added libtommath-0.22

This commit is contained in:
Tom St Denis 2003-07-02 15:39:39 +00:00 committed by Steffen Jaeckel
parent 49bef06878
commit 4c1d3f0838
37 changed files with 1812 additions and 1401 deletions

BIN
bn.pdf

Binary file not shown.

2
bn.tex
View File

@ -1,7 +1,7 @@
\documentclass[]{article}
\begin{document}
\title{LibTomMath v0.21 \\ A Free Multiple Precision Integer Library \\ http://math.libtomcrypt.org }
\title{LibTomMath v0.22 \\ A Free Multiple Precision Integer Library \\ http://math.libtomcrypt.org }
\author{Tom St Denis \\ tomstdenis@iahu.ca}
\maketitle
\newpage

View File

@ -66,8 +66,8 @@ top:
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
goto __ERR;
}
/* 4.2 if A or B is odd then */
if (mp_iseven (&B) == 0) {
/* 4.2 if B is odd then */
if (mp_isodd (&B) == 1) {
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
goto __ERR;
}
@ -84,8 +84,8 @@ top:
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
goto __ERR;
}
/* 5.2 if C,D are even then */
if (mp_iseven (&D) == 0) {
/* 5.2 if D is odd then */
if (mp_isodd (&D) == 1) {
/* D = (D-x)/2 */
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
goto __ERR;

40
bn_mp_cnt_lsb.c Normal file
View File

@ -0,0 +1,40 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library is designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(mp_int *a)
{
int x;
mp_digit q;
if (mp_iszero(a) == 1) {
return 0;
}
/* scan lower digits until non-zero */
for (x = 0; x < a->used && a->dp[x] == 0; x++);
q = a->dp[x];
x *= DIGIT_BIT;
/* now scan this digit until a 1 is found */
while ((q & 1) == 0) {
q >>= 1;
x += 1;
}
return x;
}

View File

@ -58,11 +58,14 @@ mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
/* shift any bit count < DIGIT_BIT */
D = (mp_digit) (b % DIGIT_BIT);
if (D != 0) {
register mp_digit *tmpc, mask;
register mp_digit *tmpc, mask, shift;
/* mask */
mask = (((mp_digit)1) << D) - 1;
/* shift for lsb */
shift = DIGIT_BIT - D;
/* alias */
tmpc = c->dp + (c->used - 1);
@ -73,7 +76,7 @@ mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
rr = *tmpc & mask;
/* shift the current word and mix in the carry bits from the previous word */
*tmpc = (*tmpc >> D) | (r << (DIGIT_BIT - D));
*tmpc = (*tmpc >> D) | (r << shift);
--tmpc;
/* set the carry to the carry bits of the current word found above */

View File

@ -1,64 +1,64 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library is designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* divide by three (based on routine from MPI and the GMP manual) */
int
mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
{
mp_int q;
mp_word w, t;
mp_digit b;
int res, ix;
/* b = 2**DIGIT_BIT / 3 */
b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);
if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
return res;
}
q.used = a->used;
q.sign = a->sign;
w = 0;
for (ix = a->used - 1; ix >= 0; ix--) {
w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
if (w >= 3) {
t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);
w -= (t << ((mp_word)1)) + t;
while (w >= 3) {
t += 1;
w -= 3;
}
} else {
t = 0;
}
q.dp[ix] = (mp_digit)t;
}
if (d != NULL) {
*d = (mp_digit)w;
}
if (c != NULL) {
mp_clamp(&q);
mp_exch(&q, c);
}
mp_clear(&q);
return res;
}
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library is designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* divide by three (based on routine from MPI and the GMP manual) */
int
mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
{
mp_int q;
mp_word w, t;
mp_digit b;
int res, ix;
/* b = 2**DIGIT_BIT / 3 */
b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);
if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
return res;
}
q.used = a->used;
q.sign = a->sign;
w = 0;
for (ix = a->used - 1; ix >= 0; ix--) {
w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
if (w >= 3) {
t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);
w -= (t << ((mp_word)1)) + t;
while (w >= 3) {
t += 1;
w -= 3;
}
} else {
t = 0;
}
q.dp[ix] = (mp_digit)t;
}
if (d != NULL) {
*d = (mp_digit)w;
}
if (c != NULL) {
mp_clamp(&q);
mp_exch(&q, c);
}
mp_clear(&q);
return res;
}

