BITRES && itheta!=0)
 | |
|             sbits += rebalance - (3<<BITRES);
 | |
|          cm |= quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM,
 | |
|                MULT16_16_P15(gain,side), fill>>B)<<(B0>>1);
 | |
|       } else {
 | |
|          cm = quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM,
 | |
|                MULT16_16_P15(gain,side), fill>>B)<<(B0>>1);
 | |
|          rebalance = sbits - (rebalance-ctx->remaining_bits);
 | |
|          if (rebalance > 3<<BITRES && itheta!=16384)
 | |
|             mbits += rebalance - (3<<BITRES);
 | |
|          cm |= quant_partition(ctx, X, N, mbits, B, lowband, LM,
 | |
|                MULT16_16_P15(gain,mid), fill);
 | |
|       }
 | |
|    } else {
 | |
|       /* This is the basic no-split case */
 | |
|       q = bits2pulses(m, i, LM, b);
 | |
|       curr_bits = pulses2bits(m, i, LM, q);
 | |
|       ctx->remaining_bits -= curr_bits;
 | |
| 
 | |
|       /* Ensures we can never bust the budget */
 | |
|       while (ctx->remaining_bits < 0 && q > 0)
 | |
|       {
 | |
|          ctx->remaining_bits += curr_bits;
 | |
|          q--;
 | |
|          curr_bits = pulses2bits(m, i, LM, q);
 | |
|          ctx->remaining_bits -= curr_bits;
 | |
|       }
 | |
| 
 | |
|       if (q!=0)
 | |
|       {
 | |
|          int K = get_pulses(q);
 | |
| 
 | |
|          /* Finally do the actual quantization */
 | |
|          if (encode)
 | |
|          {
 | |
|             cm = alg_quant(X, N, K, spread, B, ec, gain, ctx->resynth, ctx->arch);
 | |
|          } else {
 | |
|             cm = alg_unquant(X, N, K, spread, B, ec, gain);
 | |
|          }
 | |
|       } else {
 | |
|          /* If there's no pulse, fill the band anyway */
 | |
|          int j;
 | |
|          if (ctx->resynth)
 | |
|          {
 | |
|             unsigned cm_mask;
 | |
|             /* B can be as large as 16, so this shift might overflow an int on a
 | |
|                16-bit platform; use a long to get defined behavior.*/
 | |
|             cm_mask = (unsigned)(1UL<<B)-1;
 | |
|             fill &= cm_mask;
 | |
|             if (!fill)
 | |
|             {
 | |
|                OPUS_CLEAR(X, N);
 | |
|             } else {
 | |
|                if (lowband == NULL)
 | |
|                {
 | |
|                   /* Noise */
 | |
|                   for (j=0;j<N;j++)
 | |
|                   {
 | |
|                      ctx->seed = celt_lcg_rand(ctx->seed);
 | |
|                      X[j] = (celt_norm)((opus_int32)ctx->seed>>20);
 | |
|                   }
 | |
|                   cm = cm_mask;
 | |
|                } else {
 | |
|                   /* Folded spectrum */
 | |
|                   for (j=0;j<N;j++)
 | |
|                   {
 | |
|                      opus_val16 tmp;
 | |
|                      ctx->seed = celt_lcg_rand(ctx->seed);
 | |
|                      /* About 48 dB below the "normal" folding level */
 | |
|                      tmp = QCONST16(1.0f/256, 10);
 | |
|                      tmp = (ctx->seed)&0x8000 ? tmp : -tmp;
 | |
|                      X[j] = lowband[j]+tmp;
 | |
|                   }
 | |
|                   cm = fill;
 | |
|                }
 | |
|                renormalise_vector(X, N, gain, ctx->arch);
 | |
|             }
 | |
|          }
