added libtommath-0.33

This commit is contained in:
Tom St Denis 2004-12-23 02:40:37 +00:00 committed by Steffen Jaeckel
parent e549ccfec5
commit 4b7111d96e
49 changed files with 1008 additions and 914 deletions

16
TODO Normal file
View File

@ -0,0 +1,16 @@
things for book in order of importance...
- Fix up pseudo-code [only] for combas that are not consistent with source
- Start in chapter 3 [basics] and work up...
- re-write to prose [less abrupt]
- clean up pseudo code [spacing]
- more examples where appropriate and figures
Goal:
- Get sync done by mid January [roughly 8-12 hours work]
- Finish ch3-6 by end of January [roughly 12-16 hours of work]
- Finish ch7-end by mid Feb [roughly 20-24 hours of work].
Goal isn't "first edition" but merely cleaner to read.

BIN
bn.pdf

Binary file not shown.

2
bn.tex
View File

@ -49,7 +49,7 @@
\begin{document} \begin{document}
\frontmatter \frontmatter
\pagestyle{empty} \pagestyle{empty}
\title{LibTomMath User Manual \\ v0.32} \title{LibTomMath User Manual \\ v0.33}
\author{Tom St Denis \\ tomstdenis@iahu.ca} \author{Tom St Denis \\ tomstdenis@iahu.ca}
\maketitle \maketitle
This text, the library and the accompanying textbook are all hereby placed in the public domain. This book has been This text, the library and the accompanying textbook are all hereby placed in the public domain. This book has been

View File

@ -39,20 +39,20 @@ fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
/* x == modulus, y == value to invert */ /* x == modulus, y == value to invert */
if ((res = mp_copy (b, &x)) != MP_OKAY) { if ((res = mp_copy (b, &x)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
/* we need y = |a| */ /* we need y = |a| */
if ((res = mp_abs (a, &y)) != MP_OKAY) { if ((res = mp_abs (a, &y)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
if ((res = mp_copy (&x, &u)) != MP_OKAY) { if ((res = mp_copy (&x, &u)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
if ((res = mp_copy (&y, &v)) != MP_OKAY) { if ((res = mp_copy (&y, &v)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
mp_set (&D, 1); mp_set (&D, 1);
@ -61,17 +61,17 @@ top:
while (mp_iseven (&u) == 1) { while (mp_iseven (&u) == 1) {
/* 4.1 u = u/2 */ /* 4.1 u = u/2 */
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
/* 4.2 if B is odd then */ /* 4.2 if B is odd then */
if (mp_isodd (&B) == 1) { if (mp_isodd (&B) == 1) {
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
} }
/* B = B/2 */ /* B = B/2 */
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
} }
@ -79,18 +79,18 @@ top:
while (mp_iseven (&v) == 1) { while (mp_iseven (&v) == 1) {
/* 5.1 v = v/2 */ /* 5.1 v = v/2 */
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
/* 5.2 if D is odd then */ /* 5.2 if D is odd then */
if (mp_isodd (&D) == 1) { if (mp_isodd (&D) == 1) {
/* D = (D-x)/2 */ /* D = (D-x)/2 */
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
} }
/* D = D/2 */ /* D = D/2 */
if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
} }
@ -98,20 +98,20 @@ top:
if (mp_cmp (&u, &v) != MP_LT) { if (mp_cmp (&u, &v) != MP_LT) {
/* u = u - v, B = B - D */ /* u = u - v, B = B - D */
if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
} else { } else {
/* v - v - u, D = D - B */ /* v - v - u, D = D - B */
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
} }
@ -125,21 +125,21 @@ top:
/* if v != 1 then there is no inverse */ /* if v != 1 then there is no inverse */
if (mp_cmp_d (&v, 1) != MP_EQ) { if (mp_cmp_d (&v, 1) != MP_EQ) {
res = MP_VAL; res = MP_VAL;
goto __ERR; goto LBL_ERR;
} }
/* b is now the inverse */ /* b is now the inverse */
neg = a->sign; neg = a->sign;
while (D.sign == MP_NEG) { while (D.sign == MP_NEG) {
if ((res = mp_add (&D, b, &D)) != MP_OKAY) { if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
} }
mp_exch (&D, c); mp_exch (&D, c);
c->sign = neg; c->sign = neg;
res = MP_OKAY; res = MP_OKAY;
__ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL); LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
return res; return res;
} }
#endif #endif

View File

@ -50,7 +50,7 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* clear the carry */ /* clear the carry */
_W = 0; _W = 0;
for (ix = 0; ix <= pa; ix++) { for (ix = 0; ix < pa; ix++) {
int tx, ty; int tx, ty;
int iy; int iy;
mp_digit *tmpx, *tmpy; mp_digit *tmpx, *tmpy;
@ -80,6 +80,9 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
_W = _W >> ((mp_word)DIGIT_BIT); _W = _W >> ((mp_word)DIGIT_BIT);
} }
/* store final carry */
W[ix] = _W;
/* setup dest */ /* setup dest */
olduse = c->used; olduse = c->used;
c->used = digs; c->used = digs;

View File

@ -42,7 +42,7 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* number of output digits to produce */ /* number of output digits to produce */
pa = a->used + b->used; pa = a->used + b->used;
_W = 0; _W = 0;
for (ix = digs; ix <= pa; ix++) { for (ix = digs; ix < pa; ix++) {
int tx, ty, iy; int tx, ty, iy;
mp_digit *tmpx, *tmpy; mp_digit *tmpx, *tmpy;
@ -70,6 +70,9 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* make next carry */ /* make next carry */
_W = _W >> ((mp_word)DIGIT_BIT); _W = _W >> ((mp_word)DIGIT_BIT);
} }
/* store final carry */
W[ix] = _W;
/* setup dest */ /* setup dest */
olduse = c->used; olduse = c->used;

View File

@ -60,7 +60,7 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b)
/* number of output digits to produce */ /* number of output digits to produce */
W1 = 0; W1 = 0;
for (ix = 0; ix <= pa; ix++) { for (ix = 0; ix < pa; ix++) {
int tx, ty, iy; int tx, ty, iy;
mp_word _W; mp_word _W;
mp_digit *tmpy; mp_digit *tmpy;

View File

@ -49,23 +49,23 @@ int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
mp_set(&tq, 1); mp_set(&tq, 1);
n = mp_count_bits(a) - mp_count_bits(b); n = mp_count_bits(a) - mp_count_bits(b);
if (((res = mp_copy(a, &ta)) != MP_OKAY) || if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
((res = mp_copy(b, &tb)) != MP_OKAY) || ((res = mp_abs(b, &tb)) != MP_OKAY) ||
((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
goto __ERR; goto LBL_ERR;
} }
while (n-- >= 0) { while (n-- >= 0) {
if (mp_cmp(&tb, &ta) != MP_GT) { if (mp_cmp(&tb, &ta) != MP_GT) {
if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
goto __ERR; goto LBL_ERR;
} }
} }
if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
goto __ERR; goto LBL_ERR;
} }
} }
@ -74,13 +74,13 @@ int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG); n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
if (c != NULL) { if (c != NULL) {
mp_exch(c, &q); mp_exch(c, &q);
c->sign = n2; c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
} }
if (d != NULL) { if (d != NULL) {
mp_exch(d, &ta); mp_exch(d, &ta);
d->sign = n; d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
} }
__ERR: LBL_ERR:
mp_clear_multi(&ta, &tb, &tq, &q, NULL); mp_clear_multi(&ta, &tb, &tq, &q, NULL);
return res; return res;
} }
@ -129,19 +129,19 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
q.used = a->used + 2; q.used = a->used + 2;
if ((res = mp_init (&t1)) != MP_OKAY) { if ((res = mp_init (&t1)) != MP_OKAY) {
goto __Q; goto LBL_Q;
} }
if ((res = mp_init (&t2)) != MP_OKAY) { if ((res = mp_init (&t2)) != MP_OKAY) {
goto __T1; goto LBL_T1;
} }
if ((res = mp_init_copy (&x, a)) != MP_OKAY) { if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
goto __T2; goto LBL_T2;
} }
if ((res = mp_init_copy (&y, b)) != MP_OKAY) { if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
goto __X; goto LBL_X;
} }
/* fix the sign */ /* fix the sign */
@ -153,10 +153,10 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
if (norm < (int)(DIGIT_BIT-1)) { if (norm < (int)(DIGIT_BIT-1)) {
norm = (DIGIT_BIT-1) - norm; norm = (DIGIT_BIT-1) - norm;
if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) { if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
goto __Y; goto LBL_Y;
} }
if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) { if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
goto __Y; goto LBL_Y;
} }
} else { } else {
norm = 0; norm = 0;
@ -168,13 +168,13 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
/* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
goto __Y; goto LBL_Y;
} }
while (mp_cmp (&x, &y) != MP_LT) { while (mp_cmp (&x, &y) != MP_LT) {
++(q.dp[n - t]); ++(q.dp[n - t]);
if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) { if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
goto __Y; goto LBL_Y;
} }
} }
@ -216,7 +216,7 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
t1.dp[1] = y.dp[t]; t1.dp[1] = y.dp[t];
t1.used = 2; t1.used = 2;
if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) { if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
goto __Y; goto LBL_Y;
} }
/* find right hand */ /* find right hand */
@ -228,27 +228,27 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
/* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) { if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
goto __Y; goto LBL_Y;
} }
if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
goto __Y; goto LBL_Y;
} }
if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) { if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
goto __Y; goto LBL_Y;
} }
/* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
if (x.sign == MP_NEG) { if (x.sign == MP_NEG) {
if ((res = mp_copy (&y, &t1)) != MP_OKAY) { if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
goto __Y; goto LBL_Y;
} }
if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
goto __Y; goto LBL_Y;
} }
if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) { if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
goto __Y; goto LBL_Y;
} }
q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
@ -275,11 +275,11 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
res = MP_OKAY; res = MP_OKAY;
__Y:mp_clear (&y); LBL_Y:mp_clear (&y);
__X:mp_clear (&x); LBL_X:mp_clear (&x);
__T2:mp_clear (&t2); LBL_T2:mp_clear (&t2);
__T1:mp_clear (&t1); LBL_T1:mp_clear (&t1);
__Q:mp_clear (&q); LBL_Q:mp_clear (&q);
return res; return res;
} }

View File

@ -20,7 +20,7 @@
* Based on algorithm from the paper * Based on algorithm from the paper
* *
* "Generating Efficient Primes for Discrete Log Cryptosystems" * "Generating Efficient Primes for Discrete Log Cryptosystems"
* Chae Hoon Lim, Pil Loong Lee, * Chae Hoon Lim, Pil Joong Lee,
* POSTECH Information Research Laboratories * POSTECH Information Research Laboratories
* *
* The modulus must be of a special format [see manual] * The modulus must be of a special format [see manual]

View File

@ -61,7 +61,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
return err; return err;
#else #else
/* no invmod */ /* no invmod */
return MP_VAL return MP_VAL;
#endif #endif
} }

View File

@ -88,11 +88,11 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
#ifdef BN_MP_MONTGOMERY_SETUP_C #ifdef BN_MP_MONTGOMERY_SETUP_C
/* now setup montgomery */ /* now setup montgomery */
if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) { if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
goto __M; goto LBL_M;
} }
#else #else
err = MP_VAL; err = MP_VAL;
goto __M; goto LBL_M;
#endif #endif
/* automatically pick the comba one if available (saves quite a few calls/ifs) */ /* automatically pick the comba one if available (saves quite a few calls/ifs) */
@ -108,7 +108,7 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
redux = mp_montgomery_reduce; redux = mp_montgomery_reduce;
#else #else
err = MP_VAL; err = MP_VAL;
goto __M; goto LBL_M;
#endif #endif
} }
} else if (redmode == 1) { } else if (redmode == 1) {
@ -118,24 +118,24 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
redux = mp_dr_reduce; redux = mp_dr_reduce;
#else #else
err = MP_VAL; err = MP_VAL;
goto __M; goto LBL_M;
#endif #endif
} else { } else {
#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C) #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
/* setup DR reduction for moduli of the form 2**k - b */ /* setup DR reduction for moduli of the form 2**k - b */
if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) { if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
goto __M; goto LBL_M;
} }
redux = mp_reduce_2k; redux = mp_reduce_2k;
#else #else
err = MP_VAL; err = MP_VAL;
goto __M; goto LBL_M;
#endif #endif
} }
/* setup result */ /* setup result */
if ((err = mp_init (&res)) != MP_OKAY) { if ((err = mp_init (&res)) != MP_OKAY) {
goto __M; goto LBL_M;
} }
/* create M table /* create M table
@ -149,45 +149,45 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
/* now we need R mod m */ /* now we need R mod m */
if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) { if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
#else #else
err = MP_VAL; err = MP_VAL;
goto __RES; goto LBL_RES;
#endif #endif
/* now set M[1] to G * R mod m */ /* now set M[1] to G * R mod m */
if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) { if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
} else { } else {
mp_set(&res, 1); mp_set(&res, 1);
if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
} }
/* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
for (x = 0; x < (winsize - 1); x++) { for (x = 0; x < (winsize - 1); x++) {
if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) { if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) { if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
} }
/* create upper table */ /* create upper table */
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
if ((err = redux (&M[x], P, mp)) != MP_OKAY) { if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
} }
@ -227,10 +227,10 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
/* if the bit is zero and mode == 1 then we square */ /* if the bit is zero and mode == 1 then we square */
if (mode == 1 && y == 0) { if (mode == 1 && y == 0) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) { if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
if ((err = redux (&res, P, mp)) != MP_OKAY) { if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
continue; continue;
} }
@ -244,19 +244,19 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
/* square first */ /* square first */
for (x = 0; x < winsize; x++) { for (x = 0; x < winsize; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) { if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
if ((err = redux (&res, P, mp)) != MP_OKAY) { if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
} }
/* then multiply */ /* then multiply */
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
if ((err = redux (&res, P, mp)) != MP_OKAY) { if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
/* empty window and reset */ /* empty window and reset */
@ -271,10 +271,10 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
/* square then multiply if the bit is set */ /* square then multiply if the bit is set */
for (x = 0; x < bitcpy; x++) { for (x = 0; x < bitcpy; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) { if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
if ((err = redux (&res, P, mp)) != MP_OKAY) { if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
/* get next bit of the window */ /* get next bit of the window */
@ -282,10 +282,10 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
if ((bitbuf & (1 << winsize)) != 0) { if ((bitbuf & (1 << winsize)) != 0) {
/* then multiply */ /* then multiply */
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
if ((err = redux (&res, P, mp)) != MP_OKAY) { if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
} }
} }
@ -299,15 +299,15 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
* of R. * of R.
*/ */
if ((err = redux(&res, P, mp)) != MP_OKAY) { if ((err = redux(&res, P, mp)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
} }
/* swap res with Y */ /* swap res with Y */
mp_exch (&res, Y); mp_exch (&res, Y);
err = MP_OKAY; err = MP_OKAY;
__RES:mp_clear (&res); LBL_RES:mp_clear (&res);
__M: LBL_M:
mp_clear(&M[1]); mp_clear(&M[1]);
for (x = 1<<(winsize-1); x < (1 << winsize); x++) { for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
mp_clear (&M[x]); mp_clear (&M[x]);

