tomcrypt/demos/demo_dynamic.py
2014-07-15 15:28:29 +02:00

207 lines
5.9 KiB
Python
Executable File

"""
demo_dynamic.py v1
This program demonstrates Python's use of the dynamic
language support additions to LTC, namely access to LTC
constants, struct and union sizes, and the binding of a
math package to LTC. Also provided are simple code
fragments to illustrate how one might write a Python
wrapper for LTC and how an app might call the wrapper.
This or a similar model should work for Ruby and other
dynamic languages.
This instance uses Python's ctypes and requires a single
.dylib linking together LTC and a math library. Building
a single .dylib is needed because LTC wants a fairly tight
relationship between itself and the mathlib. (ctypes can
load multiple .dylibs, but it does not support this level
of tight coupling between otherwise independent libraries.)
My .dylib was created on OSX with the following steps:
1- compile LTC to a .a static lib:
CFLAGS="-DLTM_DESC -DUSE_LTM" make
2- link LTC and LTM into a single .dylib:
ar2dylib_with tomcrypt tommath
where ar2dylib_with is a shell script that combines
the LTC .a with the LTM .dylib
Reminder: you don't need to bind in a math library unless
you are going to use LTC functions that depend
on a mathlib. For example, public key crypto
needs a mathlib; hashing and symmetric encryption
do not.
This code was written for Python 2.7.
Larry Bugbee
March 2014
"""
from ctypes import *
from ctypes.util import find_library
#---------------------------------------------------------------
# load the .dylib
libname = 'tomcrypt'
libpath = find_library(libname)
print
print(' demo_dynamic.py')
print
print(' path to library %s: %s' % (libname, libpath))
LTC = cdll.LoadLibrary(libpath)
print(' loaded: %s' % LTC)
print
#---------------------------------------------------------------
# get list of all supported constants followed by a list of all
# supported sizes. One alternative: these lists may be parsed
# and used as needed.
if 1:
print ' all supported constants and their values:'
# get size to allocate for constants output list
str_len = c_int(0)
ret = LTC.crypt_list_all_constants(None, byref(str_len))
print ' need to allocate %d bytes \n' % str_len.value
# allocate that size and get (name, size) pairs, each pair
# separated by a newline char.
names_sizes = c_buffer(str_len.value)
ret = LTC.crypt_list_all_constants(names_sizes, byref(str_len))
print names_sizes.value
print
if 1:
print ' all supported sizes:'
# get size to allocate for sizes output list
str_len = c_int(0)
ret = LTC.crypt_list_all_sizes(None, byref(str_len))
print ' need to allocate %d bytes \n' % str_len.value
# allocate that size and get (name, size) pairs, each pair
# separated by a newline char.
names_sizes = c_buffer(str_len.value)
ret = LTC.crypt_list_all_sizes(names_sizes, byref(str_len))
print names_sizes.value
print
#---------------------------------------------------------------
# get individually named constants and sizes
# print selected constants
if 1:
print '\n selected constants:'
names = [
'ENDIAN_LITTLE',
'ENDIAN_64BITWORD',
'PK_PUBLIC',
'MAX_RSA_SIZE',
'CTR_COUNTER_BIG_ENDIAN',
]
for name in names:
const_value = c_int(0)
rc = LTC.crypt_get_constant(name, byref(const_value))
value = const_value.value
print ' %-25s %d' % (name, value)
# print selected sizes
if 1:
print '\n selected sizes:'
names = [
'rijndael_key',
'rsa_key',
'symmetric_CTR',
'twofish_key',
'ecc_point',
'gcm_state',
'sha512_state',
]
for name in names:
size_value = c_int(0)
rc = LTC.crypt_get_size(name, byref(size_value))
value = size_value.value
print ' %-25s %d' % (name, value)
#---------------------------------------------------------------
#---------------------------------------------------------------
# ctypes getting a list of this build's supported algorithms
# and compiler switches
def get_named_string(lib, name):
return c_char_p.in_dll(lib, name).value
if 0:
print '\n%s' % ('-'*60)
print 'This is a string compiled into LTC showing compile '
print 'options and algorithms supported by this build \n'
print get_named_string(LTC, 'crypt_build_settings')
print
#---------------------------------------------------------------
#---------------------------------------------------------------
# here is an example of how a wrapper can make Python access
# more Pythonic
# - - - - - - - - - - - - -
# a wrapper fragment...
def _get_size(name):
size = c_int(0)
rc = LTC.crypt_get_size(name, byref(size))
return size.value
sha256_state_struct_size = _get_size('sha256_state')
sha512_state_struct_size = _get_size('sha512_state')
class SHA256(object):
def __init__(self):
self.state = c_buffer(sha256_state_struct_size)
LTC.sha256_init(byref(self.state))
def update(self, data):
LTC.sha256_process(byref(self.state), data, len(data))
def digest(self):
md = c_buffer(32)
LTC.sha256_done(byref(self.state), byref(md))
return md.raw
# - - - - - - - - - - - - -
# an app fragment...
# from wrapper import * # uncomment in real life
data = 'hello world'
sha256 = SHA256()
sha256.update(data)
md = sha256.digest()
template = '\n\n the SHA256 digest for "%s" is %s \n'
print template % (data, md.encode('hex'))
#---------------------------------------------------------------
#---------------------------------------------------------------
#---------------------------------------------------------------