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    return cm;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* This function is responsible for encoding and decoding a band for the mono case. */
 | |
| static unsigned quant_band(struct band_ctx *ctx, celt_norm *X,
 | |
|       int N, int b, int B, celt_norm *lowband,
 | |
|       int LM, celt_norm *lowband_out,
 | |
|       opus_val16 gain, celt_norm *lowband_scratch, int fill)
 | |
| {
 | |
|    int N0=N;
 | |
|    int N_B=N;
 | |
|    int N_B0;
 | |
|    int B0=B;
 | |
|    int time_divide=0;
 | |
|    int recombine=0;
 | |
|    int longBlocks;
 | |
|    unsigned cm=0;
 | |
|    int k;
 | |
|    int encode;
 | |
|    int tf_change;
 | |
| 
 | |
|    encode = ctx->encode;
 | |
|    tf_change = ctx->tf_change;
 | |
| 
 | |
|    longBlocks = B0==1;
 | |
| 
 | |
|    N_B = celt_udiv(N_B, B);
 | |
| 
 | |
|    /* Special case for one sample */
 | |
|    if (N==1)
 | |
|    {
 | |
|       return quant_band_n1(ctx, X, NULL, b, lowband_out);
 | |
|    }
 | |
| 
 | |
|    if (tf_change>0)
 | |
|       recombine = tf_change;
 | |
|    /* Band recombining to increase frequency resolution */
 | |
| 
 | |
|    if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1))
 | |
|    {
 | |
|       OPUS_COPY(lowband_scratch, lowband, N);
 | |
|       lowband = lowband_scratch;
 | |
|    }
 | |
| 
 | |
|    for (k=0;k<recombine;k++)
 | |
|    {
 | |
|       static const unsigned char bit_interleave_table[16]={
 | |
|             0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3
 | |
|       };
 | |
|       if (encode)
 | |
|          haar1(X, N>>k, 1<<k);
 | |
|       if (lowband)
 | |
|          haar1(lowband, N>>k, 1<<k);
 | |
|       fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2;
 | |
|    }
 | |
|    B>>=recombine;
 | |
|    N_B<<=recombine;
 | |
| 
 | |
|    /* Increasing the time resolution */
 | |
|    while ((N_B&1) == 0 && tf_change<0)
 | |
|    {
 | |
|       if (encode)
 | |
|          haar1(X, N_B, B);
 | |
|       if (lowband)
 | |
|          haar1(lowband, N_B, B);
 | |
|       fill |= fill<<B;
 | |
|       B <<= 1;
 | |
|       N_B >>= 1;
 | |
|       time_divide++;
 | |
|       tf_change++;
 | |
|    }
 | |
|    B0=B;
 | |
|    N_B0 = N_B;
 | |
| 
 | |
|    /* Reorganize the samples in time order instead of frequency order */
 | |
|    if (B0>1)
 | |
|    {
 | |
|       if (encode)
 | |
|          deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
 | |
|       if (lowband)
 | |
|          deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks);
 | |
|    }
 | |
| 
 | |
|    cm = quant_partition(ctx, X, N, b, B, lowband, LM, gain, fill);
 | |
| 
 | |
|    /* This code is used by the decoder and by the resynthesis-enabled encoder */
 | |
|    if (ctx->resynth)
 | |
|    {
 | |
|       /* Undo the sample reorganization going from time order to frequency order */
 | |
|       if (B0>1)
 | |
|          interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
 | |
| 
 | |
|       /* Undo time-freq changes that we did earlier */
 | |
|       N_B = N_B0;
 | |
|       B = B0;
 | |
|       for (k=0;k<time_divide;k++)
 | |
|       {
 | |
|          B >>= 1;
 | |
|          N_B <<= 1;
 | |
|          cm |= cm>>B;
 | |
|          haar1(X, N_B, B);
 | |
|       }
 | |
| 
 | |
|       for (k=0;k<recombine;k++)
 | |
|       {
 | |
|          static const unsigned char bit_deinterleave_table[16]={