View File

@ -43,7 +43,7 @@ int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
} }
if ((res = mp_init_copy (&v, b)) != MP_OKAY) { if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
goto __U; goto LBL_U;
} }
/* must be positive for the remainder of the algorithm */ /* must be positive for the remainder of the algorithm */
@ -57,24 +57,24 @@ int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
if (k > 0) { if (k > 0) {
/* divide the power of two out */ /* divide the power of two out */
if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
goto __V; goto LBL_V;
} }
if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
goto __V; goto LBL_V;
} }
} }
/* divide any remaining factors of two out */ /* divide any remaining factors of two out */
if (u_lsb != k) { if (u_lsb != k) {
if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
goto __V; goto LBL_V;
} }
} }
if (v_lsb != k) { if (v_lsb != k) {
if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
goto __V; goto LBL_V;
} }
} }
@ -87,23 +87,23 @@ int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
/* subtract smallest from largest */ /* subtract smallest from largest */
if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
goto __V; goto LBL_V;
} }
/* Divide out all factors of two */ /* Divide out all factors of two */
if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
goto __V; goto LBL_V;
} }
} }
/* multiply by 2**k which we divided out at the beginning */ /* multiply by 2**k which we divided out at the beginning */
if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) { if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
goto __V; goto LBL_V;
} }
c->sign = MP_ZPOS; c->sign = MP_ZPOS;
res = MP_OKAY; res = MP_OKAY;
__V:mp_clear (&u); LBL_V:mp_clear (&u);
__U:mp_clear (&v); LBL_U:mp_clear (&v);
return res; return res;
} }
#endif #endif

View File

@ -34,24 +34,24 @@ int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
/* x = a, y = b */ /* x = a, y = b */
if ((res = mp_copy (a, &x)) != MP_OKAY) { if ((res = mp_copy (a, &x)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
if ((res = mp_copy (b, &y)) != MP_OKAY) { if ((res = mp_copy (b, &y)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
/* 2. [modified] if x,y are both even then return an error! */ /* 2. [modified] if x,y are both even then return an error! */
if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) { if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
res = MP_VAL; res = MP_VAL;
goto __ERR; goto LBL_ERR;
} }
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
if ((res = mp_copy (&x, &u)) != MP_OKAY) { if ((res = mp_copy (&x, &u)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
if ((res = mp_copy (&y, &v)) != MP_OKAY) { if ((res = mp_copy (&y, &v)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
mp_set (&A, 1); mp_set (&A, 1);
mp_set (&D, 1); mp_set (&D, 1);
@ -61,24 +61,24 @@ top:
while (mp_iseven (&u) == 1) { while (mp_iseven (&u) == 1) {
/* 4.1 u = u/2 */ /* 4.1 u = u/2 */
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
/* 4.2 if A or B is odd then */ /* 4.2 if A or B is odd then */
if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) { if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
/* A = (A+y)/2, B = (B-x)/2 */ /* A = (A+y)/2, B = (B-x)/2 */
if ((res = mp_add (&A, &y, &A)) != MP_OKAY) { if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
} }
/* A = A/2, B = B/2 */ /* A = A/2, B = B/2 */
if ((res = mp_div_2 (&A, &A)) != MP_OKAY) { if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
} }
@ -86,24 +86,24 @@ top:
while (mp_iseven (&v) == 1) { while (mp_iseven (&v) == 1) {
/* 5.1 v = v/2 */ /* 5.1 v = v/2 */
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
/* 5.2 if C or D is odd then */ /* 5.2 if C or D is odd then */
if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) { if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
/* C = (C+y)/2, D = (D-x)/2 */ /* C = (C+y)/2, D = (D-x)/2 */
if ((res = mp_add (&C, &y, &C)) != MP_OKAY) { if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
} }
/* C = C/2, D = D/2 */ /* C = C/2, D = D/2 */
if ((res = mp_div_2 (&C, &C)) != MP_OKAY) { if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
} }
@ -111,28 +111,28 @@ top:
if (mp_cmp (&u, &v) != MP_LT) { if (mp_cmp (&u, &v) != MP_LT) {
/* u = u - v, A = A - C, B = B - D */ /* u = u - v, A = A - C, B = B - D */
if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) { if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
} else { } else {
/* v - v - u, C = C - A, D = D - B */ /* v - v - u, C = C - A, D = D - B */
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) { if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
} }
@ -145,27 +145,27 @@ top:
/* if v != 1 then there is no inverse */ /* if v != 1 then there is no inverse */
if (mp_cmp_d (&v, 1) != MP_EQ) { if (mp_cmp_d (&v, 1) != MP_EQ) {
res = MP_VAL; res = MP_VAL;
goto __ERR; goto LBL_ERR;
} }
/* if its too low */ /* if its too low */
while (mp_cmp_d(&C, 0) == MP_LT) { while (mp_cmp_d(&C, 0) == MP_LT) {
if ((res = mp_add(&C, b, &C)) != MP_OKAY) { if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
} }
/* too big */ /* too big */
while (mp_cmp_mag(&C, b) != MP_LT) { while (mp_cmp_mag(&C, b) != MP_LT) {
if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
} }
/* C is now the inverse */ /* C is now the inverse */
mp_exch (&C, c); mp_exch (&C, c);
res = MP_OKAY; res = MP_OKAY;
__ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL); LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
return res; return res;
} }
#endif #endif

View File

@ -50,13 +50,13 @@ int mp_jacobi (mp_int * a, mp_int * p, int *c)
} }
if ((res = mp_init (&p1)) != MP_OKAY) { if ((res = mp_init (&p1)) != MP_OKAY) {
goto __A1; goto LBL_A1;
} }
/* divide out larger power of two */ /* divide out larger power of two */
k = mp_cnt_lsb(&a1); k = mp_cnt_lsb(&a1);
if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) { if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
goto __P1; goto LBL_P1;
} }
/* step 4. if e is even set s=1 */ /* step 4. if e is even set s=1 */
@ -84,18 +84,18 @@ int mp_jacobi (mp_int * a, mp_int * p, int *c)
} else { } else {
/* n1 = n mod a1 */ /* n1 = n mod a1 */
if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) { if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) {
goto __P1; goto LBL_P1;
} }
if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) { if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
goto __P1; goto LBL_P1;
} }
*c = s * r; *c = s * r;
} }
/* done */ /* done */
res = MP_OKAY; res = MP_OKAY;
__P1:mp_clear (&p1); LBL_P1:mp_clear (&p1);
__A1:mp_clear (&a1); LBL_A1:mp_clear (&a1);
return res; return res;
} }
#endif #endif

View File

@ -28,20 +28,20 @@ int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
/* t1 = get the GCD of the two inputs */ /* t1 = get the GCD of the two inputs */
if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) { if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
goto __T; goto LBL_T;
} }
/* divide the smallest by the GCD */ /* divide the smallest by the GCD */
if (mp_cmp_mag(a, b) == MP_LT) { if (mp_cmp_mag(a, b) == MP_LT) {
/* store quotient in t2 such that t2 * b is the LCM */ /* store quotient in t2 such that t2 * b is the LCM */
if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) { if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
goto __T; goto LBL_T;
} }
res = mp_mul(b, &t2, c); res = mp_mul(b, &t2, c);
} else { } else {
/* store quotient in t2 such that t2 * a is the LCM */ /* store quotient in t2 such that t2 * a is the LCM */
if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) { if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
goto __T; goto LBL_T;
} }
res = mp_mul(a, &t2, c); res = mp_mul(a, &t2, c);
} }
@ -49,7 +49,7 @@ int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
/* fix the sign to positive */ /* fix the sign to positive */
c->sign = MP_ZPOS; c->sign = MP_ZPOS;
__T: LBL_T:
mp_clear_multi (&t1, &t2, NULL); mp_clear_multi (&t1, &t2, NULL);
return res; return res;
} }

View File

@ -28,7 +28,7 @@ mp_mod_2d (mp_int * a, int b, mp_int * c)
} }
/* if the modulus is larger than the value than return */ /* if the modulus is larger than the value than return */
if (b > (int) (a->used * DIGIT_BIT)) { if (b >= (int) (a->used * DIGIT_BIT)) {
res = mp_copy (a, c); res = mp_copy (a, c);
return res; return res;
} }

View File

@ -40,11 +40,11 @@ int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
} }
if ((res = mp_init (&t2)) != MP_OKAY) { if ((res = mp_init (&t2)) != MP_OKAY) {
goto __T1; goto LBL_T1;
} }
if ((res = mp_init (&t3)) != MP_OKAY) { if ((res = mp_init (&t3)) != MP_OKAY) {
goto __T2; goto LBL_T2;
} }
/* if a is negative fudge the sign but keep track */ /* if a is negative fudge the sign but keep track */
@ -57,52 +57,52 @@ int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
do { do {
/* t1 = t2 */ /* t1 = t2 */
if ((res = mp_copy (&t2, &t1)) != MP_OKAY) { if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
goto __T3; goto LBL_T3;
} }
/* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
/* t3 = t1**(b-1) */ /* t3 = t1**(b-1) */
if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) { if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) {
goto __T3; goto LBL_T3;
} }
/* numerator */ /* numerator */
/* t2 = t1**b */ /* t2 = t1**b */
if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) { if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {
goto __T3; goto LBL_T3;
} }
/* t2 = t1**b - a */ /* t2 = t1**b - a */
if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) { if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {
goto __T3; goto LBL_T3;
} }
/* denominator */ /* denominator */
/* t3 = t1**(b-1) * b */ /* t3 = t1**(b-1) * b */
if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) { if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {
goto __T3; goto LBL_T3;
} }
/* t3 = (t1**b - a)/(b * t1**(b-1)) */ /* t3 = (t1**b - a)/(b * t1**(b-1)) */
if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) { if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {
goto __T3; goto LBL_T3;
} }
if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) { if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
goto __T3; goto LBL_T3;
} }
} while (mp_cmp (&t1, &t2) != MP_EQ); } while (mp_cmp (&t1, &t2) != MP_EQ);
/* result can be off by a few so check */ /* result can be off by a few so check */
for (;;) { for (;;) {
if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) { if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) {
goto __T3; goto LBL_T3;
} }
if (mp_cmp (&t2, a) == MP_GT) { if (mp_cmp (&t2, a) == MP_GT) {
if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) { if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
goto __T3; goto LBL_T3;
} }
} else { } else {
break; break;
@ -120,9 +120,9 @@ int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
res = MP_OKAY; res = MP_OKAY;
__T3:mp_clear (&t3); LBL_T3:mp_clear (&t3);
__T2:mp_clear (&t2); LBL_T2:mp_clear (&t2);
__T1:mp_clear (&t1); LBL_T1:mp_clear (&t1);
return res; return res;
} }
#endif #endif

View File

@ -43,7 +43,7 @@ int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
/* compute t = b**a mod a */ /* compute t = b**a mod a */
if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) { if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) {
goto __T; goto LBL_T;
} }
/* is it equal to b? */ /* is it equal to b? */
@ -52,7 +52,7 @@ int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
} }
err = MP_OKAY; err = MP_OKAY;
__T:mp_clear (&t); LBL_T:mp_clear (&t);
return err; return err;
} }
#endif #endif

View File

@ -29,8 +29,8 @@ int mp_prime_is_divisible (mp_int * a, int *result)
*result = MP_NO; *result = MP_NO;
for (ix = 0; ix < PRIME_SIZE; ix++) { for (ix = 0; ix < PRIME_SIZE; ix++) {
/* what is a mod __prime_tab[ix] */ /* what is a mod LBL_prime_tab[ix] */
if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) { if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) {
return err; return err;
} }

View File

@ -37,7 +37,7 @@ int mp_prime_is_prime (mp_int * a, int t, int *result)
/* is the input equal to one of the primes in the table? */ /* is the input equal to one of the primes in the table? */
for (ix = 0; ix < PRIME_SIZE; ix++) { for (ix = 0; ix < PRIME_SIZE; ix++) {
if (mp_cmp_d(a, __prime_tab[ix]) == MP_EQ) { if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
*result = 1; *result = 1;
return MP_OKAY; return MP_OKAY;
} }
@ -60,20 +60,20 @@ int mp_prime_is_prime (mp_int * a, int t, int *result)
for (ix = 0; ix < t; ix++) { for (ix = 0; ix < t; ix++) {
/* set the prime */ /* set the prime */
mp_set (&b, __prime_tab[ix]); mp_set (&b, ltm_prime_tab[ix]);
if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) { if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
goto __B; goto LBL_B;
} }
if (res == MP_NO) { if (res == MP_NO) {
goto __B; goto LBL_B;
} }
} }
/* passed the test */ /* passed the test */
*result = MP_YES; *result = MP_YES;
__B:mp_clear (&b); LBL_B:mp_clear (&b);
return err; return err;
} }
#endif #endif

