Upgraded to fmt 5.1.0

This commit is contained in:
gabime 2018-07-08 11:03:43 +03:00
parent 887326e715
commit f4771be70e
9 changed files with 5382 additions and 6436 deletions

File diff suppressed because it is too large Load Diff

View File

@ -17,52 +17,50 @@
#include <climits>
#include <cmath>
#include <cstdarg>
#include <cstddef> // for std::ptrdiff_t
#include <cstddef> // for std::ptrdiff_t
#include <locale>
#if defined(_WIN32) && defined(__MINGW32__)
#include <cstring>
# include <cstring>
#endif
#if FMT_USE_WINDOWS_H
#if !defined(FMT_HEADER_ONLY) && !defined(WIN32_LEAN_AND_MEAN)
#define WIN32_LEAN_AND_MEAN
#endif
#if defined(NOMINMAX) || defined(FMT_WIN_MINMAX)
#include <windows.h>
#else
#define NOMINMAX
#include <windows.h>
#undef NOMINMAX
#endif
# if !defined(FMT_HEADER_ONLY) && !defined(WIN32_LEAN_AND_MEAN)
# define WIN32_LEAN_AND_MEAN
# endif
# if defined(NOMINMAX) || defined(FMT_WIN_MINMAX)
# include <windows.h>
# else
# define NOMINMAX
# include <windows.h>
# undef NOMINMAX
# endif
#endif
#if FMT_EXCEPTIONS
#define FMT_TRY try
#define FMT_CATCH(x) catch (x)
# define FMT_TRY try
# define FMT_CATCH(x) catch (x)
#else
#define FMT_TRY if (true)
#define FMT_CATCH(x) if (false)
# define FMT_TRY if (true)
# define FMT_CATCH(x) if (false)
#endif
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4127) // conditional expression is constant
#pragma warning(disable : 4702) // unreachable code
# pragma warning(push)
# pragma warning(disable: 4127) // conditional expression is constant
# pragma warning(disable: 4702) // unreachable code
// Disable deprecation warning for strerror. The latter is not called but
// MSVC fails to detect it.
#pragma warning(disable : 4996)
# pragma warning(disable: 4996)
#endif
// Dummy implementations of strerror_r and strerror_s called if corresponding
// system functions are not available.
inline fmt::internal::null<> strerror_r(int, char *, ...)
{
return fmt::internal::null<>();
inline fmt::internal::null<> strerror_r(int, char *, ...) {
return fmt::internal::null<>();
}
inline fmt::internal::null<> strerror_s(char *, std::size_t, ...)
{
return fmt::internal::null<>();
inline fmt::internal::null<> strerror_s(char *, std::size_t, ...) {
return fmt::internal::null<>();
}
FMT_BEGIN_NAMESPACE
@ -70,28 +68,24 @@ FMT_BEGIN_NAMESPACE
namespace {
#ifndef _MSC_VER
#define FMT_SNPRINTF snprintf
#else // _MSC_VER
inline int fmt_snprintf(char *buffer, size_t size, const char *format, ...)
{
va_list args;
va_start(args, format);
int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args);
va_end(args);
return result;
# define FMT_SNPRINTF snprintf
#else // _MSC_VER
inline int fmt_snprintf(char *buffer, size_t size, const char *format, ...) {
va_list args;
va_start(args, format);
int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args);
va_end(args);
return result;
}
#define FMT_SNPRINTF fmt_snprintf
#endif // _MSC_VER
# define FMT_SNPRINTF fmt_snprintf
#endif // _MSC_VER
#if defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT)
#define FMT_SWPRINTF snwprintf
# define FMT_SWPRINTF snwprintf
#else
#define FMT_SWPRINTF swprintf
# define FMT_SWPRINTF swprintf
#endif // defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT)
const char RESET_COLOR[] = "\x1b[0m";
const wchar_t WRESET_COLOR[] = L"\x1b[0m";
typedef void (*FormatFunc)(internal::buffer &, int, string_view);
// Portable thread-safe version of strerror.
@ -103,432 +97,468 @@ typedef void (*FormatFunc)(internal::buffer &, int, string_view);
// ERANGE - buffer is not large enough to store the error message
// other - failure
// Buffer should be at least of size 1.
int safe_strerror(int error_code, char *&buffer, std::size_t buffer_size) FMT_NOEXCEPT
{
FMT_ASSERT(buffer != FMT_NULL && buffer_size != 0, "invalid buffer");
int safe_strerror(
int error_code, char *&buffer, std::size_t buffer_size) FMT_NOEXCEPT {
FMT_ASSERT(buffer != FMT_NULL && buffer_size != 0, "invalid buffer");
class dispatcher
{
private:
int error_code_;
char *&buffer_;
std::size_t buffer_size_;
class dispatcher {
private:
int error_code_;
char *&buffer_;
std::size_t buffer_size_;
// A noop assignment operator to avoid bogus warnings.
void operator=(const dispatcher &) {}
// A noop assignment operator to avoid bogus warnings.
void operator=(const dispatcher &) {}
// Handle the result of XSI-compliant version of strerror_r.
int handle(int result)
{
// glibc versions before 2.13 return result in errno.
return result == -1 ? errno : result;
}
// Handle the result of XSI-compliant version of strerror_r.
int handle(int result) {
// glibc versions before 2.13 return result in errno.
return result == -1 ? errno : result;
}
// Handle the result of GNU-specific version of strerror_r.
int handle(char *message)
{
// If the buffer is full then the message is probably truncated.
if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1)
return ERANGE;
buffer_ = message;
return 0;
}
// Handle the result of GNU-specific version of strerror_r.
int handle(char *message) {
// If the buffer is full then the message is probably truncated.
if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1)
return ERANGE;
buffer_ = message;
return 0;
}
// Handle the case when strerror_r is not available.
int handle(internal::null<>)
{
return fallback(strerror_s(buffer_, buffer_size_, error_code_));
}
// Handle the case when strerror_r is not available.
int handle(internal::null<>) {
return fallback(strerror_s(buffer_, buffer_size_, error_code_));
}
// Fallback to strerror_s when strerror_r is not available.
int fallback(int result)
{
// If the buffer is full then the message is probably truncated.
return result == 0 && strlen(buffer_) == buffer_size_ - 1 ? ERANGE : result;
}
// Fallback to strerror_s when strerror_r is not available.
int fallback(int result) {
// If the buffer is full then the message is probably truncated.
return result == 0 && strlen(buffer_) == buffer_size_ - 1 ?
ERANGE : result;
}
// Fallback to strerror if strerror_r and strerror_s are not available.
int fallback(internal::null<>)
{
errno = 0;
buffer_ = strerror(error_code_);
return errno;
}
// Fallback to strerror if strerror_r and strerror_s are not available.
int fallback(internal::null<>) {
errno = 0;
buffer_ = strerror(error_code_);
return errno;
}
public:
dispatcher(int err_code, char *&buf, std::size_t buf_size)
: error_code_(err_code)
, buffer_(buf)
, buffer_size_(buf_size)
{
}
public:
dispatcher(int err_code, char *&buf, std::size_t buf_size)
: error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {}
int run()
{
return handle(strerror_r(error_code_, buffer_, buffer_size_));
}
};
return dispatcher(error_code, buffer, buffer_size).run();
int run() {
return handle(strerror_r(error_code_, buffer_, buffer_size_));
}
};
return dispatcher(error_code, buffer, buffer_size).run();
}
void format_error_code(internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT
{
// Report error code making sure that the output fits into
// inline_buffer_size to avoid dynamic memory allocation and potential
// bad_alloc.
out.resize(0);
static const char SEP[] = ": ";
static const char ERROR_STR[] = "error ";
// Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
std::size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2;
typedef internal::int_traits<int>::main_type main_type;
main_type abs_value = static_cast<main_type>(error_code);
if (internal::is_negative(error_code))
{
abs_value = 0 - abs_value;
++error_code_size;
}
error_code_size += internal::count_digits(abs_value);
writer w(out);
if (message.size() <= inline_buffer_size - error_code_size)
{
w.write(message);
w.write(SEP);
}
w.write(ERROR_STR);
w.write(error_code);
assert(out.size() <= inline_buffer_size);
void format_error_code(internal::buffer &out, int error_code,
string_view message) FMT_NOEXCEPT {
// Report error code making sure that the output fits into
// inline_buffer_size to avoid dynamic memory allocation and potential
// bad_alloc.
out.resize(0);
static const char SEP[] = ": ";
static const char ERROR_STR[] = "error ";
// Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
std::size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2;
typedef internal::int_traits<int>::main_type main_type;
main_type abs_value = static_cast<main_type>(error_code);
if (internal::is_negative(error_code)) {
abs_value = 0 - abs_value;
++error_code_size;
}
error_code_size += internal::count_digits(abs_value);
writer w(out);
if (message.size() <= inline_buffer_size - error_code_size) {
w.write(message);
w.write(SEP);
}
w.write(ERROR_STR);
w.write(error_code);
assert(out.size() <= inline_buffer_size);
}
void report_error(FormatFunc func, int error_code, string_view message) FMT_NOEXCEPT
{
memory_buffer full_message;
func(full_message, error_code, message);
// Use Writer::data instead of Writer::c_str to avoid potential memory
// allocation.
std::fwrite(full_message.data(), full_message.size(), 1, stderr);
std::fputc('\n', stderr);
void report_error(FormatFunc func, int error_code,
string_view message) FMT_NOEXCEPT {
memory_buffer full_message;
func(full_message, error_code, message);
// Use Writer::data instead of Writer::c_str to avoid potential memory
// allocation.
std::fwrite(full_message.data(), full_message.size(), 1, stderr);
std::fputc('\n', stderr);
}
} // namespace
} // namespace
class locale
{
private:
std::locale locale_;
class locale {
private:
std::locale locale_;
public:
explicit locale(std::locale loc = std::locale())
: locale_(loc)
{
}
std::locale get()
{
return locale_;
}
public:
explicit locale(std::locale loc = std::locale()) : locale_(loc) {}
std::locale get() { return locale_; }
};
template<typename Char>
FMT_FUNC Char internal::thousands_sep(locale_provider *lp)
{
std::locale loc = lp ? lp->locale().get() : std::locale();
return std::use_facet<std::numpunct<Char>>(loc).thousands_sep();
template <typename Char>
FMT_FUNC Char internal::thousands_sep(locale_provider *lp) {
std::locale loc = lp ? lp->locale().get() : std::locale();
return std::use_facet<std::numpunct<Char>>(loc).thousands_sep();
}
FMT_FUNC void system_error::init(int err_code, string_view format_str, format_args args)
{
error_code_ = err_code;
memory_buffer buffer;
format_system_error(buffer, err_code, vformat(format_str, args));
std::runtime_error &base = *this;
base = std::runtime_error(to_string(buffer));
FMT_FUNC void system_error::init(
int err_code, string_view format_str, format_args args) {
error_code_ = err_code;
memory_buffer buffer;
