#include "mycrypt.h" #ifdef CBC int cbc_start(int cipher, const unsigned char *IV, const unsigned char *key, int keylen, int num_rounds, symmetric_CBC *cbc) { int x, err; _ARGCHK(IV != NULL); _ARGCHK(key != NULL); _ARGCHK(cbc != NULL); /* bad param? */ if ((err = cipher_is_valid(cipher)) != CRYPT_OK) { return err; } /* setup cipher */ if ((err = cipher_descriptor[cipher].setup(key, keylen, num_rounds, &cbc->key)) != CRYPT_OK) { return err; } /* copy IV */ cbc->blocklen = cipher_descriptor[cipher].block_length; cbc->cipher = cipher; for (x = 0; x < cbc->blocklen; x++) { cbc->IV[x] = IV[x]; } return CRYPT_OK; } int cbc_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_CBC *cbc) { int x, err; unsigned char tmp[MAXBLOCKSIZE]; _ARGCHK(pt != NULL); _ARGCHK(ct != NULL); _ARGCHK(cbc != NULL); if ((err = cipher_is_valid(cbc->cipher)) != CRYPT_OK) { return err; } /* xor IV against plaintext */ for (x = 0; x < cbc->blocklen; x++) { tmp[x] = pt[x] ^ cbc->IV[x]; } /* encrypt */ cipher_descriptor[cbc->cipher].ecb_encrypt(tmp, ct, &cbc->key); /* store IV [ciphertext] for a future block */ for (x = 0; x < cbc->blocklen; x++) { cbc->IV[x] = ct[x]; } #ifdef CLEAN_STACK zeromem(tmp, sizeof(tmp)); #endif return CRYPT_OK; } int cbc_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_CBC *cbc) { int x, err; unsigned char tmp[MAXBLOCKSIZE], tmp2[MAXBLOCKSIZE]; _ARGCHK(pt != NULL); _ARGCHK(ct != NULL); _ARGCHK(cbc != NULL); /* decrypt the block from ct into tmp */ if ((err = cipher_is_valid(cbc->cipher)) != CRYPT_OK) { return err; } cipher_descriptor[cbc->cipher].ecb_decrypt(ct, tmp, &cbc->key); /* xor IV against the plaintext of the previous step */ for (x = 0; x < cbc->blocklen; x++) { /* copy CT in case ct == pt */ tmp2[x] = ct[x]; /* actually decrypt the byte */ pt[x] = tmp[x] ^ cbc->IV[x]; } /* replace IV with this current ciphertext */ for (x = 0; x < cbc->blocklen; x++) { cbc->IV[x] = tmp2[x]; } #ifdef CLEAN_STACK zeromem(tmp, sizeof(tmp)); zeromem(tmp2, sizeof(tmp2)); #endif return CRYPT_OK; } #endif