View File

@ -40,12 +40,12 @@ int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
return err; return err;
} }
if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) { if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
goto __N1; goto LBL_N1;
} }
/* set 2**s * r = n1 */ /* set 2**s * r = n1 */
if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) { if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
goto __N1; goto LBL_N1;
} }
/* count the number of least significant bits /* count the number of least significant bits
@ -55,15 +55,15 @@ int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
/* now divide n - 1 by 2**s */ /* now divide n - 1 by 2**s */
if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) { if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
goto __R; goto LBL_R;
} }
/* compute y = b**r mod a */ /* compute y = b**r mod a */
if ((err = mp_init (&y)) != MP_OKAY) { if ((err = mp_init (&y)) != MP_OKAY) {
goto __R; goto LBL_R;
} }
if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) { if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
goto __Y; goto LBL_Y;
} }
/* if y != 1 and y != n1 do */ /* if y != 1 and y != n1 do */
@ -72,12 +72,12 @@ int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
/* while j <= s-1 and y != n1 */ /* while j <= s-1 and y != n1 */
while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) { while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) { if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
goto __Y; goto LBL_Y;
} }
/* if y == 1 then composite */ /* if y == 1 then composite */
if (mp_cmp_d (&y, 1) == MP_EQ) { if (mp_cmp_d (&y, 1) == MP_EQ) {
goto __Y; goto LBL_Y;
} }
++j; ++j;
@ -85,15 +85,15 @@ int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
/* if y != n1 then composite */ /* if y != n1 then composite */
if (mp_cmp (&y, &n1) != MP_EQ) { if (mp_cmp (&y, &n1) != MP_EQ) {
goto __Y; goto LBL_Y;
} }
} }
/* probably prime now */ /* probably prime now */
*result = MP_YES; *result = MP_YES;
__Y:mp_clear (&y); LBL_Y:mp_clear (&y);
__R:mp_clear (&r); LBL_R:mp_clear (&r);
__N1:mp_clear (&n1); LBL_N1:mp_clear (&n1);
return err; return err;
} }
#endif #endif

View File

@ -35,10 +35,10 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
a->sign = MP_ZPOS; a->sign = MP_ZPOS;
/* simple algo if a is less than the largest prime in the table */ /* simple algo if a is less than the largest prime in the table */
if (mp_cmp_d(a, __prime_tab[PRIME_SIZE-1]) == MP_LT) { if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
/* find which prime it is bigger than */ /* find which prime it is bigger than */
for (x = PRIME_SIZE - 2; x >= 0; x--) { for (x = PRIME_SIZE - 2; x >= 0; x--) {
if (mp_cmp_d(a, __prime_tab[x]) != MP_LT) { if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {
if (bbs_style == 1) { if (bbs_style == 1) {
/* ok we found a prime smaller or /* ok we found a prime smaller or
* equal [so the next is larger] * equal [so the next is larger]
@ -46,17 +46,17 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
* however, the prime must be * however, the prime must be
* congruent to 3 mod 4 * congruent to 3 mod 4
*/ */
if ((__prime_tab[x + 1] & 3) != 3) { if ((ltm_prime_tab[x + 1] & 3) != 3) {
/* scan upwards for a prime congruent to 3 mod 4 */ /* scan upwards for a prime congruent to 3 mod 4 */
for (y = x + 1; y < PRIME_SIZE; y++) { for (y = x + 1; y < PRIME_SIZE; y++) {
if ((__prime_tab[y] & 3) == 3) { if ((ltm_prime_tab[y] & 3) == 3) {
mp_set(a, __prime_tab[y]); mp_set(a, ltm_prime_tab[y]);
return MP_OKAY; return MP_OKAY;
} }
} }
} }
} else { } else {
mp_set(a, __prime_tab[x + 1]); mp_set(a, ltm_prime_tab[x + 1]);
return MP_OKAY; return MP_OKAY;
} }
} }
@ -94,7 +94,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
/* generate the restable */ /* generate the restable */
for (x = 1; x < PRIME_SIZE; x++) { for (x = 1; x < PRIME_SIZE; x++) {
if ((err = mp_mod_d(a, __prime_tab[x], res_tab + x)) != MP_OKAY) { if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) {
return err; return err;
} }
} }
@ -120,8 +120,8 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
res_tab[x] += kstep; res_tab[x] += kstep;
/* subtract the modulus [instead of using division] */ /* subtract the modulus [instead of using division] */
if (res_tab[x] >= __prime_tab[x]) { if (res_tab[x] >= ltm_prime_tab[x]) {
res_tab[x] -= __prime_tab[x]; res_tab[x] -= ltm_prime_tab[x];
} }
/* set flag if zero */ /* set flag if zero */
@ -133,7 +133,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
/* add the step */ /* add the step */
if ((err = mp_add_d(a, step, a)) != MP_OKAY) { if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
/* if didn't pass sieve and step == MAX then skip test */ /* if didn't pass sieve and step == MAX then skip test */
@ -143,9 +143,9 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
/* is this prime? */ /* is this prime? */
for (x = 0; x < t; x++) { for (x = 0; x < t; x++) {
mp_set(&b, __prime_tab[t]); mp_set(&b, ltm_prime_tab[t]);
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
goto __ERR; goto LBL_ERR;
} }
if (res == MP_NO) { if (res == MP_NO) {
break; break;
@ -158,7 +158,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
} }
err = MP_OKAY; err = MP_OKAY;
__ERR: LBL_ERR:
mp_clear(&b); mp_clear(&b);
return err; return err;
} }

View File

@ -47,7 +47,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
} }
/* calc the byte size */ /* calc the byte size */
bsize = (size>>3)+(size&7?1:0); bsize = (size>>3) + ((size&7)?1:0);
/* we need a buffer of bsize bytes */ /* we need a buffer of bsize bytes */
tmp = OPT_CAST(unsigned char) XMALLOC(bsize); tmp = OPT_CAST(unsigned char) XMALLOC(bsize);
@ -56,7 +56,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
} }
/* calc the maskAND value for the MSbyte*/ /* calc the maskAND value for the MSbyte*/
maskAND = 0xFF >> (8 - (size & 7)); maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7)));
/* calc the maskOR_msb */ /* calc the maskOR_msb */
maskOR_msb = 0; maskOR_msb = 0;
@ -65,7 +65,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
maskOR_msb |= 1 << ((size - 2) & 7); maskOR_msb |= 1 << ((size - 2) & 7);
} else if (flags & LTM_PRIME_2MSB_OFF) { } else if (flags & LTM_PRIME_2MSB_OFF) {
maskAND &= ~(1 << ((size - 2) & 7)); maskAND &= ~(1 << ((size - 2) & 7));
} }
/* get the maskOR_lsb */ /* get the maskOR_lsb */
maskOR_lsb = 0; maskOR_lsb = 0;

View File

@ -14,7 +14,7 @@
* *
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/ */
const mp_digit __prime_tab[] = { const mp_digit ltm_prime_tab[] = {
0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013, 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035, 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059, 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,

View File

@ -70,10 +70,10 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
/* create mu, used for Barrett reduction */ /* create mu, used for Barrett reduction */
if ((err = mp_init (&mu)) != MP_OKAY) { if ((err = mp_init (&mu)) != MP_OKAY) {
goto __M; goto LBL_M;
} }
if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
goto __MU; goto LBL_MU;
} }
/* create M table /* create M table
@ -85,23 +85,23 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
* computed though accept for M[0] and M[1] * computed though accept for M[0] and M[1]
*/ */
if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) { if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
goto __MU; goto LBL_MU;
} }
/* compute the value at M[1<<(winsize-1)] by squaring /* compute the value at M[1<<(winsize-1)] by squaring
* M[1] (winsize-1) times * M[1] (winsize-1) times
*/ */
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto __MU; goto LBL_MU;
} }
for (x = 0; x < (winsize - 1); x++) { for (x = 0; x < (winsize - 1); x++) {
if ((err = mp_sqr (&M[1 << (winsize - 1)], if ((err = mp_sqr (&M[1 << (winsize - 1)],
&M[1 << (winsize - 1)])) != MP_OKAY) { &M[1 << (winsize - 1)])) != MP_OKAY) {
goto __MU; goto LBL_MU;
} }
if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
goto __MU; goto LBL_MU;
} }
} }
@ -110,16 +110,16 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
*/ */
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
goto __MU; goto LBL_MU;
} }
if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) { if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
goto __MU; goto LBL_MU;
} }
} }
/* setup result */ /* setup result */
if ((err = mp_init (&res)) != MP_OKAY) { if ((err = mp_init (&res)) != MP_OKAY) {
goto __MU; goto LBL_MU;
} }
mp_set (&res, 1); mp_set (&res, 1);
@ -159,10 +159,10 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
/* if the bit is zero and mode == 1 then we square */ /* if the bit is zero and mode == 1 then we square */
if (mode == 1 && y == 0) { if (mode == 1 && y == 0) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) { if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
continue; continue;
} }
@ -176,19 +176,19 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
/* square first */ /* square first */
for (x = 0; x < winsize; x++) { for (x = 0; x < winsize; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) { if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
} }
/* then multiply */ /* then multiply */
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
/* empty window and reset */ /* empty window and reset */
@ -203,20 +203,20 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
/* square then multiply if the bit is set */ /* square then multiply if the bit is set */
for (x = 0; x < bitcpy; x++) { for (x = 0; x < bitcpy; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) { if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
bitbuf <<= 1; bitbuf <<= 1;
if ((bitbuf & (1 << winsize)) != 0) { if ((bitbuf & (1 << winsize)) != 0) {
/* then multiply */ /* then multiply */
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES; goto LBL_RES;
} }
} }
} }
@ -224,9 +224,9 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
mp_exch (&res, Y); mp_exch (&res, Y);
err = MP_OKAY; err = MP_OKAY;
__RES:mp_clear (&res); LBL_RES:mp_clear (&res);
__MU:mp_clear (&mu); LBL_MU:mp_clear (&mu);
__M: LBL_M:
mp_clear(&M[1]); mp_clear(&M[1]);
for (x = 1<<(winsize-1); x < (1 << winsize); x++) { for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
mp_clear (&M[x]); mp_clear (&M[x]);

