EVP_KDF-SS - The Single Step / One Step EVP_KDF implementation
The EVP_KDF-SS algorithm implements the Single Step key derivation function (SSKDF). SSKDF derives a key using input such as a shared secret key (that was generated during the execution of a key establishment scheme) and fixedinfo. SSKDF is also informally referred to as 'Concat KDF'.
The implementation uses a selectable auxiliary function H, which can be one of:
Both the HMAC and KMAC implementations set the key using the 'salt' value. The hash and HMAC also require the digest to be set.
"SSKDF" is the name for this implementation; it
can be used with the EVP_KDF_fetch()
function.
The supported parameters are:
These parameters work as described in EVP_KDF(3)/PARAMETERS.
This parameter set the shared secret that is used for key derivation.
This parameter sets an optional value for fixedinfo, also known as otherinfo.
A context for SSKDF can be obtained by calling:
EVP_KDF *kdf = EVP_KDF_fetch(NULL, "SSKDF", NULL); EVP_KDF_CTX *kctx = EVP_KDF_CTX_new(kdf);
The output length of an SSKDF is specified via the keylen parameter to the EVP_KDF_derive(3) function.
This example derives 10 bytes using H(x) = SHA-256, with the secret key "secret" and fixedinfo value "label":
EVP_KDF *kdf; EVP_KDF_CTX *kctx; unsigned char out[10]; OSSL_PARAM params[4], *p = params;
kdf = EVP_KDF_fetch(NULL, "SSKDF", NULL); kctx = EVP_KDF_CTX_new(kdf); EVP_KDF_free(kdf);
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST, SN_sha256, strlen(SN_sha256)); *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, "secret", (size_t)6); *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_INFO, "label", (size_t)5); *p = OSSL_PARAM_construct_end(); if (EVP_KDF_CTX_set_params(kctx, params) <= 0) { error("EVP_KDF_CTX_set_params"); } if (EVP_KDF_derive(kctx, out, sizeof(out)) <= 0) { error("EVP_KDF_derive"); }
EVP_KDF_CTX_free(kctx);
This example derives 10 bytes using H(x) = HMAC(SHA-256), with the secret key "secret", fixedinfo value "label" and salt "salt":
EVP_KDF *kdf; EVP_KDF_CTX *kctx; unsigned char out[10]; OSSL_PARAM params[6], *p = params;
kdf = EVP_KDF_fetch(NULL, "SSKDF", NULL); kctx = EVP_KDF_CTX_new(kdf); EVP_KDF_free(kdf);
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_MAC, SN_hmac, strlen(SN_hmac)); *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST, SN_sha256, strlen(SN_sha256)); *p++ = OSSL_PARAM_construct_octet_string(EVP_KDF_CTRL_SET_KEY, "secret", (size_t)6); *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_INFO, "label", (size_t)5); *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SALT, "salt", (size_t)4); *p = OSSL_PARAM_construct_end(); if (EVP_KDF_CTX_set_params(kctx, params) <= 0) { error("EVP_KDF_CTX_set_params"); } if (EVP_KDF_derive(kctx, out, sizeof(out)) <= 0) { error("EVP_KDF_derive"); }
EVP_KDF_CTX_free(kctx);
This example derives 10 bytes using H(x) = KMAC128(x,salt,outlen), with the secret key "secret" fixedinfo value "label", salt of "salt" and KMAC outlen of 20:
EVP_KDF *kdf; EVP_KDF_CTX *kctx; unsigned char out[10]; OSSL_PARAM params[7], *p = params;
kdf = EVP_KDF_fetch(NULL, "SSKDF", NULL); kctx = EVP_KDF_CTX_new(kdf); EVP_KDF_free(kdf);
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_MAC, SN_kmac128, strlen(SN_kmac128)); *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST, SN_sha256, strlen(SN_sha256)); *p++ = OSSL_PARAM_construct_octet_string(EVP_KDF_CTRL_SET_KEY, "secret", (size_t)6); *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_INFO, "label", (size_t)5); *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SALT, "salt", (size_t)4); *p++ = OSSL_PARAM_construct_size_t(OSSL_KDF_PARAM_MAC_SIZE, (size_t)20); *p = OSSL_PARAM_construct_end(); if (EVP_KDF_CTX_set_params(kctx, params) <= 0) { error("EVP_KDF_CTX_set_params"); } if (EVP_KDF_derive(kctx, out, sizeof(out)) <= 0) { error("EVP_KDF_derive"); }
EVP_KDF_CTX_free(kctx);
NIST SP800-56Cr1.
EVP_KDF(3), EVP_KDF_CTX_new(3), EVP_KDF_CTX_free(3), EVP_KDF_CTX_set_params(3), EVP_KDF_size(3), EVP_KDF_derive(3), EVP_KDF(3)/PARAMETERS
This functionality was added to OpenSSL 3.0.
Copyright 2019 The OpenSSL Project Authors. All Rights Reserved. Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
Licensed under the Apache License 2.0 (the "License"). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or at https://www.openssl.org/source/license.html.