added libtommath-0.33

This commit is contained in:
Tom St Denis 2004-12-23 02:40:37 +00:00 committed by Steffen Jaeckel
parent e549ccfec5
commit 4b7111d96e
49 changed files with 1008 additions and 914 deletions

16
TODO Normal file
View File

@ -0,0 +1,16 @@
things for book in order of importance...
- Fix up pseudo-code [only] for combas that are not consistent with source
- Start in chapter 3 [basics] and work up...
- re-write to prose [less abrupt]
- clean up pseudo code [spacing]
- more examples where appropriate and figures
Goal:
- Get sync done by mid January [roughly 8-12 hours work]
- Finish ch3-6 by end of January [roughly 12-16 hours of work]
- Finish ch7-end by mid Feb [roughly 20-24 hours of work].
Goal isn't "first edition" but merely cleaner to read.

BIN
bn.pdf

Binary file not shown.

2
bn.tex
View File

@ -49,7 +49,7 @@
\begin{document}
\frontmatter
\pagestyle{empty}
\title{LibTomMath User Manual \\ v0.32}
\title{LibTomMath User Manual \\ v0.33}
\author{Tom St Denis \\ tomstdenis@iahu.ca}
\maketitle
This text, the library and the accompanying textbook are all hereby placed in the public domain. This book has been

View File

@ -39,20 +39,20 @@ fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
/* x == modulus, y == value to invert */
if ((res = mp_copy (b, &x)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
/* we need y = |a| */
if ((res = mp_abs (a, &y)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
if ((res = mp_copy (&x, &u)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
if ((res = mp_copy (&y, &v)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
mp_set (&D, 1);
@ -61,17 +61,17 @@ top:
while (mp_iseven (&u) == 1) {
/* 4.1 u = u/2 */
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
/* 4.2 if B is odd then */
if (mp_isodd (&B) == 1) {
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
}
/* B = B/2 */
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
}
@ -79,18 +79,18 @@ top:
while (mp_iseven (&v) == 1) {
/* 5.1 v = v/2 */
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
/* 5.2 if D is odd then */
if (mp_isodd (&D) == 1) {
/* D = (D-x)/2 */
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
}
/* D = D/2 */
if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
}
@ -98,20 +98,20 @@ top:
if (mp_cmp (&u, &v) != MP_LT) {
/* u = u - v, B = B - D */
if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
} else {
/* v - v - u, D = D - B */
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
}
@ -125,21 +125,21 @@ top:
/* if v != 1 then there is no inverse */
if (mp_cmp_d (&v, 1) != MP_EQ) {
res = MP_VAL;
goto __ERR;
goto LBL_ERR;
}
/* b is now the inverse */
neg = a->sign;
while (D.sign == MP_NEG) {
if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
}
mp_exch (&D, c);
c->sign = neg;
res = MP_OKAY;
__ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
return res;
}
#endif

View File

@ -50,7 +50,7 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* clear the carry */
_W = 0;
for (ix = 0; ix <= pa; ix++) {
for (ix = 0; ix < pa; ix++) {
int tx, ty;
int iy;
mp_digit *tmpx, *tmpy;
@ -80,6 +80,9 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
_W = _W >> ((mp_word)DIGIT_BIT);
}
/* store final carry */
W[ix] = _W;
/* setup dest */
olduse = c->used;
c->used = digs;

View File

@ -42,7 +42,7 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* number of output digits to produce */
pa = a->used + b->used;
_W = 0;
for (ix = digs; ix <= pa; ix++) {
for (ix = digs; ix < pa; ix++) {
int tx, ty, iy;
mp_digit *tmpx, *tmpy;
@ -70,6 +70,9 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* make next carry */
_W = _W >> ((mp_word)DIGIT_BIT);
}
/* store final carry */
W[ix] = _W;
/* setup dest */
olduse = c->used;

View File

@ -60,7 +60,7 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b)
/* number of output digits to produce */
W1 = 0;
for (ix = 0; ix <= pa; ix++) {
for (ix = 0; ix < pa; ix++) {
int tx, ty, iy;
mp_word _W;
mp_digit *tmpy;

View File

@ -49,23 +49,23 @@ int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
mp_set(&tq, 1);
n = mp_count_bits(a) - mp_count_bits(b);
if (((res = mp_copy(a, &ta)) != MP_OKAY) ||
((res = mp_copy(b, &tb)) != MP_OKAY) ||
if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
((res = mp_abs(b, &tb)) != MP_OKAY) ||
((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
goto __ERR;
goto LBL_ERR;
}
while (n-- >= 0) {
if (mp_cmp(&tb, &ta) != MP_GT) {
if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
goto __ERR;
goto LBL_ERR;
}
}
if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
goto __ERR;
goto LBL_ERR;
}
}
@ -74,13 +74,13 @@ int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
if (c != NULL) {
mp_exch(c, &q);
c->sign = n2;
c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
}
if (d != NULL) {
mp_exch(d, &ta);
d->sign = n;
d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
}
__ERR:
LBL_ERR:
mp_clear_multi(&ta, &tb, &tq, &q, NULL);
return res;
}
@ -129,19 +129,19 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
q.used = a->used + 2;
if ((res = mp_init (&t1)) != MP_OKAY) {
goto __Q;
goto LBL_Q;
}
if ((res = mp_init (&t2)) != MP_OKAY) {
goto __T1;
goto LBL_T1;
}
if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
goto __T2;
goto LBL_T2;
}
if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
goto __X;
goto LBL_X;
}
/* fix the sign */
@ -153,10 +153,10 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
if (norm < (int)(DIGIT_BIT-1)) {
norm = (DIGIT_BIT-1) - norm;
if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
goto __Y;
goto LBL_Y;
}
if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
goto __Y;
goto LBL_Y;
}
} else {
norm = 0;
@ -168,13 +168,13 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
/* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
goto __Y;
goto LBL_Y;
}
while (mp_cmp (&x, &y) != MP_LT) {
++(q.dp[n - t]);
if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
goto __Y;
goto LBL_Y;
}
}
@ -216,7 +216,7 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
t1.dp[1] = y.dp[t];
t1.used = 2;
if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
goto __Y;
goto LBL_Y;
}
/* find right hand */
@ -228,27 +228,27 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
/* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
goto __Y;
goto LBL_Y;
}
if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
goto __Y;
goto LBL_Y;
}
if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
goto __Y;
goto LBL_Y;
}
/* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
if (x.sign == MP_NEG) {
if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
goto __Y;
goto LBL_Y;
}
if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
goto __Y;
goto LBL_Y;
}
if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
goto __Y;
goto LBL_Y;
}
q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
@ -275,11 +275,11 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
res = MP_OKAY;
__Y:mp_clear (&y);
__X:mp_clear (&x);
__T2:mp_clear (&t2);
__T1:mp_clear (&t1);
__Q:mp_clear (&q);
LBL_Y:mp_clear (&y);
LBL_X:mp_clear (&x);
LBL_T2:mp_clear (&t2);
LBL_T1:mp_clear (&t1);
LBL_Q:mp_clear (&q);
return res;
}

View File

@ -20,7 +20,7 @@
* Based on algorithm from the paper
*
* "Generating Efficient Primes for Discrete Log Cryptosystems"
* Chae Hoon Lim, Pil Loong Lee,
* Chae Hoon Lim, Pil Joong Lee,
* POSTECH Information Research Laboratories
*
* The modulus must be of a special format [see manual]

View File

@ -61,7 +61,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
return err;
#else
/* no invmod */
return MP_VAL
return MP_VAL;
#endif
}

View File

@ -88,11 +88,11 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
#ifdef BN_MP_MONTGOMERY_SETUP_C
/* now setup montgomery */
if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
goto __M;
goto LBL_M;
}
#else
err = MP_VAL;
goto __M;
goto LBL_M;
#endif
/* automatically pick the comba one if available (saves quite a few calls/ifs) */
@ -108,7 +108,7 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
redux = mp_montgomery_reduce;
#else
err = MP_VAL;
goto __M;
goto LBL_M;
#endif
}
} else if (redmode == 1) {
@ -118,24 +118,24 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
redux = mp_dr_reduce;
#else
err = MP_VAL;
goto __M;
goto LBL_M;
#endif
} else {
#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
/* setup DR reduction for moduli of the form 2**k - b */
if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
goto __M;
goto LBL_M;
}
redux = mp_reduce_2k;
#else
err = MP_VAL;
goto __M;
goto LBL_M;
#endif
}
/* setup result */
if ((err = mp_init (&res)) != MP_OKAY) {
goto __M;
goto LBL_M;
}
/* create M table
@ -149,45 +149,45 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
/* now we need R mod m */
if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
#else
err = MP_VAL;
goto __RES;
goto LBL_RES;
#endif
/* now set M[1] to G * R mod m */
if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
} else {
mp_set(&res, 1);
if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
}
/* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
for (x = 0; x < (winsize - 1); x++) {
if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
}
/* create upper table */
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
}
@ -227,10 +227,10 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
/* if the bit is zero and mode == 1 then we square */
if (mode == 1 && y == 0) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
continue;
}
@ -244,19 +244,19 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
/* square first */
for (x = 0; x < winsize; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
}
/* then multiply */
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
/* empty window and reset */
@ -271,10 +271,10 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
/* square then multiply if the bit is set */
for (x = 0; x < bitcpy; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
/* get next bit of the window */
@ -282,10 +282,10 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
if ((bitbuf & (1 << winsize)) != 0) {
/* then multiply */
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
}
}
@ -299,15 +299,15 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
* of R.
*/
if ((err = redux(&res, P, mp)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
}
/* swap res with Y */
mp_exch (&res, Y);
err = MP_OKAY;
__RES:mp_clear (&res);
__M:
LBL_RES:mp_clear (&res);
LBL_M:
mp_clear(&M[1]);
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
mp_clear (&M[x]);