View File

@ -21,10 +21,17 @@
*
* Uses Montgomery or Diminished Radix reduction [whichever appropriate]
*/
#ifdef MP_LOW_MEM
#define TAB_SIZE 32
#else
#define TAB_SIZE 256
#endif
int
mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
{
mp_int M[256], res;
mp_int M[TAB_SIZE], res;
mp_digit buf, mp;
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
@ -58,17 +65,24 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
}
#endif
/* init M array */
/* init first cell */
if ((err = mp_init(&M[1])) != MP_OKAY) {
return err;
}
/* init G array */
for (x = 0; x < (1 << winsize); x++) {
if ((err = mp_init (&M[x])) != MP_OKAY) {
for (y = 0; y < x; y++) {
/* now init the second half of the array */
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
if ((err = mp_init(&M[x])) != MP_OKAY) {
for (y = 1<<(winsize-1); y < x; y++) {
mp_clear (&M[y]);
}
mp_clear(&M[1]);
return err;
}
}
/* determine and setup reduction code */
if (redmode == 0) {
/* now setup montgomery */
@ -257,7 +271,8 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
err = MP_OKAY;
__RES:mp_clear (&res);
__M:
for (x = 0; x < (1 << winsize); x++) {
mp_clear(&M[1]);
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
mp_clear (&M[x]);
}
return err;

61
bn_mp_fread.c Normal file
View File

@ -0,0 +1,61 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library is designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* read a bigint from a file stream in ASCII */
int mp_fread(mp_int *a, int radix, FILE *stream)
{
int err, ch, neg, y;
/* clear a */
mp_zero(a);
/* if first digit is - then set negative */
ch = fgetc(stream);
if (ch == '-') {
neg = MP_NEG;
ch = fgetc(stream);
} else {
neg = MP_ZPOS;
}
for (;;) {
/* find y in the radix map */
for (y = 0; y < radix; y++) {
if (mp_s_rmap[y] == ch) {
break;
}
}
if (y == radix) {
break;
}
/* shift up and add */
if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) {
return err;
}
if ((err = mp_add_d(a, y, a)) != MP_OKAY) {
return err;
}
ch = fgetc(stream);
}
if (mp_cmp_d(a, 0) != MP_EQ) {
a->sign = neg;
}
return MP_OKAY;
}

47
bn_mp_fwrite.c Normal file
View File

@ -0,0 +1,47 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library is designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
int mp_fwrite(mp_int *a, int radix, FILE *stream)
{
char *buf;
int err, len, x;
len = mp_radix_size(a, radix);
if (len == 0) {
return MP_VAL;
}
buf = malloc(len);
if (buf == NULL) {
return MP_MEM;
}
if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
free(buf);
return err;
}
for (x = 0; x < len; x++) {
if (fputc(buf[x], stream) == EOF) {
free(buf);
return MP_VAL;
}
}
free(buf);
return MP_OKAY;
}