 | |
|                0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F,
 | |
|                0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF
 | |
|          };
 | |
|          cm = bit_deinterleave_table[cm];
 | |
|          haar1(X, N0>>k, 1<<k);
 | |
|       }
 | |
|       B<<=recombine;
 | |
| 
 | |
|       /* Scale output for later folding */
 | |
|       if (lowband_out)
 | |
|       {
 | |
|          int j;
 | |
|          opus_val16 n;
 | |
|          n = celt_sqrt(SHL32(EXTEND32(N0),22));
 | |
|          for (j=0;j<N0;j++)
 | |
|             lowband_out[j] = MULT16_16_Q15(n,X[j]);
 | |
|       }
 | |
|       cm &= (1<<B)-1;
 | |
|    }
 | |
|    return cm;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* This function is responsible for encoding and decoding a band for the stereo case. */
 | |
| static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm *Y,
 | |
|       int N, int b, int B, celt_norm *lowband,
 | |
|       int LM, celt_norm *lowband_out,
 | |
|       celt_norm *lowband_scratch, int fill)
 | |
| {
 | |
|    int imid=0, iside=0;
 | |
|    int inv = 0;
 | |
|    opus_val16 mid=0, side=0;
 | |
|    unsigned cm=0;
 | |
|    int mbits, sbits, delta;
 | |
|    int itheta;
 | |
|    int qalloc;
 | |
|    struct split_ctx sctx;
 | |
|    int orig_fill;
 | |
|    int encode;
 | |
|    ec_ctx *ec;
 | |
| 
 | |
|    encode = ctx->encode;
 | |
|    ec = ctx->ec;
 | |
| 
 | |
|    /* Special case for one sample */
 | |
|    if (N==1)
 | |
|    {
 | |
|       return quant_band_n1(ctx, X, Y, b, lowband_out);
 | |
|    }
 | |
| 
 | |
|    orig_fill = fill;
 | |
| 
 | |
|    compute_theta(ctx, &sctx, X, Y, N, &b, B, B, LM, 1, &fill);
 | |
|    inv = sctx.inv;
 | |
|    imid = sctx.imid;
 | |
|    iside = sctx.iside;
 | |
|    delta = sctx.delta;
 | |
|    itheta = sctx.itheta;
 | |
|    qalloc = sctx.qalloc;
 | |
| #ifdef FIXED_POINT
 | |
|    mid = imid;
 | |
|    side = iside;
 | |
| #else
 | |
|    mid = (1.f/32768)*imid;
 | |
|    side = (1.f/32768)*iside;
 | |
| #endif
 | |
| 
 | |
|    /* This is a special case for N=2 that only works for stereo and takes
 | |
|       advantage of the fact that mid and side are orthogonal to encode
 | |
|       the side with just one bit. */
 | |
|    if (N==2)
 | |
|    {
 | |
|       int c;
 | |
|       int sign=0;
 | |
|       celt_norm *x2, *y2;
 | |
|       mbits = b;
 | |
|       sbits = 0;
 | |
|       /* Only need one bit for the side. */
 | |
|       if (itheta != 0 && itheta != 16384)
 | |
|          sbits = 1<<BITRES;
 | |
|       mbits -= sbits;
 | |
|       c = itheta > 8192;
 | |
|       ctx->remaining_bits -= qalloc+sbits;
 | |
| 
 | |
|       x2 = c ? Y : X;
 | |
|       y2 = c ? X : Y;
 | |
|       if (sbits)
 | |
|       {
 | |
|          if (encode)
 | |
|          {
 | |
|             /* Here we only need to encode a sign for the side. */
 | |
|             sign = x2[0]*y2[1] - x2[1]*y2[0] < 0;
 | |
|             ec_enc_bits(ec, sign, 1);
 | |
|          } else {
 | |
|             sign = ec_dec_bits(ec, 1);
 | |
|          }
 | |
|       }
 | |
|       sign = 1-2*sign;
 | |
|       /* We use orig_fill here because we want to fold the side, but if
 | |
|          itheta==16384, we'll have cleared the low bits of fill. */
 | |
|       cm = quant_band(ctx, x2, N, mbits, B, lowband, LM, lowband_out, Q15ONE,