View File

@ -43,7 +43,7 @@ int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
}
if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
goto __U;
goto LBL_U;
}
/* must be positive for the remainder of the algorithm */
@ -57,24 +57,24 @@ int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
if (k > 0) {
/* divide the power of two out */
if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
goto __V;
goto LBL_V;
}
if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
goto __V;
goto LBL_V;
}
}
/* divide any remaining factors of two out */
if (u_lsb != k) {
if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
goto __V;
goto LBL_V;
}
}
if (v_lsb != k) {
if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
goto __V;
goto LBL_V;
}
}
@ -87,23 +87,23 @@ int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
/* subtract smallest from largest */
if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
goto __V;
goto LBL_V;
}
/* Divide out all factors of two */
if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
goto __V;
goto LBL_V;
}
}
/* multiply by 2**k which we divided out at the beginning */
if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
goto __V;
goto LBL_V;
}
c->sign = MP_ZPOS;
res = MP_OKAY;
__V:mp_clear (&u);
__U:mp_clear (&v);
LBL_V:mp_clear (&u);
LBL_U:mp_clear (&v);
return res;
}
#endif

View File

@ -34,24 +34,24 @@ int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
/* x = a, y = b */
if ((res = mp_copy (a, &x)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
if ((res = mp_copy (b, &y)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
/* 2. [modified] if x,y are both even then return an error! */
if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
res = MP_VAL;
goto __ERR;
goto LBL_ERR;
}
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
if ((res = mp_copy (&x, &u)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
if ((res = mp_copy (&y, &v)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
mp_set (&A, 1);
mp_set (&D, 1);
@ -61,24 +61,24 @@ top:
while (mp_iseven (&u) == 1) {
/* 4.1 u = u/2 */
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
/* 4.2 if A or B is odd then */
if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
/* A = (A+y)/2, B = (B-x)/2 */
if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
}
/* A = A/2, B = B/2 */
if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
}
@ -86,24 +86,24 @@ top:
while (mp_iseven (&v) == 1) {
/* 5.1 v = v/2 */
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
/* 5.2 if C or D is odd then */
if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
/* C = (C+y)/2, D = (D-x)/2 */
if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
}
/* C = C/2, D = D/2 */
if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
}
@ -111,28 +111,28 @@ top:
if (mp_cmp (&u, &v) != MP_LT) {
/* u = u - v, A = A - C, B = B - D */
if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
} else {
/* v - v - u, C = C - A, D = D - B */
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
}
@ -145,27 +145,27 @@ top:
/* if v != 1 then there is no inverse */
if (mp_cmp_d (&v, 1) != MP_EQ) {
res = MP_VAL;
goto __ERR;
goto LBL_ERR;
}
/* if its too low */
while (mp_cmp_d(&C, 0) == MP_LT) {
if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
}
/* too big */
while (mp_cmp_mag(&C, b) != MP_LT) {
if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
}
/* C is now the inverse */
mp_exch (&C, c);
res = MP_OKAY;
__ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
return res;
}
#endif

View File

@ -50,13 +50,13 @@ int mp_jacobi (mp_int * a, mp_int * p, int *c)
}
if ((res = mp_init (&p1)) != MP_OKAY) {
goto __A1;
goto LBL_A1;
}
/* divide out larger power of two */
k = mp_cnt_lsb(&a1);
if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
goto __P1;
goto LBL_P1;
}
/* step 4. if e is even set s=1 */
@ -84,18 +84,18 @@ int mp_jacobi (mp_int * a, mp_int * p, int *c)
} else {
/* n1 = n mod a1 */
if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) {
goto __P1;
goto LBL_P1;
}
if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
goto __P1;
goto LBL_P1;
}
*c = s * r;
}
/* done */
res = MP_OKAY;
__P1:mp_clear (&p1);
__A1:mp_clear (&a1);
LBL_P1:mp_clear (&p1);
LBL_A1:mp_clear (&a1);
return res;
}
#endif

View File

@ -28,20 +28,20 @@ int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
/* t1 = get the GCD of the two inputs */
if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
goto __T;
goto LBL_T;
}
/* divide the smallest by the GCD */
if (mp_cmp_mag(a, b) == MP_LT) {
/* store quotient in t2 such that t2 * b is the LCM */
if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
goto __T;
goto LBL_T;
}
res = mp_mul(b, &t2, c);
} else {
/* store quotient in t2 such that t2 * a is the LCM */
if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
goto __T;
goto LBL_T;
}
res = mp_mul(a, &t2, c);
}
@ -49,7 +49,7 @@ int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
/* fix the sign to positive */
c->sign = MP_ZPOS;
__T:
LBL_T:
mp_clear_multi (&t1, &t2, NULL);
return res;
}

View File

@ -28,7 +28,7 @@ mp_mod_2d (mp_int * a, int b, mp_int * c)
}
/* if the modulus is larger than the value than return */
if (b > (int) (a->used * DIGIT_BIT)) {
if (b >= (int) (a->used * DIGIT_BIT)) {
res = mp_copy (a, c);
return res;
}

View File

@ -40,11 +40,11 @@ int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
}
if ((res = mp_init (&t2)) != MP_OKAY) {
goto __T1;
goto LBL_T1;
}
if ((res = mp_init (&t3)) != MP_OKAY) {
goto __T2;
goto LBL_T2;
}
/* if a is negative fudge the sign but keep track */
@ -57,52 +57,52 @@ int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
do {
/* t1 = t2 */
if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
goto __T3;
goto LBL_T3;
}
/* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
/* t3 = t1**(b-1) */
if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) {
goto __T3;
goto LBL_T3;
}
/* numerator */
/* t2 = t1**b */
if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {
goto __T3;
goto LBL_T3;
}
/* t2 = t1**b - a */
if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {
goto __T3;
goto LBL_T3;
}
/* denominator */
/* t3 = t1**(b-1) * b */
if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {
goto __T3;
goto LBL_T3;
}
/* t3 = (t1**b - a)/(b * t1**(b-1)) */
if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {
goto __T3;
goto LBL_T3;
}
if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
goto __T3;
goto LBL_T3;
}
} while (mp_cmp (&t1, &t2) != MP_EQ);
/* result can be off by a few so check */
for (;;) {
if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) {
goto __T3;
goto LBL_T3;
}
if (mp_cmp (&t2, a) == MP_GT) {
if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
goto __T3;
goto LBL_T3;
}
} else {
break;
@ -120,9 +120,9 @@ int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
res = MP_OKAY;
__T3:mp_clear (&t3);
__T2:mp_clear (&t2);
__T1:mp_clear (&t1);
LBL_T3:mp_clear (&t3);
LBL_T2:mp_clear (&t2);
LBL_T1:mp_clear (&t1);
return res;
}
#endif

View File

@ -43,7 +43,7 @@ int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
/* compute t = b**a mod a */
if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) {
goto __T;
goto LBL_T;
}
/* is it equal to b? */
@ -52,7 +52,7 @@ int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
}
err = MP_OKAY;
__T:mp_clear (&t);
LBL_T:mp_clear (&t);
return err;
}
#endif

View File

@ -29,8 +29,8 @@ int mp_prime_is_divisible (mp_int * a, int *result)
*result = MP_NO;
for (ix = 0; ix < PRIME_SIZE; ix++) {
/* what is a mod __prime_tab[ix] */
if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) {
/* what is a mod LBL_prime_tab[ix] */
if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) {
return err;
}

View File

@ -37,7 +37,7 @@ int mp_prime_is_prime (mp_int * a, int t, int *result)
/* is the input equal to one of the primes in the table? */
for (ix = 0; ix < PRIME_SIZE; ix++) {
if (mp_cmp_d(a, __prime_tab[ix]) == MP_EQ) {
if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
*result = 1;
return MP_OKAY;
}
@ -60,20 +60,20 @@ int mp_prime_is_prime (mp_int * a, int t, int *result)
for (ix = 0; ix < t; ix++) {
/* set the prime */
mp_set (&b, __prime_tab[ix]);
mp_set (&b, ltm_prime_tab[ix]);
if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
goto __B;
goto LBL_B;
}
if (res == MP_NO) {
goto __B;
goto LBL_B;
}
}
/* passed the test */
*result = MP_YES;
__B:mp_clear (&b);
LBL_B:mp_clear (&b);
return err;
}
#endif

View File

@ -40,12 +40,12 @@ int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
return err;
}
if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
goto __N1;
goto LBL_N1;
}
/* set 2**s * r = n1 */
if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
goto __N1;
goto LBL_N1;
}
/* count the number of least significant bits
@ -55,15 +55,15 @@ int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
/* now divide n - 1 by 2**s */
if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
goto __R;
goto LBL_R;
}
/* compute y = b**r mod a */
if ((err = mp_init (&y)) != MP_OKAY) {
goto __R;
goto LBL_R;
}
if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
goto __Y;
goto LBL_Y;
}
/* if y != 1 and y != n1 do */
@ -72,12 +72,12 @@ int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
/* while j <= s-1 and y != n1 */
while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
goto __Y;
goto LBL_Y;
}
/* if y == 1 then composite */
if (mp_cmp_d (&y, 1) == MP_EQ) {
goto __Y;
goto LBL_Y;
}
++j;
@ -85,15 +85,15 @@ int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
/* if y != n1 then composite */
if (mp_cmp (&y, &n1) != MP_EQ) {
goto __Y;
goto LBL_Y;
}
}
/* probably prime now */
*result = MP_YES;
__Y:mp_clear (&y);
__R:mp_clear (&r);
__N1:mp_clear (&n1);
LBL_Y:mp_clear (&y);
LBL_R:mp_clear (&r);
LBL_N1:mp_clear (&n1);
return err;
}
#endif

