tommath/bn_mp_dr_reduce.c

151 lines
3.5 KiB
C
Raw Normal View History

2003-03-22 10:10:20 -05:00
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library is designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* reduce "a" in place modulo "b" using the Diminished Radix algorithm.
*
* Based on algorithm from the paper
*
* "Generating Efficient Primes for Discrete Log Cryptosystems"
* Chae Hoon Lim, Pil Loong Lee,
* POSTECH Information Research Laboratories
*
* The modulus must be of a special format [see manual]
*/
int
mp_dr_reduce (mp_int * a, mp_int * b, mp_digit mp)
{
int err, i, j, k;
mp_word r;
mp_digit mu, *tmpj, *tmpi;
/* k = digits in modulus */
k = b->used;
/* ensure that "a" has at least 2k digits */
if (a->alloc < k + k) {
if ((err = mp_grow (a, k + k)) != MP_OKAY) {
return err;
}
}
/* alias for a->dp[i] */
tmpi = a->dp + k + k - 1;
/* for (i = 2k - 1; i >= k; i = i - 1)
*
* This is the main loop of the reduction. Note that at the end
* the words above position k are not zeroed as expected. The end
* result is that the digits from 0 to k-1 are the residue. So
* we have to clear those afterwards.
*/
for (i = k + k - 1; i >= k; i = i - 1) {
/* x[i - 1 : i - k] += x[i]*mp */
/* x[i] * mp */
r = ((mp_word) *tmpi--) * ((mp_word) mp);
/* now add r to x[i-1:i-k]
*
* First add it to the first digit x[i-k] then form the carry
* then enter the main loop
*/
j = i - k;
/* alias for a->dp[j] */
tmpj = a->dp + j;
/* add digit */
*tmpj += (mp_digit)(r & MP_MASK);
/* this is the carry */
mu = (r >> ((mp_word) DIGIT_BIT)) + (*tmpj >> DIGIT_BIT);
/* clear carry from a->dp[j] */
*tmpj++ &= MP_MASK;
/* now add rest of the digits
*
* Note this is basically a simple single digit addition to
* a larger multiple digit number. This is optimized somewhat
* because the propagation of carries is not likely to move
* more than a few digits.
*
*/
for (++j; mu != 0 && j <= (i - 1); ++j) {
*tmpj += mu;
mu = *tmpj >> DIGIT_BIT;
*tmpj++ &= MP_MASK;
}
/* if final carry */
if (mu != 0) {
/* add mp to this to correct */
j = i - k;
tmpj = a->dp + j;
*tmpj += mp;
mu = *tmpj >> DIGIT_BIT;
*tmpj++ &= MP_MASK;
/* now handle carries */
for (++j; mu != 0 && j <= (i - 1); j++) {
*tmpj += mu;
mu = *tmpj >> DIGIT_BIT;
*tmpj++ &= MP_MASK;
}
}
}
/* zero words above k */
tmpi = a->dp + k;
for (i = k; i < a->used; i++) {
*tmpi++ = 0;
}
/* clamp, sub and return */
mp_clamp (a);
if (mp_cmp_mag (a, b) != MP_LT) {
return s_mp_sub (a, b, a);
}
return MP_OKAY;
}
/* determines if a number is a valid DR modulus */
int mp_dr_is_modulus(mp_int *a)
{
int ix;
/* must be at least two digits */
if (a->used < 2) {
return 0;
}
for (ix = 1; ix < a->used; ix++) {
if (a->dp[ix] != MP_MASK) {
return 0;
}
}
return 1;
}
/* determines the setup value */
void mp_dr_setup(mp_int *a, mp_digit *d)
{
*d = (1 << DIGIT_BIT) - a->dp[0];
}