/* Provides keyring functionality for libtomcrypt, Tom St Denis */ #include #ifdef KR static const unsigned char key_magic[4] = { 0x12, 0x34, 0x56, 0x78 }; static const unsigned char file_magic[4] = { 0x9A, 0xBC, 0xDE, 0xF0 }; static const unsigned char sign_magic[4] = { 0x87, 0x56, 0x43, 0x21 }; static const unsigned char enc_magic[4] = { 0x0F, 0xED, 0xCB, 0xA9 }; static const unsigned long crc_table[256] = { 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL, 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L, 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL, 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L, 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL, 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL, 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L, 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L, 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L, 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L, 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L, 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L, 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, 0x2d02ef8dL }; #define DO1(buf) crc = crc_table[((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8); #define DO2(buf) DO1(buf); DO1(buf); #define DO4(buf) DO2(buf); DO2(buf); #define DO8(buf) DO4(buf); DO4(buf); static unsigned long crc32 (unsigned long crc, const unsigned char *buf, unsigned long len) { crc = crc ^ 0xffffffffL; while (len >= 8) { DO8 (buf); len -= 8; } if (len) { do { DO1 (buf); } while (--len); } return crc ^ 0xffffffffUL; } int kr_init(pk_key **pk) { _ARGCHK(pk != NULL); *pk = XCALLOC(1, sizeof(pk_key)); if (*pk == NULL) { return CRYPT_MEM; } (*pk)->system = NON_KEY; return CRYPT_OK; } unsigned long kr_crc(const unsigned char *name, const unsigned char *email, const unsigned char *description) { unsigned long crc; _ARGCHK(name != NULL); _ARGCHK(email != NULL); _ARGCHK(description != NULL); crc = crc32(0, NULL, 0); crc = crc32(crc, name, MIN(MAXLEN, strlen((char *)name))); crc = crc32(crc, email, MIN(MAXLEN, strlen((char *)email))); return crc32(crc, description, MIN(MAXLEN, strlen((char *)description))); } pk_key *kr_find(pk_key *pk, unsigned long ID) { _ARGCHK(pk != NULL); while (pk != NULL) { if (pk->system != NON_KEY && pk->ID == ID) { return pk; } pk = pk->next; } return NULL; } pk_key *kr_find_name(pk_key *pk, const char *name) { _ARGCHK(pk != NULL); _ARGCHK(name != NULL); while (pk != NULL) { if (pk->system != NON_KEY && !strncmp((char *)pk->name, (char *)name, sizeof(pk->name)-1)) { return pk; } pk = pk->next; } return NULL; } int kr_add(pk_key *pk, int key_type, int system, const unsigned char *name, const unsigned char *email, const unsigned char *description, const _pk_key *key) { _ARGCHK(pk != NULL); _ARGCHK(name != NULL); _ARGCHK(email != NULL); _ARGCHK(description != NULL); _ARGCHK(key != NULL); /* check parameters */ if (key_type != PK_PRIVATE && key_type != PK_PRIVATE_OPTIMIZED && key_type != PK_PUBLIC) { return CRYPT_PK_INVALID_TYPE; } if (system != RSA_KEY && system != DH_KEY && system != ECC_KEY) { return CRYPT_PK_INVALID_SYSTEM; } /* see if its a dupe */ if (kr_find(pk, kr_crc(name, email, description)) != NULL) { return CRYPT_PK_DUP; } /* find spot in key ring */ while (pk->system != NON_KEY) { if (pk->next == NULL) { return