diff --git a/src/pk/dsa/dsa_verify_key.c b/src/pk/dsa/dsa_verify_key.c index c429ce0..0f84ea0 100644 --- a/src/pk/dsa/dsa_verify_key.c +++ b/src/pk/dsa/dsa_verify_key.c @@ -49,33 +49,33 @@ int dsa_verify_key(dsa_key *key, int *stat) */ int dsa_int_validate_pqg(dsa_key *key, int *stat) { - void *tmp, *tmp2; + void *tmp1, *tmp2; int err; *stat = 0; LTC_ARGCHK(key != NULL); LTC_ARGCHK(stat != NULL); - /* now make sure that g is not -1, 0 or 1 and

g, 0) == LTC_MP_EQ || mp_cmp_d(key->g, 1) == LTC_MP_EQ) { + /* FIPS 186-4 chapter 4.1: 1 < g < p */ + if (mp_cmp_d(key->g, 1) != LTC_MP_GT || mp_cmp(key->g, key->p) != LTC_MP_LT) { return CRYPT_OK; } - if ((err = mp_init_multi(&tmp, &tmp2, NULL)) != CRYPT_OK) { return err; } - if ((err = mp_sub_d(key->p, 1, tmp)) != CRYPT_OK) { goto error; } - if (mp_cmp(tmp, key->g) == LTC_MP_EQ || mp_cmp(key->g, key->p) != LTC_MP_LT) { - err = CRYPT_OK; - goto error; - } - /* now we have to make sure that g^q = 1, and that p-1/q gives 0 remainder */ - if ((err = mp_div(tmp, key->q, tmp, tmp2)) != CRYPT_OK) { goto error; } + if ((err = mp_init_multi(&tmp1, &tmp2, NULL)) != CRYPT_OK) { return err; } + + /* FIPS 186-4 chapter 4.1: q is a divisor of (p - 1) */ + if ((err = mp_sub_d(key->p, 1, tmp1)) != CRYPT_OK) { goto error; } + if ((err = mp_div(tmp1, key->q, tmp1, tmp2)) != CRYPT_OK) { goto error; } if (mp_iszero(tmp2) != LTC_MP_YES) { err = CRYPT_OK; goto error; } - if ((err = mp_exptmod(key->g, key->q, key->p, tmp)) != CRYPT_OK) { goto error; } - if (mp_cmp_d(tmp, 1) != LTC_MP_EQ) { + /* FIPS 186-4 chapter 4.1: g is a generator of a subgroup of order q in + * the multiplicative group of GF(p) - so we make sure that g^q mod p = 1 + */ + if ((err = mp_exptmod(key->g, key->q, key->p, tmp1)) != CRYPT_OK) { goto error; } + if (mp_cmp_d(tmp1, 1) != LTC_MP_EQ) { err = CRYPT_OK; goto error; } @@ -83,7 +83,7 @@ int dsa_int_validate_pqg(dsa_key *key, int *stat) err = CRYPT_OK; *stat = 1; error: - mp_clear_multi(tmp, tmp2, NULL); + mp_clear_multi(tmp1, tmp2, NULL); return err; } @@ -150,18 +150,29 @@ int dsa_int_validate_xy(dsa_key *key, int *stat) goto error; } - /* now we have to make sure that y^q = 1, this makes sure y \in g^x mod p */ - if ((err = mp_exptmod(key->y, key->q, key->p, tmp)) != CRYPT_OK) { - goto error; - } - if (mp_cmp_d(tmp, 1) != LTC_MP_EQ) { - err = CRYPT_OK; - goto error; - } - if (key->type == PK_PRIVATE) { - /* x > 1 */ - if (!(mp_cmp_d(key->x, 1) == LTC_MP_GT)) { + /* FIPS 186-4 chapter 4.1: 0 < x < q */ + if (mp_cmp_d(key->x, 0) != LTC_MP_GT || mp_cmp(key->x, key->q) != LTC_MP_LT) { + err = CRYPT_OK; + goto error; + } + /* FIPS 186-4 chapter 4.1: y = g^x mod p */ + if ((err = mp_exptmod(key->g, key->x, key->p, tmp)) != CRYPT_OK) { + goto error; + } + if (mp_cmp(tmp, key->y) != LTC_MP_EQ) { + err = CRYPT_OK; + goto error; + } + } + else { + /* with just a public key we cannot test y = g^x mod p therefore we + * only test that y^q mod p = 1, which makes sure y is in g^x mod p + */ + if ((err = mp_exptmod(key->y, key->q, key->p, tmp)) != CRYPT_OK) { + goto error; + } + if (mp_cmp_d(tmp, 1) != LTC_MP_EQ) { err = CRYPT_OK; goto error; }