View File

@ -35,10 +35,10 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
a->sign = MP_ZPOS;
/* simple algo if a is less than the largest prime in the table */
if (mp_cmp_d(a, __prime_tab[PRIME_SIZE-1]) == MP_LT) {
if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
/* find which prime it is bigger than */
for (x = PRIME_SIZE - 2; x >= 0; x--) {
if (mp_cmp_d(a, __prime_tab[x]) != MP_LT) {
if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {
if (bbs_style == 1) {
/* ok we found a prime smaller or
* equal [so the next is larger]
@ -46,17 +46,17 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
* however, the prime must be
* congruent to 3 mod 4
*/
if ((__prime_tab[x + 1] & 3) != 3) {
if ((ltm_prime_tab[x + 1] & 3) != 3) {
/* scan upwards for a prime congruent to 3 mod 4 */
for (y = x + 1; y < PRIME_SIZE; y++) {
if ((__prime_tab[y] & 3) == 3) {
mp_set(a, __prime_tab[y]);
if ((ltm_prime_tab[y] & 3) == 3) {
mp_set(a, ltm_prime_tab[y]);
return MP_OKAY;
}
}
}
} else {
mp_set(a, __prime_tab[x + 1]);
mp_set(a, ltm_prime_tab[x + 1]);
return MP_OKAY;
}
}
@ -94,7 +94,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
/* generate the restable */
for (x = 1; x < PRIME_SIZE; x++) {
if ((err = mp_mod_d(a, __prime_tab[x], res_tab + x)) != MP_OKAY) {
if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) {
return err;
}
}
@ -120,8 +120,8 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
res_tab[x] += kstep;
/* subtract the modulus [instead of using division] */
if (res_tab[x] >= __prime_tab[x]) {
res_tab[x] -= __prime_tab[x];
if (res_tab[x] >= ltm_prime_tab[x]) {
res_tab[x] -= ltm_prime_tab[x];
}
/* set flag if zero */
@ -133,7 +133,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
/* add the step */
if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
/* if didn't pass sieve and step == MAX then skip test */
@ -143,9 +143,9 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
/* is this prime? */
for (x = 0; x < t; x++) {
mp_set(&b, __prime_tab[t]);
mp_set(&b, ltm_prime_tab[t]);
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
goto __ERR;
goto LBL_ERR;
}
if (res == MP_NO) {
break;
@ -158,7 +158,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
}
err = MP_OKAY;
__ERR:
LBL_ERR:
mp_clear(&b);
return err;
}

View File

@ -47,7 +47,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
}
/* calc the byte size */
bsize = (size>>3)+(size&7?1:0);
bsize = (size>>3) + ((size&7)?1:0);
/* we need a buffer of bsize bytes */
tmp = OPT_CAST(unsigned char) XMALLOC(bsize);
@ -56,7 +56,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
}
/* calc the maskAND value for the MSbyte*/
maskAND = 0xFF >> (8 - (size & 7));
maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7)));
/* calc the maskOR_msb */
maskOR_msb = 0;
@ -65,7 +65,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
maskOR_msb |= 1 << ((size - 2) & 7);
} else if (flags & LTM_PRIME_2MSB_OFF) {
maskAND &= ~(1 << ((size - 2) & 7));
}
}
/* get the maskOR_lsb */
maskOR_lsb = 0;

View File

@ -14,7 +14,7 @@
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
const mp_digit __prime_tab[] = {
const mp_digit ltm_prime_tab[] = {
0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,

View File

@ -70,10 +70,10 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
/* create mu, used for Barrett reduction */
if ((err = mp_init (&mu)) != MP_OKAY) {
goto __M;
goto LBL_M;
}
if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
goto __MU;
goto LBL_MU;
}
/* create M table
@ -85,23 +85,23 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
* computed though accept for M[0] and M[1]
*/
if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
goto __MU;
goto LBL_MU;
}
/* compute the value at M[1<<(winsize-1)] by squaring
* M[1] (winsize-1) times
*/
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto __MU;
goto LBL_MU;
}
for (x = 0; x < (winsize - 1); x++) {
if ((err = mp_sqr (&M[1 << (winsize - 1)],
&M[1 << (winsize - 1)])) != MP_OKAY) {
goto __MU;
goto LBL_MU;
}
if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
goto __MU;
goto LBL_MU;
}
}
@ -110,16 +110,16 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
*/
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
goto __MU;
goto LBL_MU;
}
if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
goto __MU;
goto LBL_MU;
}
}
/* setup result */
if ((err = mp_init (&res)) != MP_OKAY) {
goto __MU;
goto LBL_MU;
}
mp_set (&res, 1);
@ -159,10 +159,10 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
/* if the bit is zero and mode == 1 then we square */
if (mode == 1 && y == 0) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
continue;
}
@ -176,19 +176,19 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
/* square first */
for (x = 0; x < winsize; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
}
/* then multiply */
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
/* empty window and reset */
@ -203,20 +203,20 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
/* square then multiply if the bit is set */
for (x = 0; x < bitcpy; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
bitbuf <<= 1;
if ((bitbuf & (1 << winsize)) != 0) {
/* then multiply */
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES;
goto LBL_RES;
}
}
}
@ -224,9 +224,9 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
mp_exch (&res, Y);
err = MP_OKAY;
__RES:mp_clear (&res);
__MU:mp_clear (&mu);
__M:
LBL_RES:mp_clear (&res);
LBL_MU:mp_clear (&mu);
LBL_M:
mp_clear(&M[1]);
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
mp_clear (&M[x]);

View File

@ -245,6 +245,7 @@ BN_MP_SQRT_C
| | +--->BN_MP_INIT_MULTI_C
| | | +--->BN_MP_CLEAR_C
| | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C
@ -298,6 +299,7 @@ BN_MP_SQRT_C
| | +--->BN_MP_CLEAR_C
| +--->BN_MP_SET_C
| +--->BN_MP_COUNT_BITS_C
| +--->BN_MP_ABS_C
| +--->BN_MP_MUL_2D_C
| | +--->BN_MP_GROW_C
| | +--->BN_MP_LSHD_C
@ -404,6 +406,7 @@ BN_MP_IS_SQUARE_C
| | | +--->BN_MP_CLEAR_C
| | +--->BN_MP_SET_C
| | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C
@ -700,6 +703,7 @@ BN_MP_IS_SQUARE_C
| | | +--->BN_MP_INIT_MULTI_C
| | | | +--->BN_MP_CLEAR_C
| | | +--->BN_MP_COUNT_BITS_C
| | | +--->BN_MP_ABS_C
| | | +--->BN_MP_MUL_2D_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_LSHD_C
@ -753,6 +757,7 @@ BN_MP_IS_SQUARE_C
| | | +--->BN_MP_CLEAR_C
| | +--->BN_MP_SET_C
| | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C
@ -2618,6 +2623,7 @@ BN_MP_SUBMOD_C
| | +--->BN_MP_INIT_MULTI_C
| | +--->BN_MP_SET_C
| | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C
@ -2838,6 +2844,7 @@ BN_MP_SQRMOD_C
| | +--->BN_MP_INIT_MULTI_C
| | +--->BN_MP_SET_C
| | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C
@ -3313,6 +3320,7 @@ BN_MP_N_ROOT_C
| +--->BN_MP_INIT_MULTI_C
| | +--->BN_MP_CLEAR_C
| +--->BN_MP_COUNT_BITS_C
| +--->BN_MP_ABS_C
| +--->BN_MP_MUL_2D_C
| | +--->BN_MP_GROW_C
| | +--->BN_MP_LSHD_C
@ -4322,6 +4330,7 @@ BN_MP_PRIME_RANDOM_EX_C
| | | | | +--->BN_MP_ZERO_C
| | | | | +--->BN_MP_INIT_MULTI_C
| | | | | +--->BN_MP_COUNT_BITS_C
| | | | | +--->BN_MP_ABS_C
| | | | | +--->BN_MP_MUL_2D_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_LSHD_C
@ -4548,6 +4557,7 @@ BN_MP_MOD_C
| | +--->BN_MP_CLEAR_C
| +--->BN_MP_SET_C
| +--->BN_MP_COUNT_BITS_C
| +--->BN_MP_ABS_C
| +--->BN_MP_MUL_2D_C
| | +--->BN_MP_GROW_C
| | +--->BN_MP_LSHD_C
@ -5600,6 +5610,7 @@ BN_MP_PRIME_IS_PRIME_C
| | | | +--->BN_MP_ZERO_C
| | | | +--->BN_MP_INIT_MULTI_C
| | | | +--->BN_MP_COUNT_BITS_C
| | | | +--->BN_MP_ABS_C
| | | | +--->BN_MP_MUL_2D_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_LSHD_C
@ -5809,6 +5820,7 @@ BN_MP_EXPTMOD_FAST_C
| | | +--->BN_MP_ZERO_C
| | | +--->BN_MP_INIT_MULTI_C
| | | +--->BN_MP_SET_C
| | | +--->BN_MP_ABS_C
| | | +--->BN_MP_MUL_2D_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_LSHD_C
@ -5865,6 +5877,7 @@ BN_MP_EXPTMOD_FAST_C
| | | +--->BN_MP_GROW_C
| | +--->BN_MP_ZERO_C
| | +--->BN_MP_INIT_MULTI_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C
@ -6284,6 +6297,7 @@ BN_MP_MULMOD_C
| | +--->BN_MP_INIT_MULTI_C
| | +--->BN_MP_SET_C
| | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C
@ -7339,6 +7353,7 @@ BN_MP_PRIME_NEXT_PRIME_C
| | | | +--->BN_MP_ZERO_C
| | | | +--->BN_MP_INIT_MULTI_C
| | | | +--->BN_MP_COUNT_BITS_C
| | | | +--->BN_MP_ABS_C
| | | | +--->BN_MP_MUL_2D_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_LSHD_C
@ -7465,6 +7480,7 @@ BN_MP_LCM_C
| +--->BN_MP_ZERO_C
| +--->BN_MP_SET_C
| +--->BN_MP_COUNT_BITS_C
| +--->BN_MP_ABS_C
| +--->BN_MP_MUL_2D_C
| | +--->BN_MP_GROW_C
| | +--->BN_MP_LSHD_C
@ -7928,6 +7944,7 @@ BN_S_MP_EXPTMOD_C
| | +--->BN_MP_ZERO_C
| | +--->BN_MP_INIT_MULTI_C
| | +--->BN_MP_SET_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C
@ -7974,6 +7991,7 @@ BN_S_MP_EXPTMOD_C
| | +--->BN_MP_ZERO_C
| | +--->BN_MP_INIT_MULTI_C
| | +--->BN_MP_SET_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C
@ -8372,6 +8390,7 @@ BN_MP_DIV_C
| +--->BN_MP_CLEAR_C
+--->BN_MP_SET_C
+--->BN_MP_COUNT_BITS_C
+--->BN_MP_ABS_C
+--->BN_MP_MUL_2D_C
| +--->BN_MP_GROW_C
| +--->BN_MP_LSHD_C
@ -8465,6 +8484,7 @@ BN_MP_ADDMOD_C
| | +--->BN_MP_INIT_MULTI_C
| | +--->BN_MP_SET_C
| | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C
@ -8551,6 +8571,7 @@ BN_MP_REDUCE_C
| | | +--->BN_MP_CLEAR_C
| | +--->BN_MP_SET_C
| | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C
@ -8766,6 +8787,7 @@ BN_MP_JACOBI_C
| | | +--->BN_MP_CLEAR_C
| | +--->BN_MP_SET_C
| | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C
@ -8912,6 +8934,7 @@ BN_MP_EXTEUCLID_C
| +--->BN_MP_CMP_MAG_C
| +--->BN_MP_ZERO_C
| +--->BN_MP_COUNT_BITS_C
| +--->BN_MP_ABS_C
| +--->BN_MP_MUL_2D_C
| | +--->BN_MP_GROW_C
| | +--->BN_MP_LSHD_C
@ -9078,6 +9101,7 @@ BN_MP_REDUCE_SETUP_C
| | +--->BN_MP_CLEAR_C
| +--->BN_MP_SET_C
| +--->BN_MP_COUNT_BITS_C
| +--->BN_MP_ABS_C
| +--->BN_MP_MUL_2D_C
| | +--->BN_MP_GROW_C
| | +--->BN_MP_LSHD_C
@ -10118,6 +10142,7 @@ BN_MP_PRIME_MILLER_RABIN_C
| | | +--->BN_MP_INIT_MULTI_C
| | | +--->BN_MP_SET_C
| | | +--->BN_MP_COUNT_BITS_C
| | | +--->BN_MP_ABS_C
| | | +--->BN_MP_MUL_2D_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_LSHD_C