View File

@ -14,13 +14,12 @@
*/
#include <tommath.h>
/* Greatest Common Divisor using the binary method [Algorithm B, page 338, vol2 of TAOCP]
*/
/* Greatest Common Divisor using the binary method */
int
mp_gcd (mp_int * a, mp_int * b, mp_int * c)
{
mp_int u, v, t;
int k, res, neg;
mp_int u, v;
int k, u_lsb, v_lsb, res;
/* either zero than gcd is the largest */
if (mp_iszero (a) == 1 && mp_iszero (b) == 0) {
@ -34,9 +33,6 @@ mp_gcd (mp_int * a, mp_int * b, mp_int * c)
return MP_OKAY;
}
/* if both are negative they share (-1) as a common divisor */
neg = (a->sign == b->sign) ? a->sign : MP_ZPOS;
if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
return res;
}
@ -48,71 +44,55 @@ mp_gcd (mp_int * a, mp_int * b, mp_int * c)
/* must be positive for the remainder of the algorithm */
u.sign = v.sign = MP_ZPOS;
if ((res = mp_init (&t)) != MP_OKAY) {
/* B1. Find the common power of two for u and v */
u_lsb = mp_cnt_lsb(&u);
v_lsb = mp_cnt_lsb(&v);
k = MIN(u_lsb, v_lsb);
if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
goto __V;
}
if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
goto __V;
}
/* divide any remaining factors of two out */
if (u_lsb != k) {
if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
goto __V;
}
}
if (v_lsb != k) {
if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
goto __V;
}
}
while (mp_iszero(&v) == 0) {
/* make sure v is the largest */
if (mp_cmp_mag(&u, &v) == MP_GT) {
mp_exch(&u, &v);
}
/* subtract smallest from largest */
if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
goto __V;
}
/* Divide out all factors of two */
if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
goto __V;
}
}
/* multiply by 2**k which we divided out at the beginning */
if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
goto __V;
}
/* B1. Find power of two */
k = 0;
while (mp_iseven(&u) == 1 && mp_iseven(&v) == 1) {
++k;
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
goto __T;
}
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
goto __T;
}
}
/* B2. Initialize */
if (mp_isodd(&u) == 1) {
/* t = -v */
if ((res = mp_copy (&v, &t)) != MP_OKAY) {
goto __T;
}
t.sign = MP_NEG;
} else {
/* t = u */
if ((res = mp_copy (&u, &t)) != MP_OKAY) {
goto __T;
}
}
do {
/* B3 (and B4). Halve t, if even */
while (t.used != 0 && mp_iseven(&t) == 1) {
if ((res = mp_div_2 (&t, &t)) != MP_OKAY) {
goto __T;
}
}
/* B5. if t>0 then u=t otherwise v=-t */
if (t.used != 0 && t.sign != MP_NEG) {
if ((res = mp_copy (&t, &u)) != MP_OKAY) {
goto __T;
}
} else {
if ((res = mp_copy (&t, &v)) != MP_OKAY) {
goto __T;
}
v.sign = (v.sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
}
/* B6. t = u - v, if t != 0 loop otherwise terminate */
if ((res = mp_sub (&u, &v, &t)) != MP_OKAY) {
goto __T;
}
} while (mp_iszero(&t) == 0);
/* multiply by 2^k which we divided out at the beginning */
if ((res = mp_mul_2d (&u, k, &u)) != MP_OKAY) {
goto __T;
}
mp_exch (&u, c);
c->sign = neg;
c->sign = MP_ZPOS;
res = MP_OKAY;
__T:mp_clear (&t);
__V:mp_clear (&u);
__U:mp_clear (&v);
return res;

