210 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			210 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Copyright (c) 2002-2008 Jean-Marc Valin
 | 
						|
   Copyright (c) 2007-2008 CSIRO
 | 
						|
   Copyright (c) 2007-2009 Xiph.Org Foundation
 | 
						|
   Written by Jean-Marc Valin */
 | 
						|
/**
 | 
						|
   @file mathops.h
 | 
						|
   @brief Various math functions
 | 
						|
*/
 | 
						|
/*
 | 
						|
   Redistribution and use in source and binary forms, with or without
 | 
						|
   modification, are permitted provided that the following conditions
 | 
						|
   are met:
 | 
						|
 | 
						|
   - Redistributions of source code must retain the above copyright
 | 
						|
   notice, this list of conditions and the following disclaimer.
 | 
						|
 | 
						|
   - Redistributions in binary form must reproduce the above copyright
 | 
						|
   notice, this list of conditions and the following disclaimer in the
 | 
						|
   documentation and/or other materials provided with the distribution.
 | 
						|
 | 
						|
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
 | 
						|
   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 | 
						|
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 | 
						|
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 | 
						|
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 | 
						|
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | 
						|
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | 
						|
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
*/
 | 
						|
 | 
						|
#ifdef HAVE_CONFIG_H
 | 
						|
#include "config.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#include "mathops.h"
 | 
						|
 | 
						|
/*Compute floor(sqrt(_val)) with exact arithmetic.
 | 
						|
  _val must be greater than 0.
 | 
						|
  This has been tested on all possible 32-bit inputs greater than 0.*/
 | 
						|
unsigned isqrt32(opus_uint32 _val){
 | 
						|
  unsigned b;
 | 
						|
  unsigned g;
 | 
						|
  int      bshift;
 | 
						|
  /*Uses the second method from
 | 
						|
     http://www.azillionmonkeys.com/qed/sqroot.html
 | 
						|
    The main idea is to search for the largest binary digit b such that
 | 
						|
     (g+b)*(g+b) <= _val, and add it to the solution g.*/
 | 
						|
  g=0;
 | 
						|
  bshift=(EC_ILOG(_val)-1)>>1;
 | 
						|
  b=1U<<bshift;
 | 
						|
  do{
 | 
						|
    opus_uint32 t;
 | 
						|
    t=(((opus_uint32)g<<1)+b)<<bshift;
 | 
						|
    if(t<=_val){
 | 
						|
      g+=b;
 | 
						|
      _val-=t;
 | 
						|
    }
 | 
						|
    b>>=1;
 | 
						|
    bshift--;
 | 
						|
  }
 | 
						|
  while(bshift>=0);
 | 
						|
  return g;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef FIXED_POINT
 | 
						|
 | 
						|
opus_val32 frac_div32(opus_val32 a, opus_val32 b)
 | 
						|
{
 | 
						|
   opus_val16 rcp;
 | 
						|
   opus_val32 result, rem;
 | 
						|
   int shift = celt_ilog2(b)-29;
 | 
						|
   a = VSHR32(a,shift);
 | 
						|
   b = VSHR32(b,shift);
 | 
						|
   /* 16-bit reciprocal */
 | 
						|
   rcp = ROUND16(celt_rcp(ROUND16(b,16)),3);
 | 
						|
   result = MULT16_32_Q15(rcp, a);
 | 
						|
   rem = PSHR32(a,2)-MULT32_32_Q31(result, b);
 | 
						|
   result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2));
 | 
						|
   if (result >= 536870912)       /*  2^29 */
 | 
						|
      return 2147483647;          /*  2^31 - 1 */
 | 
						|
   else if (result <= -536870912) /* -2^29 */
 | 
						|
      return -2147483647;         /* -2^31 */
 | 
						|
   else
 | 
						|
      return SHL32(result, 2);
 | 
						|
}
 | 
						|
 | 
						|
/** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */
 | 
						|
opus_val16 celt_rsqrt_norm(opus_val32 x)
 | 
						|
{
 | 
						|
   opus_val16 n;
 | 
						|
   opus_val16 r;
 | 
						|
   opus_val16 r2;
 | 
						|
   opus_val16 y;
 | 
						|
   /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */
 | 
						|
   n = x-32768;
 | 
						|
   /* Get a rough initial guess for the root.
 | 
						|
      The optimal minimax quadratic approximation (using relative error) is
 | 
						|
       r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
 | 
						|
      Coefficients here, and the final result r, are Q14.*/
 | 
						|
   r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713))));
 | 
						|
   /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14.
 | 
						|
      We can compute the result from n and r using Q15 multiplies with some
 | 
						|
       adjustment, carefully done to avoid overflow.