View File

@ -1,3 +1,12 @@
December 23rd, 2004
v0.33 -- Fixed "small" variant for mp_div() which would munge with negative dividends...
-- Fixed bug in mp_prime_random_ex() which would set the most significant byte to zero when
no special flags were set
-- Fixed overflow [minor] bug in fast_s_mp_sqr()
-- Made the makefiles easier to configure the group/user that ltm will install as
-- Fixed "final carry" bug in comba multipliers. (Volkan Ceylan)
-- Matt Johnston pointed out a missing semi-colon in mp_exptmod
October 29th, 2004
v0.32 -- Added "makefile.shared" for shared object support
-- Added more to the build options/configs in the manual

View File

@ -11,9 +11,9 @@
void ndraw(mp_int *a, char *name)
{
char buf[4096];
char buf[16000];
printf("%s: ", name);
mp_toradix(a, buf, 64);
mp_toradix(a, buf, 10);
printf("%s\n", buf);
}
@ -395,7 +395,7 @@ draw(&a);draw(&b);draw(&c);draw(&d);
mp_div(&a, &b, &e, &f);
if (mp_cmp(&c, &e) != MP_EQ || mp_cmp(&d, &f) != MP_EQ) {
printf("div %lu failure!\n", div_n);
printf("div %lu %d, %d, failure!\n", div_n, mp_cmp(&c, &e), mp_cmp(&d, &f));
draw(&a);draw(&b);draw(&c);draw(&d); draw(&e); draw(&f);
return 0;
}

View File

@ -38,14 +38,13 @@ int lbit(void)
}
}
#if defined(__i386__) || defined(_M_IX86) || defined(_M_AMD64)
/* RDTSC from Scott Duplichan */
static ulong64 TIMFUNC (void)
{
#if defined __GNUC__
#ifdef __i386__
ulong64 a;
__asm__ __volatile__ ("rdtsc ":"=A" (a));
#if defined(__i386__) || defined(__x86_64__)
unsigned long long a;
__asm__ __volatile__ ("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n"::"m"(a):"%eax","%edx");
return a;
#else /* gcc-IA64 version */
unsigned long result;
@ -69,9 +68,6 @@ static ulong64 TIMFUNC (void)
#error need rdtsc function for this build
#endif
}
#else
#define TIMFUNC clock
#endif
#define DO(x) x; x;
//#define DO4(x) DO2(x); DO2(x);

View File

@ -18,15 +18,15 @@ is_mersenne (long s, int *pp)
}
if ((res = mp_init (&u)) != MP_OKAY) {
goto __N;
goto LBL_N;
}
/* n = 2^s - 1 */
if ((res = mp_2expt(&n, s)) != MP_OKAY) {
goto __MU;
goto LBL_MU;
}
if ((res = mp_sub_d (&n, 1, &n)) != MP_OKAY) {
goto __MU;
goto LBL_MU;
}
/* set u=4 */
@ -36,22 +36,22 @@ is_mersenne (long s, int *pp)
for (k = 1; k <= s - 2; k++) {
/* u = u^2 - 2 mod n */
if ((res = mp_sqr (&u, &u)) != MP_OKAY) {
goto __MU;
goto LBL_MU;
}
if ((res = mp_sub_d (&u, 2, &u)) != MP_OKAY) {
goto __MU;
goto LBL_MU;
}
/* make sure u is positive */
while (u.sign == MP_NEG) {
if ((res = mp_add (&u, &n, &u)) != MP_OKAY) {
goto __MU;
goto LBL_MU;
}
}
/* reduce */
if ((res = mp_reduce_2k (&u, &n, 1)) != MP_OKAY) {
goto __MU;
goto LBL_MU;
}
}
@ -62,8 +62,8 @@ is_mersenne (long s, int *pp)
}
res = MP_OKAY;
__MU:mp_clear (&u);
__N:mp_clear (&n);
LBL_MU:mp_clear (&u);
LBL_N:mp_clear (&n);
return res;
}

View File

@ -189,7 +189,7 @@ pprime (int k, int li, mp_int * p, mp_int * q)
}
if ((res = mp_init (&v)) != MP_OKAY) {
goto __C;
goto LBL_C;
}
/* product of first 50 primes */
@ -197,34 +197,34 @@ pprime (int k, int li, mp_int * p, mp_int * q)
mp_read_radix (&v,
"19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",
10)) != MP_OKAY) {
goto __V;
goto LBL_V;
}
if ((res = mp_init (&a)) != MP_OKAY) {
goto __V;
goto LBL_V;
}
/* set the prime */
mp_set (&a, prime_digit ());
if ((res = mp_init (&b)) != MP_OKAY) {
goto __A;
goto LBL_A;
}
if ((res = mp_init (&n)) != MP_OKAY) {
goto __B;
goto LBL_B;
}
if ((res = mp_init (&x)) != MP_OKAY) {
goto __N;
goto LBL_N;
}
if ((res = mp_init (&y)) != MP_OKAY) {
goto __X;
goto LBL_X;
}
if ((res = mp_init (&z)) != MP_OKAY) {
goto __Y;
goto LBL_Y;
}
/* now loop making the single digit */
@ -236,25 +236,25 @@ pprime (int k, int li, mp_int * p, mp_int * q)
/* now compute z = a * b * 2 */
if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) { /* z = a * b */
goto __Z;
goto LBL_Z;
}
if ((res = mp_copy (&z, &c)) != MP_OKAY) { /* c = a * b */
goto __Z;
goto LBL_Z;
}
if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) { /* z = 2 * a * b */
goto __Z;
goto LBL_Z;
}
/* n = z + 1 */
if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) { /* n = z + 1 */
goto __Z;
goto LBL_Z;
}
/* check (n, v) == 1 */
if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) { /* y = (n, v) */
goto __Z;
goto LBL_Z;
}
if (mp_cmp_d (&y, 1) != MP_EQ)
@ -266,7 +266,7 @@ pprime (int k, int li, mp_int * p, mp_int * q)
/* compute x^a mod n */
if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) { /* y = x^a mod n */
goto __Z;
goto LBL_Z;
}
/* if y == 1 loop */
@ -275,7 +275,7 @@ pprime (int k, int li, mp_int * p, mp_int * q)
/* now x^2a mod n */
if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2a mod n */
goto __Z;
goto LBL_Z;
}
if (mp_cmp_d (&y, 1) == MP_EQ)
@ -283,7 +283,7 @@ pprime (int k, int li, mp_int * p, mp_int * q)
/* compute x^b mod n */
if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) { /* y = x^b mod n */
goto __Z;
goto LBL_Z;
}
/* if y == 1 loop */
@ -292,7 +292,7 @@ pprime (int k, int li, mp_int * p, mp_int * q)
/* now x^2b mod n */
if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2b mod n */
goto __Z;
goto LBL_Z;
}
if (mp_cmp_d (&y, 1) == MP_EQ)
@ -300,7 +300,7 @@ pprime (int k, int li, mp_int * p, mp_int * q)
/* compute x^c mod n == x^ab mod n */
if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) { /* y = x^ab mod n */
goto __Z;
goto LBL_Z;
}
/* if y == 1 loop */
@ -309,7 +309,7 @@ pprime (int k, int li, mp_int * p, mp_int * q)
/* now compute (x^c mod n)^2 */
if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2ab mod n */
goto __Z;
goto LBL_Z;
}
/* y should be 1 */
@ -346,14 +346,14 @@ pprime (int k, int li, mp_int * p, mp_int * q)
mp_exch (&n, p);
res = MP_OKAY;
__Z:mp_clear (&z);
__Y:mp_clear (&y);
__X:mp_clear (&x);
__N:mp_clear (&n);
__B:mp_clear (&b);
__A:mp_clear (&a);
__V:mp_clear (&v);
__C:mp_clear (&c);
LBL_Z:mp_clear (&z);
LBL_Y:mp_clear (&y);
LBL_X:mp_clear (&x);
LBL_N:mp_clear (&n);
LBL_B:mp_clear (&b);
LBL_A:mp_clear (&a);
LBL_V:mp_clear (&v);
LBL_C:mp_clear (&c);
return res;
}