 | |
|             lowband_scratch, orig_fill);
 | |
|       /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
 | |
|          and there's no need to worry about mixing with the other channel. */
 | |
|       y2[0] = -sign*x2[1];
 | |
|       y2[1] = sign*x2[0];
 | |
|       if (ctx->resynth)
 | |
|       {
 | |
|          celt_norm tmp;
 | |
|          X[0] = MULT16_16_Q15(mid, X[0]);
 | |
|          X[1] = MULT16_16_Q15(mid, X[1]);
 | |
|          Y[0] = MULT16_16_Q15(side, Y[0]);
 | |
|          Y[1] = MULT16_16_Q15(side, Y[1]);
 | |
|          tmp = X[0];
 | |
|          X[0] = SUB16(tmp,Y[0]);
 | |
|          Y[0] = ADD16(tmp,Y[0]);
 | |
|          tmp = X[1];
 | |
|          X[1] = SUB16(tmp,Y[1]);
 | |
|          Y[1] = ADD16(tmp,Y[1]);
 | |
|       }
 | |
|    } else {
 | |
|       /* "Normal" split code */
 | |
|       opus_int32 rebalance;
 | |
| 
 | |
|       mbits = IMAX(0, IMIN(b, (b-delta)/2));
 | |
|       sbits = b-mbits;
 | |
|       ctx->remaining_bits -= qalloc;
 | |
| 
 | |
|       rebalance = ctx->remaining_bits;
 | |
|       if (mbits >= sbits)
 | |
|       {
 | |
|          /* In stereo mode, we do not apply a scaling to the mid because we need the normalized
 | |
|             mid for folding later. */
 | |
|          cm = quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q15ONE,
 | |
|                lowband_scratch, fill);
 | |
|          rebalance = mbits - (rebalance-ctx->remaining_bits);
 | |
|          if (rebalance > 3<<BITRES && itheta!=0)
 | |
|             sbits += rebalance - (3<<BITRES);
 | |
| 
 | |
|          /* For a stereo split, the high bits of fill are always zero, so no
 | |
|             folding will be done to the side. */
 | |
|          cm |= quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B);
 | |
|       } else {
 | |
|          /* For a stereo split, the high bits of fill are always zero, so no
 | |
|             folding will be done to the side. */
 | |
|          cm = quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B);
 | |
|          rebalance = sbits - (rebalance-ctx->remaining_bits);
 | |
|          if (rebalance > 3<<BITRES && itheta!=16384)
 | |
|             mbits += rebalance - (3<<BITRES);
 | |
|          /* In stereo mode, we do not apply a scaling to the mid because we need the normalized
 | |
|             mid for folding later. */
 | |
|          cm |= quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q15ONE,
 | |
|                lowband_scratch, fill);
 | |
|       }
 | |
|    }
 | |
| 
 | |
| 
 | |
|    /* This code is used by the decoder and by the resynthesis-enabled encoder */
 | |
|    if (ctx->resynth)
 | |
|    {
 | |
|       if (N!=2)
 | |
|          stereo_merge(X, Y, mid, N, ctx->arch);
 | |
|       if (inv)
 | |
|       {
 | |
|          int j;
 | |
|          for (j=0;j<N;j++)
 | |
|             Y[j] = -Y[j];
 | |
|       }
 | |
|    }
 | |
|    return cm;
 | |
| }
 | |
| 
 | |
| static void special_hybrid_folding(const CELTMode *m, celt_norm *norm, celt_norm *norm2, int start, int M, int dual_stereo)
 | |
| {
 | |
|    int n1, n2;
 | |
|    const opus_int16 * OPUS_RESTRICT eBands = m->eBands;
 | |
|    n1 = M*(eBands[start+1]-eBands[start]);
 | |
|    n2 = M*(eBands[start+2]-eBands[start+1]);
 | |
|    /* Duplicate enough of the first band folding data to be able to fold the second band.
