/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org */ #include "mycrypt.h" /* OAEP Padding for PKCS #1 -- Tom St Denis */ #ifdef PKCS_1 int pkcs_1_oaep_encode(const unsigned char *msg, unsigned long msglen, const unsigned char *lparam, unsigned long lparamlen, unsigned long modulus_bitlen, prng_state *prng, int prng_idx, int hash_idx, unsigned char *out, unsigned long *outlen) { unsigned char *DB, *seed, *mask; unsigned long hLen, x, y, modulus_len; int err; _ARGCHK(msg != NULL); _ARGCHK(out != NULL); _ARGCHK(outlen != NULL); /* test valid hash */ if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { return err; } /* valid prng */ if ((err = prng_is_valid(prng_idx)) != CRYPT_OK) { return err; } hLen = hash_descriptor[hash_idx].hashsize; modulus_len = (modulus_bitlen >> 3) + (modulus_bitlen & 7 ? 1 : 0); /* allocate ram for DB/mask/salt of size modulus_len */ DB = XMALLOC(modulus_len); mask = XMALLOC(modulus_len); seed = XMALLOC(modulus_len); if (DB == NULL || mask == NULL || seed == NULL) { if (DB != NULL) { XFREE(DB); } if (mask != NULL) { XFREE(mask); } if (seed != NULL) { XFREE(seed); } return CRYPT_MEM; } /* test message size */ if (msglen > (modulus_len - 2*hLen - 2)) { err = CRYPT_PK_INVALID_SIZE; goto __ERR; } /* get lhash */ /* DB == lhash || PS || 0x01 || M, PS == k - mlen - 2hlen - 2 zeroes */ x = modulus_len; if (lparam != NULL) { if ((err = hash_memory(hash_idx, lparam, lparamlen, DB, &x)) != CRYPT_OK) { goto __ERR; } } else { /* can't pass hash_memory a NULL so use DB with zero length */ if ((err = hash_memory(hash_idx, DB, 0, DB, &x)) != CRYPT_OK) { goto __ERR; } } /* append PS then 0x01 (to lhash) */ x = hLen; y = modulus_len - msglen - 2*hLen - 2; while (y--) { DB[x++] = 0x00; } DB[x++] = 0x01; /* message */ y = msglen; while (y--) { DB[x++] = *msg++; } /* now choose a random seed */ if (prng_descriptor[prng_idx].read(seed, hLen, prng) != hLen) { err = CRYPT_ERROR_READPRNG; goto __ERR; } /* compute MGF1 of seed (k - hlen - 1) */ if ((err = pkcs_1_mgf1(seed, hLen, hash_idx, mask, modulus_len - hLen - 1)) != CRYPT_OK) { goto __ERR; } /* xor against DB */ for (y = 0; y < (modulus_len - hLen - 1); y++) { DB[y] ^= mask[y]; } /* compute MGF1 of maskedDB (hLen) */ if ((err = pkcs_1_mgf1(DB, modulus_len - hLen - 1, hash_idx, mask, hLen)) != CRYPT_OK) { goto __ERR; } /* XOR against seed */ for (y = 0; y < hLen; y++) { seed[y] ^= mask[y]; } /* create string of length modulus_len */ if (*outlen < modulus_len) { err = CRYPT_BUFFER_OVERFLOW; goto __ERR; } /* start output which is 0x00 || maskedSeed || maskedDB */ x = 0; out[x++] = 0x00; for (y = 0; y < hLen; y++) { out[x++] = seed[y]; } for (y = 0; y < modulus_len - hLen - 1; y++) { out[x++] = DB[y]; } *outlen = x; err = CRYPT_OK; __ERR: #ifdef CLEAN_STACK zeromem(DB, modulus_len); zeromem(seed, modulus_len); zeromem(mask, modulus_len); #endif XFREE(seed); XFREE(mask); XFREE(DB); return err; } #endif /* PKCS_1 */