2003-02-28 11:08:34 -05:00
|
|
|
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
|
*
|
|
|
|
* LibTomMath is library that provides for multiple-precision
|
|
|
|
* integer arithmetic as well as number theoretic functionality.
|
|
|
|
*
|
|
|
|
* The library is designed directly after the MPI library by
|
|
|
|
* Michael Fromberger but has been written from scratch with
|
|
|
|
* additional optimizations in place.
|
|
|
|
*
|
|
|
|
* The library is free for all purposes without any express
|
|
|
|
* guarantee it works.
|
|
|
|
*
|
2003-03-12 21:11:11 -05:00
|
|
|
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
2003-02-28 11:08:34 -05:00
|
|
|
*/
|
|
|
|
#include <tommath.h>
|
|
|
|
|
|
|
|
/* computes Y == G^X mod P, HAC pp.616, Algorithm 14.85
|
|
|
|
*
|
|
|
|
* Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
|
|
|
|
* The value of k changes based on the size of the exponent.
|
|
|
|
*
|
|
|
|
* Uses Montgomery reduction
|
|
|
|
*/
|
|
|
|
int
|
2003-03-22 10:10:20 -05:00
|
|
|
mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
|
2003-02-28 11:08:34 -05:00
|
|
|
{
|
2003-02-28 11:09:08 -05:00
|
|
|
mp_int M[256], res;
|
|
|
|
mp_digit buf, mp;
|
|
|
|
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
2003-03-22 10:10:20 -05:00
|
|
|
int (*redux)(mp_int*,mp_int*,mp_digit);
|
|
|
|
|
2003-02-28 11:08:34 -05:00
|
|
|
|
|
|
|
/* find window size */
|
|
|
|
x = mp_count_bits (X);
|
|
|
|
if (x <= 7) {
|
|
|
|
winsize = 2;
|
|
|
|
} else if (x <= 36) {
|
|
|
|
winsize = 3;
|
|
|
|
} else if (x <= 140) {
|
|
|
|
winsize = 4;
|
|
|
|
} else if (x <= 450) {
|
|
|
|
winsize = 5;
|
|
|
|
} else if (x <= 1303) {
|
|
|
|
winsize = 6;
|
|
|
|
} else if (x <= 3529) {
|
|
|
|
winsize = 7;
|
|
|
|
} else {
|
|
|
|
winsize = 8;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* init G array */
|
|
|
|
for (x = 0; x < (1 << winsize); x++) {
|
2003-02-28 11:09:08 -05:00
|
|
|
if ((err = mp_init (&M[x])) != MP_OKAY) {
|
2003-02-28 11:08:34 -05:00
|
|
|
for (y = 0; y < x; y++) {
|
|
|
|
mp_clear (&M[y]);
|
|
|
|
}
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
}
|
2003-03-22 10:10:20 -05:00
|
|
|
|
|
|
|
if (redmode == 0) {
|
|
|
|
/* now setup montgomery */
|
|
|
|
if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
|
|
|
|
goto __M;
|
|
|
|
}
|
|
|
|
redux = mp_montgomery_reduce;
|
|
|
|
} else {
|
|
|
|
/* setup DR reduction */
|
|
|
|
mp_dr_setup(P, &mp);
|
|
|
|
redux = mp_dr_reduce;
|
2003-02-28 11:08:34 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
/* setup result */
|
|
|
|
if ((err = mp_init (&res)) != MP_OKAY) {
|
|
|
|
goto __RES;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* create M table
|
|
|
|
*
|
|
|
|
* The M table contains powers of the input base, e.g. M[x] = G^x mod P
|
|
|
|
*
|
|
|
|
* The first half of the table is not computed though accept for M[0] and M[1]
|
|
|
|
*/
|
2003-02-28 11:09:08 -05:00
|
|
|
|
2003-03-22 10:10:20 -05:00
|
|
|
if (redmode == 0) {
|
|
|
|
/* now we need R mod m */
|
|
|
|
if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
|
|
|
|
goto __RES;
|
|
|
|
}
|
2003-02-28 11:08:34 -05:00
|
|
|
|
2003-03-22 10:10:20 -05:00
|
|
|
/* now set M[1] to G * R mod m */
|
|
|
|
if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
|
|
|
|
goto __RES;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
mp_set(&res, 1);
|
|
|
|
if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
|
|
|
|
goto __RES;
|
|
|
|
}
|
2003-02-28 11:08:34 -05:00
|
|
|
}
|
2003-03-22 10:10:20 -05:00
|
|
|
|
2003-02-28 11:08:34 -05:00
|
|
|
/* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
|
|
|
|
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
|
|
|
goto __RES;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (x = 0; x < (winsize - 1); x++) {
|
2003-02-28 11:09:08 -05:00
|
|
|
if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
2003-02-28 11:08:34 -05:00
|
|
|
goto __RES;
|
|
|
|
}
|
2003-03-22 10:10:20 -05:00
|
|
|