format_system_error(buffer, err_code, vformat(format_str, args));
std::runtime_error &base = *this;
base = std::runtime_error(to_string(buffer));
}
namespace internal {
template<typename T>
int char_traits<char>::format_float(char *buffer, std::size_t size, const char *format, int precision, T value)
{
return precision < 0 ? FMT_SNPRINTF(buffer, size, format, value) : FMT_SNPRINTF(buffer, size, format, precision, value);
template <typename T>
int char_traits<char>::format_float(
char *buffer, std::size_t size, const char *format, int precision, T value) {
return precision < 0 ?
FMT_SNPRINTF(buffer, size, format, value) :
FMT_SNPRINTF(buffer, size, format, precision, value);
}
template<typename T>
int char_traits<wchar_t>::format_float(wchar_t *buffer, std::size_t size, const wchar_t *format, int precision, T value)
{
return precision < 0 ? FMT_SWPRINTF(buffer, size, format, value) : FMT_SWPRINTF(buffer, size, format, precision, value);
template <typename T>
int char_traits<wchar_t>::format_float(
wchar_t *buffer, std::size_t size, const wchar_t *format, int precision,
T value) {
return precision < 0 ?
FMT_SWPRINTF(buffer, size, format, value) :
FMT_SWPRINTF(buffer, size, format, precision, value);
}
template<typename T>
const char basic_data<T>::DIGITS[] = "0001020304050607080910111213141516171819"
"2021222324252627282930313233343536373839"
"4041424344454647484950515253545556575859"
"6061626364656667686970717273747576777879"
"8081828384858687888990919293949596979899";
template <typename T>
const char basic_data<T>::DIGITS[] =
"0001020304050607080910111213141516171819"
"2021222324252627282930313233343536373839"
"4041424344454647484950515253545556575859"
"6061626364656667686970717273747576777879"
"8081828384858687888990919293949596979899";
#define FMT_POWERS_OF_10(factor) \
factor * 10, factor * 100, factor * 1000, factor * 10000, factor * 100000, factor * 1000000, factor * 10000000, factor * 100000000, \
factor * 1000000000
#define FMT_POWERS_OF_10(factor) \
factor * 10, \
factor * 100, \
factor * 1000, \
factor * 10000, \
factor * 100000, \
factor * 1000000, \
factor * 10000000, \
factor * 100000000, \
factor * 1000000000
template<typename T>
const uint32_t basic_data<T>::POWERS_OF_10_32[] = {0, FMT_POWERS_OF_10(1)};
template <typename T>
const uint32_t basic_data<T>::POWERS_OF_10_32[] = {
0, FMT_POWERS_OF_10(1)
};
template<typename T>
const uint64_t basic_data<T>::POWERS_OF_10_64[] = {0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ull), 10000000000000000000ull};
template <typename T>
const uint64_t basic_data<T>::POWERS_OF_10_64[] = {
0,
FMT_POWERS_OF_10(1),
FMT_POWERS_OF_10(1000000000ull),
10000000000000000000ull
};
// Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
// These are generated by support/compute-powers.py.
template<typename T>
const uint64_t basic_data<T>::POW10_SIGNIFICANDS[] = {0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76, 0xcf42894a5dce35ea,
0x9a6bb0aa55653b2d, 0xe61acf033d1a45df, 0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c, 0x8dd01fad907ffc3c,
0xd3515c2831559a83, 0x9d71ac8fada6c9b5, 0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57, 0xc21094364dfb5637,
0x9096ea6f3848984f, 0xd77485cb25823ac7, 0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e, 0x84c8d4dfd2c63f3b,
0xc5dd44271ad3cdba, 0x936b9fcebb25c996, 0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126, 0xb5b5ada8aaff80b8,
0x87625f056c7c4a8b, 0xc9bcff6034c13053, 0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f, 0xf8a95fcf88747d94,
0xb94470938fa89bcf, 0x8a08f0f8bf0f156b, 0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06, 0xaa242499697392d3,
0xfd87b5f28300ca0e, 0xbce5086492111aeb, 0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000, 0xe8d4a51000000000,
0xad78ebc5ac620000, 0x813f3978f8940984, 0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068, 0x9f4f2726179a2245,
0xed63a231d4c4fb27, 0xb0de65388cc8ada8, 0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758, 0xda01ee641a708dea,
0xa26da3999aef774a, 0xf209787bb47d6b85, 0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d, 0x952ab45cfa97a0b3,
0xde469fbd99a05fe3, 0xa59bc234db398c25, 0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2, 0xcc20ce9bd35c78a5,
0x98165af37b2153df, 0xe2a0b5dc971f303a, 0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410, 0x8bab8eefb6409c1a,
0xd01fef10a657842c, 0x9b10a4e5e9913129, 0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85, 0xbf21e44003acdd2d,
0x8e679c2f5e44ff8f, 0xd433179d9c8cb841, 0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b};
template <typename T>
const uint64_t basic_data<T>::POW10_SIGNIFICANDS[] = {
0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76, 0xcf42894a5dce35ea,
0x9a6bb0aa55653b2d, 0xe61acf033d1a45df, 0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f,
0xbe5691ef416bd60c, 0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57, 0xc21094364dfb5637,
0x9096ea6f3848984f, 0xd77485cb25823ac7, 0xa086cfcd97bf97f4, 0xef340a98172aace5,
0xb23867fb2a35b28e, 0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126, 0xb5b5ada8aaff80b8,
0x87625f056c7c4a8b, 0xc9bcff6034c13053, 0x964e858c91ba2655, 0xdff9772470297ebd,
0xa6dfbd9fb8e5b88f, 0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06, 0xaa242499697392d3,
0xfd87b5f28300ca0e, 0xbce5086492111aeb, 0x8cbccc096f5088cc, 0xd1b71758e219652c,
0x9c40000000000000, 0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068, 0x9f4f2726179a2245,
0xed63a231d4c4fb27, 0xb0de65388cc8ada8, 0x83c7088e1aab65db, 0xc45d1df942711d9a,
0x924d692ca61be758, 0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d, 0x952ab45cfa97a0b3,
0xde469fbd99a05fe3, 0xa59bc234db398c25, 0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece,
0x88fcf317f22241e2, 0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410, 0x8bab8eefb6409c1a,
0xd01fef10a657842c, 0x9b10a4e5e9913129, 0xe7109bfba19c0c9d, 0xac2820d9623bf429,
0x80444b5e7aa7cf85, 0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b
};
// Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
// to significands above.
template<typename T>
const int16_t basic_data<T>::POW10_EXPONENTS[] = {-1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954, -927, -901,
-874, -847, -821, -794, -768, -741, -715, -688, -661, -635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369, -343, -316,
-289, -263, -236, -210, -183, -157, -130, -103, -77, -50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216, 242, 269, 295, 322, 348, 375,
402, 428, 455, 481, 508, 534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800, 827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066};
template <typename T>
const int16_t basic_data<T>::POW10_EXPONENTS[] = {
-1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
-927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661,
-635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369,
-343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77,
-50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216,
242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508,
534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800,
827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066
};
FMT_FUNC fp operator*(fp x, fp y)
{
// Multiply 32-bit parts of significands.
uint64_t mask = (1ULL << 32) - 1;
uint64_t a = x.f >> 32, b = x.f & mask;
uint64_t c = y.f >> 32, d = y.f & mask;
uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
// Compute mid 64-bit of result and round.
uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
return fp(ac + (ad >> 32) + (bc >> 32) + (mid >> 32), x.e + y.e + 64);
template <typename T> const char basic_data<T>::RESET_COLOR[] = "\x1b[0m";
template <typename T> const wchar_t basic_data<T>::WRESET_COLOR[] = L"\x1b[0m";
FMT_FUNC fp operator*(fp x, fp y) {
// Multiply 32-bit parts of significands.
uint64_t mask = (1ULL << 32) - 1;
uint64_t a = x.f >> 32, b = x.f & mask;
uint64_t c = y.f >> 32, d = y.f & mask;
uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
// Compute mid 64-bit of result and round.
uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
return fp(ac + (ad >> 32) + (bc >> 32) + (mid >> 32), x.e + y.e + 64);
}
FMT_FUNC fp get_cached_power(int min_exponent, int &pow10_exponent)
{
const double one_over_log2_10 = 0.30102999566398114; // 1 / log2(10)
int index = static_cast<int>(std::ceil((min_exponent + fp::significand_size - 1) * one_over_log2_10));
// Decimal exponent of the first (smallest) cached power of 10.
const int first_dec_exp = -348;
// Difference between two consecutive decimal exponents in cached powers of 10.
const int dec_exp_step = 8;
index = (index - first_dec_exp - 1) / dec_exp_step + 1;
pow10_exponent = first_dec_exp + index * dec_exp_step;
return fp(data::POW10_SIGNIFICANDS[index], data::POW10_EXPONENTS[index]);
FMT_FUNC fp get_cached_power(int min_exponent, int &pow10_exponent) {
const double one_over_log2_10 = 0.30102999566398114; // 1 / log2(10)
int index = static_cast<int>(std::ceil(
(min_exponent + fp::significand_size - 1) * one_over_log2_10));
// Decimal exponent of the first (smallest) cached power of 10.
const int first_dec_exp = -348;
// Difference between two consecutive decimal exponents in cached powers of 10.
const int dec_exp_step = 8;
index = (index - first_dec_exp - 1) / dec_exp_step + 1;
pow10_exponent = first_dec_exp + index * dec_exp_step;
return fp(data::POW10_SIGNIFICANDS[index], data::POW10_EXPONENTS[index]);
}
} // namespace internal
} // namespace internal
#if FMT_USE_WINDOWS_H
FMT_FUNC internal::utf8_to_utf16::utf8_to_utf16(string_view s)
{
static const char ERROR_MSG[] = "cannot convert string from UTF-8 to UTF-16";
if (s.size() > INT_MAX)
FMT_THROW(windows_error(ERROR_INVALID_PARAMETER, ERROR_MSG));
int s_size = static_cast<int>(s.size());
if (s_size == 0)
{
// MultiByteToWideChar does not support zero length, handle separately.
buffer_.resize(1);
buffer_[0] = 0;
return;
}
FMT_FUNC internal::utf8_to_utf16::utf8_to_utf16(string_view s) {
static const char ERROR_MSG[] = "cannot convert string from UTF-8 to UTF-16";
if (s.size() > INT_MAX)
FMT_THROW(windows_error(ERROR_INVALID_PARAMETER, ERROR_MSG));
int s_size = static_cast<int>(s.size());
if (s_size == 0) {
// MultiByteToWideChar does not support zero length, handle separately.
buffer_.resize(1);
buffer_[0] = 0;
return;
}
int length = MultiByteToWideChar(CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, FMT_NULL, 0);
if (length == 0)
FMT_THROW(windows_error(GetLastError(), ERROR_MSG));
