187 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			187 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /***********************************************************************
 | |
| Copyright (c) 2006-2011, Skype Limited. All rights reserved.
 | |
| Redistribution and use in source and binary forms, with or without
 | |
| modification, are permitted provided that the following conditions
 | |
| are met:
 | |
| - Redistributions of source code must retain the above copyright notice,
 | |
| this list of conditions and the following disclaimer.
 | |
| - Redistributions in binary form must reproduce the above copyright
 | |
| notice, this list of conditions and the following disclaimer in the
 | |
| documentation and/or other materials provided with the distribution.
 | |
| - Neither the name of Internet Society, IETF or IETF Trust, nor the
 | |
| names of specific contributors, may be used to endorse or promote
 | |
| products derived from this software without specific prior written
 | |
| permission.
 | |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
| ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 | |
| LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
| CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
| SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
| INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
| CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
| ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
| POSSIBILITY OF SUCH DAMAGE.
 | |
| ***********************************************************************/
 | |
| 
 | |
| #ifdef HAVE_CONFIG_H
 | |
| #include "config.h"
 | |
| #endif
 | |
| 
 | |
| #include "SigProc_FLP.h"
 | |
| #include "tuning_parameters.h"
 | |
| #include "define.h"
 | |
| 
 | |
| #define MAX_FRAME_SIZE              384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384*/
 | |
| 
 | |
| /* Compute reflection coefficients from input signal */
 | |
| silk_float silk_burg_modified_FLP(          /* O    returns residual energy                                     */
 | |
|     silk_float          A[],                /* O    prediction coefficients (length order)                      */
 | |
|     const silk_float    x[],                /* I    input signal, length: nb_subfr*(D+L_sub)                    */
 | |
|     const silk_float    minInvGain,         /* I    minimum inverse prediction gain                             */
 | |
|     const opus_int      subfr_length,       /* I    input signal subframe length (incl. D preceding samples)    */
 | |
|     const opus_int      nb_subfr,           /* I    number of subframes stacked in x                            */
 | |
|     const opus_int      D                   /* I    order                                                       */
 | |
| )
 | |
| {
 | |
|     opus_int         k, n, s, reached_max_gain;
 | |
|     double           C0, invGain, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2;
 | |
|     const silk_float *x_ptr;
 | |
|     double           C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ];
 | |
|     double           CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ];
 | |
|     double           Af[ SILK_MAX_ORDER_LPC ];
 | |
| 
 | |
|     celt_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
 | |
| 
 | |
|     /* Compute autocorrelations, added over subframes */
 | |
|     C0 = silk_energy_FLP( x, nb_subfr * subfr_length );
 | |
|     silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) );
 | |
|     for( s = 0; s < nb_subfr; s++ ) {
 | |
|         x_ptr = x + s * subfr_length;
 | |
|         for( n = 1; n < D + 1; n++ ) {
 | |
|             C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n );
 | |
|         }
 | |
|     }
 | |
|     silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) );
 | |
| 
 | |
|     /* Initialize */
 | |
|     CAb[ 0 ] = CAf[ 0 ] = C0 + FIND_LPC_COND_FAC * C0 + 1e-9f;
 | |
|     invGain = 1.0f;
 | |
|     reached_max_gain = 0;
 | |
|     for( n = 0; n < D; n++ ) {
 | |
|         /* Update first row of correlation matrix (without first element) */
 | |
|         /* Update last row of correlation matrix (without last element, stored in reversed order) */
 | |
|         /* Update C * Af */
 | |
|         /* Update C * flipud(Af) (stored in reversed order) */
 | |
|         for( s = 0; s < nb_subfr; s++ ) {