View File

@ -14,6 +14,7 @@
*/
#include <tommath.h>
/* hac 14.61, pp608 */
int
mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
@ -21,17 +22,18 @@ mp_invmod (mp_int * a, mp_int * b, mp_int * c)
int res;
/* b cannot be negative */
if (b->sign == MP_NEG) {
if (b->sign == MP_NEG || mp_iszero(b) == 1) {
return MP_VAL;
}
/* if the modulus is odd we can use a faster routine instead */
if (mp_iseven (b) == 0) {
if (mp_isodd (b) == 1) {
return fast_mp_invmod (a, b, c);
}
/* init temps */
if ((res = mp_init_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL)) != MP_OKAY) {
if ((res = mp_init_multi(&x, &y, &u, &v,
&A, &B, &C, &D, NULL)) != MP_OKAY) {
return res;
}
@ -43,10 +45,6 @@ mp_invmod (mp_int * a, mp_int * b, mp_int * c)
goto __ERR;
}
if ((res = mp_abs (&x, &x)) != MP_OKAY) {
goto __ERR;
}
/* 2. [modified] if x,y are both even then return an error! */
if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
res = MP_VAL;
@ -63,7 +61,6 @@ mp_invmod (mp_int * a, mp_int * b, mp_int * c)
mp_set (&A, 1);
mp_set (&D, 1);
top:
/* 4. while u is even do */
while (mp_iseven (&u) == 1) {
@ -72,13 +69,13 @@ top:
goto __ERR;
}
/* 4.2 if A or B is odd then */
if (mp_iseven (&A) == 0 || mp_iseven (&B) == 0) {
if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
/* A = (A+y)/2, B = (B-x)/2 */
if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
goto __ERR;
goto __ERR;
}
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
goto __ERR;
goto __ERR;
}
}
/* A = A/2, B = B/2 */
@ -90,21 +87,20 @@ top:
}
}
/* 5. while v is even do */
while (mp_iseven (&v) == 1) {
/* 5.1 v = v/2 */
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
goto __ERR;
}
/* 5.2 if C,D are even then */
if (mp_iseven (&C) == 0 || mp_iseven (&D) == 0) {
/* 5.2 if C or D is odd then */
if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
/* C = (C+y)/2, D = (D-x)/2 */
if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
goto __ERR;
goto __ERR;
}
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
goto __ERR;
goto __ERR;
}
}
/* C = C/2, D = D/2 */
@ -157,10 +153,23 @@ top:
goto __ERR;
}
/* a is now the inverse */
/* if its too low */
while (mp_cmp_d(&C, 0) == MP_LT) {
if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
goto __ERR;
}
}
/* too big */
while (mp_cmp_mag(&C, b) != MP_LT) {
if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
goto __ERR;
}
}
/* C is now the inverse */
mp_exch (&C, c);
res = MP_OKAY;
__ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
return res;
}

View File

@ -18,10 +18,10 @@
* HAC pp. 73 Algorithm 2.149
*/
int
mp_jacobi (mp_int * a, mp_int * n, int *c)
mp_jacobi (mp_int * a, mp_int * p, int *c)
{
mp_int a1, n1, e;
int s, r, res;
mp_int a1, p1;
int k, s, r, res;
mp_digit residue;
/* step 1. if a == 0, return 0 */
@ -37,39 +37,30 @@ mp_jacobi (mp_int * a, mp_int * n, int *c)
}
/* default */
s = 0;
k = s = 0;
/* step 3. write a = a1 * 2^e */
/* step 3. write a = a1 * 2**k */
if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
return res;
}
if ((res = mp_init (&n1)) != MP_OKAY) {
if ((res = mp_init (&p1)) != MP_OKAY) {
goto __A1;
}
if ((res = mp_init (&e)) != MP_OKAY) {
goto __N1;
}
while (mp_iseven (&a1) == 1) {
if ((res = mp_add_d (&e, 1, &e)) != MP_OKAY) {
goto __E;
}
k = k + 1;
if ((res = mp_div_2 (&a1, &a1)) != MP_OKAY) {
goto __E;
goto __P1;
}
}
/* step 4. if e is even set s=1 */
if (mp_iseven (&e) == 1) {
if ((k & 1) == 0) {
s = 1;
} else {
/* else set s=1 if n = 1/7 (mod 8) or s=-1 if n = 3/5 (mod 8) */
if ((res = mp_mod_d (n, 8, &residue)) != MP_OKAY) {
goto __E;
}
/* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
residue = p->dp[0] & 7;
if (residue == 1 || residue == 7) {
s = 1;
@ -78,17 +69,9 @@ mp_jacobi (mp_int * a, mp_int * n, int *c)
}
}
/* step 5. if n == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
if ((res = mp_mod_d (n, 4, &residue)) != MP_OKAY) {
goto __E;
}
if (residue == 3) {
if ((res = mp_mod_d (&a1, 4, &residue)) != MP_OKAY) {
goto __E;
}
if (residue == 3) {
s = -s;
}
/* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
s = -s;
}
/* if a1 == 1 we're done */
@ -96,19 +79,18 @@ mp_jacobi (mp_int * a, mp_int * n, int *c)
*c = s;
} else {
/* n1 = n mod a1 */
if ((res = mp_mod (n, &a1, &n1)) != MP_OKAY) {
goto __E;
if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) {
goto __P1;
}
if ((res = mp_jacobi (&n1, &a1, &r)) != MP_OKAY) {
goto __E;
if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
goto __P1;
}
*c = s * r;
}
/* done */
res = MP_OKAY;
__E:mp_clear (&e);
__N1:mp_clear (&n1);
__P1:mp_clear (&p1);
__A1:mp_clear (&a1);
return res;
}

