/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ #include "mycrypt.h" #ifdef MECC /* This holds the key settings. ***MUST*** be organized by size from smallest to largest. */ static const struct { int size; char *name, *prime, *B, *order, *Gx, *Gy; } sets[] = { #ifdef ECC160 { 20, "ECC-160", /* prime */ "G00000000000000000000000007", /* B */ "1oUV2vOaSlWbxr6", /* order */ "G0000000000004sCQUtDxaqDUN5", /* Gx */ "jpqOf1BHus6Yd/pyhyVpP", /* Gy */ "D/wykuuIFfr+vPyx7kQEPu8MixO", }, #endif #ifdef ECC192 { 24, "ECC-192", /* prime */ "/////////////////////l//////////", /* B */ "P2456UMSWESFf+chSYGmIVwutkp1Hhcn", /* order */ "////////////////cTxuDXHhoR6qqYWn", /* Gx */ "68se3h0maFPylo3hGw680FJ/2ls2/n0I", /* Gy */ "1nahbV/8sdXZ417jQoJDrNFvTw4UUKWH" }, #endif #ifdef ECC224 { 28, "ECC-224", /* prime */ "400000000000000000000000000000000000BV", /* B */ "21HkWGL2CxJIp", /* order */ "4000000000000000000Kxnixk9t8MLzMiV264/", /* Gx */ "jpqOf1BHus6Yd/pyhyVpP", /* Gy */ "3FCtyo2yHA5SFjkCGbYxbOvNeChwS+j6wSIwck", }, #endif #ifdef ECC256 { 32, "ECC-256", /* Prime */ "F////y000010000000000000000////////////////", /* B */ "5h6DTYgEfFdi+kzLNQOXhnb7GQmp5EmzZlEF3udqc1B", /* Order */ "F////y00000//////////+yvlgjfnUUXFEvoiByOoLH", /* Gx */ "6iNqVBXB497+BpcvMEaGF9t0ts1BUipeFIXEKNOcCAM", /* Gy */ "4/ZGkB+6d+RZkVhIdmFdXOhpZDNQp5UpiksG6Wtlr7r" }, #endif #ifdef ECC384 { 48, "ECC-384", /* prime */ "//////////////////////////////////////////x/////00000000003/" "////", /* B */ "ip4lf+8+v+IOZWLhu/Wj6HWTd6x+WK4I0nG8Zr0JXrh6LZcDYYxHdIg5oEtJ" "x2hl", /* Order */ "////////////////////////////////nsDDWVGtBTzO6WsoIB2dUkpi6MhC" "nIbp", /* Gx and Gy */ "geVA8hwB1JUEiSSUyo2jT6uTEsABfvkOMVT1u89KAZXL0l9TlrKfR3fKNZXo" "TWgt", "DXVUIfOcB6zTdfY/afBSAVZq7RqecXHywTen4xNmkC0AOB7E7Nw1dNf37NoG" "wWvV" }, #endif #ifdef ECC521 { 65, "ECC-521", /* prime */ "V///////////////////////////////////////////////////////////" "///////////////////////////", /* B */ "56LFhbXZXoQ7vAQ8Q2sXK3kejfoMvcp5VEuj8cHZl49uLOPEL7iVfDx5bB0l" "JknlmSrSz+8FImqyUz57zHhK3y0", /* Order */ "V//////////////////////////////////////////+b66XuE/BvPhVym1I" "FS9fT0xjScuYPn7hhjljnwHE6G9", /* Gx and Gy */ "CQ5ZWQt10JfpPu+osOZbRH2d6I1EGK/jI7uAAzWQqqzkg5BNdVlvrae/Xt19" "wB/gDupIBF1XMf2c/b+VZ72vRrc", "HWvAMfucZl015oANxGiVHlPcFL4ILURH6WNhxqN9pvcB9VkSfbUz2P0nL2v0" "J+j1s4rF726edB2G8Y+b7QVqMPG", }, #endif { 0, NULL, NULL, NULL, NULL, NULL, NULL } }; #if 0 /* you plug in a prime and B value and it finds a pseudo-random base point */ void ecc_find_base(void) { static char *prime = "26959946667150639794667015087019630673637144422540572481103610249951"; static char *order = "26959946667150639794667015087019637467111563745054605861463538557247"; static char *b = "9538957348957353489587"; mp_int pp, p, r, B, tmp1, tmp2, tx, ty, x, y; char buf[4096]; int i; mp_init_multi(&tx, &ty, &x, &y, &p, &pp, &r, &B, &tmp1, &tmp2, NULL); mp_read_radix(&p, prime, 10); mp_read_radix(&r, order, 10); mp_read_radix(&B, b, 10); /* get (p+1)/4 */ mp_add_d(&p, 