tommath/bn_mp_karatsuba_mul.c

164 lines
4.6 KiB
C
Raw Normal View History

2004-10-29 18:07:18 -04:00
#include <tommath.h>
#ifdef BN_MP_KARATSUBA_MUL_C
2003-02-28 11:08:34 -05:00
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
2003-08-04 21:24:44 -04:00
* LibTomMath is a library that provides multiple-precision
2003-02-28 11:08:34 -05:00
* integer arithmetic as well as number theoretic functionality.
*
2003-08-04 21:24:44 -04:00
* The library was designed directly after the MPI library by
2003-02-28 11:08:34 -05:00
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
2003-03-12 21:11:11 -05:00
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
2003-02-28 11:08:34 -05:00
*/
2003-05-29 09:35:26 -04:00
/* c = |a| * |b| using Karatsuba Multiplication using
* three half size multiplications
2003-02-28 11:08:34 -05:00
*
2003-05-29 09:35:26 -04:00
* Let B represent the radix [e.g. 2**DIGIT_BIT] and
* let n represent half of the number of digits in
* the min(a,b)
2003-02-28 11:08:34 -05:00
*
2003-05-29 09:35:26 -04:00
* a = a1 * B**n + a0
* b = b1 * B**n + b0
2003-02-28 11:08:34 -05:00
*
2003-05-29 09:35:26 -04:00
* Then, a * b =>
a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
2003-02-28 11:08:34 -05:00
*
2003-05-29 09:35:26 -04:00
* Note that a1b1 and a0b0 are used twice and only need to be
* computed once. So in total three half size (half # of
* digit) multiplications are performed, a0b0, a1b1 and
* (a1-b1)(a0-b0)
2003-02-28 11:08:34 -05:00
*
2003-05-29 09:35:26 -04:00
* Note that a multiplication of half the digits requires
* 1/4th the number of single precision multiplications so in
* total after one call 25% of the single precision multiplications
* are saved. Note also that the call to mp_mul can end up back
* in this function if the a0, a1, b0, or b1 are above the threshold.
* This is known as divide-and-conquer and leads to the famous
* O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
* the standard O(N**2) that the baseline/comba methods use.
* Generally though the overhead of this method doesn't pay off
* until a certain size (N ~ 80) is reached.
2003-02-28 11:08:34 -05:00
*/
2004-04-11 16:46:22 -04:00
int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
2003-02-28 11:08:34 -05:00
{
2003-05-17 08:33:54 -04:00
mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
2003-03-12 21:11:11 -05:00
int B, err;
2003-02-28 11:08:34 -05:00
2003-06-06 15:35:48 -04:00
/* default the return code to an error */
2003-02-28 11:08:34 -05:00
err = MP_MEM;
/* min # of digits */
B = MIN (a->used, b->used);
/* now divide in two */
2004-04-11 16:46:22 -04:00
B = B >> 1;
2003-02-28 11:08:34 -05:00
/* init copy all the temps */
if (mp_init_size (&x0, B) != MP_OKAY)
goto ERR;
if (mp_init_size (&x1, a->used - B) != MP_OKAY)
goto X0;
if (mp_init_size (&y0, B) != MP_OKAY)
goto X1;
if (mp_init_size (&y1, b->used - B) != MP_OKAY)
goto Y0;
/* init temps */
2003-03-12 21:11:11 -05:00
if (mp_init_size (&t1, B * 2) != MP_OKAY)
2003-02-28 11:08:34 -05:00
goto Y1;
2003-03-12 21:11:11 -05:00
if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
2003-05-17 08:33:54 -04:00
goto T1;
2003-03-12 21:11:11 -05:00
if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
2003-02-28 11:08:34 -05:00
goto X0Y0;
/* now shift the digits */
x0.used = y0.used = B;
x1.used = a->used - B;
y1.used = b->used - B;
2003-03-12 21:11:11 -05:00
{
register int x;
register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
/* we copy the digits directly instead of using higher level functions
* since we also need to shift the digits
*/
tmpa = a->dp;
tmpb = b->dp;
tmpx = x0.dp;
tmpy = y0.dp;
for (x = 0; x < B; x++) {
*tmpx++ = *tmpa++;
*tmpy++ = *tmpb++;
}
tmpx = x1.dp;
for (x = B; x < a->used; x++) {
*tmpx++ = *tmpa++;
}
tmpy = y1.dp;
for (x = B; x < b->used; x++) {
*tmpy++ = *tmpb++;
}
2003-02-28 11:08:34 -05:00
}
2003-05-29 09:35:26 -04:00
/* only need to clamp the lower words since by definition the
* upper words x1/y1 must have a known number of digits
2003-02-28 11:08:34 -05:00
*/
mp_clamp (&x0);
mp_clamp (&y0);
/* now calc the products x0y0 and x1y1 */
2003-05-29 09:35:26 -04:00
/* after this x0 is no longer required, free temp [x0==t2]! */
if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
2003-05-17 08:33:54 -04:00
goto X1Y1; /* x0y0 = x0*y0 */
2003-02-28 11:08:34 -05:00
if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
2003-05-17 08:33:54 -04:00
goto X1Y1; /* x1y1 = x1*y1 */
2003-02-28 11:08:34 -05:00
/* now calc x1-x0 and y1-y0 */
if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
2003-05-17 08:33:54 -04:00
goto X1Y1; /* t1 = x1 - x0 */
if (mp_sub (&y1, &y0, &x0) != MP_OKAY)
goto X1Y1; /* t2 = y1 - y0 */
if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
goto X1Y1; /* t1 = (x1 - x0) * (y1 - y0) */
2003-02-28 11:08:34 -05:00
/* add x0y0 */
2003-05-17 08:33:54 -04:00
if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
goto X1Y1; /* t2 = x0y0 + x1y1 */
if (mp_sub (&x0, &t1, &t1) != MP_OKAY)
goto X1Y1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
2003-02-28 11:08:34 -05:00
/* shift by B */
if (mp_lshd (&t1, B) != MP_OKAY)
2003-05-17 08:33:54 -04:00
goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
2003-02-28 11:08:34 -05:00
if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
2003-05-17 08:33:54 -04:00
goto X1Y1; /* x1y1 = x1y1 << 2*B */
2003-02-28 11:08:34 -05:00
if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
2003-05-17 08:33:54 -04:00
goto X1Y1; /* t1 = x0y0 + t1 */
2003-02-28 11:08:34 -05:00
if (mp_add (&t1, &x1y1, c) != MP_OKAY)
2003-05-17 08:33:54 -04:00
goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
2003-02-28 11:08:34 -05:00
2003-06-06 15:35:48 -04:00
/* Algorithm succeeded set the return code to MP_OKAY */
2003-02-28 11:08:34 -05:00
err = MP_OKAY;
X1Y1:mp_clear (&x1y1);
X0Y0:mp_clear (&x0y0);
T1:mp_clear (&t1);
Y1:mp_clear (&y1);
Y0:mp_clear (&y0);
X1:mp_clear (&x1);
X0:mp_clear (&x0);
ERR:
return err;
}
2004-10-29 18:07:18 -04:00
#endif