View File

@ -14,12 +14,6 @@
*/
#include <tommath.h>
/* NOTE: This routine requires updating. For instance the c->used = c->alloc bit
is wrong. We should just shift c->used digits then set the carry as c->dp[c->used] = carry
To be fixed for LTM 0.18
*/
/* shift left by a certain bit count */
int
mp_mul_2d (mp_int * a, int b, mp_int * c)
@ -34,8 +28,8 @@ mp_mul_2d (mp_int * a, int b, mp_int * c)
}
}
if (c->alloc < (int)(c->used + b/DIGIT_BIT + 2)) {
if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 2)) != MP_OKAY) {
if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
return res;
}
}
@ -46,17 +40,19 @@ mp_mul_2d (mp_int * a, int b, mp_int * c)
return res;
}
}
c->used = c->alloc;
/* shift any bit count < DIGIT_BIT */
d = (mp_digit) (b % DIGIT_BIT);
if (d != 0) {
register mp_digit *tmpc, mask, r, rr;
register mp_digit *tmpc, shift, mask, r, rr;
register int x;
/* bitmask for carries */
mask = (((mp_digit)1) << d) - 1;
/* shift for msbs */
shift = DIGIT_BIT - d;
/* alias */
tmpc = c->dp;
@ -64,7 +60,7 @@ mp_mul_2d (mp_int * a, int b, mp_int * c)
r = 0;
for (x = 0; x < c->used; x++) {
/* get the higher bits of the current word */
rr = (*tmpc >> (DIGIT_BIT - d)) & mask;
rr = (*tmpc >> shift) & mask;
/* shift the current word and OR in the carry */
*tmpc = ((*tmpc << d) | r) & MP_MASK;
@ -73,6 +69,11 @@ mp_mul_2d (mp_int * a, int b, mp_int * c)
/* set the carry to the carry bits of the current word */
r = rr;
}
/* set final carry */
if (r != 0) {
c->dp[c->used++] = r;
}
}
mp_clamp (c);
return MP_OKAY;

View File

@ -16,9 +16,9 @@
/* performs one Fermat test.
*
* If "a" were prime then b^a == b (mod a) since the order of
* If "a" were prime then b**a == b (mod a) since the order of
* the multiplicative sub-group would be phi(a) = a-1. That means
* it would be the same as b^(a mod (a-1)) == b^1 == b (mod a).
* it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
*
* Sets result to 1 if the congruence holds, or zero otherwise.
*/
@ -36,7 +36,7 @@ mp_prime_fermat (mp_int * a, mp_int * b, int *result)
return err;
}
/* compute t = b^a mod a */
/* compute t = b**a mod a */
if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) {
goto __T;
}

View File

@ -14,7 +14,8 @@
*/
#include <tommath.h>
/* determines if an integers is divisible by one of the first 256 primes or not
/* determines if an integers is divisible by one
* of the first PRIME_SIZE primes or not
*
* sets result to 0 if not, 1 if yes
*/
@ -28,12 +29,6 @@ mp_prime_is_divisible (mp_int * a, int *result)
*result = 0;
for (ix = 0; ix < PRIME_SIZE; ix++) {
/* is it equal to the prime? */
if (mp_cmp_d (a, __prime_tab[ix]) == MP_EQ) {
*result = 1;
return MP_OKAY;
}
/* what is a mod __prime_tab[ix] */
if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) {
return err;

View File

@ -38,19 +38,17 @@ mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
goto __N1;
}
/* set 2^s * r = n1 */
/* set 2**s * r = n1 */
if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
goto __N1;
}
s = 0;
while (mp_iseven (&r) == 1) {
++s;
if ((err = mp_div_2 (&r, &r)) != MP_OKAY) {
goto __R;
}
s = mp_cnt_lsb(&r);
if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
goto __R;
}
/* compute y = b^r mod a */
/* compute y = b**r mod a */
if ((err = mp_init (&y)) != MP_OKAY) {
goto __R;
}
@ -64,12 +62,12 @@ mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
/* while j <= s-1 and y != n1 */
while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
goto __Y;
goto __Y;
}
/* if y == 1 then composite */
if (mp_cmp_d (&y, 1) == MP_EQ) {
goto __Y;
goto __Y;
}
++j;