 | |
|       Copies no data for CELT-only mode. */
 | |
|    OPUS_COPY(&norm[n1], &norm[2*n1 - n2], n2-n1);
 | |
|    if (dual_stereo)
 | |
|       OPUS_COPY(&norm2[n1], &norm2[2*n1 - n2], n2-n1);
 | |
| }
 | |
| 
 | |
| void quant_all_bands(int encode, const CELTMode *m, int start, int end,
 | |
|       celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks,
 | |
|       const celt_ener *bandE, int *pulses, int shortBlocks, int spread,
 | |
|       int dual_stereo, int intensity, int *tf_res, opus_int32 total_bits,
 | |
|       opus_int32 balance, ec_ctx *ec, int LM, int codedBands,
 | |
|       opus_uint32 *seed, int complexity, int arch, int disable_inv)
 | |
| {
 | |
|    int i;
 | |
|    opus_int32 remaining_bits;
 | |
|    const opus_int16 * OPUS_RESTRICT eBands = m->eBands;
 | |
|    celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2;
 | |
|    VARDECL(celt_norm, _norm);
 | |
|    VARDECL(celt_norm, _lowband_scratch);
 | |
|    VARDECL(celt_norm, X_save);
 | |
|    VARDECL(celt_norm, Y_save);
 | |
|    VARDECL(celt_norm, X_save2);
 | |
|    VARDECL(celt_norm, Y_save2);
 | |
|    VARDECL(celt_norm, norm_save2);
 | |
|    int resynth_alloc;
 | |
|    celt_norm *lowband_scratch;
 | |
|    int B;
 | |
|    int M;
 | |
|    int lowband_offset;
 | |
|    int update_lowband = 1;
 | |
|    int C = Y_ != NULL ? 2 : 1;
 | |
|    int norm_offset;
 | |
|    int theta_rdo = encode && Y_!=NULL && !dual_stereo && complexity>=8;
 | |
| #ifdef RESYNTH
 | |
|    int resynth = 1;
 | |
| #else
 | |
|    int resynth = !encode || theta_rdo;
 | |
| #endif
 | |
|    struct band_ctx ctx;
 | |
|    SAVE_STACK;
 | |
| 
 | |
|    M = 1<<LM;
 | |
|    B = shortBlocks ? M : 1;
 | |
|    norm_offset = M*eBands[start];
 | |
|    /* No need to allocate norm for the last band because we don't need an
 | |
|       output in that band. */
 | |
|    ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm);
 | |
|    norm = _norm;
 | |
|    norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset;
 | |
| 
 | |
|    /* For decoding, we can use the last band as scratch space because we don't need that
 | |
|       scratch space for the last band and we don't care about the data there until we're
 | |
|       decoding the last band. */
 | |
|    if (encode && resynth)
 | |
|       resynth_alloc = M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]);
 | |
|    else
 | |
|       resynth_alloc = ALLOC_NONE;
 | |
|    ALLOC(_lowband_scratch, resynth_alloc, celt_norm);
 | |
|    if (encode && resynth)
 | |
|       lowband_scratch = _lowband_scratch;
 | |
|    else
 | |
|       lowband_scratch = X_+M*eBands[m->nbEBands-1];
 | |
|    ALLOC(X_save, resynth_alloc, celt_norm);
 | |
|    ALLOC(Y_save, resynth_alloc, celt_norm);
 | |
|    ALLOC(X_save2, resynth_alloc, celt_norm);
 | |
|    ALLOC(Y_save2, resynth_alloc, celt_norm);
 | |
|    ALLOC(norm_save2, resynth_alloc, celt_norm);
 | |
| 
 | |
|    lowband_offset = 0;
 | |
|    ctx.bandE = bandE;
 | |
|    ctx.ec = ec;
 | |
|    ctx.encode = encode;
 | |
|    ctx.intensity = intensity;
 | |
|    ctx.m = m;
 | |
|    ctx.seed = *seed;
 | |
|    ctx.spread = spread;
 | |
|    ctx.arch = arch;
 | |
|    ctx.disable_inv = disable_inv;
 | |
|    ctx.resynth = resynth;
 | |
|    ctx.theta_round = 0;
 | |
|    /* Avoid injecting noise in the first band on transients. */
 | |
|    ctx.avoid_split_noise = B > 1;
 | |
|    for (i=start;i<end;i++)
 | |
|    {
 | |
|       opus_int32 tell;
 | |
|       int b;
 | |
|       int N;
 | |
|       opus_int32 curr_balance;
 | |
|       int effective_lowband=-1;
 | |
|       celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y;
 | |
|       int tf_change=0;
 | |
|       unsigned x_cm;
 | |
|       unsigned y_cm;
 | |
|       int last;
 | |
| 
 | |
|       ctx.i = i;
 | |
|       last = (i==end-1);
 | |
| 
 | |
|       X = X_+M*eBands[i];
 | |
|       if (Y_!=NULL)
 | |
|          Y = Y_+M*eBands[i];
 | |
|       else
 | |
|          Y = NULL;
 | |
|       N = M*eBands[i+1]-M*eBands[i];
 | |
|       celt_assert(N > 0);