CRYPT_ERROR; } pk = pk->next; } /* now we have a spot make a next spot */ pk->next = XCALLOC(1, sizeof(pk_key)); if (pk->next == NULL) { return CRYPT_MEM; } pk->next->system = NON_KEY; /* now add this new data to this ring spot */ pk->key_type = key_type; pk->system = system; strncpy((char *)pk->name, (char *)name, sizeof(pk->name)-1); strncpy((char *)pk->email, (char *)email, sizeof(pk->email)-1); strncpy((char *)pk->description, (char *)description, sizeof(pk->description)-1); pk->ID = kr_crc(pk->name, pk->email, pk->description); /* clear the memory area */ zeromem(&(pk->key), sizeof(pk->key)); /* copy the key */ switch (system) { case RSA_KEY: memcpy(&(pk->key.rsa), &(key->rsa), sizeof(key->rsa)); break; case DH_KEY: memcpy(&(pk->key.dh), &(key->dh), sizeof(key->dh)); break; case ECC_KEY: memcpy(&(pk->key.ecc), &(key->ecc), sizeof(key->ecc)); break; } return CRYPT_OK; } int kr_del(pk_key **_pk, unsigned long ID) { pk_key *ppk, *pk; _ARGCHK(_pk != NULL); pk = *_pk; ppk = NULL; while (pk->system != NON_KEY && pk->ID != ID) { ppk = pk; pk = pk->next; if (pk == NULL) { return CRYPT_PK_NOT_FOUND; } } switch (pk->system) { case RSA_KEY: rsa_free(&(pk->key.rsa)); break; case DH_KEY: dh_free(&(pk->key.dh)); break; case ECC_KEY: ecc_free(&(pk->key.ecc)); break; } if (ppk == NULL) { /* the first element matches the ID */ ppk = pk->next; /* get the 2nd element */ XFREE(pk); /* free the first */ *_pk = ppk; /* make the first element the second */ } else { /* (not) first element matches the ID */ ppk->next = pk->next; /* make the previous'es next point to the current next */ XFREE(pk); /* free the element */ } return CRYPT_OK; } int kr_clear(pk_key **pk) { int errno; _ARGCHK(pk != NULL); while ((*pk)->system != NON_KEY) { if ((errno = kr_del(pk, (*pk)->ID)) != CRYPT_OK) { return errno; } } XFREE(*pk); *pk = NULL; return CRYPT_OK; } static unsigned long _write(unsigned char *buf, unsigned long len, FILE *f, symmetric_CTR *ctr) { #ifdef NO_FILE return 0; #else _ARGCHK(buf != NULL); _ARGCHK(f != NULL); if (ctr != NULL) { if (ctr_encrypt(buf, buf, len, ctr) != CRYPT_OK) { return 0; } } return fwrite(buf, 1, len, f); #endif } static unsigned long _read(unsigned char *buf, unsigned long len, FILE *f, symmetric_CTR *ctr) { #ifdef NO_FILE return 0; #else unsigned long y; _ARGCHK(buf != NULL); _ARGCHK(f != NULL); y = fread(buf, 1, len, f); if (ctr != NULL) { if (ctr_decrypt(buf, buf, y, ctr) != CRYPT_OK) { return 0; } } return y; #endif } int kr_export(pk_key *pk, unsigned long ID, int key_type, unsigned char *out, unsigned long *outlen) { unsigned char buf[8192], *obuf; pk_key *ppk; unsigned long len; int errno; _ARGCHK(pk != NULL); _ARGCHK(out != NULL); _ARGCHK(outlen != NULL); /* find the desired key */ ppk = kr_find(pk, ID); if (ppk == NULL) { return CRYPT_PK_NOT_FOUND; } if (ppk->key_type == PK_PUBLIC && key_type != PK_PUBLIC) { return CRYPT_PK_NOT_PRIVATE; } /* this makes PK_PRIVATE an alias for PK_PRIVATE_OPTIMIZED type */ if (ppk->key_type == PK_PRIVATE_OPTIMIZED && key_type == PK_PRIVATE) { key_type = PK_PRIVATE_OPTIMIZED; } /* now copy the header and various other details */ memcpy(buf, key_magic, 4); /* magic info */ buf[4] = key_type; /* key type */ buf[5] = ppk->system; /* system */ STORE32L(ppk->ID, buf+6); /* key ID */ memcpy(buf+10, ppk->name, MAXLEN); /* the name */ memcpy(buf+10+MAXLEN, ppk->email, MAXLEN); /* the email */ memcpy(buf+10+MAXLEN+MAXLEN, ppk->description, MAXLEN); /* the description */ /* export key */ len = sizeof(buf) - (6 + 4 + MAXLEN*3); obuf = buf+6+4+MAXLEN*3; switch (ppk->system) { case RSA_KEY: if ((errno = rsa_export(obuf, &len, key_type, &(ppk->key.rsa))) != CRYPT_OK) { return errno; } break; case DH_KEY: if ((errno = dh_export(obuf, &len, key_type, &(ppk->key.dh))) != CRYPT_OK) { return errno; } break; case ECC_KEY: if ((errno = ecc_export(obuf, &len, key_type, &(ppk->key.ecc))) != CRYPT_OK) { return errno; } break; } /* get the entire length of the packet */ len += 6 + 4 + 3*MAXLEN; if (*outlen < len) { #ifdef CLEAN_STACK zeromem(buf, sizeof(buf)); #endif return CRYPT_BUFFER_OVERFLOW; } else { *outlen = len; memcpy(out, buf, len); #ifdef CLEAN_STACK zeromem(buf, sizeof(buf)); #endif return CRYPT_OK; } } int kr_import(pk_key *pk, const unsigned char *in, unsigned long inlen) { _pk_key key; int system, key_type, errno; unsigned long ID; _ARGCHK(pk != NULL); _ARGCHK(in != NULL); if (inlen < 10) { return CRYPT_INVALID_PACKET; } if (memcmp(in, key_magic, 4)) { return CRYPT_INVALID_PACKET; } key_type = in[4]; /* get type */ system = in[5]; /* get system */ LOAD32L(ID,in+6); /* the ID */ if (ID != kr_crc(in+10, in+10+MAXLEN, in+10+MAXLEN+MAXLEN)) { return CRYPT_INVALID_PACKET; } zeromem(&key, sizeof(key)); /* size of remaining packet */ inlen -= 10 + 3*MAXLEN; switch (system) { case RSA_KEY: if ((errno = rsa_import(in+10+3*MAXLEN, inlen, &(key.rsa))) != CRYPT_OK) { return errno; } break; case DH_KEY: if ((errno = dh_import(in+10+3*MAXLEN, inlen, &(key.dh))) != CRYPT_OK) { return errno; } break; case ECC_KEY: if ((errno = ecc_import(in+10+3*MAXLEN, inlen, &(key.ecc))) != CRYPT_OK) { return errno; } break; } return kr_add(pk, key_type, system, in+10, /* the name */ in+10+MAXLEN, /* email address */ in+10+MAXLEN+MAXLEN, /* description */ &key); } int kr_load(pk_key **pk, FILE *in, symmetric_CTR *ctr) { unsigned char buf[8192], blen[4]; unsigned long len; int res, errno; _ARGCHK(pk != NULL); _ARGCHK(in != NULL); /* init keyring */ if ((errno = kr_init(pk)) != CRYPT_OK) { return errno; } /* read in magic bytes */ if (_read(buf, 6, in, ctr) != 6) { goto done2; } if (memcmp(buf, file_magic, 4)) { return CRYPT_INVALID_PACKET; } len = (unsigned long)buf[4] | ((unsigned long)buf[5] << 8); if (len > CRYPT) { return CRYPT_INVALID_PACKET; } /* while there are lengths to read... */ while (_read(blen, 4, in, ctr) == 4) { /* get length */ LOAD32L(len, blen); if (len > sizeof(buf)) { return CRYPT_INVALID_PACKET; } if (_read(buf, len, in, ctr) != len) { goto done2; } if ((errno = kr_import(*pk, buf, len)) != CRYPT_OK) { return errno; } } res = CRYPT_OK; goto done; done2: res = CRYPT_ERROR; done: #ifdef CLEAN_STACK zeromem(buf, sizeof(buf)); #endif return res; } int kr_save(pk_key *pk, FILE *out, symmetric_CTR *ctr) { unsigned char buf[8192], blen[4]; unsigned long len; int res, errno; _ARGCHK(pk != NULL); _ARGCHK(out != NULL); /* write out magic bytes */ memcpy(buf, file_magic, 4); buf[4] = CRYPT&255; buf[5] = (CRYPT>>8)&255; if (_write(buf, 6, out, ctr) != 6) { goto done2; } while (pk->system != NON_KEY) { len = sizeof(buf); if ((errno = kr_export(pk, pk->ID, pk->key_type, buf, &len)) != CRYPT_OK) { return errno; } STORE32L(len, blen); if (_write(blen, 4, out, ctr) != 