54
bn_mp_radix_size.c Normal file
View File

@ -0,0 +1,54 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library is designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* returns size of ASCII reprensentation */
int
mp_radix_size (mp_int * a, int radix)
{
int res, digs;
mp_int t;
mp_digit d;
/* special case for binary */
if (radix == 2) {
return mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
}
if (radix < 2 || radix > 64) {
return 0;
}
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
return 0;
}
digs = 0;
if (t.sign == MP_NEG) {
++digs;
t.sign = MP_ZPOS;
}
while (mp_iszero (&t) == 0) {
if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
mp_clear (&t);
return 0;
}
++digs;
}
mp_clear (&t);
return digs + 1;
}

18
bn_mp_radix_smap.c Normal file
View File

@ -0,0 +1,18 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library is designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* chars used in radix conversions */
const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";

77
bn_mp_read_radix.c Normal file
View File

@ -0,0 +1,77 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library is designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* read a string [ASCII] in a given radix */
int
mp_read_radix (mp_int * a, char *str, int radix)
{
int y, res, neg;
char ch;
/* make sure the radix is ok */
if (radix < 2 || radix > 64) {
return MP_VAL;
}
/* if the leading digit is a
* minus set the sign to negative.
*/
if (*str == '-') {
++str;
neg = MP_NEG;
} else {
neg = MP_ZPOS;
}
/* set the integer to the default of zero */
mp_zero (a);
/* process each digit of the string */
while (*str) {
/* if the radix < 36 the conversion is case insensitive
* this allows numbers like 1AB and 1ab to represent the same value
* [e.g. in hex]
*/
ch = (char) ((radix < 36) ? toupper (*str) : *str);
for (y = 0; y < 64; y++) {
if (ch == mp_s_rmap[y]) {
break;
}
}
/* if the char was found in the map
* and is less than the given radix add it
* to the number, otherwise exit the loop.
*/
if (y < radix) {
if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) {
return res;
}
if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) {
return res;
}
} else {
break;
}
++str;
}
/* set the sign only if a != 0 */
if (mp_iszero(a) != 1) {
a->sign = neg;
}
return MP_OKAY;
}

70
bn_mp_toradix.c Normal file
View File

@ -0,0 +1,70 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library is designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* stores a bignum as a ASCII string in a given radix (2..64) */
int
mp_toradix (mp_int * a, char *str, int radix)
{
int res, digs;
mp_int t;
mp_digit d;
char *_s = str;
if (radix < 2 || radix > 64) {
return MP_VAL;
}
/* quick out if its zero */
if (mp_iszero(a) == 1) {
*str++ = '0';
*str = '\0';
return MP_OKAY;
}
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
return res;
}
/* if it is negative output a - */
if (t.sign == MP_NEG) {
++_s;
*str++ = '-';
t.sign = MP_ZPOS;
}
digs = 0;
while (mp_iszero (&t) == 0) {
if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
mp_clear (&t);
return res;
}
*str++ = mp_s_rmap[d];
++digs;
}
/* reverse the digits of the string. In this case _s points
* to the first digit [exluding the sign] of the number]
*/
bn_reverse ((unsigned char *)_s, digs);
/* append a NULL so the string is properly terminated */
*str++ = '\0';
mp_clear (&t);
return MP_OKAY;
}