View File

@ -245,6 +245,7 @@ BN_MP_SQRT_C
| | +--->BN_MP_INIT_MULTI_C | | +--->BN_MP_INIT_MULTI_C
| | | +--->BN_MP_CLEAR_C | | | +--->BN_MP_CLEAR_C
| | +--->BN_MP_COUNT_BITS_C | | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C | | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C | | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C | | | +--->BN_MP_LSHD_C
@ -298,6 +299,7 @@ BN_MP_SQRT_C
| | +--->BN_MP_CLEAR_C | | +--->BN_MP_CLEAR_C
| +--->BN_MP_SET_C | +--->BN_MP_SET_C
| +--->BN_MP_COUNT_BITS_C | +--->BN_MP_COUNT_BITS_C
| +--->BN_MP_ABS_C
| +--->BN_MP_MUL_2D_C | +--->BN_MP_MUL_2D_C
| | +--->BN_MP_GROW_C | | +--->BN_MP_GROW_C
| | +--->BN_MP_LSHD_C | | +--->BN_MP_LSHD_C
@ -404,6 +406,7 @@ BN_MP_IS_SQUARE_C
| | | +--->BN_MP_CLEAR_C | | | +--->BN_MP_CLEAR_C
| | +--->BN_MP_SET_C | | +--->BN_MP_SET_C
| | +--->BN_MP_COUNT_BITS_C | | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C | | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C | | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C | | | +--->BN_MP_LSHD_C
@ -700,6 +703,7 @@ BN_MP_IS_SQUARE_C
| | | +--->BN_MP_INIT_MULTI_C | | | +--->BN_MP_INIT_MULTI_C
| | | | +--->BN_MP_CLEAR_C | | | | +--->BN_MP_CLEAR_C
| | | +--->BN_MP_COUNT_BITS_C | | | +--->BN_MP_COUNT_BITS_C
| | | +--->BN_MP_ABS_C
| | | +--->BN_MP_MUL_2D_C | | | +--->BN_MP_MUL_2D_C
| | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_LSHD_C | | | | +--->BN_MP_LSHD_C
@ -753,6 +757,7 @@ BN_MP_IS_SQUARE_C
| | | +--->BN_MP_CLEAR_C | | | +--->BN_MP_CLEAR_C
| | +--->BN_MP_SET_C | | +--->BN_MP_SET_C
| | +--->BN_MP_COUNT_BITS_C | | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C | | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C | | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C | | | +--->BN_MP_LSHD_C
@ -2618,6 +2623,7 @@ BN_MP_SUBMOD_C
| | +--->BN_MP_INIT_MULTI_C | | +--->BN_MP_INIT_MULTI_C
| | +--->BN_MP_SET_C | | +--->BN_MP_SET_C
| | +--->BN_MP_COUNT_BITS_C | | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C | | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C | | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C | | | +--->BN_MP_LSHD_C
@ -2838,6 +2844,7 @@ BN_MP_SQRMOD_C
| | +--->BN_MP_INIT_MULTI_C | | +--->BN_MP_INIT_MULTI_C
| | +--->BN_MP_SET_C | | +--->BN_MP_SET_C
| | +--->BN_MP_COUNT_BITS_C | | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C | | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C | | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C | | | +--->BN_MP_LSHD_C
@ -3313,6 +3320,7 @@ BN_MP_N_ROOT_C
| +--->BN_MP_INIT_MULTI_C | +--->BN_MP_INIT_MULTI_C
| | +--->BN_MP_CLEAR_C | | +--->BN_MP_CLEAR_C
| +--->BN_MP_COUNT_BITS_C | +--->BN_MP_COUNT_BITS_C
| +--->BN_MP_ABS_C
| +--->BN_MP_MUL_2D_C | +--->BN_MP_MUL_2D_C
| | +--->BN_MP_GROW_C | | +--->BN_MP_GROW_C
| | +--->BN_MP_LSHD_C | | +--->BN_MP_LSHD_C
@ -4322,6 +4330,7 @@ BN_MP_PRIME_RANDOM_EX_C
| | | | | +--->BN_MP_ZERO_C | | | | | +--->BN_MP_ZERO_C
| | | | | +--->BN_MP_INIT_MULTI_C | | | | | +--->BN_MP_INIT_MULTI_C
| | | | | +--->BN_MP_COUNT_BITS_C | | | | | +--->BN_MP_COUNT_BITS_C
| | | | | +--->BN_MP_ABS_C
| | | | | +--->BN_MP_MUL_2D_C | | | | | +--->BN_MP_MUL_2D_C
| | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_LSHD_C
@ -4548,6 +4557,7 @@ BN_MP_MOD_C
| | +--->BN_MP_CLEAR_C | | +--->BN_MP_CLEAR_C
| +--->BN_MP_SET_C | +--->BN_MP_SET_C
| +--->BN_MP_COUNT_BITS_C | +--->BN_MP_COUNT_BITS_C
| +--->BN_MP_ABS_C
| +--->BN_MP_MUL_2D_C | +--->BN_MP_MUL_2D_C
| | +--->BN_MP_GROW_C | | +--->BN_MP_GROW_C
| | +--->BN_MP_LSHD_C | | +--->BN_MP_LSHD_C
@ -5600,6 +5610,7 @@ BN_MP_PRIME_IS_PRIME_C
| | | | +--->BN_MP_ZERO_C | | | | +--->BN_MP_ZERO_C
| | | | +--->BN_MP_INIT_MULTI_C | | | | +--->BN_MP_INIT_MULTI_C
| | | | +--->BN_MP_COUNT_BITS_C | | | | +--->BN_MP_COUNT_BITS_C
| | | | +--->BN_MP_ABS_C
| | | | +--->BN_MP_MUL_2D_C | | | | +--->BN_MP_MUL_2D_C
| | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_LSHD_C
@ -5809,6 +5820,7 @@ BN_MP_EXPTMOD_FAST_C
| | | +--->BN_MP_ZERO_C | | | +--->BN_MP_ZERO_C
| | | +--->BN_MP_INIT_MULTI_C | | | +--->BN_MP_INIT_MULTI_C
| | | +--->BN_MP_SET_C | | | +--->BN_MP_SET_C
| | | +--->BN_MP_ABS_C
| | | +--->BN_MP_MUL_2D_C | | | +--->BN_MP_MUL_2D_C
| | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_LSHD_C | | | | +--->BN_MP_LSHD_C
@ -5865,6 +5877,7 @@ BN_MP_EXPTMOD_FAST_C
| | | +--->BN_MP_GROW_C | | | +--->BN_MP_GROW_C
| | +--->BN_MP_ZERO_C | | +--->BN_MP_ZERO_C
| | +--->BN_MP_INIT_MULTI_C | | +--->BN_MP_INIT_MULTI_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C | | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C | | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C | | | +--->BN_MP_LSHD_C
@ -6284,6 +6297,7 @@ BN_MP_MULMOD_C
| | +--->BN_MP_INIT_MULTI_C | | +--->BN_MP_INIT_MULTI_C
| | +--->BN_MP_SET_C | | +--->BN_MP_SET_C
| | +--->BN_MP_COUNT_BITS_C | | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C | | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C | | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C | | | +--->BN_MP_LSHD_C
@ -7339,6 +7353,7 @@ BN_MP_PRIME_NEXT_PRIME_C
| | | | +--->BN_MP_ZERO_C | | | | +--->BN_MP_ZERO_C
| | | | +--->BN_MP_INIT_MULTI_C | | | | +--->BN_MP_INIT_MULTI_C
| | | | +--->BN_MP_COUNT_BITS_C | | | | +--->BN_MP_COUNT_BITS_C
| | | | +--->BN_MP_ABS_C
| | | | +--->BN_MP_MUL_2D_C | | | | +--->BN_MP_MUL_2D_C
| | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_LSHD_C
@ -7465,6 +7480,7 @@ BN_MP_LCM_C
| +--->BN_MP_ZERO_C | +--->BN_MP_ZERO_C
| +--->BN_MP_SET_C | +--->BN_MP_SET_C
| +--->BN_MP_COUNT_BITS_C | +--->BN_MP_COUNT_BITS_C
| +--->BN_MP_ABS_C
| +--->BN_MP_MUL_2D_C | +--->BN_MP_MUL_2D_C
| | +--->BN_MP_GROW_C | | +--->BN_MP_GROW_C
| | +--->BN_MP_LSHD_C | | +--->BN_MP_LSHD_C
@ -7928,6 +7944,7 @@ BN_S_MP_EXPTMOD_C
| | +--->BN_MP_ZERO_C | | +--->BN_MP_ZERO_C
| | +--->BN_MP_INIT_MULTI_C | | +--->BN_MP_INIT_MULTI_C
| | +--->BN_MP_SET_C | | +--->BN_MP_SET_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C | | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C | | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C | | | +--->BN_MP_LSHD_C
@ -7974,6 +7991,7 @@ BN_S_MP_EXPTMOD_C
| | +--->BN_MP_ZERO_C | | +--->BN_MP_ZERO_C
| | +--->BN_MP_INIT_MULTI_C | | +--->BN_MP_INIT_MULTI_C
| | +--->BN_MP_SET_C | | +--->BN_MP_SET_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C | | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C | | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C | | | +--->BN_MP_LSHD_C
@ -8372,6 +8390,7 @@ BN_MP_DIV_C
| +--->BN_MP_CLEAR_C | +--->BN_MP_CLEAR_C
+--->BN_MP_SET_C +--->BN_MP_SET_C
+--->BN_MP_COUNT_BITS_C +--->BN_MP_COUNT_BITS_C
+--->BN_MP_ABS_C
+--->BN_MP_MUL_2D_C +--->BN_MP_MUL_2D_C
| +--->BN_MP_GROW_C | +--->BN_MP_GROW_C
| +--->BN_MP_LSHD_C | +--->BN_MP_LSHD_C
@ -8465,6 +8484,7 @@ BN_MP_ADDMOD_C
| | +--->BN_MP_INIT_MULTI_C | | +--->BN_MP_INIT_MULTI_C
| | +--->BN_MP_SET_C | | +--->BN_MP_SET_C
| | +--->BN_MP_COUNT_BITS_C | | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C | | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C | | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C | | | +--->BN_MP_LSHD_C
@ -8551,6 +8571,7 @@ BN_MP_REDUCE_C
| | | +--->BN_MP_CLEAR_C | | | +--->BN_MP_CLEAR_C
| | +--->BN_MP_SET_C | | +--->BN_MP_SET_C
| | +--->BN_MP_COUNT_BITS_C | | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C | | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C | | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C | | | +--->BN_MP_LSHD_C
@ -8766,6 +8787,7 @@ BN_MP_JACOBI_C
| | | +--->BN_MP_CLEAR_C | | | +--->BN_MP_CLEAR_C
| | +--->BN_MP_SET_C | | +--->BN_MP_SET_C
| | +--->BN_MP_COUNT_BITS_C | | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
| | +--->BN_MP_MUL_2D_C | | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C | | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C | | | +--->BN_MP_LSHD_C
@ -8912,6 +8934,7 @@ BN_MP_EXTEUCLID_C
| +--->BN_MP_CMP_MAG_C | +--->BN_MP_CMP_MAG_C
| +--->BN_MP_ZERO_C | +--->BN_MP_ZERO_C
| +--->BN_MP_COUNT_BITS_C | +--->BN_MP_COUNT_BITS_C
| +--->BN_MP_ABS_C
| +--->BN_MP_MUL_2D_C | +--->BN_MP_MUL_2D_C
| | +--->BN_MP_GROW_C | | +--->BN_MP_GROW_C
| | +--->BN_MP_LSHD_C | | +--->BN_MP_LSHD_C
@ -9078,6 +9101,7 @@ BN_MP_REDUCE_SETUP_C
| | +--->BN_MP_CLEAR_C | | +--->BN_MP_CLEAR_C
| +--->BN_MP_SET_C | +--->BN_MP_SET_C
| +--->BN_MP_COUNT_BITS_C | +--->BN_MP_COUNT_BITS_C
| +--->BN_MP_ABS_C
| +--->BN_MP_MUL_2D_C | +--->BN_MP_MUL_2D_C
| | +--->BN_MP_GROW_C | | +--->BN_MP_GROW_C
| | +--->BN_MP_LSHD_C | | +--->BN_MP_LSHD_C
@ -10118,6 +10142,7 @@ BN_MP_PRIME_MILLER_RABIN_C
| | | +--->BN_MP_INIT_MULTI_C | | | +--->BN_MP_INIT_MULTI_C
| | | +--->BN_MP_SET_C | | | +--->BN_MP_SET_C
| | | +--->BN_MP_COUNT_BITS_C | | | +--->BN_MP_COUNT_BITS_C
| | | +--->BN_MP_ABS_C
| | | +--->BN_MP_MUL_2D_C | | | +--->BN_MP_MUL_2D_C
| | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_LSHD_C | | | | +--->BN_MP_LSHD_C

View File

@ -1,3 +1,12 @@
December 23rd, 2004
v0.33 -- Fixed "small" variant for mp_div() which would munge with negative dividends...
-- Fixed bug in mp_prime_random_ex() which would set the most significant byte to zero when
no special flags were set
-- Fixed overflow [minor] bug in fast_s_mp_sqr()
-- Made the makefiles easier to configure the group/user that ltm will install as
-- Fixed "final carry" bug in comba multipliers. (Volkan Ceylan)
-- Matt Johnston pointed out a missing semi-colon in mp_exptmod
October 29th, 2004 October 29th, 2004
v0.32 -- Added "makefile.shared" for shared object support v0.32 -- Added "makefile.shared" for shared object support
-- Added more to the build options/configs in the manual -- Added more to the build options/configs in the manual

View File

@ -11,9 +11,9 @@
void ndraw(mp_int *a, char *name) void ndraw(mp_int *a, char *name)
{ {
char buf[4096]; char buf[16000];
printf("%s: ", name); printf("%s: ", name);
mp_toradix(a, buf, 64); mp_toradix(a, buf, 10);
printf("%s\n", buf); printf("%s\n", buf);
} }
@ -395,7 +395,7 @@ draw(&a);draw(&b);draw(&c);draw(&d);
mp_div(&a, &b, &e, &f); mp_div(&a, &b, &e, &f);
if (mp_cmp(&c, &e) != MP_EQ || mp_cmp(&d, &f) != MP_EQ) { if (mp_cmp(&c, &e) != MP_EQ || mp_cmp(&d, &f) != MP_EQ) {
printf("div %lu failure!\n", div_n); printf("div %lu %d, %d, failure!\n", div_n, mp_cmp(&c, &e), mp_cmp(&d, &f));
draw(&a);draw(&b);draw(&c);draw(&d); draw(&e); draw(&f); draw(&a);draw(&b);draw(&c);draw(&d); draw(&e); draw(&f);
return 0; return 0;
} }

View File

@ -38,14 +38,13 @@ int lbit(void)
} }
} }
#if defined(__i386__) || defined(_M_IX86) || defined(_M_AMD64)
/* RDTSC from Scott Duplichan */ /* RDTSC from Scott Duplichan */
static ulong64 TIMFUNC (void) static ulong64 TIMFUNC (void)
{ {
#if defined __GNUC__ #if defined __GNUC__
#ifdef __i386__ #if defined(__i386__) || defined(__x86_64__)
ulong64 a; unsigned long long a;
__asm__ __volatile__ ("rdtsc ":"=A" (a)); __asm__ __volatile__ ("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n"::"m"(a):"%eax","%edx");
return a; return a;
#else /* gcc-IA64 version */ #else /* gcc-IA64 version */
unsigned long result; unsigned long result;
@ -69,9 +68,6 @@ static ulong64 TIMFUNC (void)
#error need rdtsc function for this build #error need rdtsc function for this build
#endif #endif
} }
#else
#define TIMFUNC clock
#endif
#define DO(x) x; x; #define DO(x) x; x;
//#define DO4(x) DO2(x); DO2(x); //#define DO4(x) DO2(x); DO2(x);

View File

@ -18,15 +18,15 @@ is_mersenne (long s, int *pp)
} }
if ((res = mp_init (&u)) != MP_OKAY) { if ((res = mp_init (&u)) != MP_OKAY) {
goto __N; goto LBL_N;
} }
/* n = 2^s - 1 */ /* n = 2^s - 1 */
if ((res = mp_2expt(&n, s)) != MP_OKAY) { if ((res = mp_2expt(&n, s)) != MP_OKAY) {
goto __MU; goto LBL_MU;
} }
if ((res = mp_sub_d (&n, 1, &n)) != MP_OKAY) { if ((res = mp_sub_d (&n, 1, &n)) != MP_OKAY) {
goto __MU; goto LBL_MU;
} }
/* set u=4 */ /* set u=4 */
@ -36,22 +36,22 @@ is_mersenne (long s, int *pp)
for (k = 1; k <= s - 2; k++) { for (k = 1; k <= s - 2; k++) {
/* u = u^2 - 2 mod n */ /* u = u^2 - 2 mod n */
if ((res = mp_sqr (&u, &u)) != MP_OKAY) { if ((res = mp_sqr (&u, &u)) != MP_OKAY) {
goto __MU; goto LBL_MU;
} }
if ((res = mp_sub_d (&u, 2, &u)) != MP_OKAY) { if ((res = mp_sub_d (&u, 2, &u)) != MP_OKAY) {
goto __MU; goto LBL_MU;
} }
/* make sure u is positive */ /* make sure u is positive */
while (u.sign == MP_NEG) { while (u.sign == MP_NEG) {
if ((res = mp_add (&u, &n, &u)) != MP_OKAY) { if ((res = mp_add (&u, &n, &u)) != MP_OKAY) {
goto __MU; goto LBL_MU;
} }
} }
/* reduce */ /* reduce */
if ((res = mp_reduce_2k (&u, &n, 1)) != MP_OKAY) { if ((res = mp_reduce_2k (&u, &n, 1)) != MP_OKAY) {
goto __MU; goto LBL_MU;
} }
} }
@ -62,8 +62,8 @@ is_mersenne (long s, int *pp)
} }
res = MP_OKAY; res = MP_OKAY;
__MU:mp_clear (&u); LBL_MU:mp_clear (&u);
__N:mp_clear (&n); LBL_N:mp_clear (&n);
return res; return res;
} }