buffer_.resize(length + 1);
length = MultiByteToWideChar(CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, &buffer_[0], length);
if (length == 0)
FMT_THROW(windows_error(GetLastError(), ERROR_MSG));
buffer_[length] = 0;
int length = MultiByteToWideChar(
CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, FMT_NULL, 0);
if (length == 0)
FMT_THROW(windows_error(GetLastError(), ERROR_MSG));
buffer_.resize(length + 1);
length = MultiByteToWideChar(
CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, &buffer_[0], length);
if (length == 0)
FMT_THROW(windows_error(GetLastError(), ERROR_MSG));
buffer_[length] = 0;
}
FMT_FUNC internal::utf16_to_utf8::utf16_to_utf8(wstring_view s)
{
if (int error_code = convert(s))
{
FMT_THROW(windows_error(error_code, "cannot convert string from UTF-16 to UTF-8"));
}
FMT_FUNC internal::utf16_to_utf8::utf16_to_utf8(wstring_view s) {
if (int error_code = convert(s)) {
FMT_THROW(windows_error(error_code,
"cannot convert string from UTF-16 to UTF-8"));
}
}
FMT_FUNC int internal::utf16_to_utf8::convert(wstring_view s)
{
if (s.size() > INT_MAX)
return ERROR_INVALID_PARAMETER;
int s_size = static_cast<int>(s.size());
if (s_size == 0)
{
// WideCharToMultiByte does not support zero length, handle separately.
buffer_.resize(1);
buffer_[0] = 0;
return 0;
}
int length = WideCharToMultiByte(CP_UTF8, 0, s.data(), s_size, FMT_NULL, 0, FMT_NULL, FMT_NULL);
if (length == 0)
return GetLastError();
buffer_.resize(length + 1);
length = WideCharToMultiByte(CP_UTF8, 0, s.data(), s_size, &buffer_[0], length, FMT_NULL, FMT_NULL);
if (length == 0)
return GetLastError();
buffer_[length] = 0;
FMT_FUNC int internal::utf16_to_utf8::convert(wstring_view s) {
if (s.size() > INT_MAX)
return ERROR_INVALID_PARAMETER;
int s_size = static_cast<int>(s.size());
if (s_size == 0) {
// WideCharToMultiByte does not support zero length, handle separately.
buffer_.resize(1);
buffer_[0] = 0;
return 0;
}
int length = WideCharToMultiByte(
CP_UTF8, 0, s.data(), s_size, FMT_NULL, 0, FMT_NULL, FMT_NULL);
if (length == 0)
return GetLastError();
buffer_.resize(length + 1);
length = WideCharToMultiByte(
CP_UTF8, 0, s.data(), s_size, &buffer_[0], length, FMT_NULL, FMT_NULL);
if (length == 0)
return GetLastError();
buffer_[length] = 0;
return 0;
}
FMT_FUNC void windows_error::init(int err_code, string_view format_str, format_args args)
{
error_code_ = err_code;
memory_buffer buffer;
internal::format_windows_error(buffer, err_code, vformat(format_str, args));
std::runtime_error &base = *this;
base = std::runtime_error(to_string(buffer));
FMT_FUNC void windows_error::init(
int err_code, string_view format_str, format_args args) {
error_code_ = err_code;
memory_buffer buffer;
internal::format_windows_error(buffer, err_code, vformat(format_str, args));
std::runtime_error &base = *this;
base = std::runtime_error(to_string(buffer));
}
FMT_FUNC void internal::format_windows_error(internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT
{
FMT_TRY
{
wmemory_buffer buf;
buf.resize(inline_buffer_size);
for (;;)
{
wchar_t *system_message = &buf[0];
int result = FormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, FMT_NULL, error_code,
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), system_message, static_cast<uint32_t>(buf.size()), FMT_NULL);
if (result != 0)
{
utf16_to_utf8 utf8_message;
if (utf8_message.convert(system_message) == ERROR_SUCCESS)
{
writer w(out);
w.write(message);
w.write(": ");
w.write(utf8_message);
return;
}
break;
}
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER)
break; // Can't get error message, report error code instead.
buf.resize(buf.size() * 2);
FMT_FUNC void internal::format_windows_error(
internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT {
FMT_TRY {
wmemory_buffer buf;
buf.resize(inline_buffer_size);
for (;;) {
wchar_t *system_message = &buf[0];
int result = FormatMessageW(
FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
FMT_NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
system_message, static_cast<uint32_t>(buf.size()), FMT_NULL);
if (result != 0) {
utf16_to_utf8 utf8_message;
if (utf8_message.convert(system_message) == ERROR_SUCCESS) {
writer w(out);
w.write(message);
w.write(": ");
w.write(utf8_message);
return;
}
break;
}
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER)
break; // Can't get error message, report error code instead.
buf.resize(buf.size() * 2);
}
FMT_CATCH(...) {}
format_error_code(out, error_code, message);
} FMT_CATCH(...) {}
format_error_code(out, error_code, message);
}
#endif // FMT_USE_WINDOWS_H
#endif // FMT_USE_WINDOWS_H
FMT_FUNC void format_system_error(internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT
{
FMT_TRY
{
memory_buffer buf;
buf.resize(inline_buffer_size);
for (;;)
{
char *system_message = &buf[0];
int result = safe_strerror(error_code, system_message, buf.size());
if (result == 0)
{
writer w(out);
w.write(message);
w.write(": ");
w.write(system_message);
return;
}
if (result != ERANGE)
break; // Can't get error message, report error code instead.
buf.resize(buf.size() * 2);
}
FMT_FUNC void format_system_error(
internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT {
FMT_TRY {
memory_buffer buf;
buf.resize(inline_buffer_size);
for (;;) {
char *system_message = &buf[0];
int result = safe_strerror(error_code, system_message, buf.size());
if (result == 0) {
writer w(out);
w.write(message);
w.write(": ");
w.write(system_message);
return;
}
if (result != ERANGE)
break; // Can't get error message, report error code instead.
buf.resize(buf.size() * 2);
}
FMT_CATCH(...) {}
format_error_code(out, error_code, message);
} FMT_CATCH(...) {}
format_error_code(out, error_code, message);
}
template<typename Char>
void basic_fixed_buffer<Char>::grow(std::size_t)
{
FMT_THROW(std::runtime_error("buffer overflow"));
template <typename Char>
void basic_fixed_buffer<Char>::grow(std::size_t) {
FMT_THROW(std::runtime_error("buffer overflow"));
}
FMT_FUNC void internal::error_handler::on_error(const char *message)
{
FMT_THROW(format_error(message));
FMT_FUNC void internal::error_handler::on_error(const char *message) {
FMT_THROW(format_error(message));
}
FMT_FUNC void report_system_error(int error_code, fmt::string_view message) FMT_NOEXCEPT
{
report_error(format_system_error, error_code, message);
FMT_FUNC void report_system_error(
int error_code, fmt::string_view message) FMT_NOEXCEPT {
report_error(format_system_error, error_code, message);
}
#if FMT_USE_WINDOWS_H
FMT_FUNC void report_windows_error(int error_code, fmt::string_view message) FMT_NOEXCEPT
{
report_error(internal::format_windows_error, error_code, message);
FMT_FUNC void report_windows_error(
int error_code, fmt::string_view message) FMT_NOEXCEPT {
report_error(internal::format_windows_error, error_code, message);
}
#endif
FMT_FUNC void vprint(std::FILE *f, string_view format_str, format_args args)
{
memory_buffer buffer;
vformat_to(buffer, format_str, args);
std::fwrite(buffer.data(), 1, buffer.size(), f);
FMT_FUNC void vprint(std::FILE *f, string_view format_str, format_args args) {
memory_buffer buffer;
vformat_to(buffer, format_str, args);
std::fwrite(buffer.data(), 1, buffer.size(), f);
}
FMT_FUNC void vprint(std::FILE *f, wstring_view format_str, wformat_args args)
{
wmemory_buffer buffer;
vformat_to(buffer, format_str, args);
std::fwrite(buffer.data(), sizeof(wchar_t), buffer.size(), f);
FMT_FUNC void vprint(std::FILE *f, wstring_view format_str, wformat_args args) {
wmemory_buffer buffer;
vformat_to(buffer, format_str, args);
std::fwrite(buffer.data(), sizeof(wchar_t), buffer.size(), f);
}
FMT_FUNC void vprint(string_view format_str, format_args args)
{
vprint(stdout, format_str, args);
FMT_FUNC void vprint(string_view format_str, format_args args) {
vprint(stdout, format_str, args);
}
FMT_FUNC void vprint(wstring_view format_str, wformat_args args)
{
vprint(stdout, format_str, args);
FMT_FUNC void vprint(wstring_view format_str, wformat_args args) {
vprint(stdout, format_str, args);
}
FMT_FUNC void vprint_colored(color c, string_view format, format_args args)
{
char escape[] = "\x1b[30m";
escape[3] = static_cast<char>('0' + c);
std::fputs(escape, stdout);
vprint(format, args);
std::fputs(RESET_COLOR, stdout);
#ifndef FMT_EXTENDED_COLORS
FMT_FUNC void vprint_colored(color c, string_view format, format_args args) {
char escape[] = "\x1b[30m";
escape[3] = static_cast<char>('0' + c);
std::fputs(escape, stdout);
vprint(format, args);
std::fputs(internal::data::RESET_COLOR, stdout);
}
FMT_FUNC void vprint_colored(color c, wstring_view format, wformat_args args)
{
wchar_t escape[] = L"\x1b[30m";
escape[3] = static_cast<wchar_t>('0' + c);
std::fputws(escape, stdout);
vprint(format, args);
std::fputws(WRESET_COLOR, stdout);
FMT_FUNC void vprint_colored(color c, wstring_view format, wformat_args args) {
wchar_t escape[] = L"\x1b[30m";
escape[3] = static_cast<wchar_t>('0' + c);
std::fputws(escape, stdout);
vprint(format, args);
std::fputws(internal::data::WRESET_COLOR, stdout);
}
#else
namespace internal {
FMT_CONSTEXPR void to_esc(uint8_t c, char out[], int offset) {
out[offset + 0] = static_cast<char>('0' + c / 100);
out[offset + 1] = static_cast<char>('0' + c / 10 % 10);
out[offset + 2] = static_cast<char>('0' + c % 10);
}
} // namespace internal
FMT_FUNC void vprint_rgb(rgb fd, string_view format, format_args args) {
char escape_fd[] = "\x1b[38;2;000;000;000m";
internal::to_esc(fd.r, escape_fd, 7);
internal::to_esc(fd.g, escape_fd, 11);
internal::to_esc(fd.b, escape_fd, 15);
std::fputs(escape_fd, stdout);
vprint(format, args);
std::fputs(internal::data::RESET_COLOR, stdout);
}
FMT_FUNC locale locale_provider::locale()
{
return fmt::locale();
FMT_FUNC void vprint_rgb(rgb fd, rgb bg, string_view format, format_args args) {
char escape_fd[] = "\x1b[38;2;000;000;000m"; // foreground color
char escape_bg[] = "\x1b[48;2;000;000;000m"; // background color
internal::to_esc(fd.r, escape_fd, 7);
internal::to_esc(fd.g, escape_fd, 11);
internal::to_esc(fd.b, escape_fd, 15);
internal::to_esc(bg.r, escape_bg, 7);
internal::to_esc(bg.g, escape_bg, 11);
internal::to_esc(bg.b, escape_bg, 15);
std::fputs(escape_fd, stdout);
std::fputs(escape_bg, stdout);
vprint(format, args);
std::fputs(internal::data::RESET_COLOR, stdout);
}
#endif
FMT_FUNC locale locale_provider::locale() { return fmt::locale(); }
FMT_END_NAMESPACE
#ifdef _MSC_VER
#pragma warning(pop)
# pragma warning(pop)
#endif
#endif // FMT_FORMAT_INL_H_
#endif // FMT_FORMAT_INL_H_