View File

@ -14,9 +14,9 @@
#ifndef X86_TIMER
/* generic ISO C timer */
ulong64 __T;
void t_start(void) { __T = clock(); }
ulong64 t_read(void) { return clock() - __T; }
ulong64 LBL_T;
void t_start(void) { LBL_T = clock(); }
ulong64 t_read(void) { return clock() - LBL_T; }
#else
extern void t_start(void);

View File

@ -1,16 +1,16 @@
224 222
448 330
672 436
896 520
1120 612
1344 696
1568 810
1792 912
2016 1006
2240 1116
2464 1152
2688 1284
2912 1348
3136 1486
3360 1580
3584 1636
480 88
960 113
1440 138
1920 163
2400 202
2880 226
3360 251
3840 272
4320 296
4800 320
5280 344
5760 368
6240 392
6720 416
7200 440
7680 464

View File

@ -0,0 +1,7 @@
513 1499509
769 3682671
1025 8098887
2049 49332743
2561 89647783
3073 149440713
4097 326135364

View File

@ -0,0 +1,6 @@
521 1423346
607 1841305
1279 8375656
2203 34104708
3217 83830729
4253 167916804

View File

@ -0,0 +1,7 @@
532 1803110
784 3607375
1036 6089790
1540 14739797
2072 33251589
3080 82794331
4116 165212734

View File

@ -1,143 +1,143 @@
140 1272
195 1428
252 1996
307 2586
364 3464
420 4420
476 5260
532 6430
588 7692
644 8704
699 10226
755 11670
812 13190
865 14834
924 16738
979 18362
1036 20660
1092 22776
1148 24848
1204 27168
1260 29930
1316 32258
1370 35172
1422 37534
1482 40390
1537 43990
1589 46946
1652 50438
1703 52902
1764 56646
1820 59892
1876 63248
1932 66872
1988 72596
2042 74662
2100 78512
2156 82944
2211 87444
2268 92170
2324 95534
2380 100484
2435 105024
2491 109460
2546 114154
2603 118946
2660 124110
2716 129300
2771 134274
2828 139594
2883 145234
2939 150332
2996 155750
3048 161718
3108 167492
3162 173882
3219 179766
3276 185560
3330 191826
3388 197822
3442 204176
3500 210682
3556 217236
3612 223484
3666 230714
3724 237744
3779 244080
3835 250970
3890 257914
3947 265162
4001 272128
4060 279108
4116 287606
4171 294716
4227 302806
4284 310260
4340 318564
4395 326164
4443 334034
4508 342108
4561 351810
4618 358828
4675 367332
4732 376140
4787 384172
4841 393308
4899 402036
4955 411286
5010 420290
5067 429688
5124 438810
5180 448130
5235 457264
5290 467390
5348 476586
5404 486120
5459 496512
5516 506624
5569 516346
5628 526604
5684 536544
5740 546936
5796 557284
5852 568106
5907 578824
5963 589204
6019 600176
6076 610564
6127 621972
6188 633564
6244 644730
6300 655288
6354 667402
6412 678824
6467 690594
6522 702718
6580 714148
6636 725608
6690 737834
6747 750100
6804 762202
6860 774184
6916 787298
6971 798734
7028 811162
7083 824570
7139 837738
7196 2579488
7245 2626714
7308 2643582
7364 2698746
7416 2734106
7476 2773372
7530 2816738
7588 2859204
7643 2938596
7698 2919716
7754 2988542
7812 3026520
7867 3058304
7924 3115790
7977 3161450
8035 3203138
8092 3244056
271 580
390 861
511 1177
630 1598
749 2115
871 2670
991 3276
1111 3987
1231 4722
1351 5474
1471 6281
1589 7126
1710 8114
1831 8988
1946 10038
2071 10995
2188 12286
2310 13152
2430 14480
2549 15521
2671 17171
2790 18081
2911 19754
3031 20809
3150 22849
3269 23757
3391 25772
3508 26832
3631 29304
3750 30149
3865 32581
3988 33644
4111 36565
4231 37309
4351 40152
4471 41188
4590 44658
4710 45256
4827 48538
4951 49490
5070 53472
5190 53902
5308 57619
5431 58509
5550 63044
5664 63333
5791 67542
5911 68279
6028 73477
6150 73475
6271 78189
6390 78842
6510 84691
6631 84444
6751 89721
6871 90186
6991 96665
7111 96119
7231 101937
7350 102212
7471 109439
7591 108491
7709 114965
7829 115025
7951 123002
8071 121630
8190 128725
8311 128536
8430 137298
8550 135568
8671 143265
8791 142793
8911 152432
9030 150202
9151 158616
9271 157848
9391 168374
9511 165651
9627 174775
9750 173375
9871 185067
9985 181845
10111 191708
10229 190239
10351 202585
10467 198704
10591 209193
10711 207322
10831 220842
10950 215882
11071 227761
11191 225501
11311 239669
11430 234809
11550 243511
11671 255947
11791 255243
11906 267828
12029 263437
12149 276571
12270 275579
12390 288963
12510 284001
12631 298196
12751 297018
12869 310848
12990 305369
13111 319086
13230 318940
13349 333685
13471 327495
13588 343678
13711 341817
13831 357181
13948 350440
14071 367526
14189 365330
14311 381551
14429 374149
14549 392203
14670 389764
14791 406761
14910 398652
15026 417718
15150 414733
15269 432759
15390 1037071
15511 1053454
15631 1069198
15748 1086164
15871 1112820
15991 1129676
16111 1145924
16230 1163016
16345 1179911
16471 1197048
16586 1214352
16711 1232095
16829 1249338
16947 1266987
17071 1284181
17188 1302521
17311 1320539

View File

@ -1,143 +1,143 @@
139 806
195 1212
252 1604
307 2260
364 2892
420 3308
476 4152
532 4814
588 5754
644 6684
700 7226
756 8324
808 9092
866 10068
924 11204
976 12918
1036 13656
1092 15248
1148 15956
1204 17270
1260 19894
1316 20516
1370 21864
1428 25554
1483 26138
1540 27086
1596 29246
1652 32210
1707 32704
1764 35142
1820 39050
1876 39256
1931 41574
1985 45070
2044 46352
2099 48114
2155 51332
2212 53268
2267 55890
2324 59054
2380 60206
2434 63540
2491 66084
2547 68590
2604 74332
2660 74784
2715 77974
2772 79924
2826 82914
2884 87210
2929 89076
2996 92480
3052 96814
3108 99990
3162 102550
3219 105396
3276 109284
3332 113752
3387 116628
3444 120782
3500 122938
3556 127940
3612 303656
3667 312212
3724 324376
3779 329204
3833 340910
3892 353850
3943 362348
4003 367780
4056 380448
4114 393616
4172 404104
4227 415148
4284 409770
4339 436648
4394 442970
4451 463096
4507 472056
4564 485780
4616 496286
4675 507612
4732 519524
4788 536768
4843 542754
4899 553090
4956 571986
5012 586340
5068 599606
5124 613670
5179 624256
5235 636266
5292 655518
5348 668142
5403 677266
5460 696040
5516 712772
5570 723942
5628 739052
5684 755350
5739 769962
5790 775258
5851 790128
5908 814536
5962 827278
6018 844510
6076 851606
6130 865748
6188 894752
6244 900474
6300 928174
6356 928440
6410 957758
6468 981134
6524 994088
6580 1011124
6636 1027178
6692 1045466
6747 1056910
6804 1083784
6860 1104706
6915 1116450
6972 1137894
7028 1154670
7084 1158064
7138 1188734
7196 1214218
7249 1226822
7307 1247528
7363 1255338
7420 1291104
7475 1297940
7532 1324994
7587 1340274
7644 1342596
7698 1381418
7756 1382904
7812 1432588
7867 1443632
7922 1465092
7979 1496804
8036 1520142
8092 1539566
271 552
389 883
510 1191
629 1572
750 1996
863 2428
991 2891
1108 3539
1231 4182
1351 4980
1471 5771
1590 6551
1711 7313
1830 8240
1951 9184
2070 10087
2191 11140
2311 12111
2431 13219
2550 14247
2669 15353
2791 16446
2911 17692
3029 18848
3151 20028
3268 21282
3391 22696
3511 23971
3631 25303
3751 26675
3871 28245
3990 29736
4111 31124
4229 32714
4347 34397
4471 35877
4587 37269
4710 39011
4831 40884
4950 42501
5070 44005
5191 46026
5310 48168
5431 49801
5551 51385
5671 53604
5787 55942
5910 57757
6031 59391
6151 61754
6271 64234
6390 66110
6511 67845
6627 70474
6751 73113
6871 75064
6990 76940
7111 79681
7230 82548
7351 84597
7471 86507
7591 89497
7711 225216
7831 232192
7951 239583
8071 247302
8191 255497
8308 261587
8431 271490
8550 279492
8671 286927
8790 294680
8910 302974
9030 311300
9150 318635
9271 326740
9390 335304
9511 344297
9630 352056
9748 358652
9870 369723
9991 379119
10111 386982
10231 396075
10349 404396
10470 415375
10590 424146
10711 433390
10829 442662
10950 453238
11071 462178
11186 469811
11311 482529
11431 493214
11550 503210
11671 513486
11791 524244
11911 535277
12031 544872
12151 555695
12271 566893
12391 578385
12510 588658
12628 596914
12751 611324
12871 623437
12991 633907
13110 645605
13231 657684
13351 670037
13471 680939
13591 693047
13710 705363
13829 718178
13949 727930
14069 739641
14190 754817
14310 768192
14431 779875
14551 792655
14667 802847
14791 819806
14911 831684
15031 844936
15151 858813
15270 873037
15387 882123
15510 899117
15631 913465
15750 927989
15870 940790
15991 954948
16110 969483
16231 984544
16350 997837
16470 1012445
16590 1027834
16710 1043032
16831 1056394
16951 1071408
17069 1097263
17191 1113364
17306 1123650

View File

@ -1,16 +1,16 @@
224 216
448 324
672 428
896 532
1120 648
1344 766
1568 862
1792 928
2016 1070
2240 1128
2464 1250
2688 1344
2912 1436
3136 1542
3360 1628
3584 1696
480 87
960 114
1440 139
1920 159
2400 204
2880 228
3360 250
3840 273
4320 300
4800 321
5280 348
5760 370
6240 393
6720 420
7200 444
7680 466

View File

@ -1,10 +1,14 @@
#Makefile for GCC
#
#Tom St Denis
#version of library
VERSION=0.33
CFLAGS += -I./ -Wall -W -Wshadow -Wsign-compare
#for speed
CFLAGS += -O3 -funroll-loops
CFLAGS += -O3 -funroll-all-loops
#for size
#CFLAGS += -Os
@ -15,13 +19,15 @@ CFLAGS += -fomit-frame-pointer
#debug
#CFLAGS += -g3
VERSION=0.32
#install as this user
USER=root
GROUP=root
default: libtommath.a
#default files to install
LIBNAME=libtommath.a
HEADERS=tommath.h
HEADERS=tommath.h tommath_class.h tommath_superclass.h
#LIBPATH-The directory for libtommath to be installed to.
#INCPATH-The directory to install the header files for libtommath.
@ -61,7 +67,6 @@ libtommath.a: $(OBJECTS)
$(AR) $(ARFLAGS) libtommath.a $(OBJECTS)
ranlib libtommath.a
#make a profiled library (takes a while!!!)
#
# This will build the library with profile generation
@ -86,19 +91,19 @@ profiled_single:
ranlib libtommath.a
install: libtommath.a
install -d -g root -o root $(DESTDIR)$(LIBPATH)
install -d -g root -o root $(DESTDIR)$(INCPATH)
install -g root -o root $(LIBNAME) $(DESTDIR)$(LIBPATH)
install -g root -o root $(HEADERS) $(DESTDIR)$(INCPATH)
install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(LIBPATH)
install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(INCPATH)
install -g $(GROUP) -o $(USER) $(LIBNAME) $(DESTDIR)$(LIBPATH)
install -g $(GROUP) -o $(USER) $(HEADERS) $(DESTDIR)$(INCPATH)
test: libtommath.a demo/demo.o
$(CC) demo/demo.o libtommath.a -o test
$(CC) $(CFLAGS) demo/demo.o libtommath.a -o test
mtest: test
cd mtest ; $(CC) $(CFLAGS) mtest.c -o mtest -s
cd mtest ; $(CC) $(CFLAGS) mtest.c -o mtest
timing: libtommath.a
$(CC) $(CFLAGS) -DTIMER demo/timing.c libtommath.a -o ltmtest -s
$(CC) $(CFLAGS) -DTIMER demo/timing.c libtommath.a -o ltmtest
# makes the LTM book DVI file, requires tetex, perl and makeindex [part of tetex I think]
docdvi: tommath.src

View File

@ -21,6 +21,10 @@ CFLAGS += -I./
# Default to just generic max opts
CFLAGS += -O3 -xN
#install as this user
USER=root
GROUP=root
default: libtommath.a
#default files to install
@ -89,10 +93,10 @@ profiled_single:
ranlib libtommath.a
install: libtommath.a
install -d -g root -o root $(DESTDIR)$(LIBPATH)
install -d -g root -o root $(DESTDIR)$(INCPATH)
install -g root -o root $(LIBNAME) $(DESTDIR)$(LIBPATH)
install -g root -o root $(HEADERS) $(DESTDIR)$(INCPATH)
install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(LIBPATH)
install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(INCPATH)
install -g $(GROUP) -o $(USER) $(LIBNAME) $(DESTDIR)$(LIBPATH)
install -g $(GROUP) -o $(USER) $(HEADERS) $(DESTDIR)$(INCPATH)
test: libtommath.a demo/demo.o
$(CC) demo/demo.o libtommath.a -o test

View File

@ -1,10 +1,9 @@
#Makefile for GCC
#
#Tom St Denis
VERSION=0:32
VERSION=0:33
CC = libtool --mode=compile gcc
CFLAGS += -I./ -Wall -W -Wshadow -Wsign-compare
#for speed
@ -16,11 +15,15 @@ CFLAGS += -O3 -funroll-loops
#x86 optimizations [should be valid for any GCC install though]
CFLAGS += -fomit-frame-pointer
#install as this user
USER=root
GROUP=root
default: libtommath.la
#default files to install
LIBNAME=libtommath.la
HEADERS=tommath.h
HEADERS=tommath.h tommath_class.h tommath_superclass.h
#LIBPATH-The directory for libtommath to be installed to.
#INCPATH-The directory to install the header files for libtommath.
@ -60,8 +63,8 @@ libtommath.la: $(OBJECTS)
libtool --mode=link gcc *.lo -o libtommath.la -rpath $(LIBPATH) -version-info $(VERSION)
libtool --mode=link gcc *.o -o libtommath.a
libtool --mode=install install -c libtommath.la $(LIBPATH)/libtommath.la
install -d -g root -o root $(DESTDIR)$(INCPATH)
install -g root -o root $(HEADERS) $(DESTDIR)$(INCPATH)
install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(INCPATH)
install -g $(GROUP) -o $(USER) $(HEADERS) $(DESTDIR)$(INCPATH)
test: libtommath.a demo/demo.o
gcc $(CFLAGS) -c demo/demo.c -o demo/demo.o

View File

@ -46,7 +46,7 @@ void rand_num(mp_int *a)
int n, size;
unsigned char buf[2048];
size = 1 + ((fgetc(rng)<<8) + fgetc(rng)) % 1031;
size = 1 + ((fgetc(rng)<<8) + fgetc(rng)) % 101;
buf[0] = (fgetc(rng)&1)?1:0;
fread(buf+1, 1, size, rng);
while (buf[1] == 0) buf[1] = fgetc(rng);
@ -58,7 +58,7 @@ void rand_num2(mp_int *a)
int n, size;
unsigned char buf[2048];
size = 10 + ((fgetc(rng)<<8) + fgetc(rng)) % 97;
size = 10 + ((fgetc(rng)<<8) + fgetc(rng)) % 101;
buf[0] = (fgetc(rng)&1)?1:0;
fread(buf+1, 1, size, rng);
while (buf[1] == 0) buf[1] = fgetc(rng);

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@ -442,7 +442,7 @@ int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
#endif
/* table of first PRIME_SIZE primes */
extern const mp_digit __prime_tab[];
extern const mp_digit ltm_prime_tab[];
/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
int mp_prime_is_divisible(mp_int *a, int *result);

Binary file not shown.

View File

@ -3420,7 +3420,7 @@ is copied to $b$, leading digits are removed and the remaining leading digit is
027 \}
028
029 /* if the modulus is larger than the value than return */
030 if (b > (int) (a->used * DIGIT_BIT)) \{
030 if (b >= (int) (a->used * DIGIT_BIT)) \{
031 res = mp_copy (a, c);
032 return res;
033 \}
@ -3896,7 +3896,7 @@ and addition operations in the nested loop in parallel.
049
050 /* clear the carry */
051 _W = 0;
052 for (ix = 0; ix <= pa; ix++) \{
052 for (ix = 0; ix < pa; ix++) \{
053 int tx, ty;
054 int iy;
055 mp_digit *tmpx, *tmpy;
@ -3927,27 +3927,30 @@ and addition operations in the nested loop in parallel.
079 _W = _W >> ((mp_word)DIGIT_BIT);
080 \}
081
082 /* setup dest */
083 olduse = c->used;
084 c->used = digs;
085
086 \{
087 register mp_digit *tmpc;
088 tmpc = c->dp;
089 for (ix = 0; ix < digs; ix++) \{
090 /* now extract the previous digit [below the carry] */
091 *tmpc++ = W[ix];
092 \}
093
094 /* clear unused digits [that existed in the old copy of c] */
095 for (; ix < olduse; ix++) \{
096 *tmpc++ = 0;
097 \}
098 \}
099 mp_clamp (c);
100 return MP_OKAY;
101 \}
102 #endif
082 /* store final carry */
083 W[ix] = _W;
084
085 /* setup dest */
086 olduse = c->used;
087 c->used = digs;
088
089 \{
090 register mp_digit *tmpc;
091 tmpc = c->dp;
092 for (ix = 0; ix < digs; ix++) \{
093 /* now extract the previous digit [below the carry] */
094 *tmpc++ = W[ix];
095 \}
096
097 /* clear unused digits [that existed in the old copy of c] */
098 for (; ix < olduse; ix++) \{
099 *tmpc++ = 0;
100 \}
101 \}
102 mp_clamp (c);
103 return MP_OKAY;
104 \}
105 #endif
\end{alltt}
\end{small}
@ -3955,7 +3958,7 @@ The memset on line @47,memset@ clears the initial $\hat W$ array to zero in a si
implementation a series of aliases (\textit{lines 62, 63 and 76}) are used to simplify the inner $O(n^2)$ loop.
In this case a new alias $\_\hat W$ has been added which refers to the double precision columns offset by $ix$ in each pass.
The inner loop on lines 89, 79 and 80 is where the algorithm will spend the majority of the time, which is why it has been
The inner loop on lines 92, 79 and 80 is where the algorithm will spend the majority of the time, which is why it has been
stripped to the bones of any extra baggage\footnote{Hence the pointer aliases.}. On x86 processors the multiplication and additions amount to at the
very least five instructions (\textit{two loads, two additions, one multiply}) while on the ARMv4 processors they amount to only three
(\textit{one load, one store, one multiply-add}). For both of the x86 and ARMv4 processors the GCC compiler performs a good job at unrolling the loop
@ -5100,7 +5103,7 @@ squares in place.
059
060 /* number of output digits to produce */
061 W1 = 0;
062 for (ix = 0; ix <= pa; ix++) \{
062 for (ix = 0; ix < pa; ix++) \{
063 int tx, ty, iy;
064 mp_word _W;
065 mp_digit *tmpy;
@ -6739,7 +6742,7 @@ at step 3.
019 * Based on algorithm from the paper
020 *
021 * "Generating Efficient Primes for Discrete Log Cryptosystems"
022 * Chae Hoon Lim, Pil Loong Lee,
022 * Chae Hoon Lim, Pil Joong Lee,
023 * POSTECH Information Research Laboratories
024 *
025 * The modulus must be of a special format [see manual]
@ -7594,7 +7597,7 @@ algorithm since their arguments are essentially the same (\textit{two mp\_ints a
060 return err;
061 #else
062 /* no invmod */
063 return MP_VAL
063 return MP_VAL;
064 #endif
065 \}
066
@ -7866,10 +7869,10 @@ a Left-to-Right algorithm is used to process the remaining few bits.
069
070 /* create mu, used for Barrett reduction */
071 if ((err = mp_init (&mu)) != MP_OKAY) \{
072 goto __M;
072 goto LBL_M;
073 \}
074 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) \{
075 goto __MU;
075 goto LBL_MU;
076 \}
077
078 /* create M table
@ -7881,23 +7884,23 @@ a Left-to-Right algorithm is used to process the remaining few bits.
084 * computed though accept for M[0] and M[1]
085 */
086 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) \{
087 goto __MU;
087 goto LBL_MU;
088 \}
089
090 /* compute the value at M[1<<(winsize-1)] by squaring
091 * M[1] (winsize-1) times
092 */
093 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) \{
094 goto __MU;
094 goto LBL_MU;
095 \}
096
097 for (x = 0; x < (winsize - 1); x++) \{
098 if ((err = mp_sqr (&M[1 << (winsize - 1)],
099 &M[1 << (winsize - 1)])) != MP_OKAY) \{
100 goto __MU;
100 goto LBL_MU;
101 \}
102 if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) \{
103 goto __MU;
103 goto LBL_MU;
104 \}
105 \}
106
@ -7906,16 +7909,16 @@ a Left-to-Right algorithm is used to process the remaining few bits.
109 */
110 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) \{
111 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) \{
112 goto __MU;
112 goto LBL_MU;
113 \}
114 if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) \{
115 goto __MU;
115 goto LBL_MU;
116 \}
117 \}
118
119 /* setup result */
120 if ((err = mp_init (&res)) != MP_OKAY) \{
121 goto __MU;
121 goto LBL_MU;
122 \}
123 mp_set (&res, 1);
124
@ -7955,10 +7958,10 @@ a Left-to-Right algorithm is used to process the remaining few bits.
158 /* if the bit is zero and mode == 1 then we square */
159 if (mode == 1 && y == 0) \{
160 if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
161 goto __RES;
161 goto LBL_RES;
162 \}
163 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
164 goto __RES;
164 goto LBL_RES;
165 \}
166 continue;
167 \}
@ -7972,19 +7975,19 @@ a Left-to-Right algorithm is used to process the remaining few bits.
175 /* square first */
176 for (x = 0; x < winsize; x++) \{
177 if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
178 goto __RES;
178 goto LBL_RES;
179 \}
180 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
181 goto __RES;
181 goto LBL_RES;
182 \}
183 \}
184
185 /* then multiply */
186 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) \{
187 goto __RES;
187 goto LBL_RES;
188 \}
189 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
190 goto __RES;
190 goto LBL_RES;
191 \}
192
193 /* empty window and reset */
@ -7999,20 +8002,20 @@ a Left-to-Right algorithm is used to process the remaining few bits.
202 /* square then multiply if the bit is set */
203 for (x = 0; x < bitcpy; x++) \{
204 if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
205 goto __RES;
205 goto LBL_RES;
206 \}
207 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
208 goto __RES;
208 goto LBL_RES;
209 \}
210
211 bitbuf <<= 1;
212 if ((bitbuf & (1 << winsize)) != 0) \{
213 /* then multiply */
214 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) \{
215 goto __RES;
215 goto LBL_RES;
216 \}
217 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
218 goto __RES;
218 goto LBL_RES;
219 \}
220 \}
221 \}
@ -8020,9 +8023,9 @@ a Left-to-Right algorithm is used to process the remaining few bits.
223
224 mp_exch (&res, Y);
225 err = MP_OKAY;
226 __RES:mp_clear (&res);
227 __MU:mp_clear (&mu);
228 __M:
226 LBL_RES:mp_clear (&res);
227 LBL_MU:mp_clear (&mu);
228 LBL_M:
229 mp_clear(&M[1]);
230 for (x = 1<<(winsize-1); x < (1 << winsize); x++) \{
231 mp_clear (&M[x]);
@ -8386,23 +8389,23 @@ respectively be replaced with a zero.
048
049 mp_set(&tq, 1);
050 n = mp_count_bits(a) - mp_count_bits(b);
051 if (((res = mp_copy(a, &ta)) != MP_OKAY) ||
052 ((res = mp_copy(b, &tb)) != MP_OKAY) ||
051 if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
052 ((res = mp_abs(b, &tb)) != MP_OKAY) ||
053 ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
054 ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) \{
055 goto __ERR;
055 goto LBL_ERR;
056 \}
057
058 while (n-- >= 0) \{
059 if (mp_cmp(&tb, &ta) != MP_GT) \{
060 if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
061 ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) \{
062 goto __ERR;
062 goto LBL_ERR;
063 \}
064 \}
065 if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
066 ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) \{
067 goto __ERR;
067 goto LBL_ERR;
068 \}
069 \}
070
@ -8411,13 +8414,13 @@ respectively be replaced with a zero.
073 n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
074 if (c != NULL) \{
075 mp_exch(c, &q);
076 c->sign = n2;
076 c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
077 \}
078 if (d != NULL) \{
079 mp_exch(d, &ta);
080 d->sign = n;
080 d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
081 \}
082 __ERR:
082 LBL_ERR:
083 mp_clear_multi(&ta, &tb, &tq, &q, NULL);
084 return res;
085 \}
@ -8466,19 +8469,19 @@ respectively be replaced with a zero.
128 q.used = a->used + 2;
129
130 if ((res = mp_init (&t1)) != MP_OKAY) \{
131 goto __Q;
131 goto LBL_Q;
132 \}
133
134 if ((res = mp_init (&t2)) != MP_OKAY) \{
135 goto __T1;
135 goto LBL_T1;
136 \}
137
138 if ((res = mp_init_copy (&x, a)) != MP_OKAY) \{
139 goto __T2;
139 goto LBL_T2;
140 \}
141
142 if ((res = mp_init_copy (&y, b)) != MP_OKAY) \{
143 goto __X;
143 goto LBL_X;
144 \}
145
146 /* fix the sign */
@ -8490,10 +8493,10 @@ respectively be replaced with a zero.
152 if (norm < (int)(DIGIT_BIT-1)) \{
153 norm = (DIGIT_BIT-1) - norm;
154 if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) \{
155 goto __Y;
155 goto LBL_Y;
156 \}
157 if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) \{
158 goto __Y;
158 goto LBL_Y;
159 \}
160 \} else \{
161 norm = 0;
@ -8505,13 +8508,13 @@ respectively be replaced with a zero.
167
168 /* while (x >= y*b**n-t) do \{ q[n-t] += 1; x -= y*b**\{n-t\} \} */
169 if ((res = mp_lshd (&y, n - t)) != MP_OKAY) \{ /* y = y*b**\{n-t\} */
170 goto __Y;
170 goto LBL_Y;
171 \}
172
173 while (mp_cmp (&x, &y) != MP_LT) \{
174 ++(q.dp[n - t]);
175 if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) \{
176 goto __Y;
176 goto LBL_Y;
177 \}
178 \}
179
@ -8553,7 +8556,7 @@ respectively be replaced with a zero.
215 t1.dp[1] = y.dp[t];
216 t1.used = 2;
217 if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) \{
218 goto __Y;
218 goto LBL_Y;
219 \}
220
221 /* find right hand */
@ -8565,27 +8568,27 @@ respectively be replaced with a zero.
227
