142 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			142 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /***********************************************************************
 | |
| Copyright (c) 2006-2011, Skype Limited. All rights reserved.
 | |
| Redistribution and use in source and binary forms, with or without
 | |
| modification, are permitted provided that the following conditions
 | |
| are met:
 | |
| - Redistributions of source code must retain the above copyright notice,
 | |
| this list of conditions and the following disclaimer.
 | |
| - Redistributions in binary form must reproduce the above copyright
 | |
| notice, this list of conditions and the following disclaimer in the
 | |
| documentation and/or other materials provided with the distribution.
 | |
| - Neither the name of Internet Society, IETF or IETF Trust, nor the
 | |
| names of specific contributors, may be used to endorse or promote
 | |
| products derived from this software without specific prior written
 | |
| permission.
 | |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
| ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 | |
| LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
| CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
| SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
| INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
| CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
| ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
| POSSIBILITY OF SUCH DAMAGE.
 | |
| ***********************************************************************/
 | |
| 
 | |
| #ifdef HAVE_CONFIG_H
 | |
| #include "config.h"
 | |
| #endif
 | |
| 
 | |
| /* conversion between prediction filter coefficients and LSFs   */
 | |
| /* order should be even                                         */
 | |
| /* a piecewise linear approximation maps LSF <-> cos(LSF)       */
 | |
| /* therefore the result is not accurate LSFs, but the two       */
 | |
| /* functions are accurate inverses of each other                */
 | |
| 
 | |
| #include "SigProc_FIX.h"
 | |
| #include "tables.h"
 | |
| 
 | |
| #define QA      16
 | |
| 
 | |
| /* helper function for NLSF2A(..) */
 | |
| static OPUS_INLINE void silk_NLSF2A_find_poly(
 | |
|     opus_int32          *out,      /* O    intermediate polynomial, QA [dd+1]        */
 | |
|     const opus_int32    *cLSF,     /* I    vector of interleaved 2*cos(LSFs), QA [d] */
 | |
|     opus_int            dd         /* I    polynomial order (= 1/2 * filter order)   */
 | |
| )
 | |
| {
 | |
|     opus_int   k, n;
 | |
|     opus_int32 ftmp;
 | |
| 
 | |
|     out[0] = silk_LSHIFT( 1, QA );
 | |
|     out[1] = -cLSF[0];
 | |
|     for( k = 1; k < dd; k++ ) {
 | |
|         ftmp = cLSF[2*k];            /* QA*/
 | |
|         out[k+1] = silk_LSHIFT( out[k-1], 1 ) - (opus_int32)silk_RSHIFT_ROUND64( silk_SMULL( ftmp, out[k] ), QA );
 | |
|         for( n = k; n > 1; n-- ) {
 | |
|             out[n] += out[n-2] - (opus_int32)silk_RSHIFT_ROUND64( silk_SMULL( ftmp, out[n-1] ), QA );
 | |
|         }
 | |
|         out[1] -= ftmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* compute whitening filter coefficients from normalized line spectral frequencies */
 | |
| void silk_NLSF2A(
 | |
|     opus_int16                  *a_Q12,             /* O    monic whitening filter coefficients in Q12,  [ d ]          */
 | |
|     const opus_int16            *NLSF,              /* I    normalized line spectral frequencies in Q15, [ d ]          */
 | |
