#include "mycrypt.h" #ifdef MPI #define UPPER_LIMIT PRIME_SIZE /* figures out if a number is prime (MR test) */ int is_prime(mp_int *N, int *result) { int err; if ((err = mp_prime_is_prime(N, 8, result)) != MP_OKAY) { return CRYPT_MEM; } return CRYPT_OK; } static int next_prime(mp_int *N, mp_digit step) { long x, s, j, total_dist; int res; mp_int n1, a, y, r; mp_digit dist, residues[UPPER_LIMIT]; _ARGCHK(N != NULL); /* first find the residues */ for (x = 0; x < (long)UPPER_LIMIT; x++) { if (mp_mod_d(N, __prime_tab[x], &residues[x]) != MP_OKAY) { return CRYPT_MEM; } } /* init variables */ if (mp_init_multi(&r, &n1, &a, &y, NULL) != MP_OKAY) { return CRYPT_MEM; } total_dist = 0; loop: /* while one of the residues is zero keep looping */ dist = step; for (x = 0; (dist < (MP_DIGIT_MAX-step-1)) && (x < (long)UPPER_LIMIT); x++) { j = (long)residues[x] + (long)dist + total_dist; if (j % (long)__prime_tab[x] == 0) { dist += step; x = -1; } } /* recalc the total distance from where we started */ total_dist += dist; /* add to N */ if (mp_add_d(N, dist, N) != MP_OKAY) { goto error; } /* n1 = N - 1 */ if (mp_sub_d(N, 1, &n1) != MP_OKAY) { goto error; } /* r = N - 1 */ if (mp_copy(&n1, &r) != MP_OKAY) { goto error; } /* find s such that N-1 = (2^s)r */ s = 0; while (mp_iseven(&r)) { ++s; if (mp_div_2(&r, &r) != MP_OKAY) { goto error; } } for (x = 0; x < 8; x++) { /* choose a */ mp_set(&a, __prime_tab[x]); /* compute y = a^r mod n */ if (mp_exptmod(&a, &r, N, &y) != MP_OKAY) { goto error; } /* (y != 1) AND (y != N-1) */ if ((mp_cmp_d(&y, 1) != 0) && (mp_cmp(&y, &n1) != 0)) { /* while j <= s-1 and y != n-1 */ for (j = 1; (j <= (s-1)) && (mp_cmp(&y, &n1) != 0); j++) { /* y = y^2 mod N */ if (mp_sqrmod(&y, N, &y) != MP_OKAY) { goto error; } /* if y == 1 return false */ if (mp_cmp_d(&y, 1) == 0) { goto loop; } } /* if y != n-1 return false */ if (mp_cmp(&y, &n1) != 0) { goto loop; } } } res = CRYPT_OK; goto done; error: res = CRYPT_MEM; done: mp_clear_multi(&a, &y, &n1, &r, NULL); #ifdef CLEAN_STACK zeromem(residues, sizeof(residues)); #endif return res; } int rand_prime(mp_int *N, long len, prng_state *prng, int wprng) { unsigned char buf[260]; int err, step, ormask; _ARGCHK(N != NULL); /* pass a negative size if you want a prime congruent to 3 mod 4 */ if (len < 0) { step = 4; ormask = 3; len = -len; } else { step = 2; ormask = 1; } /* allow sizes between 2 and 256 bytes for a prime size */ if (len < 2 || len > 256) { return CRYPT_INVALID_PRIME_SIZE; } /* valid PRNG? */ if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } /* read the prng */ if (prng_descriptor[wprng].read(buf+2, (unsigned long)len, prng) != (unsigned long)len) { return CRYPT_ERROR_READPRNG; } /* set sign byte to zero */ buf[0] = (unsigned char)0; /* Set the top byte to 0x01 which makes the number a len*8 bit number */ buf[1] = (unsigned char)0x01; /* set the LSB to the desired settings * (1 for any prime, 3 for primes congruent to 3 mod 4) */ buf[len+1] |= (unsigned char)ormask; /* read the number in */ if (mp_read_raw(N, buf, 2+len) != MP_OKAY) { return CRYPT_MEM; } /* add the step size to it while N is not prime */ if ((err = next_prime(N, step)) != CRYPT_OK) { return err; } #ifdef CLEAN_STACK zeromem(buf, sizeof(buf)); #endif return CRYPT_OK; } #endif