228 /* step 3.3 x = x - q\{i-t-1\} * y * b**\{i-t-1\} */
229 if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) \{
230 goto __Y;
230 goto LBL_Y;
231 \}
232
233 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) \{
234 goto __Y;
234 goto LBL_Y;
235 \}
236
237 if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) \{
238 goto __Y;
238 goto LBL_Y;
239 \}
240
241 /* if x < 0 then \{ x = x + y*b**\{i-t-1\}; q\{i-t-1\} -= 1; \} */
242 if (x.sign == MP_NEG) \{
243 if ((res = mp_copy (&y, &t1)) != MP_OKAY) \{
244 goto __Y;
244 goto LBL_Y;
245 \}
246 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) \{
247 goto __Y;
247 goto LBL_Y;
248 \}
249 if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) \{
250 goto __Y;
250 goto LBL_Y;
251 \}
252
253 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
@ -8612,11 +8615,11 @@ respectively be replaced with a zero.
274
275 res = MP_OKAY;
276
277 __Y:mp_clear (&y);
278 __X:mp_clear (&x);
279 __T2:mp_clear (&t2);
280 __T1:mp_clear (&t1);
281 __Q:mp_clear (&q);
277 LBL_Y:mp_clear (&y);
278 LBL_X:mp_clear (&x);
279 LBL_T2:mp_clear (&t2);
280 LBL_T1:mp_clear (&t1);
281 LBL_Q:mp_clear (&q);
282 return res;
283 \}
284
@ -9130,11 +9133,11 @@ root. Ideally this algorithm is meant to find the $n$'th root of an input where
039 \}
040
041 if ((res = mp_init (&t2)) != MP_OKAY) \{
042 goto __T1;
042 goto LBL_T1;
043 \}
044
045 if ((res = mp_init (&t3)) != MP_OKAY) \{
046 goto __T2;
046 goto LBL_T2;
047 \}
048
049 /* if a is negative fudge the sign but keep track */
@ -9147,52 +9150,52 @@ root. Ideally this algorithm is meant to find the $n$'th root of an input where
056 do \{
057 /* t1 = t2 */
058 if ((res = mp_copy (&t2, &t1)) != MP_OKAY) \{
059 goto __T3;
059 goto LBL_T3;
060 \}
061
062 /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
063
064 /* t3 = t1**(b-1) */
065 if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) \{
066 goto __T3;
066 goto LBL_T3;
067 \}
068
069 /* numerator */
070 /* t2 = t1**b */
071 if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) \{
072 goto __T3;
072 goto LBL_T3;
073 \}
074
075 /* t2 = t1**b - a */
076 if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) \{
077 goto __T3;
077 goto LBL_T3;
078 \}
079
080 /* denominator */
081 /* t3 = t1**(b-1) * b */
082 if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) \{
083 goto __T3;
083 goto LBL_T3;
084 \}
085
086 /* t3 = (t1**b - a)/(b * t1**(b-1)) */
087 if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) \{
088 goto __T3;
088 goto LBL_T3;
089 \}
090
091 if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) \{
092 goto __T3;
092 goto LBL_T3;
093 \}
094 \} while (mp_cmp (&t1, &t2) != MP_EQ);
095
096 /* result can be off by a few so check */
097 for (;;) \{
098 if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) \{
099 goto __T3;
099 goto LBL_T3;
100 \}
101
102 if (mp_cmp (&t2, a) == MP_GT) \{
103 if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) \{
104 goto __T3;
104 goto LBL_T3;
105 \}
106 \} else \{
107 break;
@ -9210,9 +9213,9 @@ root. Ideally this algorithm is meant to find the $n$'th root of an input where
119
120 res = MP_OKAY;
121
122 __T3:mp_clear (&t3);
123 __T2:mp_clear (&t2);
124 __T1:mp_clear (&t1);
122 LBL_T3:mp_clear (&t3);
123 LBL_T2:mp_clear (&t2);
124 LBL_T1:mp_clear (&t1);
125 return res;
126 \}
127 #endif
@ -9771,7 +9774,7 @@ must be adjusted by multiplying by the common factors of two ($2^k$) removed ear
042 \}
043
044 if ((res = mp_init_copy (&v, b)) != MP_OKAY) \{
045 goto __U;
045 goto LBL_U;
046 \}
047
048 /* must be positive for the remainder of the algorithm */
@ -9785,24 +9788,24 @@ must be adjusted by multiplying by the common factors of two ($2^k$) removed ear
056 if (k > 0) \{
057 /* divide the power of two out */
058 if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) \{
059 goto __V;
059 goto LBL_V;
060 \}
061
062 if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) \{
063 goto __V;
063 goto LBL_V;
064 \}
065 \}
066
067 /* divide any remaining factors of two out */
068 if (u_lsb != k) \{
069 if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) \{
070 goto __V;
070 goto LBL_V;
071 \}
072 \}
073
074 if (v_lsb != k) \{
075 if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) \{
076 goto __V;
076 goto LBL_V;
077 \}
078 \}
079
@ -9815,23 +9818,23 @@ must be adjusted by multiplying by the common factors of two ($2^k$) removed ear
086
087 /* subtract smallest from largest */
088 if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) \{
089 goto __V;
089 goto LBL_V;
090 \}
091
092 /* Divide out all factors of two */
093 if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) \{
094 goto __V;
094 goto LBL_V;
095 \}
096 \}
097
098 /* multiply by 2**k which we divided out at the beginning */
099 if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) \{
100 goto __V;
100 goto LBL_V;
101 \}
102 c->sign = MP_ZPOS;
103 res = MP_OKAY;
104 __V:mp_clear (&u);
105 __U:mp_clear (&v);
104 LBL_V:mp_clear (&u);
105 LBL_U:mp_clear (&v);
106 return res;
107 \}
108 #endif
@ -9904,20 +9907,20 @@ dividing the product of the two inputs by their greatest common divisor.
027
028 /* t1 = get the GCD of the two inputs */
029 if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) \{
030 goto __T;
030 goto LBL_T;
031 \}
032
033 /* divide the smallest by the GCD */
034 if (mp_cmp_mag(a, b) == MP_LT) \{
035 /* store quotient in t2 such that t2 * b is the LCM */
036 if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) \{
037 goto __T;
037 goto LBL_T;
038 \}
039 res = mp_mul(b, &t2, c);
040 \} else \{
041 /* store quotient in t2 such that t2 * a is the LCM */
042 if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) \{
043 goto __T;
043 goto LBL_T;
044 \}
045 res = mp_mul(a, &t2, c);
046 \}
@ -9925,7 +9928,7 @@ dividing the product of the two inputs by their greatest common divisor.
048 /* fix the sign to positive */
049 c->sign = MP_ZPOS;
050
051 __T:
051 LBL_T:
052 mp_clear_multi (&t1, &t2, NULL);
053 return res;
054 \}
@ -10123,13 +10126,13 @@ $\left ( {p' \over a'} \right )$ which is multiplied against the current Jacobi
049 \}
050
051 if ((res = mp_init (&p1)) != MP_OKAY) \{
052 goto __A1;
052 goto LBL_A1;
053 \}
054
055 /* divide out larger power of two */
056 k = mp_cnt_lsb(&a1);
057 if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) \{
058 goto __P1;
058 goto LBL_P1;
059 \}
060
061 /* step 4. if e is even set s=1 */
@ -10157,18 +10160,18 @@ $\left ( {p' \over a'} \right )$ which is multiplied against the current Jacobi
083 \} else \{
084 /* n1 = n mod a1 */
085 if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) \{
086 goto __P1;
086 goto LBL_P1;
087 \}
088 if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) \{
089 goto __P1;
089 goto LBL_P1;
090 \}
091 *c = s * r;
092 \}
093
094 /* done */
095 res = MP_OKAY;
096 __P1:mp_clear (&p1);
097 __A1:mp_clear (&a1);
096 LBL_P1:mp_clear (&p1);
097 LBL_A1:mp_clear (&a1);
098 return res;
099 \}
100 #endif
@ -10406,8 +10409,8 @@ This algorithm attempts to determine if a candidate integer $n$ is composite by
028 *result = MP_NO;
029
030 for (ix = 0; ix < PRIME_SIZE; ix++) \{
031 /* what is a mod __prime_tab[ix] */
032 if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) \{
031 /* what is a mod LBL_prime_tab[ix] */
032 if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) \{
033 return err;
034 \}
035
@ -10431,7 +10434,7 @@ mp\_digit. The table \_\_prime\_tab is defined in the following file.
\hspace{-5.1mm}{\bf File}: bn\_prime\_tab.c
\vspace{-3mm}
\begin{alltt}
016 const mp_digit __prime_tab[] = \{
016 const mp_digit ltm_prime_tab[] = \{
017 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
018 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
019 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
@ -10547,7 +10550,7 @@ determine the result.
042
043 /* compute t = b**a mod a */
044 if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) \{
045 goto __T;
045 goto LBL_T;
046 \}
047
048 /* is it equal to b? */
@ -10556,7 +10559,7 @@ determine the result.
051 \}
052
053 err = MP_OKAY;
054 __T:mp_clear (&t);
054 LBL_T:mp_clear (&t);
055 return err;
056 \}
057 #endif
@ -10638,12 +10641,12 @@ composite then it is \textit{probably} prime.
039 return err;
040 \}
041 if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) \{
042 goto __N1;
042 goto LBL_N1;
043 \}
044
045 /* set 2**s * r = n1 */
046 if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) \{
047 goto __N1;
047 goto LBL_N1;
048 \}
049
050 /* count the number of least significant bits
@ -10653,15 +10656,15 @@ composite then it is \textit{probably} prime.
054
055 /* now divide n - 1 by 2**s */
056 if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) \{
057 goto __R;
057 goto LBL_R;
058 \}
059
060 /* compute y = b**r mod a */
061 if ((err = mp_init (&y)) != MP_OKAY) \{
062 goto __R;
062 goto LBL_R;
063 \}
064 if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) \{
065 goto __Y;
065 goto LBL_Y;
066 \}
067
068 /* if y != 1 and y != n1 do */
@ -10670,12 +10673,12 @@ composite then it is \textit{probably} prime.
071 /* while j <= s-1 and y != n1 */
072 while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) \{
073 if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) \{
074 goto __Y;
074 goto LBL_Y;
075 \}
076
077 /* if y == 1 then composite */
078 if (mp_cmp_d (&y, 1) == MP_EQ) \{
079 goto __Y;
079 goto LBL_Y;
080 \}
081
082 ++j;
@ -10683,15 +10686,15 @@ composite then it is \textit{probably} prime.
084
085 /* if y != n1 then composite */
086 if (mp_cmp (&y, &n1) != MP_EQ) \{
087 goto __Y;
087 goto LBL_Y;
088 \}
089 \}
090
091 /* probably prime now */
092 *result = MP_YES;
093 __Y:mp_clear (&y);
094 __R:mp_clear (&r);
095 __N1:mp_clear (&n1);
093 LBL_Y:mp_clear (&y);
094 LBL_R:mp_clear (&r);
095 LBL_N1:mp_clear (&n1);
096 return err;
097 \}
098 #endif

View File

@ -242,6 +242,7 @@
#define BN_MP_INIT_MULTI_C
#define BN_MP_SET_C
#define BN_MP_COUNT_BITS_C
#define BN_MP_ABS_C
#define BN_MP_MUL_2D_C
#define BN_MP_CMP_C
#define BN_MP_SUB_C