|     const opus_int              d,                  /* I    filter order (should be even)                               */
 | |
|     int                         arch                /* I    Run-time architecture                                       */
 | |
| )
 | |
| {
 | |
|     /* This ordering was found to maximize quality. It improves numerical accuracy of
 | |
|        silk_NLSF2A_find_poly() compared to "standard" ordering. */
 | |
|     static const unsigned char ordering16[16] = {
 | |
|       0, 15, 8, 7, 4, 11, 12, 3, 2, 13, 10, 5, 6, 9, 14, 1
 | |
|     };
 | |
|     static const unsigned char ordering10[10] = {
 | |
|       0, 9, 6, 3, 4, 5, 8, 1, 2, 7
 | |
|     };
 | |
|     const unsigned char *ordering;
 | |
|     opus_int   k, i, dd;
 | |
|     opus_int32 cos_LSF_QA[ SILK_MAX_ORDER_LPC ];
 | |
|     opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ], Q[ SILK_MAX_ORDER_LPC / 2 + 1 ];
 | |
|     opus_int32 Ptmp, Qtmp, f_int, f_frac, cos_val, delta;
 | |
|     opus_int32 a32_QA1[ SILK_MAX_ORDER_LPC ];
 | |
| 
 | |
|     silk_assert( LSF_COS_TAB_SZ_FIX == 128 );
 | |
|     celt_assert( d==10 || d==16 );
 | |
| 
 | |
|     /* convert LSFs to 2*cos(LSF), using piecewise linear curve from table */
 | |
|     ordering = d == 16 ? ordering16 : ordering10;
 | |
|     for( k = 0; k < d; k++ ) {
 | |
|         silk_assert( NLSF[k] >= 0 );
 | |
| 
 | |
|         /* f_int on a scale 0-127 (rounded down) */
 | |
|         f_int = silk_RSHIFT( NLSF[k], 15 - 7 );
 | |
| 
 | |
|         /* f_frac, range: 0..255 */
 | |
|         f_frac = NLSF[k] - silk_LSHIFT( f_int, 15 - 7 );
 | |
| 
 | |
|         silk_assert(f_int >= 0);
 | |
|         silk_assert(f_int < LSF_COS_TAB_SZ_FIX );
 | |
| 
 | |
|         /* Read start and end value from table */
 | |
|         cos_val = silk_LSFCosTab_FIX_Q12[ f_int ];                /* Q12 */
 | |
|         delta   = silk_LSFCosTab_FIX_Q12[ f_int + 1 ] - cos_val;  /* Q12, with a range of 0..200 */
 | |
| 
 | |
|         /* Linear interpolation */
 | |
|         cos_LSF_QA[ordering[k]] = silk_RSHIFT_ROUND( silk_LSHIFT( cos_val, 8 ) + silk_MUL( delta, f_frac ), 20 - QA ); /* QA */
 | |
|     }
 | |
| 
 | |
|     dd = silk_RSHIFT( d, 1 );
 | |
| 
 | |
|     /* generate even and odd polynomials using convolution */
 | |
|     silk_NLSF2A_find_poly( P, &cos_LSF_QA[ 0 ], dd );
 | |
|     silk_NLSF2A_find_poly( Q, &cos_LSF_QA[ 1 ], dd );
 | |
| 
 | |
|     /* convert even and odd polynomials to opus_int32 Q12 filter coefs */
 | |
|     for( k = 0; k < dd; k++ ) {
 | |
|         Ptmp = P[ k+1 ] + P[ k ];
 | |
|         Qtmp = Q[ k+1 ] - Q[ k ];
 | |
| 
 | |
|         /* the Ptmp and Qtmp values at this stage need to fit in int32 */
 | |
|         a32_QA1[ k ]     = -Qtmp - Ptmp;        /* QA+1 */
 | |
|         a32_QA1[ d-k-1 ] =  Qtmp - Ptmp;        /* QA+1 */
 | |
|     }
 | |
| 
 | |
|     /* Convert int32 coefficients to Q12 int16 coefs */
 | |
|     silk_LPC_fit( a_Q12, a32_QA1, 12, QA + 1, d );
 | |
| 
 | |
|     for( i = 0; silk_LPC_inverse_pred_gain( a_Q12, d, arch ) == 0 && i < MAX_LPC_STABILIZE_ITERATIONS; i++ ) {
 | |
|         /* Prediction coefficients are (too close to) unstable; apply bandwidth expansion   */
 | |
|         /* on the unscaled coefficients, convert to Q12 and measure again                   */
 | |
|         silk_bwexpander_32( a32_QA1, d, 65536 - silk_LSHIFT( 2, i ) );
 | |
|         for( k = 0; k < d; k++ ) {
 | |
|             a_Q12[ k ] = (opus_int16)silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 );            /* QA+1 -> Q12 */
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 |