1, &pp); mp_div_2(&pp, &pp); mp_div_2(&pp, &pp); buf[0] = 0; do { printf("."); fflush(stdout); /* make a random value of x */ for (i = 0; i < 16; i++) buf[i+1] = rand() & 255; mp_read_raw(&x, buf, 17); mp_copy(&x, &tx); /* now compute x^3 - 3x + b */ mp_expt_d(&x, 3, &tmp1); mp_mul_d(&x, 3, &tmp2); mp_sub(&tmp1, &tmp2, &tmp1); mp_add(&tmp1, &B, &tmp1); mp_mod(&tmp1, &p, &tmp1); /* now compute sqrt via x^((p+1)/4) */ mp_exptmod(&tmp1, &pp, &p, &tmp2); mp_copy(&tmp2, &ty); /* now square it */ mp_sqrmod(&tmp2, &p, &tmp2); /* tmp2 should equal tmp1 */ } while (mp_cmp(&tmp1, &tmp2)); /* now output values in way that libtomcrypt wants */ mp_todecimal(&p, buf); printf("\n\np==%s\n", buf); mp_tohex(&B, buf); printf("b==%s\n", buf); mp_todecimal(&r, buf); printf("r==%s\n", buf); mp_tohex(&tx, buf); printf("Gx==%s\n", buf); mp_tohex(&ty, buf); printf("Gy==%s\n", buf); mp_clear_multi(&tx, &ty, &x, &y, &p, &pp, &r, &B, &tmp1, &tmp2, NULL); } #endif static int is_valid_idx(int n) { int x; for (x = 0; sets[x].size != 0; x++); if ((n < 0) || (n >= x)) { return 0; } return 1; } static ecc_point *new_point(void) { ecc_point *p; p = XMALLOC(sizeof(ecc_point)); if (p == NULL) { return NULL; } if (mp_init_multi(&p->x, &p->y, NULL) != MP_OKAY) { XFREE(p); return NULL; } return p; } static void del_point(ecc_point *p) { mp_clear_multi(&p->x, &p->y, NULL); XFREE(p); } /* double a point R = 2P, R can be P*/ static int dbl_point(ecc_point *P, ecc_point *R, mp_int *modulus, mp_int *mu) { mp_int s, tmp, tmpx; int res; if (mp_init_multi(&s, &tmp, &tmpx, NULL) != MP_OKAY) { return CRYPT_MEM; } /* s = (3Xp^2 + a) / (2Yp) */ if (mp_mul_2(&P->y, &tmp) != MP_OKAY) { goto error; } /* tmp = 2*y */ if (mp_invmod(&tmp, modulus, &tmp) != MP_OKAY) { goto error; } /* tmp = 1/tmp mod modulus */ if (mp_sqr(&P->x, &s) != MP_OKAY) { goto error; } /* s = x^2 */ if (mp_reduce(&s, modulus, mu) != MP_OKAY) { goto error; } if (mp_mul_d(&s,(mp_digit)3, &s) != MP_OKAY) { goto error; } /* s = 3*(x^2) */ if (mp_sub_d(&s,(mp_digit)3, &s) != MP_OKAY) { goto error; } /* s = 3*(x^2) - 3 */ if (mp_cmp_d(&s, 0) == MP_LT) { /* if s < 0 add modulus */ if (mp_add(&s, modulus, &s) != MP_OKAY) { goto error; } } if (mp_mul(&s, &tmp, &s) != MP_OKAY) { goto error; } /* s = tmp * s mod modulus */ if (mp_reduce(&s, modulus, mu) != MP_OKAY) { goto error; } /* Xr = s^2 - 2Xp */ if (mp_sqr(&s, &tmpx) != MP_OKAY) { goto error; } /* tmpx = s^2 */ if (mp_reduce(&tmpx, modulus, mu) != MP_OKAY) { goto error; } /* tmpx = tmpx mod modulus */ if (mp_sub(&tmpx, &P->x, &tmpx) != MP_OKAY) { goto error; } /* tmpx = tmpx - x */ if (mp_submod(&tmpx, &P->x, modulus, &tmpx) != MP_OKAY) { goto error; } /* tmpx = tmpx - x mod modulus */ /* Yr = -Yp + s(Xp - Xr) */ if (mp_sub(&P->x, &tmpx, &tmp) != MP_OKAY) { goto error; } /* tmp = x - tmpx */ if (mp_mul(&tmp, &s, &tmp) != MP_OKAY) { goto error; } /* tmp = tmp * s */ if (mp_submod(&tmp, &P->y, modulus, &R->y) != MP_OKAY) { goto error; } /* y = tmp - y mod modulus */ if (mp_copy(&tmpx, &R->x) != MP_OKAY) { goto error; } /* x = tmpx */ res = CRYPT_OK; goto done; error: res = CRYPT_MEM; done: mp_clear_multi(&tmpx, &tmp, &s, NULL); return res; } /* add two different points over Z/pZ, R = P + Q, note R can equal either P or Q */ static int add_point(ecc_point *P, ecc_point *Q, ecc_point *R, mp_int *modulus, mp_int *mu) { mp_int s, tmp, tmpx; int res; if (mp_init(&tmp) != MP_OKAY) { return CRYPT_MEM; } /* is P==Q or P==-Q? */ if (mp_neg(&Q->y, &tmp) != MP_OKAY || mp_mod(&tmp, modulus, &tmp) != MP_OKAY) { mp_clear(&tmp); return CRYPT_MEM; } if (mp_cmp(&P->x, &Q->x) == MP_EQ) if (mp_cmp(&P->y, &Q->y) == MP_EQ || mp_cmp(&P->y, &tmp) == MP_EQ) { mp_clear(&tmp); return dbl_point(P, R, modulus, mu); } if (mp_init_multi(&tmpx, &s, NULL) != MP_OKAY) { mp_clear(&tmp); return CRYPT_MEM; } /* get s = (Yp - Yq)/(Xp-Xq) mod p */ if (mp_sub(&P->x, &Q->x, &tmp) != MP_OKAY) { goto error; } /* tmp = Px - Qx mod modulus */ if (mp_cmp_d(&tmp, 0) == MP_LT) { /* if tmp<0 add modulus */ if (mp_add(&tmp, modulus, &tmp) != MP_OKAY) { goto error; } } if (mp_invmod(&tmp, modulus, &tmp) != MP_OKAY) { goto error; } /* tmp = 1/tmp mod modulus */ if (mp_sub(&P->y, &Q->y, &s) != MP_OKAY) { goto error; } /* s = Py - Qy mod modulus */ if (mp_cmp_d(&s, 0) == MP_LT) { /* if s<0 add modulus */ if (mp_add(&s, modulus, &s) != MP_OKAY) { goto error; } } if (mp_mul(&s, &tmp, &s) != MP_OKAY) { goto error; } /* s = s * tmp mod modulus */ if (mp_reduce(&s, modulus, mu) != MP_OKAY) { goto error; } /* Xr = s^2 - Xp - Xq */ if (mp_sqr(&s, &tmp) != MP_OKAY) { goto error; } /* tmp = s^2 mod modulus */ if (mp_reduce(&tmp, modulus, mu) != MP_OKAY) { goto error; } if (mp_sub(&tmp, &P->x, &tmp) != MP_OKAY) { goto error; } /* tmp = tmp - Px */ if (mp_sub(&tmp, &Q->x, &tmpx) != MP_OKAY) { goto error; } /* tmpx = tmp - Qx */ /* Yr = -Yp + s(Xp - Xr) */ if (mp_sub(&P->x, &tmpx, &tmp) != MP_OKAY) { goto error; } /* tmp = Px - tmpx */ if (mp_mul(&tmp, &s, &tmp) != MP_OKAY) { goto error; } /* tmp = tmp * s */ if (mp_submod(&tmp, &P->y, modulus, &R->y) != MP_OKAY) { goto error; } /* Ry = tmp - Py mod modulus */ if (mp_mod(&tmpx, modulus, &R->x) != MP_OKAY) { goto error; } /* Rx = tmpx mod modulus */ res = CRYPT_OK; goto done; error: res = CRYPT_MEM; done: mp_clear_multi(&s, &tmpx, &tmp, NULL); return res; } /* perform R = kG where k == integer and G == ecc_point */ static int ecc_mulmod(mp_int *k, ecc_point *G, ecc_point *R, mp_int *modulus) { ecc_point *tG, *M[30]; int i, j, z, res, Q; mp_digit d; unsigned char bits[150], m, first; mp_int mu; if ((USED(k) * MP_DIGIT_BIT) > 256) { Q = 5; } else { Q = 4; } if (mp_init(&mu) != MP_OKAY) { return CRYPT_MEM; } /* init barrett reduction */ mp_set(&mu, 1); mp_lshd(&mu, 2 * USED(modulus)); if (mp_div(&mu, modulus, &mu, NULL) != MP_OKAY) { mp_clear(&mu); return CRYPT_MEM; } /* init M tab (alloc here, calculate below) This table holds the first 2^Q multiples of the input base point G, that is M[x] = x * G Where G is the point and x is a