View File

@ -1,46 +0,0 @@
// Formatting library for C++
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#include "fmt/format-inl.h"
namespace fmt {
template struct internal::basic_data<void>;
// Explicit instantiations for char.
template FMT_API char internal::thousands_sep(locale_provider *lp);
template void basic_fixed_buffer<char>::grow(std::size_t);
template void internal::arg_map<format_context>::init(
const basic_format_args<format_context> &args);
template FMT_API int internal::char_traits<char>::format_float(
char *buffer, std::size_t size, const char *format,
unsigned width, int precision, double value);
template FMT_API int internal::char_traits<char>::format_float(
char *buffer, std::size_t size, const char *format,
unsigned width, int precision, long double value);
// Explicit instantiations for wchar_t.
template FMT_API wchar_t internal::thousands_sep(locale_provider *lp);
template void basic_fixed_buffer<wchar_t>::grow(std::size_t);
template void internal::arg_map<wformat_context>::init(const wformat_args &args);
template FMT_API int internal::char_traits<wchar_t>::format_float(
wchar_t *buffer, std::size_t size, const wchar_t *format,
unsigned width, int precision, double value);
template FMT_API int internal::char_traits<wchar_t>::format_float(
wchar_t *buffer, std::size_t size, const wchar_t *format,
unsigned width, int precision, long double value);
} // namespace fmt

File diff suppressed because it is too large Load Diff

View File

@ -14,137 +14,128 @@
FMT_BEGIN_NAMESPACE
namespace internal {
template<class Char>
class formatbuf : public std::basic_streambuf<Char>
{
private:
typedef typename std::basic_streambuf<Char>::int_type int_type;
typedef typename std::basic_streambuf<Char>::traits_type traits_type;
template <class Char>
class formatbuf : public std::basic_streambuf<Char> {
private:
typedef typename std::basic_streambuf<Char>::int_type int_type;
typedef typename std::basic_streambuf<Char>::traits_type traits_type;
basic_buffer<Char> &buffer_;
basic_buffer<Char> &buffer_;
public:
formatbuf(basic_buffer<Char> &buffer)
: buffer_(buffer)
{
}
public:
formatbuf(basic_buffer<Char> &buffer) : buffer_(buffer) {}
protected:
// The put-area is actually always empty. This makes the implementation
// simpler and has the advantage that the streambuf and the buffer are always
// in sync and sputc never writes into uninitialized memory. The obvious
// disadvantage is that each call to sputc always results in a (virtual) call
// to overflow. There is no disadvantage here for sputn since this always
// results in a call to xsputn.
protected:
// The put-area is actually always empty. This makes the implementation
// simpler and has the advantage that the streambuf and the buffer are always
// in sync and sputc never writes into uninitialized memory. The obvious
// disadvantage is that each call to sputc always results in a (virtual) call
// to overflow. There is no disadvantage here for sputn since this always
// results in a call to xsputn.
int_type overflow(int_type ch = traits_type::eof()) FMT_OVERRIDE
{
if (!traits_type::eq_int_type(ch, traits_type::eof()))
buffer_.push_back(static_cast<Char>(ch));
return ch;
}
int_type overflow(int_type ch = traits_type::eof()) FMT_OVERRIDE {
if (!traits_type::eq_int_type(ch, traits_type::eof()))
buffer_.push_back(static_cast<Char>(ch));
return ch;
}
std::streamsize xsputn(const Char *s, std::streamsize count) FMT_OVERRIDE
{
buffer_.append(s, s + count);
return count;
}
std::streamsize xsputn(const Char *s, std::streamsize count) FMT_OVERRIDE {
buffer_.append(s, s + count);
return count;
}
};
template<typename Char>
struct test_stream : std::basic_ostream<Char>
{
private:
struct null;
// Hide all operator<< from std::basic_ostream<Char>.
void operator<<(null);
template <typename Char>
struct test_stream : std::basic_ostream<Char> {
private:
struct null;
// Hide all operator<< from std::basic_ostream<Char>.
void operator<<(null);
};
// Checks if T has a user-defined operator<< (e.g. not a member of std::ostream).
template<typename T, typename Char>
class is_streamable
{
private:
template<typename U>
static decltype(internal::declval<test_stream<Char> &>() << internal::declval<U>(), std::true_type()) test(int);
template <typename T, typename Char>
class is_streamable {
private:
template <typename U>
static decltype(
internal::declval<test_stream<Char>&>()
<< internal::declval<U>(), std::true_type()) test(int);
template<typename>
static std::false_type test(...);
template <typename>
static std::false_type test(...);
typedef decltype(test<T>(0)) result;
typedef decltype(test<T>(0)) result;
public:
// std::string operator<< is not considered user-defined because we handle strings
// specially.
static const bool value = result::value && !std::is_same<T, std::string>::value;
public:
// std::string operator<< is not considered user-defined because we handle strings
// specially.
static const bool value = result::value && !std::is_same<T, std::string>::value;
};
// Disable conversion to int if T has an overloaded operator<< which is a free
// function (not a member of std::ostream).
template<typename T, typename Char>
class convert_to_int<T, Char, true>
{
public:
static const bool value = convert_to_int<T, Char, false>::value && !is_streamable<T, Char>::value;
template <typename T, typename Char>
class convert_to_int<T, Char, true> {
public:
static const bool value =
convert_to_int<T, Char, false>::value && !is_streamable<T, Char>::value;
};
// Write the content of buf to os.
template<typename Char>
void write(std::basic_ostream<Char> &os, basic_buffer<Char> &buf)
{
const Char *data = buf.data();
typedef std::make_unsigned<std::streamsize>::type UnsignedStreamSize;
UnsignedStreamSize size = buf.size();
UnsignedStreamSize max_size = internal::to_unsigned((std::numeric_limits<std::streamsize>::max)());
do
{
UnsignedStreamSize n = size <= max_size ? size : max_size;
os.write(data, static_cast<std::streamsize>(n));
data += n;
size -= n;
} while (size != 0);
template <typename Char>
void write(std::basic_ostream<Char> &os, basic_buffer<Char> &buf) {
const Char *data = buf.data();
typedef std::make_unsigned<std::streamsize>::type UnsignedStreamSize;
UnsignedStreamSize size = buf.size();
UnsignedStreamSize max_size =
internal::to_unsigned((std::numeric_limits<std::streamsize>::max)());
do {
UnsignedStreamSize n = size <= max_size ? size : max_size;
os.write(data, static_cast<std::streamsize>(n));
data += n;
size -= n;
} while (size != 0);
}
template<typename Char, typename T>
void format_value(basic_buffer<Char> &buffer, const T &value)
{
internal::formatbuf<Char> format_buf(buffer);
std::basic_ostream<Char> output(&format_buf);
output.exceptions(std::ios_base::failbit | std::ios_base::badbit);
output << value;
buffer.resize(buffer.size());
template <typename Char, typename T>
void format_value(basic_buffer<Char> &buffer, const T &value) {
internal::formatbuf<Char> format_buf(buffer);
std::basic_ostream<Char> output(&format_buf);
output.exceptions(std::ios_base::failbit | std::ios_base::badbit);
output << value;
buffer.resize(buffer.size());
}
// Disable builtin formatting of enums and use operator<< instead.
template<typename T>
struct format_enum<T, typename std::enable_if<std::is_enum<T>::value>::type> : std::false_type
{
};
} // namespace internal
template <typename T>
struct format_enum<T,
typename std::enable_if<std::is_enum<T>::value>::type> : std::false_type {};
} // namespace internal
// Formats an object of type T that has an overloaded ostream operator<<.
template<typename T, typename Char>
struct formatter<T, Char, typename std::enable_if<internal::is_streamable<T, Char>::value>::type> : formatter<basic_string_view<Char>, Char>
{
template <typename T, typename Char>
struct formatter<T, Char,
typename std::enable_if<internal::is_streamable<T, Char>::value>::type>
: formatter<basic_string_view<Char>, Char> {
template<typename Context>
auto format(const T &value, Context &ctx) -> decltype(ctx.out())
{
basic_memory_buffer<Char> buffer;
internal::format_value(buffer, value);
basic_string_view<Char> str(buffer.data(), buffer.size());
formatter<basic_string_view<Char>, Char>::format(str, ctx);
return ctx.out();
}
template <typename Context>
auto format(const T &value, Context &ctx) -> decltype(ctx.out()) {
basic_memory_buffer<Char> buffer;
internal::format_value(buffer, value);
basic_string_view<Char> str(buffer.data(), buffer.size());
formatter<basic_string_view<Char>, Char>::format(str, ctx);
return ctx.out();
}
};
template<typename Char>
inline void vprint(
std::basic_ostream<Char> &os, basic_string_view<Char> format_str, basic_format_args<typename buffer_context<Char>::type> args)
{
basic_memory_buffer<Char> buffer;
vformat_to(buffer, format_str, args);
internal::write(os, buffer);
template <typename Char>
inline void vprint(std::basic_ostream<Char> &os,
basic_string_view<Char> format_str,
basic_format_args<typename buffer_context<Char>::type> args) {
basic_memory_buffer<Char> buffer;
vformat_to(buffer, format_str, args);
internal::write(os, buffer);
}
/**
\rst
@ -155,17 +146,17 @@ inline void vprint(
fmt::print(cerr, "Don't {}!", "panic");
\endrst
*/
template<typename... Args>
inline void print(std::ostream &os, string_view format_str, const Args &... args)
{
vprint<char>(os, format_str, make_format_args<format_context>(args...));
template <typename... Args>
inline void print(std::ostream &os, string_view format_str,
const Args & ... args) {
vprint<char>(os, format_str, make_format_args<format_context>(args...));
}
template<typename... Args>
inline void print(std::wostream &os, wstring_view format_str, const Args &... args)
{
vprint<wchar_t>(os, format_str, make_format_args<wformat_context>(args...));
template <typename... Args>
inline void print(std::wostream &os, wstring_view format_str,
const Args & ... args) {
vprint<wchar_t>(os, format_str, make_format_args<wformat_context>(args...));
}
FMT_END_NAMESPACE
#endif // FMT_OSTREAM_H_
#endif // FMT_OSTREAM_H_