 | |
|       tell = ec_tell_frac(ec);
 | |
| 
 | |
|       /* Compute how many bits we want to allocate to this band */
 | |
|       if (i != start)
 | |
|          balance -= tell;
 | |
|       remaining_bits = total_bits-tell-1;
 | |
|       ctx.remaining_bits = remaining_bits;
 | |
|       if (i <= codedBands-1)
 | |
|       {
 | |
|          curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i));
 | |
|          b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance)));
 | |
|       } else {
 | |
|          b = 0;
 | |
|       }
 | |
| 
 | |
| #ifndef DISABLE_UPDATE_DRAFT
 | |
|       if (resynth && (M*eBands[i]-N >= M*eBands[start] || i==start+1) && (update_lowband || lowband_offset==0))
 | |
|             lowband_offset = i;
 | |
|       if (i == start+1)
 | |
|          special_hybrid_folding(m, norm, norm2, start, M, dual_stereo);
 | |
| #else
 | |
|       if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0))
 | |
|             lowband_offset = i;
 | |
| #endif
 | |
| 
 | |
|       tf_change = tf_res[i];
 | |
|       ctx.tf_change = tf_change;
 | |
|       if (i>=m->effEBands)
 | |
|       {
 | |
|          X=norm;
 | |
|          if (Y_!=NULL)
 | |
|             Y = norm;
 | |
|          lowband_scratch = NULL;
 | |
|       }
 | |
|       if (last && !theta_rdo)
 | |
|          lowband_scratch = NULL;
 | |
| 
 | |
|       /* Get a conservative estimate of the collapse_mask's for the bands we're
 | |
|          going to be folding from. */
 | |
|       if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0))
 | |
|       {
 | |
|          int fold_start;
 | |
|          int fold_end;
 | |
|          int fold_i;
 | |
|          /* This ensures we never repeat spectral content within one band */
 | |
|          effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N);
 | |
|          fold_start = lowband_offset;
 | |
|          while(M*eBands[--fold_start] > effective_lowband+norm_offset);
 | |
|          fold_end = lowband_offset-1;
 | |
| #ifndef DISABLE_UPDATE_DRAFT
 | |
|          while(++fold_end < i && M*eBands[fold_end] < effective_lowband+norm_offset+N);
 | |
| #else
 | |
|          while(M*eBands[++fold_end] < effective_lowband+norm_offset+N);
 | |
| #endif
 | |
|          x_cm = y_cm = 0;
 | |
|          fold_i = fold_start; do {
 | |
|            x_cm |= collapse_masks[fold_i*C+0];
 | |
|            y_cm |= collapse_masks[fold_i*C+C-1];
 | |
|          } while (++fold_i<fold_end);
 | |
|       }
 | |
|       /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost
 | |
|          always) be non-zero. */
 | |
|       else
 | |
|          x_cm = y_cm = (1<<B)-1;
 | |
| 
 | |
|       if (dual_stereo && i==intensity)
 | |
|       {
 | |
|          int j;
 | |
| 
 | |
|          /* Switch off dual stereo to do intensity. */
 | |
|          dual_stereo = 0;
 | |
|          if (resynth)
 | |
|             for (j=0;j<M*eBands[i]-norm_offset;j++)
 | |
|                norm[j] = HALF32(norm[j]+norm2[j]);
 | |
|       }
 | |
|       if (dual_stereo)
 | |
|       {
 | |
|          x_cm = quant_band(&ctx, X, N, b/2, B,
 | |
|                effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
 | |
|                last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm);
 | |
|          y_cm = quant_band(&ctx, Y, N, b/2, B,
 | |
|                effective_lowband != -1 ? norm2+effective_lowband : NULL, LM,
 | |
|                last?NULL:norm2+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, y_cm);
 | |
|       } else {
 | |
|          if (Y!=NULL)
 | |
|          {
 | |
|             if (theta_rdo && i < intensity)
 | |
|             {
 | |
|                ec_ctx ec_save, ec_save2;
 | |
|                struct band_ctx ctx_save, ctx_save2;
 | |
|                opus_val32 dist0, dist1;
 | |
|                unsigned cm, cm2;
 | |
|                int nstart_bytes, nend_bytes, save_bytes;
 | |
|                unsigned char *bytes_buf;
 | |
|                unsigned char bytes_save[1275];
 | |
|                opus_val16 w[2];
 | |
|                compute_channel_weights(bandE[i], bandE[i+m->nbEBands], w);
 | |
|                /* Make a copy. */
 | |
|                cm = x_cm|y_cm;
 | |
|                ec_save = *ec;
 | |
|                ctx_save = ctx;
 | |
|                OPUS_COPY(X_save, X, N);
 | |
|                OPUS_COPY(Y_save, Y, N);
 | |
|                /* Encode and round down. */
 | |
|                ctx.theta_round = -1;
 | |
|                x_cm = quant_band_stereo(&ctx, X, Y, N, b, B,
 | |
|                      effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
 | |
|                      last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm);
 | |
|                dist0 = MULT16_32_Q15(w[0], celt_inner_prod(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod(Y_save, Y, N, arch));
 | |
| 
 | |
|                /* Save first result. */
 | |
|                cm2 = x_cm;
 | |
|                ec_save2 = *ec;
 | |
|                ctx_save2 = ctx;
 | |
|                OPUS_COPY(X_save2, X, N);
 | |
|                OPUS_COPY(Y_save2, Y, N);
 | |
|                if (!last)
 | |
|                   OPUS_COPY(norm_save2, norm+M*eBands[i]-norm_offset, N);
 | |
|                nstart_bytes = ec_save.offs;
 | |
|                nend_bytes = ec_save.storage;
 | |
|                bytes_buf = ec_save.buf+nstart_bytes;
 | |
|                save_bytes = nend_bytes-nstart_bytes;
 | |
|                OPUS_COPY(bytes_save, bytes_buf, save_bytes);
 | |
| 
 | |
|                /* Restore */
 | |
|                *ec = ec_save;
 | |
|                ctx = ctx_save;
 | |
|                OPUS_COPY(X, X_save, N);
 | |
|                OPUS_COPY(Y, Y_save, N);
 | |
| #ifndef DISABLE_UPDATE_DRAFT
 | |
|                if (i == start+1)
 | |
|                   special_hybrid_folding(m, norm, norm2, start, M, dual_stereo);
 | |
| #endif
 | |
|                /* Encode and round up. */
 | |
|                ctx.theta_round = 1;
 | |
|                x_cm = quant_band_stereo(&ctx, X, Y, N, b, B,
 | |
|                      effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
 | |
|                      last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm);
 | |
|                dist1 = MULT16_32_Q15(w[0], celt_inner_prod(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod(Y_save, Y, N, arch));
 | |
|                if (dist0 >= dist1) {
 | |
|                   x_cm = cm2;
 | |
|                   *ec = ec_save2;
 | |
|                   ctx = ctx_save2;
 | |
|                   OPUS_COPY(X, X_save2, N);
 | |
|                   OPUS_COPY(Y, Y_save2, N);
 | |
|                   if (!last)
 | |
|                      OPUS_COPY(norm+M*eBands[i]-norm_offset, norm_save2, N);
 | |
|                   OPUS_COPY(bytes_buf, bytes_save, save_bytes);
 | |
|                }
 | |
|             } else {
 | |
|                ctx.theta_round = 0;
 | |
|                x_cm = quant_band_stereo(&ctx, X, Y, N, b, B,
 | |
|                      effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
 | |
|                      last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm);
 | |
|             }
 | |
|          } else {
 | |
|             x_cm = quant_band(&ctx, X, N, b, B,
 | |
|                   effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
 | |
|                   last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm|y_cm);
 | |
|          }
 | |
|          y_cm = x_cm;
 | |
|       }
 | |
|       collapse_masks[i*C+0] = (unsigned char)x_cm;
 | |
|       collapse_masks[i*C+C-1] = (unsigned char)y_cm;
 | |
|       balance += pulses[i] + tell;
 | |
| 
 | |
|       /* Update the folding position only as long as we have 1 bit/sample depth. */
 | |
|       update_lowband = b>(N<<BITRES);
 | |
|       /* We only need to avoid noise on a split for the first band. After that, we
 | |
|          have folding. */
 | |
|       ctx.avoid_split_noise = 0;
 | |
|    }
 | |
|    *seed = ctx.seed;
 | |
| 
 | |
|    RESTORE_STACK;
 | |
| }
 | |
| 
 |