src | ||
ed25519.dll | ||
readme.md | ||
test.c |
Ed25519
This is a portable implementation of Ed25519 based on the SUPERCOP "ref10" implementation. All code is in the public domain.
All code is pure ANSI C without any dependencies, except for the random seed
generation which uses standard OS cryptography APIs. If you wish to be entirely
portable define ED25519_NO_SEED
. This disables the ed25519_create_seed
function, so if your application requires key generation you must supply your
own seeding function (simply a 32 byte random number generator).
Performance
On a machine with an Intel Pentium B970 @ 2.3GHz I got the following speeds (running on only one a single core):
Seed + key generation: 345us
Message signing (short message): 256us
Message verifying (short message): 777us
The speeds on other machines may vary. Sign/verify times will be higher with longer messages.
Usage
Simply add all .c and .h files in the src/
folder to your project and include
ed25519.h
in any file you want to use the API. If you prefer to use a shared
library, only copy ed25519.h
and define ED25519_DLL
before importing. A
windows DLL is pre-built.
There are no defined types for seeds, private keys, public keys or signatures.
Instead simple unsigned char
buffers are used with the following sizes:
unsigned char seed[32];
unsigned char signature[64];
unsigned char public_key[32];
unsigned char private_key[64];
API
int ed25519_create_seed(unsigned char *seed);
Creates a 32 byte random seed in seed
for key generation. seed
must be a
writable 32 byte buffer. Returns 0 on success, and nonzero on failure.
void ed25519_create_keypair(unsigned char *public_key, unsigned char *private_key, const unsigned char *seed);
Creates a new key pair from the given seed. public_key
must be a writable 32
byte buffer, private_key
must be a writable 64 byte buffer and seed
must be
a 32 byte buffer.
void ed25519_sign(unsigned char *signature,
const unsigned char *message, size_t message_len,
const unsigned char *public_key, const unsigned char *private_key);
Creates a signature of the given message with the keypair (public_key, private_key)
. signature
must be a writable 64 byte buffer. message
must
have at least message_len
bytes to be read. The given keypair must be a
keypair generated by ed25519_create_keypair
.
int ed25519_verify(const unsigned char *signature,
const unsigned char *message, size_t message_len,
const unsigned char *public_key);
Verifies the signature on the given message using public_key
. signature
must be a readable 64 byte buffer. message
must have at least message_len
bytes to be read. public_key
must be a 32 byte public key generated by
ed25519_create_keypair
. Returns 1 if the signature matches, 0 otherwise.
void ed25519_add_scalar(unsigned char *public_key, unsigned char *private_key,
const unsigned char *scalar);
Adds scalar
to the given keypair where scalar is a 32 byte buffer (possibly generated with ed25519_create_seed
), generating a new keypair. You can calculate the public key sum without knowing the private key and vice versa by passing in NULL. This is useful for enforcing randomness on a keypair while only knowing the public key, among other things.
Example
unsigned char seed[32], public_key[32], private_key[64], signature[64];
const unsigned char message[] = "TEST MESSAGE";
/* create a random seed, and a keypair out of that seed */
if (ed25519_create_seed(seed)) {
printf("error while generating seed\n");
exit(1);
}
ed25519_create_keypair(public_key, private_key, seed);
/* create signature on the message with the keypair */
ed25519_sign(signature, message, strlen(message), public_key, private_key);
/* verify the signature */
if (ed25519_verify(signature, message, strlen(message), public_key)) {
printf("valid signature\n");
} else {
printf("invalid signature\n");
}