View File

@ -10,55 +10,54 @@
#if defined(__MINGW32__) || defined(__CYGWIN__)
// Workaround MinGW bug https://sourceforge.net/p/mingw/bugs/2024/.
#undef __STRICT_ANSI__
# undef __STRICT_ANSI__
#endif
#include <errno.h>
#include <fcntl.h> // for O_RDONLY
#include <locale.h> // for locale_t
#include <fcntl.h> // for O_RDONLY
#include <locale.h> // for locale_t
#include <stdio.h>
#include <stdlib.h> // for strtod_l
#include <stdlib.h> // for strtod_l
#include <cstddef>
#if defined __APPLE__ || defined(__FreeBSD__)
#include <xlocale.h> // for LC_NUMERIC_MASK on OS X
# include <xlocale.h> // for LC_NUMERIC_MASK on OS X
#endif
#include "format.h"
#ifndef FMT_POSIX
#if defined(_WIN32) && !defined(__MINGW32__)
# if defined(_WIN32) && !defined(__MINGW32__)
// Fix warnings about deprecated symbols.
#define FMT_POSIX(call) _##call
#else
#define FMT_POSIX(call) call
#endif
# define FMT_POSIX(call) _##call
# else
# define FMT_POSIX(call) call
# endif
#endif
// Calls to system functions are wrapped in FMT_SYSTEM for testability.
#ifdef FMT_SYSTEM
#define FMT_POSIX_CALL(call) FMT_SYSTEM(call)
# define FMT_POSIX_CALL(call) FMT_SYSTEM(call)
#else
#define FMT_SYSTEM(call) call
#ifdef _WIN32
# define FMT_SYSTEM(call) call
# ifdef _WIN32
// Fix warnings about deprecated symbols.
#define FMT_POSIX_CALL(call) ::_##call
#else
#define FMT_POSIX_CALL(call) ::call
#endif
# define FMT_POSIX_CALL(call) ::_##call
# else
# define FMT_POSIX_CALL(call) ::call
# endif
#endif
// Retries the expression while it evaluates to error_result and errno
// equals to EINTR.
#ifndef _WIN32
#define FMT_RETRY_VAL(result, expression, error_result) \
do \
{ \
result = (expression); \
} while (result == error_result && errno == EINTR)
# define FMT_RETRY_VAL(result, expression, error_result) \
do { \
result = (expression); \
} while (result == error_result && errno == EINTR)
#else
#define FMT_RETRY_VAL(result, expression, error_result) result = (expression)
# define FMT_RETRY_VAL(result, expression, error_result) result = (expression)
#endif
#define FMT_RETRY(result, expression) FMT_RETRY_VAL(result, expression, -1)
@ -90,167 +89,137 @@ FMT_BEGIN_NAMESPACE
format(std::string("{}"), 42);
\endrst
*/
template<typename Char>
class basic_cstring_view
{
private:
const Char *data_;
template <typename Char>
class basic_cstring_view {
private:
const Char *data_;
public:
/** Constructs a string reference object from a C string. */
basic_cstring_view(const Char *s)
: data_(s)
{
}
public:
/** Constructs a string reference object from a C string. */
basic_cstring_view(const Char *s) : data_(s) {}
/**
\rst
Constructs a string reference from an ``std::string`` object.
\endrst
*/
basic_cstring_view(const std::basic_string<Char> &s)
: data_(s.c_str())
{
}
/**
\rst
Constructs a string reference from an ``std::string`` object.
\endrst
*/
basic_cstring_view(const std::basic_string<Char> &s) : data_(s.c_str()) {}
/** Returns the pointer to a C string. */
const Char *c_str() const
{
return data_;
}
/** Returns the pointer to a C string. */
const Char *c_str() const { return data_; }
};
typedef basic_cstring_view<char> cstring_view;
typedef basic_cstring_view<wchar_t> wcstring_view;
// An error code.
class error_code
{
private:
int value_;
class error_code {
private:
int value_;
public:
explicit error_code(int value = 0) FMT_NOEXCEPT : value_(value) {}
public:
explicit error_code(int value = 0) FMT_NOEXCEPT : value_(value) {}
int get() const FMT_NOEXCEPT
{
return value_;
}
int get() const FMT_NOEXCEPT { return value_; }
};
// A buffered file.
class buffered_file
{
private:
FILE *file_;
class buffered_file {
private:
FILE *file_;
friend class file;
friend class file;
explicit buffered_file(FILE *f)
: file_(f)
{
}
explicit buffered_file(FILE *f) : file_(f) {}
public:
// Constructs a buffered_file object which doesn't represent any file.
buffered_file() FMT_NOEXCEPT : file_(FMT_NULL) {}
public:
// Constructs a buffered_file object which doesn't represent any file.
buffered_file() FMT_NOEXCEPT : file_(FMT_NULL) {}
// Destroys the object closing the file it represents if any.
FMT_API ~buffered_file() FMT_DTOR_NOEXCEPT;
// Destroys the object closing the file it represents if any.
FMT_API ~buffered_file() FMT_DTOR_NOEXCEPT;
#if !FMT_USE_RVALUE_REFERENCES
// Emulate a move constructor and a move assignment operator if rvalue
// references are not supported.
// Emulate a move constructor and a move assignment operator if rvalue
// references are not supported.
private:
// A proxy object to emulate a move constructor.
// It is private to make it impossible call operator Proxy directly.
struct Proxy
{
FILE *file;
};
private:
// A proxy object to emulate a move constructor.
// It is private to make it impossible call operator Proxy directly.
struct Proxy {
FILE *file;
};
public:
// A "move constructor" for moving from a temporary.
buffered_file(Proxy p) FMT_NOEXCEPT : file_(p.file) {}
// A "move constructor" for moving from a temporary.
buffered_file(Proxy p) FMT_NOEXCEPT : file_(p.file) {}
// A "move constructor" for moving from an lvalue.
buffered_file(buffered_file &f) FMT_NOEXCEPT : file_(f.file_)
{
f.file_ = FMT_NULL;
}
// A "move constructor" for moving from an lvalue.
buffered_file(buffered_file &f) FMT_NOEXCEPT : file_(f.file_) {
f.file_ = FMT_NULL;
}
// A "move assignment operator" for moving from a temporary.
buffered_file &operator=(Proxy p)
{
close();
file_ = p.file;
return *this;
}
// A "move assignment operator" for moving from a temporary.
buffered_file &operator=(Proxy p) {
close();
file_ = p.file;
return *this;
}
// A "move assignment operator" for moving from an lvalue.
buffered_file &operator=(buffered_file &other)
{
close();
file_ = other.file_;
other.file_ = FMT_NULL;
return *this;
}
// A "move assignment operator" for moving from an lvalue.
buffered_file &operator=(buffered_file &other) {
close();
file_ = other.file_;
other.file_ = FMT_NULL;
return *this;
}
// Returns a proxy object for moving from a temporary:
// buffered_file file = buffered_file(...);
operator Proxy() FMT_NOEXCEPT
{
Proxy p = {file_};
file_ = FMT_NULL;
return p;
}
// Returns a proxy object for moving from a temporary:
// buffered_file file = buffered_file(...);
operator Proxy() FMT_NOEXCEPT {
Proxy p = {file_};
file_ = FMT_NULL;
return p;
}
#else
private:
FMT_DISALLOW_COPY_AND_ASSIGN(buffered_file);
private:
FMT_DISALLOW_COPY_AND_ASSIGN(buffered_file);
public:
buffered_file(buffered_file &&other) FMT_NOEXCEPT : file_(other.file_)
{
other.file_ = FMT_NULL;
}
public:
buffered_file(buffered_file &&other) FMT_NOEXCEPT : file_(other.file_) {
other.file_ = FMT_NULL;
}
buffered_file &operator=(buffered_file &&other)
{
close();
file_ = other.file_;
other.file_ = FMT_NULL;
return *this;
}
buffered_file& operator=(buffered_file &&other) {
close();
file_ = other.file_;
other.file_ = FMT_NULL;
return *this;
}
#endif
// Opens a file.
FMT_API buffered_file(cstring_view filename, cstring_view mode);
// Opens a file.
FMT_API buffered_file(cstring_view filename, cstring_view mode);
// Closes the file.
FMT_API void close();
// Closes the file.
FMT_API void close();
// Returns the pointer to a FILE object representing this file.
FILE *get() const FMT_NOEXCEPT
{
return file_;
}
// Returns the pointer to a FILE object representing this file.
FILE *get() const FMT_NOEXCEPT { return file_; }
// We place parentheses around fileno to workaround a bug in some versions
// of MinGW that define fileno as a macro.
FMT_API int(fileno)() const;
// We place parentheses around fileno to workaround a bug in some versions
// of MinGW that define fileno as a macro.
FMT_API int (fileno)() const;
void vprint(string_view format_str, format_args args)
{
fmt::vprint(file_, format_str, args);
}
void vprint(string_view format_str, format_args args) {
fmt::vprint(file_, format_str, args);
}
template<typename... Args>
inline void print(string_view format_str, const Args &... args)
{
vprint(format_str, make_format_args(args...));
}
template <typename... Args>
inline void print(string_view format_str, const Args & ... args) {
vprint(format_str, make_format_args(args...));
}
};
// A file. Closed file is represented by a file object with descriptor -1.
@ -259,226 +228,190 @@ public:
// closing the file multiple times will cause a crash on Windows rather
// than an exception. You can get standard behavior by overriding the
// invalid parameter handler with _set_invalid_parameter_handler.
class file
{
private:
int fd_; // File descriptor.
class file {
private:
int fd_; // File descriptor.
// Constructs a file object with a given descriptor.
explicit file(int fd)
: fd_(fd)
{
}
// Constructs a file object with a given descriptor.