 | |
|             x_ptr = x + s * subfr_length;
 | |
|             tmp1 = x_ptr[ n ];
 | |
|             tmp2 = x_ptr[ subfr_length - n - 1 ];
 | |
|             for( k = 0; k < n; k++ ) {
 | |
|                 C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ];
 | |
|                 C_last_row[ k ]  -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ];
 | |
|                 Atmp = Af[ k ];
 | |
|                 tmp1 += x_ptr[ n - k - 1 ] * Atmp;
 | |
|                 tmp2 += x_ptr[ subfr_length - n + k ] * Atmp;
 | |
|             }
 | |
|             for( k = 0; k <= n; k++ ) {
 | |
|                 CAf[ k ] -= tmp1 * x_ptr[ n - k ];
 | |
|                 CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ];
 | |
|             }
 | |
|         }
 | |
|         tmp1 = C_first_row[ n ];
 | |
|         tmp2 = C_last_row[ n ];
 | |
|         for( k = 0; k < n; k++ ) {
 | |
|             Atmp = Af[ k ];
 | |
|             tmp1 += C_last_row[  n - k - 1 ] * Atmp;
 | |
|             tmp2 += C_first_row[ n - k - 1 ] * Atmp;
 | |
|         }
 | |
|         CAf[ n + 1 ] = tmp1;
 | |
|         CAb[ n + 1 ] = tmp2;
 | |
| 
 | |
|         /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
 | |
|         num = CAb[ n + 1 ];
 | |
|         nrg_b = CAb[ 0 ];
 | |
|         nrg_f = CAf[ 0 ];
 | |
|         for( k = 0; k < n; k++ ) {
 | |
|             Atmp = Af[ k ];
 | |
|             num   += CAb[ n - k ] * Atmp;
 | |
|             nrg_b += CAb[ k + 1 ] * Atmp;
 | |
|             nrg_f += CAf[ k + 1 ] * Atmp;
 | |
|         }
 | |
|         silk_assert( nrg_f > 0.0 );
 | |
|         silk_assert( nrg_b > 0.0 );
 | |
| 
 | |
|         /* Calculate the next order reflection (parcor) coefficient */
 | |
|         rc = -2.0 * num / ( nrg_f + nrg_b );
 | |
|         silk_assert( rc > -1.0 && rc < 1.0 );
 | |
| 
 | |
|         /* Update inverse prediction gain */
 | |
|         tmp1 = invGain * ( 1.0 - rc * rc );
 | |
|         if( tmp1 <= minInvGain ) {
 | |
|             /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
 | |
|             rc = sqrt( 1.0 - minInvGain / invGain );
 | |
|             if( num > 0 ) {
 | |
|                 /* Ensure adjusted reflection coefficients has the original sign */
 | |
|                 rc = -rc;
 | |
|             }
 | |
|             invGain = minInvGain;
 | |
|             reached_max_gain = 1;
 | |
|         } else {
 | |
|             invGain = tmp1;
 | |
|         }
 | |
| 
 | |
|         /* Update the AR coefficients */
 | |
|         for( k = 0; k < (n + 1) >> 1; k++ ) {
 | |
|             tmp1 = Af[ k ];
 | |
|             tmp2 = Af[ n - k - 1 ];
 | |
|             Af[ k ]         = tmp1 + rc * tmp2;
 | |
|             Af[ n - k - 1 ] = tmp2 + rc * tmp1;
 | |
|         }
 | |
|         Af[ n ] = rc;
 | |
| 
 | |
|         if( reached_max_gain ) {
 | |
|             /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
 | |
|             for( k = n + 1; k < D; k++ ) {
 | |
|                 Af[ k ] = 0.0;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         /* Update C * Af and C * Ab */
 | |
|         for( k = 0; k <= n + 1; k++ ) {
 | |
|             tmp1 = CAf[ k ];
 | |
|             CAf[ k ]          += rc * CAb[ n - k + 1 ];
 | |
|             CAb[ n - k + 1  ] += rc * tmp1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if( reached_max_gain ) {
 | |
|         /* Convert to silk_float */
 | |
|         for( k = 0; k < D; k++ ) {
 | |
|             A[ k ] = (silk_float)( -Af[ k ] );
 | |
|         }
 | |
|         /* Subtract energy of preceding samples from C0 */
 | |
|         for( s = 0; s < nb_subfr; s++ ) {
 | |
|             C0 -= silk_energy_FLP( x + s * subfr_length, D );
 | |
|         }
 | |
|         /* Approximate residual energy */
 | |
|         nrg_f = C0 * invGain;
 | |
|     } else {
 | |
|         /* Compute residual energy and store coefficients as silk_float */
 | |
|         nrg_f = CAf[ 0 ];
 | |
|         tmp1 = 1.0;
 | |
|         for( k = 0; k < D; k++ ) {
 | |
|             Atmp = Af[ k ];
 | |
|             nrg_f += CAf[ k + 1 ] * Atmp;
 | |
|             tmp1  += Atmp * Atmp;
 | |
|             A[ k ] = (silk_float)(-Atmp);
 | |
|         }
 | |
|         nrg_f -= FIND_LPC_COND_FAC * C0 * tmp1;
 | |
|     }
 | |
| 
 | |
|     /* Return residual energy */
 | |
|     return (silk_float)nrg_f;
 | |
| }
 |