View File

@ -1,224 +0,0 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library is designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* chars used in radix conversions */
static const char *s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
/* read a string [ASCII] in a given radix */
int
mp_read_radix (mp_int * a, char *str, int radix)
{
int y, res, neg;
char ch;
if (radix < 2 || radix > 64) {
return MP_VAL;
}
if (*str == '-') {
++str;
neg = MP_NEG;
} else {
neg = MP_ZPOS;
}
mp_zero (a);
while (*str) {
ch = (char) ((radix < 36) ? toupper (*str) : *str);
for (y = 0; y < 64; y++) {
if (ch == s_rmap[y]) {
break;
}
}
if (y < radix) {
if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) {
return res;
}
if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) {
return res;
}
} else {
break;
}
++str;
}
if (mp_iszero(a) != 1) {
a->sign = neg;
}
return MP_OKAY;
}
/* stores a bignum as a ASCII string in a given radix (2..64) */
int
mp_toradix (mp_int * a, char *str, int radix)
{
int res, digs;
mp_int t;
mp_digit d;
char *_s = str;
if (radix < 2 || radix > 64) {
return MP_VAL;
}
/* quick out if its zero */
if (mp_iszero(a) == 1) {
*str++ = '0';
*str = '\0';
return MP_OKAY;
}
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
return res;
}
if (t.sign == MP_NEG) {
++_s;
*str++ = '-';
t.sign = MP_ZPOS;
}
digs = 0;
while (mp_iszero (&t) == 0) {
if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
mp_clear (&t);
return res;
}
*str++ = s_rmap[d];
++digs;
}
bn_reverse ((unsigned char *)_s, digs);
*str++ = '\0';
mp_clear (&t);
return MP_OKAY;
}
/* returns size of ASCII reprensentation */
int
mp_radix_size (mp_int * a, int radix)
{
int res, digs;
mp_int t;
mp_digit d;
/* special case for binary */
if (radix == 2) {
return mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
}
if (radix < 2 || radix > 64) {
return 0;
}
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
return 0;
}
digs = 0;
if (t.sign == MP_NEG) {
++digs;
t.sign = MP_ZPOS;
}
while (mp_iszero (&t) == 0) {
if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
mp_clear (&t);
return 0;
}
++digs;
}
mp_clear (&t);
return digs + 1;
}
/* read a bigint from a file stream in ASCII */
int mp_fread(mp_int *a, int radix, FILE *stream)
{
int err, ch, neg, y;
/* clear a */
mp_zero(a);
/* if first digit is - then set negative */
ch = fgetc(stream);
if (ch == '-') {
neg = MP_NEG;
ch = fgetc(stream);
} else {
neg = MP_ZPOS;
}
for (;;) {
/* find y in the radix map */
for (y = 0; y < radix; y++) {
if (s_rmap[y] == ch) {
break;
}
}
if (y == radix) {
break;
}
/* shift up and add */
if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) {
return err;
}
if ((err = mp_add_d(a, y, a)) != MP_OKAY) {
return err;
}
ch = fgetc(stream);
}
if (mp_cmp_d(a, 0) != MP_EQ) {
a->sign = neg;
}
return MP_OKAY;
}
int mp_fwrite(mp_int *a, int radix, FILE *stream)
{
char *buf;
int err, len, x;
len = mp_radix_size(a, radix);
if (len == 0) {
return MP_VAL;
}
buf = malloc(len);
if (buf == NULL) {
return MP_MEM;
}
if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
free(buf);
return err;
}
for (x = 0; x < len; x++) {
if (fputc(buf[x], stream) == EOF) {
free(buf);
return MP_VAL;
}
}
free(buf);
return MP_OKAY;
}