explicit file(int fd) : fd_(fd) {}
public:
// Possible values for the oflag argument to the constructor.
enum
{
RDONLY = FMT_POSIX(O_RDONLY), // Open for reading only.
WRONLY = FMT_POSIX(O_WRONLY), // Open for writing only.
RDWR = FMT_POSIX(O_RDWR) // Open for reading and writing.
};
public:
// Possible values for the oflag argument to the constructor.
enum {
RDONLY = FMT_POSIX(O_RDONLY), // Open for reading only.
WRONLY = FMT_POSIX(O_WRONLY), // Open for writing only.
RDWR = FMT_POSIX(O_RDWR) // Open for reading and writing.
};
// Constructs a file object which doesn't represent any file.
file() FMT_NOEXCEPT : fd_(-1) {}
// Constructs a file object which doesn't represent any file.
file() FMT_NOEXCEPT : fd_(-1) {}
// Opens a file and constructs a file object representing this file.
FMT_API file(cstring_view path, int oflag);
// Opens a file and constructs a file object representing this file.
FMT_API file(cstring_view path, int oflag);
#if !FMT_USE_RVALUE_REFERENCES
// Emulate a move constructor and a move assignment operator if rvalue
// references are not supported.
// Emulate a move constructor and a move assignment operator if rvalue
// references are not supported.
private:
// A proxy object to emulate a move constructor.
// It is private to make it impossible call operator Proxy directly.
struct Proxy
{
int fd;
};
private:
// A proxy object to emulate a move constructor.
// It is private to make it impossible call operator Proxy directly.
struct Proxy {
int fd;
};
public:
// A "move constructor" for moving from a temporary.
file(Proxy p) FMT_NOEXCEPT : fd_(p.fd) {}
public:
// A "move constructor" for moving from a temporary.
file(Proxy p) FMT_NOEXCEPT : fd_(p.fd) {}
// A "move constructor" for moving from an lvalue.
file(file &other) FMT_NOEXCEPT : fd_(other.fd_)
{
other.fd_ = -1;
}
// A "move constructor" for moving from an lvalue.
file(file &other) FMT_NOEXCEPT : fd_(other.fd_) {
other.fd_ = -1;
}
// A "move assignment operator" for moving from a temporary.
file &operator=(Proxy p)
{
close();
fd_ = p.fd;
return *this;
}
// A "move assignment operator" for moving from a temporary.
file &operator=(Proxy p) {
close();
fd_ = p.fd;
return *this;
}
// A "move assignment operator" for moving from an lvalue.
file &operator=(file &other)
{
close();
fd_ = other.fd_;
other.fd_ = -1;
return *this;
}
// A "move assignment operator" for moving from an lvalue.
file &operator=(file &other) {
close();
fd_ = other.fd_;
other.fd_ = -1;
return *this;
}
// Returns a proxy object for moving from a temporary:
// file f = file(...);
operator Proxy() FMT_NOEXCEPT
{
Proxy p = {fd_};
fd_ = -1;
return p;
}
// Returns a proxy object for moving from a temporary:
// file f = file(...);
operator Proxy() FMT_NOEXCEPT {
Proxy p = {fd_};
fd_ = -1;
return p;
}
#else
private:
FMT_DISALLOW_COPY_AND_ASSIGN(file);
private:
FMT_DISALLOW_COPY_AND_ASSIGN(file);
public:
file(file &&other) FMT_NOEXCEPT : fd_(other.fd_)
{
other.fd_ = -1;
}
public:
file(file &&other) FMT_NOEXCEPT : fd_(other.fd_) {
other.fd_ = -1;
}
file &operator=(file &&other)
{
close();
fd_ = other.fd_;
other.fd_ = -1;
return *this;
}
file& operator=(file &&other) {
close();
fd_ = other.fd_;
other.fd_ = -1;
return *this;
}
#endif
// Destroys the object closing the file it represents if any.
FMT_API ~file() FMT_DTOR_NOEXCEPT;
// Destroys the object closing the file it represents if any.
FMT_API ~file() FMT_DTOR_NOEXCEPT;
// Returns the file descriptor.
int descriptor() const FMT_NOEXCEPT
{
return fd_;
}
// Returns the file descriptor.
int descriptor() const FMT_NOEXCEPT { return fd_; }
// Closes the file.
FMT_API void close();
// Closes the file.
FMT_API void close();
// Returns the file size. The size has signed type for consistency with
// stat::st_size.
FMT_API long long size() const;
// Returns the file size. The size has signed type for consistency with
// stat::st_size.
FMT_API long long size() const;
// Attempts to read count bytes from the file into the specified buffer.
FMT_API std::size_t read(void *buffer, std::size_t count);
// Attempts to read count bytes from the file into the specified buffer.
FMT_API std::size_t read(void *buffer, std::size_t count);
// Attempts to write count bytes from the specified buffer to the file.
FMT_API std::size_t write(const void *buffer, std::size_t count);
// Attempts to write count bytes from the specified buffer to the file.
FMT_API std::size_t write(const void *buffer, std::size_t count);
// Duplicates a file descriptor with the dup function and returns
// the duplicate as a file object.
FMT_API static file dup(int fd);
// Duplicates a file descriptor with the dup function and returns
// the duplicate as a file object.
FMT_API static file dup(int fd);
// Makes fd be the copy of this file descriptor, closing fd first if
// necessary.
FMT_API void dup2(int fd);
// Makes fd be the copy of this file descriptor, closing fd first if
// necessary.
FMT_API void dup2(int fd);
// Makes fd be the copy of this file descriptor, closing fd first if
// necessary.
FMT_API void dup2(int fd, error_code &ec) FMT_NOEXCEPT;
// Makes fd be the copy of this file descriptor, closing fd first if
// necessary.
FMT_API void dup2(int fd, error_code &ec) FMT_NOEXCEPT;
// Creates a pipe setting up read_end and write_end file objects for reading
// and writing respectively.
FMT_API static void pipe(file &read_end, file &write_end);
// Creates a pipe setting up read_end and write_end file objects for reading
// and writing respectively.
FMT_API static void pipe(file &read_end, file &write_end);
// Creates a buffered_file object associated with this file and detaches
// this file object from the file.
FMT_API buffered_file fdopen(const char *mode);
// Creates a buffered_file object associated with this file and detaches
// this file object from the file.
FMT_API buffered_file fdopen(const char *mode);
};
// Returns the memory page size.
long getpagesize();
#if (defined(LC_NUMERIC_MASK) || defined(_MSC_VER)) && !defined(__ANDROID__) && !defined(__CYGWIN__) && !defined(__OpenBSD__)
#define FMT_LOCALE
#if (defined(LC_NUMERIC_MASK) || defined(_MSC_VER)) && \
!defined(__ANDROID__) && !defined(__CYGWIN__) && !defined(__OpenBSD__)
# define FMT_LOCALE
#endif
#ifdef FMT_LOCALE
// A "C" numeric locale.
class Locale
{
private:
#ifdef _MSC_VER
typedef _locale_t locale_t;
class Locale {
private:
# ifdef _MSC_VER
typedef _locale_t locale_t;
enum
{
LC_NUMERIC_MASK = LC_NUMERIC
};
enum { LC_NUMERIC_MASK = LC_NUMERIC };
static locale_t newlocale(int category_mask, const char *locale, locale_t)
{
return _create_locale(category_mask, locale);
}
static locale_t newlocale(int category_mask, const char *locale, locale_t) {
return _create_locale(category_mask, locale);
}
static void freelocale(locale_t locale)
{
_free_locale(locale);
}
static void freelocale(locale_t locale) {
_free_locale(locale);
}
static double strtod_l(const char *nptr, char **endptr, _locale_t locale)
{
return _strtod_l(nptr, endptr, locale);
}
#endif
static double strtod_l(const char *nptr, char **endptr, _locale_t locale) {
return _strtod_l(nptr, endptr, locale);
}
# endif
locale_t locale_;
locale_t locale_;
FMT_DISALLOW_COPY_AND_ASSIGN(Locale);
FMT_DISALLOW_COPY_AND_ASSIGN(Locale);
public:
typedef locale_t Type;
public:
typedef locale_t Type;
Locale()
: locale_(newlocale(LC_NUMERIC_MASK, "C", FMT_NULL))
{
if (!locale_)
FMT_THROW(system_error(errno, "cannot create locale"));
}
~Locale()
{
freelocale(locale_);
}
Locale() : locale_(newlocale(LC_NUMERIC_MASK, "C", FMT_NULL)) {
if (!locale_)
FMT_THROW(system_error(errno, "cannot create locale"));
}
~Locale() { freelocale(locale_); }
Type get() const
{
return locale_;
}
Type get() const { return locale_; }
// Converts string to floating-point number and advances str past the end
// of the parsed input.
double strtod(const char *&str) const
{
char *end = FMT_NULL;
double result = strtod_l(str, &end, locale_);
str = end;
return result;
}
// Converts string to floating-point number and advances str past the end
// of the parsed input.
double strtod(const char *&str) const {
char *end = FMT_NULL;
double result = strtod_l(str, &end, locale_);
str = end;
return result;
}
};
#endif // FMT_LOCALE
#endif // FMT_LOCALE
FMT_END_NAMESPACE
#if !FMT_USE_RVALUE_REFERENCES
namespace std {
// For compatibility with C++98.
inline fmt::buffered_file &move(fmt::buffered_file &f)
{
return f;
inline fmt::buffered_file &move(fmt::buffered_file &f) { return f; }
inline fmt::file &move(fmt::file &f) { return f; }
}
inline fmt::file &move(fmt::file &f)
{
return f;
}
} // namespace std
#endif
#endif // FMT_POSIX_H_
#endif // FMT_POSIX_H_