View File

@ -189,7 +189,7 @@ pprime (int k, int li, mp_int * p, mp_int * q)
} }
if ((res = mp_init (&v)) != MP_OKAY) { if ((res = mp_init (&v)) != MP_OKAY) {
goto __C; goto LBL_C;
} }
/* product of first 50 primes */ /* product of first 50 primes */
@ -197,34 +197,34 @@ pprime (int k, int li, mp_int * p, mp_int * q)
mp_read_radix (&v, mp_read_radix (&v,
"19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190", "19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",
10)) != MP_OKAY) { 10)) != MP_OKAY) {
goto __V; goto LBL_V;
} }
if ((res = mp_init (&a)) != MP_OKAY) { if ((res = mp_init (&a)) != MP_OKAY) {
goto __V; goto LBL_V;
} }
/* set the prime */ /* set the prime */
mp_set (&a, prime_digit ()); mp_set (&a, prime_digit ());
if ((res = mp_init (&b)) != MP_OKAY) { if ((res = mp_init (&b)) != MP_OKAY) {
goto __A; goto LBL_A;
} }
if ((res = mp_init (&n)) != MP_OKAY) { if ((res = mp_init (&n)) != MP_OKAY) {
goto __B; goto LBL_B;
} }
if ((res = mp_init (&x)) != MP_OKAY) { if ((res = mp_init (&x)) != MP_OKAY) {
goto __N; goto LBL_N;
} }
if ((res = mp_init (&y)) != MP_OKAY) { if ((res = mp_init (&y)) != MP_OKAY) {
goto __X; goto LBL_X;
} }
if ((res = mp_init (&z)) != MP_OKAY) { if ((res = mp_init (&z)) != MP_OKAY) {
goto __Y; goto LBL_Y;
} }
/* now loop making the single digit */ /* now loop making the single digit */
@ -236,25 +236,25 @@ pprime (int k, int li, mp_int * p, mp_int * q)
/* now compute z = a * b * 2 */ /* now compute z = a * b * 2 */
if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) { /* z = a * b */ if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) { /* z = a * b */
goto __Z; goto LBL_Z;
} }
if ((res = mp_copy (&z, &c)) != MP_OKAY) { /* c = a * b */ if ((res = mp_copy (&z, &c)) != MP_OKAY) { /* c = a * b */
goto __Z; goto LBL_Z;
} }
if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) { /* z = 2 * a * b */ if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) { /* z = 2 * a * b */
goto __Z; goto LBL_Z;
} }
/* n = z + 1 */ /* n = z + 1 */
if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) { /* n = z + 1 */ if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) { /* n = z + 1 */
goto __Z; goto LBL_Z;
} }
/* check (n, v) == 1 */ /* check (n, v) == 1 */
if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) { /* y = (n, v) */ if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) { /* y = (n, v) */
goto __Z; goto LBL_Z;
} }
if (mp_cmp_d (&y, 1) != MP_EQ) if (mp_cmp_d (&y, 1) != MP_EQ)
@ -266,7 +266,7 @@ pprime (int k, int li, mp_int * p, mp_int * q)
/* compute x^a mod n */ /* compute x^a mod n */
if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) { /* y = x^a mod n */ if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) { /* y = x^a mod n */
goto __Z; goto LBL_Z;
} }
/* if y == 1 loop */ /* if y == 1 loop */
@ -275,7 +275,7 @@ pprime (int k, int li, mp_int * p, mp_int * q)
/* now x^2a mod n */ /* now x^2a mod n */
if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2a mod n */ if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2a mod n */
goto __Z; goto LBL_Z;
} }
if (mp_cmp_d (&y, 1) == MP_EQ) if (mp_cmp_d (&y, 1) == MP_EQ)
@ -283,7 +283,7 @@ pprime (int k, int li, mp_int * p, mp_int * q)
/* compute x^b mod n */ /* compute x^b mod n */
if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) { /* y = x^b mod n */ if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) { /* y = x^b mod n */
goto __Z; goto LBL_Z;
} }
/* if y == 1 loop */ /* if y == 1 loop */
@ -292,7 +292,7 @@ pprime (int k, int li, mp_int * p, mp_int * q)
/* now x^2b mod n */ /* now x^2b mod n */
if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2b mod n */ if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2b mod n */
goto __Z; goto LBL_Z;
} }
if (mp_cmp_d (&y, 1) == MP_EQ) if (mp_cmp_d (&y, 1) == MP_EQ)
@ -300,7 +300,7 @@ pprime (int k, int li, mp_int * p, mp_int * q)
/* compute x^c mod n == x^ab mod n */ /* compute x^c mod n == x^ab mod n */
if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) { /* y = x^ab mod n */ if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) { /* y = x^ab mod n */
goto __Z; goto LBL_Z;
} }
/* if y == 1 loop */ /* if y == 1 loop */
@ -309,7 +309,7 @@ pprime (int k, int li, mp_int * p, mp_int * q)
/* now compute (x^c mod n)^2 */ /* now compute (x^c mod n)^2 */
if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2ab mod n */ if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2ab mod n */
goto __Z; goto LBL_Z;
} }
/* y should be 1 */ /* y should be 1 */
@ -346,14 +346,14 @@ pprime (int k, int li, mp_int * p, mp_int * q)
mp_exch (&n, p); mp_exch (&n, p);
res = MP_OKAY; res = MP_OKAY;
__Z:mp_clear (&z); LBL_Z:mp_clear (&z);
__Y:mp_clear (&y); LBL_Y:mp_clear (&y);
__X:mp_clear (&x); LBL_X:mp_clear (&x);
__N:mp_clear (&n); LBL_N:mp_clear (&n);
__B:mp_clear (&b); LBL_B:mp_clear (&b);
__A:mp_clear (&a); LBL_A:mp_clear (&a);
__V:mp_clear (&v); LBL_V:mp_clear (&v);
__C:mp_clear (&c); LBL_C:mp_clear (&c);
return res; return res;
} }

View File

@ -14,9 +14,9 @@
#ifndef X86_TIMER #ifndef X86_TIMER
/* generic ISO C timer */ /* generic ISO C timer */
ulong64 __T; ulong64 LBL_T;
void t_start(void) { __T = clock(); } void t_start(void) { LBL_T = clock(); }
ulong64 t_read(void) { return clock() - __T; } ulong64 t_read(void) { return clock() - LBL_T; }
#else #else
extern void t_start(void); extern void t_start(void);

View File

@ -1,16 +1,16 @@
224 222 480 88
448 330 960 113
672 436 1440 138
896 520 1920 163
1120 612 2400 202
1344 696 2880 226
1568 810 3360 251
1792 912 3840 272
2016 1006 4320 296
2240 1116 4800 320
2464 1152 5280 344
2688 1284 5760 368
2912 1348 6240 392
3136 1486 6720 416
3360 1580 7200 440
3584 1636 7680 464

View File

@ -0,0 +1,7 @@
513 1499509
769 3682671
1025 8098887
2049 49332743
2561 89647783
3073 149440713
4097 326135364

View File

@ -0,0 +1,6 @@
521 1423346
607 1841305
1279 8375656
2203 34104708
3217 83830729
4253 167916804

View File

@ -0,0 +1,7 @@
532 1803110
784 3607375
1036 6089790
1540 14739797
2072 33251589
3080 82794331
4116 165212734

View File

@ -1,143 +1,143 @@
140 1272 271 580
195 1428 390 861
252 1996 511 1177
307 2586 630 1598
364 3464 749 2115
420 4420 871 2670
476 5260 991 3276
532 6430 1111 3987
588 7692 1231 4722
644 8704 1351 5474
699 10226 1471 6281
755 11670 1589 7126
812 13190 1710 8114
865 14834 1831 8988
924 16738 1946 10038
979 18362 2071 10995
1036 20660 2188 12286
1092 22776 2310 13152
1148 24848 2430 14480
1204 27168 2549 15521
1260 29930 2671 17171
1316 32258 2790 18081
1370 35172 2911 19754
1422 37534 3031 20809
1482 40390 3150 22849
1537 43990 3269 23757
1589 46946 3391 25772
1652 50438 3508 26832
1703 52902 3631 29304
1764 56646 3750 30149
1820 59892 3865 32581
1876 63248 3988 33644
1932 66872 4111 36565
1988 72596 4231 37309
2042 74662 4351 40152
2100 78512 4471 41188
2156 82944 4590 44658
2211 87444 4710 45256
2268 92170 4827 48538
2324 95534 4951 49490
2380 100484 5070 53472
2435 105024 5190 53902
2491 109460 5308 57619
2546 114154 5431 58509
2603 118946 5550 63044
2660 124110 5664 63333
2716 129300 5791 67542
2771 134274 5911 68279
2828 139594 6028 73477
2883 145234 6150 73475
2939 150332 6271 78189
2996 155750 6390 78842
3048 161718 6510 84691
3108 167492 6631 84444
3162 173882 6751 89721
3219 179766 6871 90186
3276 185560 6991 96665
3330 191826 7111 96119
3388 197822 7231 101937
3442 204176 7350 102212
3500 210682 7471 109439
3556 217236 7591 108491
3612 223484 7709 114965
3666 230714 7829 115025
3724 237744 7951 123002
3779 244080 8071 121630
3835 250970 8190 128725
3890 257914 8311 128536
3947 265162 8430 137298
4001 272128 8550 135568
4060 279108 8671 143265
4116 287606 8791 142793
4171 294716 8911 152432
4227 302806 9030 150202
4284 310260 9151 158616
4340 318564 9271 157848
4395 326164 9391 168374
4443 334034 9511 165651
4508 342108 9627 174775
4561 351810 9750 173375
4618 358828 9871 185067
4675 367332 9985 181845
4732 376140 10111 191708
4787 384172 10229 190239
4841 393308 10351 202585
4899 402036 10467 198704
4955 411286 10591 209193
5010 420290 10711 207322
5067 429688 10831 220842
5124 438810 10950 215882
5180 448130 11071 227761
5235 457264 11191 225501
5290 467390 11311 239669
5348 476586 11430 234809
5404 486120 11550 243511
5459 496512 11671 255947
5516 506624 11791 255243
5569 516346 11906 267828
5628 526604 12029 263437
5684 536544 12149 276571
5740 546936 12270 275579
5796 557284 12390 288963
5852 568106 12510 284001
5907 578824 12631 298196
5963 589204 12751 297018
6019 600176 12869 310848
6076 610564 12990 305369
6127 621972 13111 319086
6188 633564 13230 318940
6244 644730 13349 333685
6300 655288 13471 327495
6354 667402 13588 343678
6412 678824 13711 341817
6467 690594 13831 357181
6522 702718 13948 350440
6580 714148 14071 367526
6636 725608 14189 365330
6690 737834 14311 381551
6747 750100 14429 374149
6804 762202 14549 392203
6860 774184 14670 389764
6916 787298 14791 406761
6971 798734 14910 398652
7028 811162 15026 417718
7083 824570 15150 414733
7139 837738 15269 432759
7196 2579488 15390 1037071
7245 2626714 15511 1053454
7308 2643582 15631 1069198
7364 2698746 15748 1086164
7416 2734106 15871 1112820
7476 2773372 15991 1129676
7530 2816738 16111 1145924
7588 2859204 16230 1163016
7643 2938596 16345 1179911
7698 2919716 16471 1197048
7754 2988542 16586 1214352
7812 3026520 16711 1232095
7867 3058304 16829 1249338
7924 3115790 16947 1266987
7977 3161450 17071 1284181
8035 3203138 17188 1302521
8092 3244056 17311 1320539

View File

@ -1,143 +1,143 @@
139 806 271 552
195 1212 389 883
252 1604 510 1191
307 2260 629 1572
364 2892 750 1996
420 3308 863 2428
476 4152 991 2891
532 4814 1108 3539
588 5754 1231 4182
644 6684 1351 4980
700 7226 1471 5771
756 8324 1590 6551
808 9092 1711 7313
866 10068 1830 8240
924 11204 1951 9184
976 12918 2070 10087
1036 13656 2191 11140
1092 15248 2311 12111
1148 15956 2431 13219
1204 17270 2550 14247
1260 19894 2669 15353
1316 20516 2791 16446
1370 21864 2911 17692
1428 25554 3029 18848
1483 26138 3151 20028
1540 27086 3268 21282
1596 29246 3391 22696
1652 32210 3511 23971
1707 32704 3631 25303
1764 35142 3751 26675
1820 39050 3871 28245
1876 39256 3990 29736
1931 41574 4111 31124
1985 45070 4229 32714
2044 46352 4347 34397
2099 48114 4471 35877
2155 51332 4587 37269
2212 53268 4710 39011
2267 55890 4831 40884
2324 59054 4950 42501
2380 60206 5070 44005
2434 63540 5191 46026
2491 66084 5310 48168
2547 68590 5431 49801
2604 74332 5551 51385
2660 74784 5671 53604
2715 77974 5787 55942
2772 79924 5910 57757
2826 82914 6031 59391
2884 87210 6151 61754
2929 89076 6271 64234
2996 92480 6390 66110
3052 96814 6511 67845
3108 99990 6627 70474
3162 102550 6751 73113
3219 105396 6871 75064
3276 109284 6990 76940
3332 113752 7111 79681
3387 116628 7230 82548
3444 120782 7351 84597
3500 122938 7471 86507
3556 127940 7591 89497
3612 303656 7711 225216
3667 312212 7831 232192
3724 324376 7951 239583
3779 329204 8071 247302
3833 340910 8191 255497
3892 353850 8308 261587
3943 362348 8431 271490
4003 367780 8550 279492
4056 380448 8671 286927
4114 393616 8790 294680
4172 404104 8910 302974
4227 415148 9030 311300
4284 409770 9150 318635
4339 436648 9271 326740
4394 442970 9390 335304
4451 463096 9511 344297
4507 472056 9630 352056
4564 485780 9748 358652
4616 496286 9870 369723
4675 507612 9991 379119
4732 519524 10111 386982
4788 536768 10231 396075
4843 542754 10349 404396
4899 553090 10470 415375
4956 571986 10590 424146
5012 586340 10711 433390
5068 599606 10829 442662
5124 613670 10950 453238
5179 624256 11071 462178
5235 636266 11186 469811
5292 655518 11311 482529
5348 668142 11431 493214
5403 677266 11550 503210
5460 696040 11671 513486
5516 712772 11791 524244
5570 723942 11911 535277
5628 739052 12031 544872
5684 755350 12151 555695
5739 769962 12271 566893
5790 775258 12391 578385
5851 790128 12510 588658
5908 814536 12628 596914
5962 827278 12751 611324
6018 844510 12871 623437
6076 851606 12991 633907
6130 865748 13110 645605
6188 894752 13231 657684
6244 900474 13351 670037
6300 928174 13471 680939
6356 928440 13591 693047
6410 957758 13710 705363
6468 981134 13829 718178
6524 994088 13949 727930
6580 1011124 14069 739641
6636 1027178 14190 754817
6692 1045466 14310 768192
6747 1056910 14431 779875
6804 1083784 14551 792655
6860 1104706 14667 802847
6915 1116450 14791 819806
6972 1137894 14911 831684
7028 1154670 15031 844936
7084 1158064 15151 858813
7138 1188734 15270 873037
7196 1214218 15387 882123
7249 1226822 15510 899117
7307 1247528 15631 913465
7363 1255338 15750 927989
7420 1291104 15870 940790
7475 1297940 15991 954948
7532 1324994 16110 969483
7587 1340274 16231 984544
7644 1342596 16350 997837
7698 1381418 16470 1012445
7756 1382904 16590 1027834
7812 1432588 16710 1043032
7867 1443632 16831 1056394
7922 1465092 16951 1071408
7979 1496804 17069 1097263
8036 1520142 17191 1113364
8092 1539566 17306 1123650