scalar. The implementation is optimized since M[0] == 0 and M[1] == G so there is no need to waste space for those. In effect M'[x] == M[x+2] where M'[] is the table we make. If M[0] or M[1] are needed we handle them with if statements. */ for (i = 0; i < ((1<>= 1; } } /* residue of multiplicand [if any] */ if (m) { bits[i++] = first; } /* make a copy of G incase R==G */ tG = new_point(); if (tG == NULL) { goto error; } /* skip leading digits which are zero */ --i; while (i != 0 && bits[i] == (unsigned char)0) { --i; } /* if the multiplicand has no non-zero 4-bit words its invalid. */ if (i == 0) { res = CRYPT_INVALID_ARG; goto done; } /* now calc the M tab, note that there are only 2^Q - 2 spots, the normal M[0] is a no-op, and M[1] is the input point (saves ram) */ /* M[0] now is 2*G */ if (dbl_point(G, M[0], modulus, &mu) != CRYPT_OK) { goto error; } for (j = 1; j < ((1<x, &tG->x) != MP_OKAY) { goto error; } if (mp_copy(&G->y, &tG->y) != MP_OKAY) { goto error; } /* set result M[bits[i]] */ if (bits[i] == (unsigned char)1) { if (mp_copy(&G->x, &R->x) != MP_OKAY) { goto error; } if (mp_copy(&G->y, &R->y) != MP_OKAY) { goto error; } } else if (bits[i] >= (unsigned char)2) { if (mp_copy(&M[(int)bits[i]-2]->x, &R->x) != MP_OKAY) { goto error; } if (mp_copy(&M[(int)bits[i]-2]->y, &R->y) != MP_OKAY) { goto error; } } while (--i >= 0) { /* double */ for (j = 0; j < Q; j++) { if (dbl_point(R, R, modulus, &mu) != CRYPT_OK) { goto error; } } /* now based on the value of bits[i] we do ops */ if (bits[i] == (unsigned char)0) { /* nop */ } else if (bits[i] == (unsigned char)1) { /* add base point */ if (add_point(R, tG, R, modulus, &mu) != CRYPT_OK) { goto error; } } else { /* other case */ if (add_point(R, M[(int)bits[i] - 2], R, modulus, &mu) != CRYPT_OK) { goto error; } } } res = CRYPT_OK; goto done; error: res = CRYPT_MEM; done: del_point(tG); for (i = 0; i < ((1<x, (unsigned char *)sets[i].Gx, 64) != MP_OKAY) { goto error; } if (mp_read_radix(&G->y, (unsigned char *)sets[i].Gy, 64) != MP_OKAY) { goto error; } /* then we should have G == (order + 1)G */ if (mp_add_d(&order, 1, &order) != MP_OKAY) { goto error; } if (ecc_mulmod(&order, G, GG, &modulus) != CRYPT_OK) { goto error; } if (mp_cmp(&G->x, &GG->x) != 0 || mp_cmp(&G->y, &GG->y) != 0) { res = CRYPT_FAIL_TESTVECTOR; goto done1; } } res = CRYPT_OK; goto done1; error: res = CRYPT_MEM; done1: del_point(GG); del_point(G); mp_clear_multi(&order, &modulus, NULL); return res; } void ecc_sizes(int *low, int *high) { int i; _ARGCHK(low != NULL); _ARGCHK(high != NULL); *low = INT_MAX; *high = 0; for (i = 0; sets[i].size != 0; i++) { if (sets[i].size < *low) { *low = sets[i].size; } if (sets[i].size > *high) { *high = sets[i].size; } } } int ecc_make_key(prng_state *prng, int wprng, int keysize, ecc_key *key) { int x, res, err; ecc_point *base; mp_int prime; unsigned char buf[4096]; _ARGCHK(key != NULL); /* good prng? */ if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } /* find key size */ for (x = 