if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
|
2003-02-28 11:08:34 -05:00
|
|
|
goto __RES;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* create upper table */
|
|
|
|
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
|
|
|
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
|
|
|
goto __RES;
|
|
|
|
}
|
2003-03-22 10:10:20 -05:00
|
|
|
if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
|
2003-02-28 11:08:34 -05:00
|
|
|
goto __RES;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set initial mode and bit cnt */
|
|
|
|
mode = 0;
|
|
|
|
bitcnt = 0;
|
|
|
|
buf = 0;
|
|
|
|
digidx = X->used - 1;
|
|
|
|
bitcpy = bitbuf = 0;
|
|
|
|
|
|
|
|
bitcnt = 1;
|
|
|
|
for (;;) {
|
|
|
|
/* grab next digit as required */
|
|
|
|
if (--bitcnt == 0) {
|
|
|
|
if (digidx == -1) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
buf = X->dp[digidx--];
|
|
|
|
bitcnt = (int) DIGIT_BIT;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* grab the next msb from the exponent */
|
|
|
|
y = (buf >> (DIGIT_BIT - 1)) & 1;
|
|
|
|
buf <<= 1;
|
|
|
|
|
|
|
|
/* if the bit is zero and mode == 0 then we ignore it
|
|
|
|
* These represent the leading zero bits before the first 1 bit
|
|
|
|
* in the exponent. Technically this opt is not required but it
|
|
|
|
* does lower the # of trivial squaring/reductions used
|
|
|
|
*/
|
|
|
|
if (mode == 0 && y == 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* if the bit is zero and mode == 1 then we square */
|
|
|
|
if (mode == 1 && y == 0) {
|
|
|
|
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
|
goto __RES;
|
|
|
|
}
|
2003-03-22 10:10:20 -05:00
|
|
|
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
2003-02-28 11:08:34 -05:00
|
|
|
goto __RES;
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* else we add it to the window */
|
|
|
|
bitbuf |= (y << (winsize - ++bitcpy));
|
|
|
|
mode = 2;
|
|
|
|
|
|
|
|
if (bitcpy == winsize) {
|
|
|
|
/* ok window is filled so square as required and multiply multiply */
|
|
|
|
/* square first */
|
|
|
|
for (x = 0; x < winsize; x++) {
|
|
|
|
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
|
goto __RES;
|
|
|
|
}
|
2003-03-22 10:10:20 -05:00
|
|
|
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
2003-02-28 11:08:34 -05:00
|
|
|
goto __RES;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* then multiply */
|
|
|
|
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
|
|
|
|
goto __RES;
|
|
|
|
}
|
2003-03-22 10:10:20 -05:00
|
|
|
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
2003-02-28 11:08:34 -05:00
|
|
|
goto __RES;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* empty window and reset */
|
|
|
|
bitcpy = bitbuf = 0;
|
|
|
|
mode = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* if bits remain then square/multiply */
|
|
|
|
if (mode == 2 && bitcpy > 0) {
|
|
|
|
/* square then multiply if the bit is set */
|
|
|
|
for (x = 0; x < bitcpy; x++) {
|
|
|
|
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
|
|
|
goto __RES;
|
|
|
|
}
|
2003-03-22 10:10:20 -05:00
|
|
|
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
2003-02-28 11:08:34 -05:00
|
|
|
goto __RES;
|
|
|
|
}
|
|
|
|
|
|
|
|
bitbuf <<= 1;
|
|
|
|
if ((bitbuf & (1 << winsize)) != 0) {
|
|
|
|
/* then multiply */
|
|
|
|
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
|
|
|
|
goto __RES;
|
|
|
|
}
|
2003-03-22 10:10:20 -05:00
|
|
|
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
2003-02-28 11:08:34 -05:00
|
|
|
goto __RES;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2003-03-22 10:10:20 -05:00
|
|
|
if (redmode == 0) {
|
|
|
|
/* fixup result */
|
|
|
|
if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
|
|
|
|
goto __RES;
|
|
|
|
}
|
|
|
|
}
|
2003-02-28 11:08:34 -05:00
|
|
|
|
|
|
|
mp_exch (&res, Y);
|
|
|
|
err = MP_OKAY;
|
|
|
|
__RES:mp_clear (&res);
|
|
|
|
__M:
|
|
|
|
for (x = 0; x < (1 << winsize); x++) {
|
|
|
|
mp_clear (&M[x]);
|
|
|
|
}
|
|
|
|
return err;
|
|
|
|
}
|