4) { goto done2; } if (_write(buf, len, out, ctr) != len) { goto done2; } pk = pk->next; } res = CRYPT_OK; goto done; done2: res = CRYPT_ERROR; done: #ifdef CLEAN_STACK zeromem(buf, sizeof(buf)); #endif return res; } int kr_make_key(pk_key *pk, prng_state *prng, int wprng, int system, int keysize, const unsigned char *name, const unsigned char *email, const unsigned char *description) { _pk_key key; int key_type, errno; _ARGCHK(pk != NULL); _ARGCHK(name != NULL); _ARGCHK(email != NULL); _ARGCHK(description != NULL); /* valid PRNG? */ if ((errno = prng_is_valid(wprng)) != CRYPT_OK) { return errno; } /* make the key first */ zeromem(&key, sizeof(key)); switch (system) { case RSA_KEY: if ((errno = rsa_make_key(prng, wprng, keysize, 65537, &(key.rsa))) != CRYPT_OK) { return errno; } key_type = key.rsa.type; break; case DH_KEY: if ((errno = dh_make_key(prng, wprng, keysize, &(key.dh))) != CRYPT_OK) { return errno; } key_type = key.dh.type; break; case ECC_KEY: if ((errno = ecc_make_key(prng, wprng, keysize, &(key.ecc))) != CRYPT_OK) { return errno; } key_type = key.ecc.type; break; default: return CRYPT_PK_INVALID_SYSTEM; } /* now add the key */ if ((errno = kr_add(pk, key_type, system, name, email, description, &key)) != CRYPT_OK) { return errno; } #ifdef CLEAN_STACK zeromem(&key, sizeof(key)); #endif return CRYPT_OK; } int kr_encrypt_key(pk_key *pk, unsigned long ID, const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, prng_state *prng, int wprng, int hash) { unsigned char buf[8192]; unsigned long len; pk_key *kr; int errno; _ARGCHK(pk != NULL); _ARGCHK(in != NULL); _ARGCHK(out != NULL); _ARGCHK(outlen != NULL); /* find the key */ kr = kr_find(pk, ID); if (kr == NULL) { return CRYPT_PK_NOT_FOUND; } /* store the header */ memcpy(buf, enc_magic, 4); /* now store the ID */ STORE32L(kr->ID,buf+4); /* now encrypt it */ len = sizeof(buf)-8; switch (kr->system) { case RSA_KEY: if ((errno = rsa_encrypt_key(in, inlen, buf+8, &len, prng, wprng, &(kr->key.rsa))) != CRYPT_OK) { return errno; } break; case DH_KEY: if ((errno = dh_encrypt_key(in, inlen, buf+8, &len, prng, wprng, hash, &(kr->key.dh))) != CRYPT_OK) { return errno; } break; case ECC_KEY: if ((errno = ecc_encrypt_key(in, inlen, buf+8, &len, prng, wprng, hash, &(kr->key.ecc))) != CRYPT_OK) { return errno; } break; } len += 8; if (len > *outlen) { #ifdef CLEAN_STACK zeromem(buf, sizeof(buf)); #endif return CRYPT_BUFFER_OVERFLOW; } else { memcpy(out, buf, len); #ifdef CLEAN_STACK zeromem(buf, sizeof(buf)); #endif *outlen = len; return CRYPT_OK; } } int kr_decrypt_key(pk_key *pk, const unsigned char *in, unsigned char *out, unsigned long *outlen) { unsigned char buf[8192]; unsigned long len, ID; pk_key *kr; int errno; _ARGCHK(pk != NULL); _ARGCHK(in != NULL); _ARGCHK(out != NULL); _ARGCHK(outlen != NULL); /* check magic header */ if (memcmp(in, enc_magic, 4)) { return CRYPT_INVALID_PACKET; } /* now try to find key */ LOAD32L(ID,in+4); kr = kr_find(pk, ID); if (kr == NULL) { return CRYPT_PK_NOT_FOUND; } /* is it public? */ if (kr->key_type == PK_PUBLIC) { return CRYPT_PK_NOT_PRIVATE; } /* now try and decrypt it */ len = sizeof(buf); switch (kr->system) { case RSA_KEY: if ((errno = rsa_decrypt_key(in+8, buf, &len, &(kr->key.rsa))) != CRYPT_OK) { return errno; } break; case DH_KEY: if ((errno = dh_decrypt_key(in+8, buf, &len, &(kr->key.dh))) != CRYPT_OK) { return