0; (keysize > sets[x].size) && (sets[x].size != 0); x++); keysize = sets[x].size; if (sets[x].size == 0) { return CRYPT_INVALID_KEYSIZE; } key->idx = x; /* make up random string */ if (prng_descriptor[wprng].read(buf, (unsigned long)keysize, prng) != (unsigned long)keysize) { return CRYPT_ERROR_READPRNG; } /* setup the key variables */ if (mp_init_multi(&key->pubkey.x, &key->pubkey.y, &key->k, &prime, NULL) != MP_OKAY) { return CRYPT_MEM; } base = new_point(); if (base == NULL) { mp_clear_multi(&key->pubkey.x, &key->pubkey.y, &key->k, &prime, NULL); return CRYPT_MEM; } /* read in the specs for this key */ if (mp_read_radix(&prime, (unsigned char *)sets[key->idx].prime, 64) != MP_OKAY) { goto error; } if (mp_read_radix(&base->x, (unsigned char *)sets[key->idx].Gx, 64) != MP_OKAY) { goto error; } if (mp_read_radix(&base->y, (unsigned char *)sets[key->idx].Gy, 64) != MP_OKAY) { goto error; } if (mp_read_unsigned_bin(&key->k, (unsigned char *)buf, keysize) != MP_OKAY) { goto error; } /* make the public key */ if (ecc_mulmod(&key->k, base, &key->pubkey, &prime) != CRYPT_OK) { goto error; } key->type = PK_PRIVATE; /* shrink key */ if (mp_shrink(&key->k) != MP_OKAY) { goto error; } if (mp_shrink(&key->pubkey.x) != MP_OKAY) { goto error; } if (mp_shrink(&key->pubkey.y) != MP_OKAY) { goto error; } /* free up ram */ res = CRYPT_OK; goto done; error: res = CRYPT_MEM; done: del_point(base); mp_clear(&prime); #ifdef CLEAN_STACK zeromem(buf, sizeof(buf)); #endif return res; } void ecc_free(ecc_key *key) { _ARGCHK(key != NULL); mp_clear_multi(&key->pubkey.x, &key->pubkey.y, &key->k, NULL); } static int compress_y_point(ecc_point *pt, int idx, int *result) { mp_int tmp, tmp2, p; int res; _ARGCHK(pt != NULL); _ARGCHK(result != NULL); if (mp_init_multi(&tmp, &tmp2, &p, NULL) != MP_OKAY) { return CRYPT_MEM; } /* get x^3 - 3x + b */ if (mp_read_radix(&p, (unsigned char *)sets[idx].B, 64) != MP_OKAY) { goto error; } /* p = B */ if (mp_expt_d(&pt->x, 3, &tmp) != MP_OKAY) { goto error; } /* tmp = pX^3 */ if (mp_mul_d(&pt->x, 3, &tmp2) != MP_OKAY) { goto error; } /* tmp2 = 3*pX^3 */ if (mp_sub(&tmp, &tmp2, &tmp) != MP_OKAY) { goto error; } /* tmp = tmp - tmp2 */ if (mp_add(&tmp, &p, &tmp) != MP_OKAY) { goto error; } /* tmp = tmp + p */ if (mp_read_radix(&p, (unsigned char *)sets[idx].prime, 64) != MP_OKAY) { goto error; } /* p = prime */ if (mp_mod(&tmp, &p, &tmp) != MP_OKAY) { goto error; } /* tmp = tmp mod p */ /* now find square root */ if (mp_add_d(&p, 1, &tmp2) != MP_OKAY) { goto error; } /* tmp2 = p + 1 */ if (mp_div_2(&tmp2, &tmp2) != MP_OKAY) { goto error; } /* tmp2 = tmp2/2 */ if (mp_div_2(&tmp2, &tmp2) != MP_OKAY) { goto error; } /* tmp2 = (p+1)/4 */ if (mp_exptmod(&tmp, &tmp2, &p, &tmp) != MP_OKAY) { goto error; } /* tmp = (x^3 - 3x + b)^((p+1)/4) mod p */ /* if tmp equals the y point give a 0, otherwise 1 */ if (mp_cmp(&tmp, &pt->y) == 0) { *result = 0; } else { *result = 1; } res = CRYPT_OK; goto done; error: res = CRYPT_MEM; done: mp_clear_multi(&p, &tmp, &tmp2, NULL); return res; } static int expand_y_point(ecc_point *pt, int idx, int result) { mp_int tmp, tmp2, p; int res; _ARGCHK(pt != NULL); if (mp_init_multi(&tmp, &tmp2, &p, NULL) != MP_OKAY) { return CRYPT_MEM; } /* get x^3 - 3x + b */ if (mp_read_radix(&p, (unsigned char *)sets[idx].B, 64) != MP_OKAY) { goto error; } /* p = B */ if (mp_expt_d(&pt->x, 3, &tmp) != MP_OKAY) { goto error; } /* tmp = pX^3 */ if (mp_mul_d(&pt->x, 3, &tmp2) != MP_OKAY) { goto error; } /* tmp2 = 3*pX^3 */ if (mp_sub(&tmp, &tmp2, &tmp) != MP_OKAY) { goto error; } /* tmp = tmp - tmp2 */ if (mp_add(&tmp, &p, &tmp) != MP_OKAY) { goto error; } /* tmp = tmp + p */ if (mp_read_radix(&p, (unsigned char *)sets[idx].prime, 64) != MP_OKAY) { goto error; } /* p = prime */ if (mp_mod(&tmp, &p, &tmp) != MP_OKAY) { goto error; } /* tmp = tmp mod p */ /* now find square root */ if (mp_add_d(&p, 1, &tmp2) != MP_OKAY) { goto error; } /* tmp2 = p + 1 */ if (mp_div_2(&tmp2, &tmp2) != MP_OKAY) { goto error; } /* tmp2 = tmp2/2 */ if (mp_div_2(&tmp2, &tmp2) != MP_OKAY) { goto error; } /* tmp2 = (p+1)/4 */ if (mp_exptmod(&tmp, &tmp2, &p, &tmp) != MP_OKAY) { goto error; } /* tmp = (x^3 - 3x + b)^((p+1)/4) mod p */ /* if result==0, then y==tmp, otherwise y==p-tmp */ if (result == 0) { if (mp_copy(&tmp, &pt->y) != MP_OKAY) { goto error; } } else { if (mp_sub(&p, &tmp, &pt->y) != MP_OKAY) { goto error; } } res = CRYPT_OK; goto done; error: res = CRYPT_MEM; done: mp_clear_multi(&p, &tmp, &tmp2, NULL); return res; } #define OUTPUT_BIGNUM(num, buf2, y, z) \ { \ z = (unsigned long)mp_unsigned_bin_size(num); \ STORE32L(z, buf2+y); \ y += 4; \ (void)mp_to_unsigned_bin(num, buf2+y); \ y += z; \ } #define INPUT_BIGNUM(num, in, x, y) \ { \ /* load value */ \ if (y+4 > inlen) { \ err = CRYPT_INVALID_PACKET; \ goto error; \ } \ LOAD32L(x, in+y); \ y += 4; \ \ /* sanity check... */ \ if (y+x > inlen) { \ err = CRYPT_INVALID_PACKET; \ goto error; \ } \ \ /* load it */ \ if (mp_read_unsigned_bin(num, (unsigned char *)in+y, (int)x) != MP_OKAY) {\ err = CRYPT_MEM; \ goto error; \ } \ y += x; \ if (mp_shrink(num) != MP_OKAY) { \ err = CRYPT_MEM; \ goto error; \ } \ } int ecc_export(unsigned char *out, unsigned long *outlen, int type, ecc_key *key) { unsigned long y, z; int res, err; unsigned char buf2[512]; _ARGCHK(out != NULL); _ARGCHK(outlen != NULL); _ARGCHK(key != NULL); /* type valid? */ if (key->type != PK_PRIVATE && type == PK_PRIVATE) { return CRYPT_PK_TYPE_MISMATCH; } /* output type and magic byte */ y = PACKET_SIZE; buf2[y++] = (unsigned char)type; buf2[y++] = (unsigned char)sets[key->idx].size; /* output x coordinate */ OUTPUT_BIGNUM(&(key->pubkey.x), buf2, y, z); /* compress y and output it */ if ((err = compress_y_point(&key->pubkey, key->idx, &res)) != CRYPT_OK) { return err; } buf2[y++] = (unsigned char)res; if (type == PK_PRIVATE) { OUTPUT_BIGNUM(&key->k, buf2, y, z); } /* check size */ if (*outlen < y) { return CRYPT_BUFFER_OVERFLOW; } /* store header */ packet_store_header(buf2, PACKET_SECT_ECC, PACKET_SUB_KEY); memcpy(out, buf2, (size_t)y); *outlen = y; #ifdef CLEAN_STACK zeromem(buf2, sizeof(buf2)); #endif return CRYPT_OK; } int ecc_import(const unsigned char *in, unsigned long inlen, ecc_key *key) { unsigned long x, y, s; int err; _ARGCHK(in != NULL); _ARGCHK(key != NULL); /* check type */ if ((err = packet_valid_header((unsigned char *)in, PACKET_SECT_ECC, PACKET_SUB_KEY)) != CRYPT_OK) { return err; } if (2+PACKET_SIZE > inlen) { return CRYPT_INVALID_PACKET; } /* init key */ if (mp_init_multi(&key->pubkey.x, &key->pubkey.y, &key->k, NULL) != MP_OKAY) { return CRYPT_MEM; } y = PACKET_SIZE; key->type = (int)in[y++]; s = (unsigned long)in[y++]; for (x = 0; (s > (unsigned long)sets[x].size) && (sets[x].size != 0); x++); if (sets[x].size == 0) { err = CRYPT_INVALID_KEYSIZE; goto error; } key->idx = (int)x; /* type check both values */ if ((key->type != PK_PUBLIC) && (key->type != PK_PRIVATE)) { err = CRYPT_INVALID_PACKET; goto error; } /* is the key idx valid? */ if (is_valid_idx(key->idx) != 1) { err = CRYPT_INVALID_PACKET; goto error; } /* load x coordinate */ INPUT_BIGNUM(&key->pubkey.x, in, x, y); /* load y */ x = (unsigned long)in[y++]; if ((err = expand_y_point(&key->pubkey, key->idx, (int)x)) != CRYPT_OK) { goto error; } if (key->type == PK_PRIVATE) { /* load private key */ INPUT_BIGNUM(&key->k, in, x, y); } /* eliminate private key if public */ if (key->type == PK_PUBLIC) { mp_clear(&key->k); } return CRYPT_OK; error: mp_clear_multi(&key->pubkey.x, &key->pubkey.y, &key->k, NULL); return err; } int ecc_shared_secret(ecc_key *private_key, ecc_key *public_key, unsigned char *out, unsigned long *outlen) { unsigned long x, y; ecc_point *result; mp_int prime; int res, err; _ARGCHK(private_key != NULL); _ARGCHK(public_key != NULL); _ARGCHK(out != NULL); _ARGCHK(outlen != NULL); /* type valid? */ if (private_key->type != PK_PRIVATE) { return CRYPT_PK_NOT_PRIVATE; } if (private_key->idx != public_key->idx) { return CRYPT_PK_TYPE_MISMATCH; } /* make new point */ result = new_point(); if (result == NULL) { return CRYPT_MEM; } if (mp_init(&prime) != MP_OKAY) { del_point(result); return CRYPT_MEM; } if (mp_read_radix(&prime, (unsigned char *)sets[private_key->idx].prime, 64) != MP_OKAY) { goto error; } if ((err = ecc_mulmod(&private_key->k, &public_key->pubkey, result, &prime)) != CRYPT_OK) { res = err; goto done1; } x = (unsigned long)mp_unsigned_bin_size(&result->x); y = (unsigned long)mp_unsigned_bin_size(&result->y); if (*outlen < (x+y)) { res = CRYPT_BUFFER_OVERFLOW; goto done1; } *outlen = x+y; (void)mp_to_unsigned_bin(&result->x, out); (void)mp_to_unsigned_bin(&result->y, out+x); res = CRYPT_OK; goto done1; error: res = CRYPT_MEM; done1: mp_clear(&prime); del_point(result); return res; } int ecc_get_size(ecc_key *key) { _ARGCHK(key != NULL); if (is_valid_idx(key->idx)) return sets[key->idx].size; else return INT_MAX; /* large value known to cause it to fail when passed to ecc_make_key() */ } #include "ecc_sys.c" #endif