tommath/bn_fast_s_mp_sqr.c

113 lines
3.1 KiB
C
Raw Normal View History

2003-02-28 11:08:34 -05:00
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library is designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://libtommath.iahu.ca
*/
#include <tommath.h>
/* fast squaring
*
* This is the comba method where the columns of the product are computed first
* then the carries are computed. This has the effect of making a very simple
* inner loop that is executed the most
*
* W2 represents the outer products and W the inner.
*
* A further optimizations is made because the inner products are of the form
* "A * B * 2". The *2 part does not need to be computed until the end which is
* good because 64-bit shifts are slow!
*
*
*/
int
fast_s_mp_sqr (mp_int * a, mp_int * b)
{
int olduse, newused, res, ix, pa;
mp_word W2[512], W[512];
pa = a->used;
newused = pa + pa + 1;
if (b->alloc < newused) {
if ((res = mp_grow (b, newused)) != MP_OKAY) {
return res;
}
}
/* zero temp buffer (columns)
* Note that there are two buffers. Since squaring requires
* a outter and inner product and the inner product requires
* computing a product and doubling it (a relatively expensive
* op to perform n^2 times if you don't have to) the inner and
* outer products are computed in different buffers. This way
* the inner product can be doubled using n doublings instead of
* n^2
*/
memset (W, 0, newused * sizeof (mp_word));
memset (W2, 0, newused * sizeof (mp_word));
/* This computes the inner product. To simplify the inner N^2 loop
* the multiplication by two is done afterwards in the N loop.
*/
for (ix = 0; ix < pa; ix++) {
/* compute the outer product */
W2[ix + ix] += ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
{
register mp_digit tmpx, *tmpy;
register mp_word *_W;
register int iy;
/* copy of left side */
tmpx = a->dp[ix];
/* alias for right side */
tmpy = a->dp + (ix + 1);
/* the column to store the result in */
_W = W + (ix + ix + 1);
/* inner products */
for (iy = ix + 1; iy < pa; iy++) {
*_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
}
}
}
/* setup dest */
olduse = b->used;
b->used = newused;
/* double first value, since the inner products are half of what they should be */
W[0] += W[0] + W2[0];
/* now compute digits */
for (ix = 1; ix < newused; ix++) {
/* double/add next digit */
W[ix] += W[ix] + W2[ix];
W[ix] = W[ix] + (W[ix - 1] >> ((mp_word) DIGIT_BIT));
b->dp[ix - 1] = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
}
b->dp[(newused) - 1] = (mp_digit) (W[(newused) - 1] & ((mp_word) MP_MASK));
/* clear high */
for (; ix < olduse; ix++) {
b->dp[ix] = 0;
}
/* fix the sign (since we no longer make a fresh temp) */
b->sign = MP_ZPOS;
mp_clamp (b);
return MP_OKAY;
}