View File

@ -1,16 +1,16 @@
224 216 480 87
448 324 960 114
672 428 1440 139
896 532 1920 159
1120 648 2400 204
1344 766 2880 228
1568 862 3360 250
1792 928 3840 273
2016 1070 4320 300
2240 1128 4800 321
2464 1250 5280 348
2688 1344 5760 370
2912 1436 6240 393
3136 1542 6720 420
3360 1628 7200 444
3584 1696 7680 466

View File

@ -1,10 +1,14 @@
#Makefile for GCC #Makefile for GCC
# #
#Tom St Denis #Tom St Denis
#version of library
VERSION=0.33
CFLAGS += -I./ -Wall -W -Wshadow -Wsign-compare CFLAGS += -I./ -Wall -W -Wshadow -Wsign-compare
#for speed #for speed
CFLAGS += -O3 -funroll-loops CFLAGS += -O3 -funroll-all-loops
#for size #for size
#CFLAGS += -Os #CFLAGS += -Os
@ -15,13 +19,15 @@ CFLAGS += -fomit-frame-pointer
#debug #debug
#CFLAGS += -g3 #CFLAGS += -g3
VERSION=0.32 #install as this user
USER=root
GROUP=root
default: libtommath.a default: libtommath.a
#default files to install #default files to install
LIBNAME=libtommath.a LIBNAME=libtommath.a
HEADERS=tommath.h HEADERS=tommath.h tommath_class.h tommath_superclass.h
#LIBPATH-The directory for libtommath to be installed to. #LIBPATH-The directory for libtommath to be installed to.
#INCPATH-The directory to install the header files for libtommath. #INCPATH-The directory to install the header files for libtommath.
@ -61,7 +67,6 @@ libtommath.a: $(OBJECTS)
$(AR) $(ARFLAGS) libtommath.a $(OBJECTS) $(AR) $(ARFLAGS) libtommath.a $(OBJECTS)
ranlib libtommath.a ranlib libtommath.a
#make a profiled library (takes a while!!!) #make a profiled library (takes a while!!!)
# #
# This will build the library with profile generation # This will build the library with profile generation
@ -86,19 +91,19 @@ profiled_single:
ranlib libtommath.a ranlib libtommath.a
install: libtommath.a install: libtommath.a
install -d -g root -o root $(DESTDIR)$(LIBPATH) install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(LIBPATH)
install -d -g root -o root $(DESTDIR)$(INCPATH) install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(INCPATH)
install -g root -o root $(LIBNAME) $(DESTDIR)$(LIBPATH) install -g $(GROUP) -o $(USER) $(LIBNAME) $(DESTDIR)$(LIBPATH)
install -g root -o root $(HEADERS) $(DESTDIR)$(INCPATH) install -g $(GROUP) -o $(USER) $(HEADERS) $(DESTDIR)$(INCPATH)
test: libtommath.a demo/demo.o test: libtommath.a demo/demo.o
$(CC) demo/demo.o libtommath.a -o test $(CC) $(CFLAGS) demo/demo.o libtommath.a -o test
mtest: test mtest: test
cd mtest ; $(CC) $(CFLAGS) mtest.c -o mtest -s cd mtest ; $(CC) $(CFLAGS) mtest.c -o mtest
timing: libtommath.a timing: libtommath.a
$(CC) $(CFLAGS) -DTIMER demo/timing.c libtommath.a -o ltmtest -s $(CC) $(CFLAGS) -DTIMER demo/timing.c libtommath.a -o ltmtest
# makes the LTM book DVI file, requires tetex, perl and makeindex [part of tetex I think] # makes the LTM book DVI file, requires tetex, perl and makeindex [part of tetex I think]
docdvi: tommath.src docdvi: tommath.src

View File

@ -21,6 +21,10 @@ CFLAGS += -I./
# Default to just generic max opts # Default to just generic max opts
CFLAGS += -O3 -xN CFLAGS += -O3 -xN
#install as this user
USER=root
GROUP=root
default: libtommath.a default: libtommath.a
#default files to install #default files to install
@ -89,10 +93,10 @@ profiled_single:
ranlib libtommath.a ranlib libtommath.a
install: libtommath.a install: libtommath.a
install -d -g root -o root $(DESTDIR)$(LIBPATH) install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(LIBPATH)
install -d -g root -o root $(DESTDIR)$(INCPATH) install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(INCPATH)
install -g root -o root $(LIBNAME) $(DESTDIR)$(LIBPATH) install -g $(GROUP) -o $(USER) $(LIBNAME) $(DESTDIR)$(LIBPATH)
install -g root -o root $(HEADERS) $(DESTDIR)$(INCPATH) install -g $(GROUP) -o $(USER) $(HEADERS) $(DESTDIR)$(INCPATH)
test: libtommath.a demo/demo.o test: libtommath.a demo/demo.o
$(CC) demo/demo.o libtommath.a -o test $(CC) demo/demo.o libtommath.a -o test

View File

@ -1,10 +1,9 @@
#Makefile for GCC #Makefile for GCC
# #
#Tom St Denis #Tom St Denis
VERSION=0:32 VERSION=0:33
CC = libtool --mode=compile gcc CC = libtool --mode=compile gcc
CFLAGS += -I./ -Wall -W -Wshadow -Wsign-compare CFLAGS += -I./ -Wall -W -Wshadow -Wsign-compare
#for speed #for speed
@ -16,11 +15,15 @@ CFLAGS += -O3 -funroll-loops
#x86 optimizations [should be valid for any GCC install though] #x86 optimizations [should be valid for any GCC install though]
CFLAGS += -fomit-frame-pointer CFLAGS += -fomit-frame-pointer
#install as this user
USER=root
GROUP=root
default: libtommath.la default: libtommath.la
#default files to install #default files to install
LIBNAME=libtommath.la LIBNAME=libtommath.la
HEADERS=tommath.h HEADERS=tommath.h tommath_class.h tommath_superclass.h
#LIBPATH-The directory for libtommath to be installed to. #LIBPATH-The directory for libtommath to be installed to.
#INCPATH-The directory to install the header files for libtommath. #INCPATH-The directory to install the header files for libtommath.
@ -60,8 +63,8 @@ libtommath.la: $(OBJECTS)
libtool --mode=link gcc *.lo -o libtommath.la -rpath $(LIBPATH) -version-info $(VERSION) libtool --mode=link gcc *.lo -o libtommath.la -rpath $(LIBPATH) -version-info $(VERSION)
libtool --mode=link gcc *.o -o libtommath.a libtool --mode=link gcc *.o -o libtommath.a
libtool --mode=install install -c libtommath.la $(LIBPATH)/libtommath.la libtool --mode=install install -c libtommath.la $(LIBPATH)/libtommath.la
install -d -g root -o root $(DESTDIR)$(INCPATH) install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(INCPATH)
install -g root -o root $(HEADERS) $(DESTDIR)$(INCPATH) install -g $(GROUP) -o $(USER) $(HEADERS) $(DESTDIR)$(INCPATH)
test: libtommath.a demo/demo.o test: libtommath.a demo/demo.o
gcc $(CFLAGS) -c demo/demo.c -o demo/demo.o gcc $(CFLAGS) -c demo/demo.c -o demo/demo.o

View File

@ -46,7 +46,7 @@ void rand_num(mp_int *a)
int n, size; int n, size;
unsigned char buf[2048]; unsigned char buf[2048];
size = 1 + ((fgetc(rng)<<8) + fgetc(rng)) % 1031; size = 1 + ((fgetc(rng)<<8) + fgetc(rng)) % 101;
buf[0] = (fgetc(rng)&1)?1:0; buf[0] = (fgetc(rng)&1)?1:0;
fread(buf+1, 1, size, rng); fread(buf+1, 1, size, rng);
while (buf[1] == 0) buf[1] = fgetc(rng); while (buf[1] == 0) buf[1] = fgetc(rng);
@ -58,7 +58,7 @@ void rand_num2(mp_int *a)
int n, size; int n, size;
unsigned char buf[2048]; unsigned char buf[2048];
size = 10 + ((fgetc(rng)<<8) + fgetc(rng)) % 97; size = 10 + ((fgetc(rng)<<8) + fgetc(rng)) % 101;
buf[0] = (fgetc(rng)&1)?1:0; buf[0] = (fgetc(rng)&1)?1:0;
fread(buf+1, 1, size, rng); fread(buf+1, 1, size, rng);
while (buf[1] == 0) buf[1] = fgetc(rng); while (buf[1] == 0) buf[1] = fgetc(rng);

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@ -442,7 +442,7 @@ int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
#endif #endif
/* table of first PRIME_SIZE primes */ /* table of first PRIME_SIZE primes */
extern const mp_digit __prime_tab[]; extern const mp_digit ltm_prime_tab[];
/* result=1 if a is divisible by one of the first PRIME_SIZE primes */ /* result=1 if a is divisible by one of the first PRIME_SIZE primes */
int mp_prime_is_divisible(mp_int *a, int *result); int mp_prime_is_divisible(mp_int *a, int *result);

Binary file not shown.