 | 
						|
      Range of y is [-1564,1594]. */
 | 
						|
   r2 = MULT16_16_Q15(r, r);
 | 
						|
   y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1);
 | 
						|
   /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
 | 
						|
      This yields the Q14 reciprocal square root of the Q16 x, with a maximum
 | 
						|
       relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a
 | 
						|
       peak absolute error of 2.26591/16384. */
 | 
						|
   return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y,
 | 
						|
              SUB16(MULT16_16_Q15(y, 12288), 16384))));
 | 
						|
}
 | 
						|
 | 
						|
/** Sqrt approximation (QX input, QX/2 output) */
 | 
						|
opus_val32 celt_sqrt(opus_val32 x)
 | 
						|
{
 | 
						|
   int k;
 | 
						|
   opus_val16 n;
 | 
						|
   opus_val32 rt;
 | 
						|
   static const opus_val16 C[5] = {23175, 11561, -3011, 1699, -664};
 | 
						|
   if (x==0)
 | 
						|
      return 0;
 | 
						|
   else if (x>=1073741824)
 | 
						|
      return 32767;
 | 
						|
   k = (celt_ilog2(x)>>1)-7;
 | 
						|
   x = VSHR32(x, 2*k);
 | 
						|
   n = x-32768;
 | 
						|
   rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
 | 
						|
              MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
 | 
						|
   rt = VSHR32(rt,7-k);
 | 
						|
   return rt;
 | 
						|
}
 | 
						|
 | 
						|
#define L1 32767
 | 
						|
#define L2 -7651
 | 
						|
#define L3 8277
 | 
						|
#define L4 -626
 | 
						|
 | 
						|
static OPUS_INLINE opus_val16 _celt_cos_pi_2(opus_val16 x)
 | 
						|
{
 | 
						|
   opus_val16 x2;
 | 
						|
 | 
						|
   x2 = MULT16_16_P15(x,x);
 | 
						|
   return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
 | 
						|
                                                                                ))))))));
 | 
						|
}
 | 
						|
 | 
						|
#undef L1
 | 
						|
#undef L2
 | 
						|
#undef L3
 | 
						|
#undef L4
 | 
						|
 | 
						|
opus_val16 celt_cos_norm(opus_val32 x)
 | 
						|
{
 | 
						|
   x = x&0x0001ffff;
 | 
						|
   if (x>SHL32(EXTEND32(1), 16))
 | 
						|
      x = SUB32(SHL32(EXTEND32(1), 17),x);
 | 
						|
   if (x&0x00007fff)
 | 
						|
   {
 | 
						|
      if (x<SHL32(EXTEND32(1), 15))
 | 
						|
      {
 | 
						|
         return _celt_cos_pi_2(EXTRACT16(x));
 | 
						|
      } else {
 | 
						|
         return NEG16(_celt_cos_pi_2(EXTRACT16(65536-x)));
 | 
						|
      }
 | 
						|
   } else {
 | 
						|
      if (x&0x0000ffff)
 | 
						|
         return 0;
 | 
						|
      else if (x&0x0001ffff)
 | 
						|
         return -32767;
 | 
						|
      else
 | 
						|
         return 32767;
 | 
						|
   }
 | 
						|
}
 | 
						|
 | 
						|
/** Reciprocal approximation (Q15 input, Q16 output) */
 | 
						|
opus_val32 celt_rcp(opus_val32 x)
 | 
						|
{
 | 
						|
   int i;
 | 
						|
   opus_val16 n;
 | 
						|
   opus_val16 r;
 | 
						|
   celt_sig_assert(x>0);
 | 
						|
   i = celt_ilog2(x);
 | 
						|
   /* n is Q15 with range [0,1). */
 | 
						|
   n = VSHR32(x,i-15)-32768;
 | 
						|
   /* Start with a linear approximation:
 | 
						|
      r = 1.8823529411764706-0.9411764705882353*n.
 | 
						|
      The coefficients and the result are Q14 in the range [15420,30840].*/
 | 
						|
   r = ADD16(30840, MULT16_16_Q15(-15420, n));
 | 
						|
   /* Perform two Newton iterations:
 | 
						|
      r -= r*((r*n)-1.Q15)
 | 
						|
         = r*((r*n)+(r-1.Q15)). */
 | 
						|
   r = SUB16(r, MULT16_16_Q15(r,
 | 
						|
             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))));
 | 
						|
   /* We subtract an extra 1 in the second iteration to avoid overflow; it also
 | 
						|
       neatly compensates for truncation error in the rest of the process. */
 | 
						|
   r = SUB16(r, ADD16(1, MULT16_16_Q15(r,
 | 
						|
             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))));
 | 
						|
   /* r is now the Q15 solution to 2/(n+1), with a maximum relative error
 | 
						|
       of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
 | 
						|
       error of 1.24665/32768. */
 | 
						|
   return VSHR32(EXTEND32(r),i-16);
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |