diff --git a/doc/crypt.tex b/doc/crypt.tex index 1baf7ee..7b3d60a 100644 --- a/doc/crypt.tex +++ b/doc/crypt.tex @@ -8,6 +8,7 @@ \usepackage{graphicx} \usepackage{layout} \usepackage{fancyhdr} +\usepackage{float} \def\union{\cup} \def\intersect{\cap} \def\getsrandom{\stackrel{\rm R}{\gets}} @@ -2523,7 +2524,7 @@ int unregister_hash(const struct _hash_descriptor *hash); The following hashes are provided as of this release within the LibTomCrypt library: \index{Hash descriptor table} -\begin{figure}[h] +\begin{figure}[H] \begin{center} \begin{tabular}{|c|c|c|} \hline \textbf{Name} & \textbf{Descriptor Name} & \textbf{Size of Message Digest (bytes)} \\ @@ -3627,7 +3628,7 @@ descriptor twice, and will return the index of the current placement in the tabl will return \textbf{CRYPT\_OK} if the PRNG was found and removed. Otherwise, it returns \textbf{CRYPT\_ERROR}. \subsection{PRNGs Provided} -\begin{figure}[h] +\begin{figure}[H] \begin{center} \begin{small} \begin{tabular}{|c|c|l|} @@ -5166,7 +5167,7 @@ The variable \textit{prng} is an active PRNG state and \textit{wprng} the index \textit{group\_size} the more difficult a forgery becomes upto a limit. The value of $group\_size$ is limited by $15 < group\_size < 1024$ and $modulus\_size - group\_size < 512$. Suggested values for the pairs are as follows. -\begin{figure}[h] +\begin{figure}[H] \begin{center} \begin{tabular}{|c|c|c|} \hline \textbf{Bits of Security} & \textbf{group\_size} & \textbf{modulus\_size} \\ @@ -6666,7 +6667,7 @@ e^{1.923 \cdot ln(n)^{1 \over 3} \cdot ln(ln(n))^{2 \over 3}} Note that $n$ is not the bit-length but the magnitude. For example, for a 1024-bit key $n = 2^{1024}$. The work required is: -\begin{figure}[h] +\begin{figure}[H] \begin{center} \begin{tabular}{|c|c|} \hline RSA/DH Key Size (bits) & Work Factor ($log_2$) \\ @@ -6686,7 +6687,7 @@ is: The work factor for ECC keys is much higher since the best attack is still fully exponential. Given a key of magnitude $n$ it requires $\sqrt n$ work. The following table summarizes the work required: -\begin{figure}[h] +\begin{figure}[H] \begin{center} \begin{tabular}{|c|c|} \hline ECC Key Size (bits) & Work Factor ($log_2$) \\