View File

@ -3420,7 +3420,7 @@ is copied to $b$, leading digits are removed and the remaining leading digit is
027 \} 027 \}
028 028
029 /* if the modulus is larger than the value than return */ 029 /* if the modulus is larger than the value than return */
030 if (b > (int) (a->used * DIGIT_BIT)) \{ 030 if (b >= (int) (a->used * DIGIT_BIT)) \{
031 res = mp_copy (a, c); 031 res = mp_copy (a, c);
032 return res; 032 return res;
033 \} 033 \}
@ -3896,7 +3896,7 @@ and addition operations in the nested loop in parallel.
049 049
050 /* clear the carry */ 050 /* clear the carry */
051 _W = 0; 051 _W = 0;
052 for (ix = 0; ix <= pa; ix++) \{ 052 for (ix = 0; ix < pa; ix++) \{
053 int tx, ty; 053 int tx, ty;
054 int iy; 054 int iy;
055 mp_digit *tmpx, *tmpy; 055 mp_digit *tmpx, *tmpy;
@ -3927,27 +3927,30 @@ and addition operations in the nested loop in parallel.
079 _W = _W >> ((mp_word)DIGIT_BIT); 079 _W = _W >> ((mp_word)DIGIT_BIT);
080 \} 080 \}
081 081
082 /* setup dest */ 082 /* store final carry */
083 olduse = c->used; 083 W[ix] = _W;
084 c->used = digs; 084
085 085 /* setup dest */
086 \{ 086 olduse = c->used;
087 register mp_digit *tmpc; 087 c->used = digs;
088 tmpc = c->dp; 088
089 for (ix = 0; ix < digs; ix++) \{ 089 \{
090 /* now extract the previous digit [below the carry] */ 090 register mp_digit *tmpc;
091 *tmpc++ = W[ix]; 091 tmpc = c->dp;
092 \} 092 for (ix = 0; ix < digs; ix++) \{
093 093 /* now extract the previous digit [below the carry] */
094 /* clear unused digits [that existed in the old copy of c] */ 094 *tmpc++ = W[ix];
095 for (; ix < olduse; ix++) \{ 095 \}
096 *tmpc++ = 0; 096
097 \} 097 /* clear unused digits [that existed in the old copy of c] */
098 \} 098 for (; ix < olduse; ix++) \{
099 mp_clamp (c); 099 *tmpc++ = 0;
100 return MP_OKAY; 100 \}
101 \} 101 \}
102 #endif 102 mp_clamp (c);
103 return MP_OKAY;
104 \}
105 #endif
\end{alltt} \end{alltt}
\end{small} \end{small}
@ -3955,7 +3958,7 @@ The memset on line @47,memset@ clears the initial $\hat W$ array to zero in a si
implementation a series of aliases (\textit{lines 62, 63 and 76}) are used to simplify the inner $O(n^2)$ loop. implementation a series of aliases (\textit{lines 62, 63 and 76}) are used to simplify the inner $O(n^2)$ loop.
In this case a new alias $\_\hat W$ has been added which refers to the double precision columns offset by $ix$ in each pass. In this case a new alias $\_\hat W$ has been added which refers to the double precision columns offset by $ix$ in each pass.
The inner loop on lines 89, 79 and 80 is where the algorithm will spend the majority of the time, which is why it has been The inner loop on lines 92, 79 and 80 is where the algorithm will spend the majority of the time, which is why it has been
stripped to the bones of any extra baggage\footnote{Hence the pointer aliases.}. On x86 processors the multiplication and additions amount to at the stripped to the bones of any extra baggage\footnote{Hence the pointer aliases.}. On x86 processors the multiplication and additions amount to at the
very least five instructions (\textit{two loads, two additions, one multiply}) while on the ARMv4 processors they amount to only three very least five instructions (\textit{two loads, two additions, one multiply}) while on the ARMv4 processors they amount to only three
(\textit{one load, one store, one multiply-add}). For both of the x86 and ARMv4 processors the GCC compiler performs a good job at unrolling the loop (\textit{one load, one store, one multiply-add}). For both of the x86 and ARMv4 processors the GCC compiler performs a good job at unrolling the loop
@ -5100,7 +5103,7 @@ squares in place.
059 059
060 /* number of output digits to produce */ 060 /* number of output digits to produce */
061 W1 = 0; 061 W1 = 0;
062 for (ix = 0; ix <= pa; ix++) \{ 062 for (ix = 0; ix < pa; ix++) \{
063 int tx, ty, iy; 063 int tx, ty, iy;
064 mp_word _W; 064 mp_word _W;
065 mp_digit *tmpy; 065 mp_digit *tmpy;
@ -6739,7 +6742,7 @@ at step 3.
019 * Based on algorithm from the paper 019 * Based on algorithm from the paper
020 * 020 *
021 * "Generating Efficient Primes for Discrete Log Cryptosystems" 021 * "Generating Efficient Primes for Discrete Log Cryptosystems"
022 * Chae Hoon Lim, Pil Loong Lee, 022 * Chae Hoon Lim, Pil Joong Lee,
023 * POSTECH Information Research Laboratories 023 * POSTECH Information Research Laboratories
024 * 024 *
025 * The modulus must be of a special format [see manual] 025 * The modulus must be of a special format [see manual]
@ -7594,7 +7597,7 @@ algorithm since their arguments are essentially the same (\textit{two mp\_ints a
060 return err; 060 return err;
061 #else 061 #else
062 /* no invmod */ 062 /* no invmod */
063 return MP_VAL 063 return MP_VAL;
064 #endif 064 #endif
065 \} 065 \}
066 066
@ -7866,10 +7869,10 @@ a Left-to-Right algorithm is used to process the remaining few bits.
069 069
070 /* create mu, used for Barrett reduction */ 070 /* create mu, used for Barrett reduction */
071 if ((err = mp_init (&mu)) != MP_OKAY) \{ 071 if ((err = mp_init (&mu)) != MP_OKAY) \{
072 goto __M; 072 goto LBL_M;
073 \} 073 \}
074 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) \{ 074 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) \{
075 goto __MU; 075 goto LBL_MU;
076 \} 076 \}
077 077
078 /* create M table 078 /* create M table
@ -7881,23 +7884,23 @@ a Left-to-Right algorithm is used to process the remaining few bits.
084 * computed though accept for M[0] and M[1] 084 * computed though accept for M[0] and M[1]
085 */ 085 */
086 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) \{ 086 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) \{
087 goto __MU; 087 goto LBL_MU;
088 \} 088 \}
089 089
090 /* compute the value at M[1<<(winsize-1)] by squaring 090 /* compute the value at M[1<<(winsize-1)] by squaring
091 * M[1] (winsize-1) times 091 * M[1] (winsize-1) times
092 */ 092 */
093 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) \{ 093 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) \{
094 goto __MU; 094 goto LBL_MU;
095 \} 095 \}
096 096
097 for (x = 0; x < (winsize - 1); x++) \{ 097 for (x = 0; x < (winsize - 1); x++) \{
098 if ((err = mp_sqr (&M[1 << (winsize - 1)], 098 if ((err = mp_sqr (&M[1 << (winsize - 1)],
099 &M[1 << (winsize - 1)])) != MP_OKAY) \{ 099 &M[1 << (winsize - 1)])) != MP_OKAY) \{
100 goto __MU; 100 goto LBL_MU;
101 \} 101 \}
102 if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) \{ 102 if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) \{
103 goto __MU; 103 goto LBL_MU;
104 \} 104 \}
105 \} 105 \}
106 106
@ -7906,16 +7909,16 @@ a Left-to-Right algorithm is used to process the remaining few bits.
109 */ 109 */
110 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) \{ 110 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) \{
111 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) \{ 111 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) \{
112 goto __MU; 112 goto LBL_MU;
113 \} 113 \}
114 if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) \{ 114 if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) \{
115 goto __MU; 115 goto LBL_MU;
116 \} 116 \}
117 \} 117 \}
118 118
119 /* setup result */ 119 /* setup result */
120 if ((err = mp_init (&res)) != MP_OKAY) \{ 120 if ((err = mp_init (&res)) != MP_OKAY) \{
121 goto __MU; 121 goto LBL_MU;
122 \} 122 \}
123 mp_set (&res, 1); 123 mp_set (&res, 1);
124 124
@ -7955,10 +7958,10 @@ a Left-to-Right algorithm is used to process the remaining few bits.
158 /* if the bit is zero and mode == 1 then we square */ 158 /* if the bit is zero and mode == 1 then we square */
159 if (mode == 1 && y == 0) \{ 159 if (mode == 1 && y == 0) \{
160 if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{ 160 if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
161 goto __RES; 161 goto LBL_RES;
162 \} 162 \}
163 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{ 163 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
164 goto __RES; 164 goto LBL_RES;
165 \} 165 \}
166 continue; 166 continue;
167 \} 167 \}
@ -7972,19 +7975,19 @@ a Left-to-Right algorithm is used to process the remaining few bits.
175 /* square first */ 175 /* square first */
176 for (x = 0; x < winsize; x++) \{ 176 for (x = 0; x < winsize; x++) \{
177 if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{ 177 if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
178 goto __RES; 178 goto LBL_RES;
179 \} 179 \}
180 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{ 180 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
181 goto __RES; 181 goto LBL_RES;
182 \} 182 \}
183 \} 183 \}
184 184
185 /* then multiply */ 185 /* then multiply */
186 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) \{ 186 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) \{
187 goto __RES; 187 goto LBL_RES;
188 \} 188 \}
189 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{ 189 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
190 goto __RES; 190 goto LBL_RES;
191 \} 191 \}
192 192
193 /* empty window and reset */ 193 /* empty window and reset */
@ -7999,20 +8002,20 @@ a Left-to-Right algorithm is used to process the remaining few bits.
202 /* square then multiply if the bit is set */ 202 /* square then multiply if the bit is set */
203 for (x = 0; x < bitcpy; x++) \{ 203 for (x = 0; x < bitcpy; x++) \{
204 if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{ 204 if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
205 goto __RES; 205 goto LBL_RES;
206 \} 206 \}
207 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{ 207 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
208 goto __RES; 208 goto LBL_RES;
209 \} 209 \}
210 210
211 bitbuf <<= 1; 211 bitbuf <<= 1;
212 if ((bitbuf & (1 << winsize)) != 0) \{ 212 if ((bitbuf & (1 << winsize)) != 0) \{
213 /* then multiply */ 213 /* then multiply */
214 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) \{ 214 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) \{
215 goto __RES; 215 goto LBL_RES;
216 \} 216 \}
217 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{ 217 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
218 goto __RES; 218 goto LBL_RES;
219 \} 219 \}
220 \} 220 \}
221 \} 221 \}
@ -8020,9 +8023,9 @@ a Left-to-Right algorithm is used to process the remaining few bits.
223 223
224 mp_exch (&res, Y); 224 mp_exch (&res, Y);
225 err = MP_OKAY; 225 err = MP_OKAY;
226 __RES:mp_clear (&res); 226 LBL_RES:mp_clear (&res);
227 __MU:mp_clear (&mu); 227 LBL_MU:mp_clear (&mu);
228 __M: 228 LBL_M:
229 mp_clear(&M[1]); 229 mp_clear(&M[1]);
230 for (x = 1<<(winsize-1); x < (1 << winsize); x++) \{ 230 for (x = 1<<(winsize-1); x < (1 << winsize); x++) \{
231 mp_clear (&M[x]); 231 mp_clear (&M[x]);
@ -8386,23 +8389,23 @@ respectively be replaced with a zero.
048 048
049 mp_set(&tq, 1); 049 mp_set(&tq, 1);
050 n = mp_count_bits(a) - mp_count_bits(b); 050 n = mp_count_bits(a) - mp_count_bits(b);
051 if (((res = mp_copy(a, &ta)) != MP_OKAY) || 051 if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
052 ((res = mp_copy(b, &tb)) != MP_OKAY) || 052 ((res = mp_abs(b, &tb)) != MP_OKAY) ||
053 ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || 053 ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
054 ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) \{ 054 ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) \{
055 goto __ERR; 055 goto LBL_ERR;
056 \} 056 \}
057 057
058 while (n-- >= 0) \{ 058 while (n-- >= 0) \{
059 if (mp_cmp(&tb, &ta) != MP_GT) \{ 059 if (mp_cmp(&tb, &ta) != MP_GT) \{
060 if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || 060 if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
061 ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) \{ 061 ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) \{
062 goto __ERR; 062 goto LBL_ERR;
063 \} 063 \}
064 \} 064 \}
065 if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || 065 if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
066 ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) \{ 066 ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) \{
067 goto __ERR; 067 goto LBL_ERR;
068 \} 068 \}
069 \} 069 \}
070 070
@ -8411,13 +8414,13 @@ respectively be replaced with a zero.
073 n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG); 073 n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
074 if (c != NULL) \{ 074 if (c != NULL) \{
075 mp_exch(c, &q); 075 mp_exch(c, &q);
076 c->sign = n2; 076 c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
077 \} 077 \}
078 if (d != NULL) \{ 078 if (d != NULL) \{
079 mp_exch(d, &ta); 079 mp_exch(d, &ta);
080 d->sign = n; 080 d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
081 \} 081 \}
082 __ERR: 082 LBL_ERR:
083 mp_clear_multi(&ta, &tb, &tq, &q, NULL); 083 mp_clear_multi(&ta, &tb, &tq, &q, NULL);
084 return res; 084 return res;
085 \} 085 \}
@ -8466,19 +8469,19 @@ respectively be replaced with a zero.
128 q.used = a->used + 2; 128 q.used = a->used + 2;
129 129
130 if ((res = mp_init (&t1)) != MP_OKAY) \{ 130 if ((res = mp_init (&t1)) != MP_OKAY) \{
131 goto __Q; 131 goto LBL_Q;
132 \} 132 \}
133 133
134 if ((res = mp_init (&t2)) != MP_OKAY) \{ 134 if ((res = mp_init (&t2)) != MP_OKAY) \{
135 goto __T1; 135 goto LBL_T1;
136 \} 136 \}
137 137
138 if ((res = mp_init_copy (&x, a)) != MP_OKAY) \{ 138 if ((res = mp_init_copy (&x, a)) != MP_OKAY) \{
139 goto __T2; 139 goto LBL_T2;
140 \} 140 \}
141 141
142 if ((res = mp_init_copy (&y, b)) != MP_OKAY) \{ 142 if ((res = mp_init_copy (&y, b)) != MP_OKAY) \{
143 goto __X; 143 goto LBL_X;
144 \} 144 \}
145 145
146 /* fix the sign */ 146 /* fix the sign */
@ -8490,10 +8493,10 @@ respectively be replaced with a zero.
152 if (norm < (int)(DIGIT_BIT-1)) \{ 152 if (norm < (int)(DIGIT_BIT-1)) \{
153 norm = (DIGIT_BIT-1) - norm; 153 norm = (DIGIT_BIT-1) - norm;
154 if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) \{ 154 if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) \{
155 goto __Y; 155 goto LBL_Y;
156 \} 156 \}
157 if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) \{ 157 if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) \{
158 goto __Y; 158 goto LBL_Y;
159 \} 159 \}
160 \} else \{ 160 \} else \{
161 norm = 0; 161 norm = 0;
@ -8505,13 +8508,13 @@ respectively be replaced with a zero.
167 167
168 /* while (x >= y*b**n-t) do \{ q[n-t] += 1; x -= y*b**\{n-t\} \} */ 168 /* while (x >= y*b**n-t) do \{ q[n-t] += 1; x -= y*b**\{n-t\} \} */
169 if ((res = mp_lshd (&y, n - t)) != MP_OKAY) \{ /* y = y*b**\{n-t\} */ 169 if ((res = mp_lshd (&y, n - t)) != MP_OKAY) \{ /* y = y*b**\{n-t\} */
170 goto __Y; 170 goto LBL_Y;
171 \} 171 \}
172 172
173 while (mp_cmp (&x, &y) != MP_LT) \{ 173 while (mp_cmp (&x, &y) != MP_LT) \{
174 ++(q.dp[n - t]); 174 ++(q.dp[n - t]);
175 if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) \{ 175 if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) \{
176 goto __Y; 176 goto LBL_Y;
177 \} 177 \}
178 \} 178 \}
179 179
@ -8553,7 +8556,7 @@ respectively be replaced with a zero.
215 t1.dp[1] = y.dp[t]; 215 t1.dp[1] = y.dp[t];
216 t1.used = 2; 216 t1.used = 2;
217 if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) \{ 217 if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) \{
218 goto __Y; 218 goto LBL_Y;
219 \} 219 \}
220 220
221 /* find right hand */ 221 /* find right hand */
@ -8565,27 +8568,27 @@ respectively be replaced with a zero.
227 227
228 /* step 3.3 x = x - q\{i-t-1\} * y * b**\{i-t-1\} */ 228 /* step 3.3 x = x - q\{i-t-1\} * y * b**\{i-t-1\} */
229 if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) \{ 229 if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) \{
230 goto __Y; 230 goto LBL_Y;
231 \} 231 \}
232 232