File diff suppressed because it is too large Load Diff

View File

@ -17,326 +17,289 @@
// output only up to N items from the range.
#ifndef FMT_RANGE_OUTPUT_LENGTH_LIMIT
#define FMT_RANGE_OUTPUT_LENGTH_LIMIT 256
# define FMT_RANGE_OUTPUT_LENGTH_LIMIT 256
#endif
FMT_BEGIN_NAMESPACE
template<typename Char>
struct formatting_base
{
template<typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext &ctx) -> decltype(ctx.begin())
{
return ctx.begin();
}
template <typename Char>
struct formatting_base {
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext &ctx) -> decltype(ctx.begin()) {
return ctx.begin();
}
};
template<typename Char, typename Enable = void>
struct formatting_range : formatting_base<Char>
{
static FMT_CONSTEXPR_DECL const std::size_t range_length_limit =
FMT_RANGE_OUTPUT_LENGTH_LIMIT; // output only up to N items from the range.
Char prefix;
Char delimiter;
Char postfix;
formatting_range()
: prefix('{')
, delimiter(',')
, postfix('}')
{
}
static FMT_CONSTEXPR_DECL const bool add_delimiter_spaces = true;
static FMT_CONSTEXPR_DECL const bool add_prepostfix_space = false;
template <typename Char, typename Enable = void>
struct formatting_range : formatting_base<Char> {
static FMT_CONSTEXPR_DECL const std::size_t range_length_limit =
FMT_RANGE_OUTPUT_LENGTH_LIMIT; // output only up to N items from the range.
Char prefix;
Char delimiter;
Char postfix;
formatting_range() : prefix('{'), delimiter(','), postfix('}') {}
static FMT_CONSTEXPR_DECL const bool add_delimiter_spaces = true;
static FMT_CONSTEXPR_DECL const bool add_prepostfix_space = false;
};
template<typename Char, typename Enable = void>
struct formatting_tuple : formatting_base<Char>
{
Char prefix;
Char delimiter;
Char postfix;
formatting_tuple()
: prefix('(')
, delimiter(',')
, postfix(')')
{
}
static FMT_CONSTEXPR_DECL const bool add_delimiter_spaces = true;
static FMT_CONSTEXPR_DECL const bool add_prepostfix_space = false;
template <typename Char, typename Enable = void>
struct formatting_tuple : formatting_base<Char> {
Char prefix;
Char delimiter;
Char postfix;
formatting_tuple() : prefix('('), delimiter(','), postfix(')') {}
static FMT_CONSTEXPR_DECL const bool add_delimiter_spaces = true;
static FMT_CONSTEXPR_DECL const bool add_prepostfix_space = false;
};
namespace internal {
template<typename RangeT, typename OutputIterator>
void copy(const RangeT &range, OutputIterator out)
{
for (auto it = range.begin(), end = range.end(); it != end; ++it)
*out++ = *it;
template <typename RangeT, typename OutputIterator>
void copy(const RangeT &range, OutputIterator out) {
for (auto it = range.begin(), end = range.end(); it != end; ++it)
*out++ = *it;
}
template<typename OutputIterator>
void copy(const char *str, OutputIterator out)
{
const char *p_curr = str;
while (*p_curr)
{
*out++ = *p_curr++;
}
template <typename OutputIterator>
void copy(const char *str, OutputIterator out) {
const char *p_curr = str;
while (*p_curr) {
*out++ = *p_curr++;
}
}
template<typename OutputIterator>
void copy(char ch, OutputIterator out)
{
*out++ = ch;
template <typename OutputIterator>
void copy(char ch, OutputIterator out) {
*out++ = ch;
}
/// Return true value if T has std::string interface, like std::string_view.
template<typename T>
class is_like_std_string
{
template<typename U>
static auto check(U *p) -> decltype(p->find('a'), p->length(), p->data(), int());
template<typename>
static void check(...);
template <typename T>
class is_like_std_string {
template <typename U>
static auto check(U *p) ->
decltype(p->find('a'), p->length(), p->data(), int());
template <typename>
static void check(...);
public:
static FMT_CONSTEXPR_DECL const bool value = !std::is_void<decltype(check<T>(FMT_NULL))>::value;
public:
static FMT_CONSTEXPR_DECL const bool value =
!std::is_void<decltype(check<T>(FMT_NULL))>::value;
};
template<typename... Ts>
struct conditional_helper
{
};
template <typename... Ts>
struct conditional_helper {};
template<typename T, typename _ = void>
struct is_range_ : std::false_type
{
};
template <typename T, typename _ = void>
struct is_range_ : std::false_type {};
template<typename T>
struct is_range_<T, typename std::conditional<false,
conditional_helper<decltype(internal::declval<T>().begin()), decltype(internal::declval<T>().end())>, void>::type>
: std::true_type
{
};
#if !FMT_MSC_VER || FMT_MSC_VER > 1800
template <typename T>
struct is_range_<T, typename std::conditional<
false,
conditional_helper<decltype(internal::declval<T>().begin()),
decltype(internal::declval<T>().end())>,
void>::type> : std::true_type {};
#endif
/// tuple_size and tuple_element check.
template<typename T>
class is_tuple_like_
{
template<typename U>
static auto check(U *p) -> decltype(std::tuple_size<U>::value, internal::declval<typename std::tuple_element<0, U>::type>(), int());
template<typename>
static void check(...);
template <typename T>
class is_tuple_like_ {
template <typename U>
static auto check(U *p) ->
decltype(std::tuple_size<U>::value,
internal::declval<typename std::tuple_element<0, U>::type>(), int());
template <typename>
static void check(...);
public:
static FMT_CONSTEXPR_DECL const bool value = !std::is_void<decltype(check<T>(FMT_NULL))>::value;
public:
static FMT_CONSTEXPR_DECL const bool value =
!std::is_void<decltype(check<T>(FMT_NULL))>::value;
};
// Check for integer_sequence
#if defined(__cpp_lib_integer_sequence) || FMT_MSC_VER >= 1900
template<typename T, T... N>
template <typename T, T... N>
using integer_sequence = std::integer_sequence<T, N...>;
template<std::size_t... N>
template <std::size_t... N>
using index_sequence = std::index_sequence<N...>;
template<std::size_t N>
template <std::size_t N>
using make_index_sequence = std::make_index_sequence<N>;
#else
template<typename T, T... N>
struct integer_sequence
{
typedef T value_type;
template <typename T, T... N>
struct integer_sequence {
typedef T value_type;
static FMT_CONSTEXPR std::size_t size()
{
return sizeof...(N);
}
static FMT_CONSTEXPR std::size_t size() {
return sizeof...(N);
}
};
template<std::size_t... N>
template <std::size_t... N>
using index_sequence = integer_sequence<std::size_t, N...>;
template<typename T, std::size_t N, T... Ns>
struct make_integer_sequence : make_integer_sequence<T, N - 1, N - 1, Ns...>
{
};
template<typename T, T... Ns>
struct make_integer_sequence<T, 0, Ns...> : integer_sequence<T, Ns...>
{
};
template <typename T, std::size_t N, T... Ns>
struct make_integer_sequence : make_integer_sequence<T, N - 1, N - 1, Ns...> {};
template <typename T, T... Ns>
struct make_integer_sequence<T, 0, Ns...> : integer_sequence<T, Ns...> {};
template<std::size_t N>
template <std::size_t N>
using make_index_sequence = make_integer_sequence<std::size_t, N>;
#endif
template<class Tuple, class F, size_t... Is>
void for_each(index_sequence<Is...>, Tuple &&tup, F &&f) noexcept
{
using std::get;
// using free function get<I>(T) now.
const int _[] = {0, ((void)f(get<Is>(tup)), 0)...};
(void)_; // blocks warnings
template <class Tuple, class F, size_t... Is>
void for_each(index_sequence<Is...>, Tuple &&tup, F &&f) FMT_NOEXCEPT {
using std::get;
// using free function get<I>(T) now.
const int _[] = {0, ((void)f(get<Is>(tup)), 0)...};
(void)_; // blocks warnings
}
template<class T>
FMT_CONSTEXPR make_index_sequence<std::tuple_size<T>::value> get_indexes(T const &)
{
return {};
}
template <class T>
FMT_CONSTEXPR make_index_sequence<std::tuple_size<T>::value>
get_indexes(T const &) { return {}; }
template<class Tuple, class F>
void for_each(Tuple &&tup, F &&f)
{
const auto indexes = get_indexes(tup);
for_each(indexes, std::forward<Tuple>(tup), std::forward<F>(f));
template <class Tuple, class F>
void for_each(Tuple &&tup, F &&f) {
const auto indexes = get_indexes(tup);
for_each(indexes, std::forward<Tuple>(tup), std::forward<F>(f));
}
template<typename Arg>
FMT_CONSTEXPR const char *format_str_quoted(
bool add_space, const Arg &, typename std::enable_if<!is_like_std_string<typename std::decay<Arg>::type>::value>::type * = nullptr)
{
return add_space ? " {}" : "{}";
FMT_CONSTEXPR const char* format_str_quoted(bool add_space, const Arg&,
typename std::enable_if<
!is_like_std_string<typename std::decay<Arg>::type>::value>::type* = nullptr) {
return add_space ? " {}" : "{}";
}
template<typename Arg>
FMT_CONSTEXPR const char *format_str_quoted(
bool add_space, const Arg &, typename std::enable_if<is_like_std_string<typename std::decay<Arg>::type>::value>::type * = nullptr)
{
return add_space ? " \"{}\"" : "\"{}\"";
FMT_CONSTEXPR const char* format_str_quoted(bool add_space, const Arg&,
typename std::enable_if<
is_like_std_string<typename std::decay<Arg>::type>::value>::type* = nullptr) {
return add_space ? " \"{}\"" : "\"{}\"";
}
FMT_CONSTEXPR const char *format_str_quoted(bool add_space, const char *)
{
return add_space ? " \"{}\"" : "\"{}\"";
FMT_CONSTEXPR const char* format_str_quoted(bool add_space, const char*) {
return add_space ? " \"{}\"" : "\"{}\"";
}
FMT_CONSTEXPR const wchar_t *format_str_quoted(bool add_space, const wchar_t *)
{
FMT_CONSTEXPR const wchar_t* format_str_quoted(bool add_space, const wchar_t*) {
return add_space ? L" \"{}\"" : L"\"{}\"";
}
FMT_CONSTEXPR const char *format_str_quoted(bool add_space, const char)
{
FMT_CONSTEXPR const char* format_str_quoted(bool add_space, const char) {
return add_space ? " '{}'" : "'{}'";
}
FMT_CONSTEXPR const wchar_t *format_str_quoted(bool add_space, const wchar_t)
{
FMT_CONSTEXPR const wchar_t* format_str_quoted(bool add_space, const wchar_t) {
return add_space ? L" '{}'" : L"'{}'";
}
} // namespace internal
} // namespace internal
template<typename T>
struct is_tuple_like
{
static FMT_CONSTEXPR_DECL const bool value = internal::is_tuple_like_<T>::value && !internal::is_range_<T>::value;
template <typename T>
struct is_tuple_like {
static FMT_CONSTEXPR_DECL const bool value =
internal::is_tuple_like_<T>::value && !internal::is_range_<T>::value;
};
template<typename TupleT, typename Char>
struct formatter<TupleT, Char, typename std::enable_if<fmt::is_tuple_like<TupleT>::value>::type>
{
template <typename TupleT, typename Char>
struct formatter<TupleT, Char,
typename std::enable_if<fmt::is_tuple_like<TupleT>::value>::type> {
private:
// C++11 generic lambda for format()
template<typename FormatContext>
struct format_each
{
template<typename T>
void operator()(const T &v)
{
if (i > 0)
{
if (formatting.add_prepostfix_space)
{
*out++ = ' ';
}
internal::copy(formatting.delimiter, out);
}
format_to(out, internal::format_str_quoted((formatting.add_delimiter_spaces && i > 0), v), v);
++i;
// C++11 generic lambda for format()
template <typename FormatContext>
struct format_each {
template <typename T>
void operator()(const T& v) {
if (i > 0) {
if (formatting.add_prepostfix_space) {
*out++ = ' ';
}
internal::copy(formatting.delimiter, out);
}
format_to(out,
internal::format_str_quoted(
(formatting.add_delimiter_spaces && i > 0), v),
v);
++i;
}
formatting_tuple<Char> &formatting;
std::size_t &i;
typename std::add_lvalue_reference<decltype(std::declval<FormatContext>().out())>::type out;
};
formatting_tuple<Char>& formatting;
std::size_t& i;
typename std::add_lvalue_reference<decltype(std::declval<FormatContext>().out())>::type out;
};
public:
formatting_tuple<Char> formatting;
formatting_tuple<Char> formatting;
template<typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext &ctx) -> decltype(ctx.begin())
{
return formatting.parse(ctx);
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext &ctx) -> decltype(ctx.begin()) {
return formatting.parse(ctx);
}
template <typename FormatContext = format_context>
auto format(const TupleT &values, FormatContext &ctx) -> decltype(ctx.out()) {
auto out = ctx.out();
std::size_t i = 0;
internal::copy(formatting.prefix, out);
internal::for_each(values, format_each<FormatContext>{formatting, i, out});
if (formatting.add_prepostfix_space) {
*out++ = ' ';
}
internal::copy(formatting.postfix, out);
template<typename FormatContext = format_context>
auto format(const TupleT &values, FormatContext &ctx) -> decltype(ctx.out())
{
auto out = ctx.out();
std::size_t i = 0;
internal::copy(formatting.prefix, out);
internal::for_each(values, format_each<FormatContext>{formatting, i, out});
if (formatting.add_prepostfix_space)
{
*out++ = ' ';
}
internal::copy(formatting.postfix, out);
return ctx.out();
}
return ctx.out();
}
};
template<typename T>
struct is_range
{
static FMT_CONSTEXPR_DECL const bool value = internal::is_range_<T>::value && !internal::is_like_std_string<T>::value;
template <typename T>
struct is_range {
static FMT_CONSTEXPR_DECL const bool value =
internal::is_range_<T>::value && !internal::is_like_std_string<T>::value;
};
template<typename RangeT, typename Char>
struct formatter<RangeT, Char, typename std::enable_if<fmt::is_range<RangeT>::value>::type>
{
template <typename RangeT, typename Char>
struct formatter<RangeT, Char,
typename std::enable_if<fmt::is_range<RangeT>::value>::type> {
formatting_range<Char> formatting;
formatting_range<Char> formatting;
template<typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext &ctx) -> decltype(ctx.begin())
{
return formatting.parse(ctx);
}
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext &ctx) -> decltype(ctx.begin()) {
return formatting.parse(ctx);
}
template<typename FormatContext>
typename FormatContext::iterator format(const RangeT &values, FormatContext &ctx)
{
auto out = ctx.out();
internal::copy(formatting.prefix, out);
std::size_t i = 0;
for (auto it = values.begin(), end = values.end(); it != end; ++it)
{
if (i > 0)
{
if (formatting.add_prepostfix_space)
{
*out++ = ' ';
}
internal::copy(formatting.delimiter, out);
}
format_to(out, internal::format_str_quoted((formatting.add_delimiter_spaces && i > 0), *it), *it);
if (++i > formatting.range_length_limit)
{
format_to(out, " ... <other elements>");
break;
}
template <typename FormatContext>
typename FormatContext::iterator format(
const RangeT &values, FormatContext &ctx) {
auto out = ctx.out();
internal::copy(formatting.prefix, out);
std::size_t i = 0;
for (auto it = values.begin(), end = values.end(); it != end; ++it) {
if (i > 0) {
if (formatting.add_prepostfix_space) {
*out++ = ' ';
}
if (formatting.add_prepostfix_space)
{
*out++ = ' ';
}
internal::copy(formatting.postfix, out);
return ctx.out();
internal::copy(formatting.delimiter, out);
}
format_to(out,
internal::format_str_quoted(
(formatting.add_delimiter_spaces && i > 0), *it),
*it);
if (++i > formatting.range_length_limit) {
format_to(out, " ... <other elements>");
break;
}
}
if (formatting.add_prepostfix_space) {
*out++ = ' ';
}
internal::copy(formatting.postfix, out);
return ctx.out();
}
};
FMT_END_NAMESPACE
#endif // FMT_RANGES_H_

