68 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			68 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/python
 | |
| 
 | |
| from __future__ import print_function
 | |
| 
 | |
| from keras.models import Sequential
 | |
| from keras.models import Model
 | |
| from keras.layers import Input
 | |
| from keras.layers import Dense
 | |
| from keras.layers import LSTM
 | |
| from keras.layers import GRU
 | |
| from keras.layers import SimpleRNN
 | |
| from keras.layers import Dropout
 | |
| from keras import losses
 | |
| import h5py
 | |
| 
 | |
| from keras import backend as K
 | |
| import numpy as np
 | |
| 
 | |
| def binary_crossentrop2(y_true, y_pred):
 | |
|     return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)
 | |
| 
 | |
| print('Build model...')
 | |
| #model = Sequential()
 | |
| #model.add(Dense(16, activation='tanh', input_shape=(None, 25)))
 | |
| #model.add(GRU(12, dropout=0.0, recurrent_dropout=0.0, activation='tanh', recurrent_activation='sigmoid', return_sequences=True))
 | |
| #model.add(Dense(2, activation='sigmoid'))
 | |
| 
 | |
| main_input = Input(shape=(None, 25), name='main_input')
 | |
| x = Dense(16, activation='tanh')(main_input)
 | |
| x = GRU(12, dropout=0.1, recurrent_dropout=0.1, activation='tanh', recurrent_activation='sigmoid', return_sequences=True)(x)
 | |
| x = Dense(2, activation='sigmoid')(x)
 | |
| model = Model(inputs=main_input, outputs=x)
 | |
| 
 | |
| batch_size = 64
 | |
| 
 | |
| print('Loading data...')
 | |
| with h5py.File('features.h5', 'r') as hf:
 | |
|     all_data = hf['features'][:]
 | |
| print('done.')
 | |
| 
 | |
| window_size = 1500
 | |
| 
 | |
| nb_sequences = len(all_data)/window_size
 | |
| print(nb_sequences, ' sequences')
 | |
| x_train = all_data[:nb_sequences*window_size, :-2]
 | |
| x_train = np.reshape(x_train, (nb_sequences, window_size, 25))
 | |
| 
 | |
| y_train = np.copy(all_data[:nb_sequences*window_size, -2:])
 | |
| y_train = np.reshape(y_train, (nb_sequences, window_size, 2))
 | |
| 
 | |
| all_data = 0;
 | |
| x_train = x_train.astype('float32')
 | |
| y_train = y_train.astype('float32')
 | |
| 
 | |
| print(len(x_train), 'train sequences. x shape =', x_train.shape, 'y shape = ', y_train.shape)
 | |
| 
 | |
| # try using different optimizers and different optimizer configs
 | |
| model.compile(loss=binary_crossentrop2,
 | |
|               optimizer='adam',
 | |
|               metrics=['binary_accuracy'])
 | |
| 
 | |
| print('Train...')
 | |
| model.fit(x_train, y_train,
 | |
|           batch_size=batch_size,
 | |
|           epochs=200,
 | |
|           validation_data=(x_train, y_train))
 | |
| model.save("newweights.hdf5")
 |