233 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) \{ 233 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) \{
234 goto __Y; 234 goto LBL_Y;
235 \} 235 \}
236 236
237 if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) \{ 237 if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) \{
238 goto __Y; 238 goto LBL_Y;
239 \} 239 \}
240 240
241 /* if x < 0 then \{ x = x + y*b**\{i-t-1\}; q\{i-t-1\} -= 1; \} */ 241 /* if x < 0 then \{ x = x + y*b**\{i-t-1\}; q\{i-t-1\} -= 1; \} */
242 if (x.sign == MP_NEG) \{ 242 if (x.sign == MP_NEG) \{
243 if ((res = mp_copy (&y, &t1)) != MP_OKAY) \{ 243 if ((res = mp_copy (&y, &t1)) != MP_OKAY) \{
244 goto __Y; 244 goto LBL_Y;
245 \} 245 \}
246 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) \{ 246 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) \{
247 goto __Y; 247 goto LBL_Y;
248 \} 248 \}
249 if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) \{ 249 if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) \{
250 goto __Y; 250 goto LBL_Y;
251 \} 251 \}
252 252
253 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; 253 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
@ -8612,11 +8615,11 @@ respectively be replaced with a zero.
274 274
275 res = MP_OKAY; 275 res = MP_OKAY;
276 276
277 __Y:mp_clear (&y); 277 LBL_Y:mp_clear (&y);
278 __X:mp_clear (&x); 278 LBL_X:mp_clear (&x);
279 __T2:mp_clear (&t2); 279 LBL_T2:mp_clear (&t2);
280 __T1:mp_clear (&t1); 280 LBL_T1:mp_clear (&t1);
281 __Q:mp_clear (&q); 281 LBL_Q:mp_clear (&q);
282 return res; 282 return res;
283 \} 283 \}
284 284
@ -9130,11 +9133,11 @@ root. Ideally this algorithm is meant to find the $n$'th root of an input where
039 \} 039 \}
040 040
041 if ((res = mp_init (&t2)) != MP_OKAY) \{ 041 if ((res = mp_init (&t2)) != MP_OKAY) \{
042 goto __T1; 042 goto LBL_T1;
043 \} 043 \}
044 044
045 if ((res = mp_init (&t3)) != MP_OKAY) \{ 045 if ((res = mp_init (&t3)) != MP_OKAY) \{
046 goto __T2; 046 goto LBL_T2;
047 \} 047 \}
048 048
049 /* if a is negative fudge the sign but keep track */ 049 /* if a is negative fudge the sign but keep track */
@ -9147,52 +9150,52 @@ root. Ideally this algorithm is meant to find the $n$'th root of an input where
056 do \{ 056 do \{
057 /* t1 = t2 */ 057 /* t1 = t2 */
058 if ((res = mp_copy (&t2, &t1)) != MP_OKAY) \{ 058 if ((res = mp_copy (&t2, &t1)) != MP_OKAY) \{
059 goto __T3; 059 goto LBL_T3;
060 \} 060 \}
061 061
062 /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ 062 /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
063 063
064 /* t3 = t1**(b-1) */ 064 /* t3 = t1**(b-1) */
065 if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) \{ 065 if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) \{
066 goto __T3; 066 goto LBL_T3;
067 \} 067 \}
068 068
069 /* numerator */ 069 /* numerator */
070 /* t2 = t1**b */ 070 /* t2 = t1**b */
071 if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) \{ 071 if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) \{
072 goto __T3; 072 goto LBL_T3;
073 \} 073 \}
074 074
075 /* t2 = t1**b - a */ 075 /* t2 = t1**b - a */
076 if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) \{ 076 if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) \{
077 goto __T3; 077 goto LBL_T3;
078 \} 078 \}
079 079
080 /* denominator */ 080 /* denominator */
081 /* t3 = t1**(b-1) * b */ 081 /* t3 = t1**(b-1) * b */
082 if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) \{ 082 if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) \{
083 goto __T3; 083 goto LBL_T3;
084 \} 084 \}
085 085
086 /* t3 = (t1**b - a)/(b * t1**(b-1)) */ 086 /* t3 = (t1**b - a)/(b * t1**(b-1)) */
087 if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) \{ 087 if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) \{
088 goto __T3; 088 goto LBL_T3;
089 \} 089 \}
090 090
091 if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) \{ 091 if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) \{
092 goto __T3; 092 goto LBL_T3;
093 \} 093 \}
094 \} while (mp_cmp (&t1, &t2) != MP_EQ); 094 \} while (mp_cmp (&t1, &t2) != MP_EQ);
095 095
096 /* result can be off by a few so check */ 096 /* result can be off by a few so check */
097 for (;;) \{ 097 for (;;) \{
098 if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) \{ 098 if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) \{
099 goto __T3; 099 goto LBL_T3;
100 \} 100 \}
101 101
102 if (mp_cmp (&t2, a) == MP_GT) \{ 102 if (mp_cmp (&t2, a) == MP_GT) \{
103 if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) \{ 103 if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) \{
104 goto __T3; 104 goto LBL_T3;
105 \} 105 \}
106 \} else \{ 106 \} else \{
107 break; 107 break;
@ -9210,9 +9213,9 @@ root. Ideally this algorithm is meant to find the $n$'th root of an input where
119 119
120 res = MP_OKAY; 120 res = MP_OKAY;
121 121
122 __T3:mp_clear (&t3); 122 LBL_T3:mp_clear (&t3);
123 __T2:mp_clear (&t2); 123 LBL_T2:mp_clear (&t2);
124 __T1:mp_clear (&t1); 124 LBL_T1:mp_clear (&t1);
125 return res; 125 return res;
126 \} 126 \}
127 #endif 127 #endif
@ -9771,7 +9774,7 @@ must be adjusted by multiplying by the common factors of two ($2^k$) removed ear
042 \} 042 \}
043 043
044 if ((res = mp_init_copy (&v, b)) != MP_OKAY) \{ 044 if ((res = mp_init_copy (&v, b)) != MP_OKAY) \{
045 goto __U; 045 goto LBL_U;
046 \} 046 \}
047 047
048 /* must be positive for the remainder of the algorithm */ 048 /* must be positive for the remainder of the algorithm */
@ -9785,24 +9788,24 @@ must be adjusted by multiplying by the common factors of two ($2^k$) removed ear
056 if (k > 0) \{ 056 if (k > 0) \{
057 /* divide the power of two out */ 057 /* divide the power of two out */
058 if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) \{ 058 if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) \{
059 goto __V; 059 goto LBL_V;
060 \} 060 \}
061 061
062 if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) \{ 062 if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) \{
063 goto __V; 063 goto LBL_V;
064 \} 064 \}
065 \} 065 \}
066 066
067 /* divide any remaining factors of two out */ 067 /* divide any remaining factors of two out */
068 if (u_lsb != k) \{ 068 if (u_lsb != k) \{
069 if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) \{ 069 if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) \{
070 goto __V; 070 goto LBL_V;
071 \} 071 \}
072 \} 072 \}
073 073
074 if (v_lsb != k) \{ 074 if (v_lsb != k) \{
075 if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) \{ 075 if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) \{
076 goto __V; 076 goto LBL_V;
077 \} 077 \}
078 \} 078 \}
079 079
@ -9815,23 +9818,23 @@ must be adjusted by multiplying by the common factors of two ($2^k$) removed ear
086 086
087 /* subtract smallest from largest */ 087 /* subtract smallest from largest */
088 if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) \{ 088 if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) \{
089 goto __V; 089 goto LBL_V;
090 \} 090 \}
091 091
092 /* Divide out all factors of two */ 092 /* Divide out all factors of two */
093 if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) \{ 093 if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) \{
094 goto __V; 094 goto LBL_V;
095 \} 095 \}
096 \} 096 \}
097 097
098 /* multiply by 2**k which we divided out at the beginning */ 098 /* multiply by 2**k which we divided out at the beginning */
099 if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) \{ 099 if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) \{
100 goto __V; 100 goto LBL_V;
101 \} 101 \}
102 c->sign = MP_ZPOS; 102 c->sign = MP_ZPOS;
103 res = MP_OKAY; 103 res = MP_OKAY;
104 __V:mp_clear (&u); 104 LBL_V:mp_clear (&u);
105 __U:mp_clear (&v); 105 LBL_U:mp_clear (&v);
106 return res; 106 return res;
107 \} 107 \}
108 #endif 108 #endif
@ -9904,20 +9907,20 @@ dividing the product of the two inputs by their greatest common divisor.
027 027
028 /* t1 = get the GCD of the two inputs */ 028 /* t1 = get the GCD of the two inputs */
029 if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) \{ 029 if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) \{
030 goto __T; 030 goto LBL_T;
031 \} 031 \}
032 032
033 /* divide the smallest by the GCD */ 033 /* divide the smallest by the GCD */
034 if (mp_cmp_mag(a, b) == MP_LT) \{ 034 if (mp_cmp_mag(a, b) == MP_LT) \{
035 /* store quotient in t2 such that t2 * b is the LCM */ 035 /* store quotient in t2 such that t2 * b is the LCM */
036 if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) \{ 036 if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) \{
037 goto __T; 037 goto LBL_T;
038 \} 038 \}
039 res = mp_mul(b, &t2, c); 039 res = mp_mul(b, &t2, c);
040 \} else \{ 040 \} else \{
041 /* store quotient in t2 such that t2 * a is the LCM */ 041 /* store quotient in t2 such that t2 * a is the LCM */
042 if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) \{ 042 if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) \{
043 goto __T; 043 goto LBL_T;
044 \} 044 \}
045 res = mp_mul(a, &t2, c); 045 res = mp_mul(a, &t2, c);
046 \} 046 \}
@ -9925,7 +9928,7 @@ dividing the product of the two inputs by their greatest common divisor.
048 /* fix the sign to positive */ 048 /* fix the sign to positive */
049 c->sign = MP_ZPOS; 049 c->sign = MP_ZPOS;
050 050
051 __T: 051 LBL_T:
052 mp_clear_multi (&t1, &t2, NULL); 052 mp_clear_multi (&t1, &t2, NULL);
053 return res; 053 return res;
054 \} 054 \}
@ -10123,13 +10126,13 @@ $\left ( {p' \over a'} \right )$ which is multiplied against the current Jacobi
049 \} 049 \}
050 050
051 if ((res = mp_init (&p1)) != MP_OKAY) \{ 051 if ((res = mp_init (&p1)) != MP_OKAY) \{
052 goto __A1; 052 goto LBL_A1;
053 \} 053 \}
054 054
055 /* divide out larger power of two */ 055 /* divide out larger power of two */
056 k = mp_cnt_lsb(&a1); 056 k = mp_cnt_lsb(&a1);
057 if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) \{ 057 if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) \{
058 goto __P1; 058 goto LBL_P1;
059 \} 059 \}
060 060
061 /* step 4. if e is even set s=1 */ 061 /* step 4. if e is even set s=1 */
@ -10157,18 +10160,18 @@ $\left ( {p' \over a'} \right )$ which is multiplied against the current Jacobi
083 \} else \{ 083 \} else \{
084 /* n1 = n mod a1 */ 084 /* n1 = n mod a1 */
085 if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) \{ 085 if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) \{
086 goto __P1; 086 goto LBL_P1;
087 \} 087 \}
088 if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) \{ 088 if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) \{
089 goto __P1; 089 goto LBL_P1;
090 \} 090 \}
091 *c = s * r; 091 *c = s * r;
092 \} 092 \}
093 093
094 /* done */ 094 /* done */
095 res = MP_OKAY; 095 res = MP_OKAY;
096 __P1:mp_clear (&p1); 096 LBL_P1:mp_clear (&p1);
097 __A1:mp_clear (&a1); 097 LBL_A1:mp_clear (&a1);
098 return res; 098 return res;
099 \} 099 \}
100 #endif 100 #endif
@ -10406,8 +10409,8 @@ This algorithm attempts to determine if a candidate integer $n$ is composite by
028 *result = MP_NO; 028 *result = MP_NO;
029 029
030 for (ix = 0; ix < PRIME_SIZE; ix++) \{ 030 for (ix = 0; ix < PRIME_SIZE; ix++) \{
031 /* what is a mod __prime_tab[ix] */ 031 /* what is a mod LBL_prime_tab[ix] */
032 if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) \{ 032 if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) \{
033 return err; 033 return err;
034 \} 034 \}
035 035
@ -10431,7 +10434,7 @@ mp\_digit. The table \_\_prime\_tab is defined in the following file.
\hspace{-5.1mm}{\bf File}: bn\_prime\_tab.c \hspace{-5.1mm}{\bf File}: bn\_prime\_tab.c
\vspace{-3mm} \vspace{-3mm}
\begin{alltt} \begin{alltt}
016 const mp_digit __prime_tab[] = \{ 016 const mp_digit ltm_prime_tab[] = \{
017 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013, 017 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
018 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035, 018 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
019 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059, 019 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
@ -10547,7 +10550,7 @@ determine the result.
042 042
043 /* compute t = b**a mod a */ 043 /* compute t = b**a mod a */
044 if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) \{ 044 if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) \{
045 goto __T; 045 goto LBL_T;
046 \} 046 \}
047 047
048 /* is it equal to b? */ 048 /* is it equal to b? */
@ -10556,7 +10559,7 @@ determine the result.
051 \} 051 \}
052 052
053 err = MP_OKAY; 053 err = MP_OKAY;
054 __T:mp_clear (&t); 054 LBL_T:mp_clear (&t);
055 return err; 055 return err;
056 \} 056 \}
057 #endif 057 #endif
@ -10638,12 +10641,12 @@ composite then it is \textit{probably} prime.
039 return err; 039 return err;
040 \} 040 \}
041 if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) \{ 041 if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) \{
042 goto __N1; 042 goto LBL_N1;
043 \} 043 \}
044 044
045 /* set 2**s * r = n1 */ 045 /* set 2**s * r = n1 */
046 if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) \{ 046 if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) \{
047 goto __N1; 047 goto LBL_N1;
048 \} 048 \}
049 049
050 /* count the number of least significant bits 050 /* count the number of least significant bits
@ -10653,15 +10656,15 @@ composite then it is \textit{probably} prime.
054 054
055 /* now divide n - 1 by 2**s */ 055 /* now divide n - 1 by 2**s */
056 if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) \{ 056 if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) \{
057 goto __R; 057 goto LBL_R;
058 \} 058 \}
059 059
060 /* compute y = b**r mod a */ 060 /* compute y = b**r mod a */
061 if ((err = mp_init (&y)) != MP_OKAY) \{ 061 if ((err = mp_init (&y)) != MP_OKAY) \{
062 goto __R; 062 goto LBL_R;
063 \} 063 \}
064 if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) \{ 064 if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) \{
065 goto __Y; 065 goto LBL_Y;
066 \} 066 \}
067 067
068 /* if y != 1 and y != n1 do */ 068 /* if y != 1 and y != n1 do */
@ -10670,12 +10673,12 @@ composite then it is \textit{probably} prime.
071 /* while j <= s-1 and y != n1 */ 071 /* while j <= s-1 and y != n1 */
072 while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) \{ 072 while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) \{
073 if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) \{ 073 if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) \{
074 goto __Y; 074 goto LBL_Y;
075 \} 075 \}
076 076
077 /* if y == 1 then composite */ 077 /* if y == 1 then composite */
078 if (mp_cmp_d (&y, 1) == MP_EQ) \{ 078 if (mp_cmp_d (&y, 1) == MP_EQ) \{
079 goto __Y; 079 goto LBL_Y;
080 \} 080 \}
081 081
082 ++j; 082 ++j;
@ -10683,15 +10686,15 @@ composite then it is \textit{probably} prime.
084 084
085 /* if y != n1 then composite */ 085 /* if y != n1 then composite */
086 if (mp_cmp (&y, &n1) != MP_EQ) \{ 086 if (mp_cmp (&y, &n1) != MP_EQ) \{
087 goto __Y; 087 goto LBL_Y;
088 \} 088 \}
089 \} 089 \}
090 090
091 /* probably prime now */ 091 /* probably prime now */
092 *result = MP_YES; 092 *result = MP_YES;
093 __Y:mp_clear (&y); 093 LBL_Y:mp_clear (&y);
094 __R:mp_clear (&r); 094 LBL_R:mp_clear (&r);
095 __N1:mp_clear (&n1); 095 LBL_N1:mp_clear (&n1);
096 return err; 096 return err;
097 \} 097 \}
098 #endif 098 #endif

View File

@ -242,6 +242,7 @@
#define BN_MP_INIT_MULTI_C #define BN_MP_INIT_MULTI_C
#define BN_MP_SET_C #define BN_MP_SET_C
#define BN_MP_COUNT_BITS_C #define BN_MP_COUNT_BITS_C
#define BN_MP_ABS_C
#define BN_MP_MUL_2D_C #define BN_MP_MUL_2D_C
#define BN_MP_CMP_C #define BN_MP_CMP_C
#define BN_MP_SUB_C #define BN_MP_SUB_C