View File

@ -13,187 +13,140 @@
FMT_BEGIN_NAMESPACE
namespace internal {
inline null<> localtime_r(...)
{
return null<>();
namespace internal{
inline null<> localtime_r(...) { return null<>(); }
inline null<> localtime_s(...) { return null<>(); }
inline null<> gmtime_r(...) { return null<>(); }
inline null<> gmtime_s(...) { return null<>(); }
}
inline null<> localtime_s(...)
{
return null<>();
}
inline null<> gmtime_r(...)
{
return null<>();
}
inline null<> gmtime_s(...)
{
return null<>();
}
} // namespace internal
// Thread-safe replacement for std::localtime
inline std::tm localtime(std::time_t time)
{
struct dispatcher
{
std::time_t time_;
std::tm tm_;
inline std::tm localtime(std::time_t time) {
struct dispatcher {
std::time_t time_;
std::tm tm_;
dispatcher(std::time_t t)
: time_(t)
{
}
dispatcher(std::time_t t): time_(t) {}
bool run()
{
using namespace fmt::internal;
return handle(localtime_r(&time_, &tm_));
}
bool run() {
using namespace fmt::internal;
return handle(localtime_r(&time_, &tm_));
}
bool handle(std::tm *tm)
{
return tm != FMT_NULL;
}
bool handle(std::tm *tm) { return tm != FMT_NULL; }
bool handle(internal::null<>)
{
using namespace fmt::internal;
return fallback(localtime_s(&tm_, &time_));
}
bool handle(internal::null<>) {
using namespace fmt::internal;
return fallback(localtime_s(&tm_, &time_));
}
bool fallback(int res)
{
return res == 0;
}
bool fallback(int res) { return res == 0; }
bool fallback(internal::null<>)
{
using namespace fmt::internal;
std::tm *tm = std::localtime(&time_);
if (tm)
tm_ = *tm;
return tm != FMT_NULL;
}
};
dispatcher lt(time);
if (lt.run())
return lt.tm_;
// Too big time values may be unsupported.
FMT_THROW(format_error("time_t value out of range"));
bool fallback(internal::null<>) {
using namespace fmt::internal;
std::tm *tm = std::localtime(&time_);
if (tm) tm_ = *tm;
return tm != FMT_NULL;
}
};
dispatcher lt(time);
if (lt.run())
return lt.tm_;
// Too big time values may be unsupported.
FMT_THROW(format_error("time_t value out of range"));
}
// Thread-safe replacement for std::gmtime
inline std::tm gmtime(std::time_t time)
{
struct dispatcher
{
std::time_t time_;
std::tm tm_;
inline std::tm gmtime(std::time_t time) {
struct dispatcher {
std::time_t time_;
std::tm tm_;
dispatcher(std::time_t t)
: time_(t)
{
}
dispatcher(std::time_t t): time_(t) {}
bool run()
{
using namespace fmt::internal;
return handle(gmtime_r(&time_, &tm_));
}
bool run() {
using namespace fmt::internal;
return handle(gmtime_r(&time_, &tm_));
}
bool handle(std::tm *tm)
{
return tm != FMT_NULL;
}
bool handle(std::tm *tm) { return tm != FMT_NULL; }
bool handle(internal::null<>)
{
using namespace fmt::internal;
return fallback(gmtime_s(&tm_, &time_));
}
bool handle(internal::null<>) {
using namespace fmt::internal;
return fallback(gmtime_s(&tm_, &time_));
}
bool fallback(int res)
{
return res == 0;
}
bool fallback(int res) { return res == 0; }
bool fallback(internal::null<>)
{
std::tm *tm = std::gmtime(&time_);
if (tm)
tm_ = *tm;
return tm != FMT_NULL;
}
};
dispatcher gt(time);
if (gt.run())
return gt.tm_;
// Too big time values may be unsupported.
FMT_THROW(format_error("time_t value out of range"));
bool fallback(internal::null<>) {
std::tm *tm = std::gmtime(&time_);
if (tm) tm_ = *tm;
return tm != FMT_NULL;
}
};
dispatcher gt(time);
if (gt.run())
return gt.tm_;
// Too big time values may be unsupported.
FMT_THROW(format_error("time_t value out of range"));
}
namespace internal {
inline std::size_t strftime(char *str, std::size_t count, const char *format, const std::tm *time)
{
return std::strftime(str, count, format, time);
inline std::size_t strftime(char *str, std::size_t count, const char *format,
const std::tm *time) {
return std::strftime(str, count, format, time);
}
inline std::size_t strftime(wchar_t *str, std::size_t count, const wchar_t *format, const std::tm *time)
{
return std::wcsftime(str, count, format, time);
inline std::size_t strftime(wchar_t *str, std::size_t count,
const wchar_t *format, const std::tm *time) {
return std::wcsftime(str, count, format, time);
}
}
} // namespace internal
template<typename Char>
struct formatter<std::tm, Char>
{
template<typename ParseContext>
auto parse(ParseContext &ctx) -> decltype(ctx.begin())
{
auto it = internal::null_terminating_iterator<Char>(ctx);
if (*it == ':')
++it;
auto end = it;
while (*end && *end != '}')
++end;
tm_format.reserve(end - it + 1);
using internal::pointer_from;
tm_format.append(pointer_from(it), pointer_from(end));
tm_format.push_back('\0');
return pointer_from(end);
template <typename Char>
struct formatter<std::tm, Char> {
template <typename ParseContext>
auto parse(ParseContext &ctx) -> decltype(ctx.begin()) {
auto it = internal::null_terminating_iterator<Char>(ctx);
if (*it == ':')
++it;
auto end = it;
while (*end && *end != '}')
++end;
tm_format.reserve(end - it + 1);
using internal::pointer_from;
tm_format.append(pointer_from(it), pointer_from(end));
tm_format.push_back('\0');
return pointer_from(end);
}
template <typename FormatContext>
auto format(const std::tm &tm, FormatContext &ctx) -> decltype(ctx.out()) {
internal::basic_buffer<Char> &buf = internal::get_container(ctx.out());
std::size_t start = buf.size();
for (;;) {
std::size_t size = buf.capacity() - start;
std::size_t count =
internal::strftime(&buf[start], size, &tm_format[0], &tm);
if (count != 0) {
buf.resize(start + count);
break;
}
if (size >= tm_format.size() * 256) {
// If the buffer is 256 times larger than the format string, assume
// that `strftime` gives an empty result. There doesn't seem to be a
// better way to distinguish the two cases:
// https://github.com/fmtlib/fmt/issues/367
break;
}
const std::size_t MIN_GROWTH = 10;
buf.reserve(buf.capacity() + (size > MIN_GROWTH ? size : MIN_GROWTH));
}
return ctx.out();
}
template<typename FormatContext>
auto format(const std::tm &tm, FormatContext &ctx) -> decltype(ctx.out())
{
internal::basic_buffer<Char> &buf = internal::get_container(ctx.out());
std::size_t start = buf.size();
for (;;)
{
std::size_t size = buf.capacity() - start;
std::size_t count = internal::strftime(&buf[start], size, &tm_format[0], &tm);
if (count != 0)
{
buf.resize(start + count);
break;
}
if (size >= tm_format.size() * 256)
{
// If the buffer is 256 times larger than the format string, assume
// that `strftime` gives an empty result. There doesn't seem to be a
// better way to distinguish the two cases:
// https://github.com/fmtlib/fmt/issues/367
break;
}
const std::size_t MIN_GROWTH = 10;
buf.reserve(buf.capacity() + (size > MIN_GROWTH ? size : MIN_GROWTH));
}
return ctx.out();
}
basic_memory_buffer<Char> tm_format;
basic_memory_buffer<Char> tm_format;
};
FMT_END_NAMESPACE
#endif // FMT_TIME_H_
#endif // FMT_TIME_H_