errno; } break; case ECC_KEY: if ((errno = ecc_decrypt_key(in+8, buf, &len, &(kr->key.ecc))) != CRYPT_OK) { return errno; } break; } if (len > *outlen) { #ifdef CLEAN_STACK zeromem(buf, sizeof(buf)); #endif return CRYPT_BUFFER_OVERFLOW; } else { memcpy(out, buf, len); #ifdef CLEAN_STACK zeromem(buf, sizeof(buf)); #endif *outlen = len; return CRYPT_OK; } } int kr_sign_hash(pk_key *pk, unsigned long ID, const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, prng_state *prng, int wprng) { unsigned char buf[8192]; unsigned long len; pk_key *kr; int errno; _ARGCHK(pk != NULL); _ARGCHK(in != NULL); _ARGCHK(out != NULL); _ARGCHK(outlen != NULL); /* find the key */ kr = kr_find(pk, ID); if (kr == NULL) { return CRYPT_PK_NOT_FOUND; } /* is it public? */ if (kr->key_type == PK_PUBLIC) { return CRYPT_PK_NOT_PRIVATE; } /* store the header */ memcpy(buf, sign_magic, 4); /* now store the ID */ STORE32L(kr->ID,buf+4); /* now sign it */ len = sizeof(buf)-12; switch (kr->system) { case RSA_KEY: if ((errno = rsa_sign_hash(in, inlen, buf+12, &len, &(kr->key.rsa))) != CRYPT_OK) { return errno; } break; case DH_KEY: if ((errno = dh_sign_hash(in, inlen, buf+12, &len, prng, wprng, &(kr->key.dh))) != CRYPT_OK) { return errno; } break; case ECC_KEY: if ((errno = ecc_sign_hash(in, inlen, buf+12, &len, prng, wprng, &(kr->key.ecc))) != CRYPT_OK) { return errno; } break; } STORE32L(inlen,buf+8); len += 12; if (len > *outlen) { #ifdef CLEAN_STACK zeromem(buf, sizeof(buf)); #endif return CRYPT_BUFFER_OVERFLOW; } else { memcpy(out, buf, len); #ifdef CLEAN_STACK zeromem(buf, sizeof(buf)); #endif *outlen = len; return CRYPT_OK; } } int kr_verify_hash(pk_key *pk, const unsigned char *in, const unsigned char *hash, unsigned long hashlen, int *stat) { unsigned long inlen, ID; pk_key *kr; int errno; _ARGCHK(pk != NULL); _ARGCHK(in != NULL); _ARGCHK(hash != NULL); _ARGCHK(stat != NULL); /* default to not match */ *stat = 0; /* check magic header */ if (memcmp(in, sign_magic, 4)) { return CRYPT_INVALID_PACKET; } /* now try to find key */ LOAD32L(ID,in+4); kr = kr_find(pk, ID); if (kr == NULL) { return CRYPT_PK_NOT_FOUND; } /* now try and verify it */ LOAD32L(inlen,in+8); /* this is the length of the original inlen */ if (inlen != hashlen) { /* size doesn't match means the signature is invalid */ return CRYPT_OK; } switch (kr->system) { case RSA_KEY: if ((errno = rsa_verify_hash(in+12, hash, stat, &(kr->key.rsa))) != CRYPT_OK) { return errno; } break; case DH_KEY: if ((errno = dh_verify_hash(in+12, hash, inlen, stat, &(kr->key.dh))) != CRYPT_OK) { return errno; } break; case ECC_KEY: if ((errno = ecc_verify_hash(in+12, hash, inlen, stat, &(kr->key.ecc))) != CRYPT_OK) { return errno; } break; } return CRYPT_OK; } int kr_fingerprint(pk_key *pk, unsigned long ID, int hash, unsigned char *out, unsigned long *outlen) { unsigned char buf[8192]; unsigned long len; int errno; _ARGCHK(pk != NULL); _ARGCHK(out != NULL); _ARGCHK(outlen != NULL); /* valid hash? */ if ((errno = hash_is_valid(hash)) != CRYPT_OK) { return errno; } len = sizeof(buf); if ((errno = kr_export(pk, ID, PK_PUBLIC, buf, &len)) != CRYPT_OK) { return errno; } /* now hash it */ if ((errno = hash_memory(hash, buf, len, out, outlen)) != CRYPT_OK) { return errno; } #ifdef CLEAN_STACK zeromem(buf, sizeof(buf)); #endif return CRYPT_OK; } #endif