View File

@ -1,216 +1,230 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library is designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
int
s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
{
mp_int M[256], res, mu;
mp_digit buf;
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
/* find window size */
x = mp_count_bits (X);
if (x <= 7) {
winsize = 2;
} else if (x <= 36) {
winsize = 3;
} else if (x <= 140) {
winsize = 4;
} else if (x <= 450) {
winsize = 5;
} else if (x <= 1303) {
winsize = 6;
} else if (x <= 3529) {
winsize = 7;
} else {
winsize = 8;
}
#ifdef MP_LOW_MEM
if (winsize > 5) {
winsize = 5;
}
#endif
/* init M array */
for (x = 0; x < (1 << winsize); x++) {
if ((err = mp_init_size (&M[x], 1)) != MP_OKAY) {
for (y = 0; y < x; y++) {
mp_clear (&M[y]);
}
return err;
}
}
/* create mu, used for Barrett reduction */
if ((err = mp_init (&mu)) != MP_OKAY) {
goto __M;
}
if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
goto __MU;
}
/* create M table
*
* The M table contains powers of the base,
* e.g. M[x] = G**x mod P
*
* The first half of the table is not
* computed though accept for M[0] and M[1]
*/
if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
goto __MU;
}
/* compute the value at M[1<<(winsize-1)] by squaring
* M[1] (winsize-1) times
*/
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto __MU;
}
for (x = 0; x < (winsize - 1); x++) {
if ((err = mp_sqr (&M[1 << (winsize - 1)],
&M[1 << (winsize - 1)])) != MP_OKAY) {
goto __MU;
}
if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
goto __MU;
}
}
/* create upper table */
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
goto __MU;
}
if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
goto __MU;
}
}
/* setup result */
if ((err = mp_init (&res)) != MP_OKAY) {
goto __MU;
}
mp_set (&res, 1);
/* set initial mode and bit cnt */
mode = 0;
bitcnt = 1;
buf = 0;
digidx = X->used - 1;
bitcpy = 0;
bitbuf = 0;
for (;;) {
/* grab next digit as required */
if (--bitcnt == 0) {
if (digidx == -1) {
break;
}
buf = X->dp[digidx--];
bitcnt = (int) DIGIT_BIT;
}
/* grab the next msb from the exponent */
y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
buf <<= (mp_digit)1;
/* if the bit is zero and mode == 0 then we ignore it
* These represent the leading zero bits before the first 1 bit
* in the exponent. Technically this opt is not required but it
* does lower the # of trivial squaring/reductions used
*/
if (mode == 0 && y == 0)
continue;
/* if the bit is zero and mode == 1 then we square */
if (mode == 1 && y == 0) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES;
}
continue;
}
/* else we add it to the window */
bitbuf |= (y << (winsize - ++bitcpy));
mode = 2;
if (bitcpy == winsize) {
/* ok window is filled so square as required and multiply */
/* square first */
for (x = 0; x < winsize; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES;
}
}
/* then multiply */
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
goto __MU;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __MU;
}
/* empty window and reset */
bitcpy = 0;
bitbuf = 0;
mode = 1;
}
}
/* if bits remain then square/multiply */
if (mode == 2 && bitcpy > 0) {
/* square then multiply if the bit is set */
for (x = 0; x < bitcpy; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES;
}
bitbuf <<= 1;
if ((bitbuf & (1 << winsize)) != 0) {
/* then multiply */
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
goto __RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES;
}
}
}
}
mp_exch (&res, Y);
err = MP_OKAY;
__RES:mp_clear (&res);
__MU:mp_clear (&mu);
__M:
for (x = 0; x < (1 << winsize); x++) {
mp_clear (&M[x]);
}
return err;
}
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library is designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
#ifdef MP_LOW_MEM
#define TAB_SIZE 32
#else
#define TAB_SIZE 256
#endif
int
s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
{
mp_int M[TAB_SIZE], res, mu;
mp_digit buf;
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
/* find window size */
x = mp_count_bits (X);
if (x <= 7) {
winsize = 2;
} else if (x <= 36) {
winsize = 3;
} else if (x <= 140) {
winsize = 4;
} else if (x <= 450) {
winsize = 5;
} else if (x <= 1303) {
winsize = 6;
} else if (x <= 3529) {
winsize = 7;
} else {
winsize = 8;
}
#ifdef MP_LOW_MEM
if (winsize > 5) {
winsize = 5;
}
#endif
/* init M array */
/* init first cell */
if ((err = mp_init(&M[1])) != MP_OKAY) {
return err;
}
/* now init the second half of the array */
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
if ((err = mp_init(&M[x])) != MP_OKAY) {
for (y = 1<<(winsize-1); y < x; y++) {
mp_clear (&M[y]);
}
mp_clear(&M[1]);
return err;
}
}
/* create mu, used for Barrett reduction */
if ((err = mp_init (&mu)) != MP_OKAY) {
goto __M;
}
if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
goto __MU;
}
/* create M table
*
* The M table contains powers of the base,
* e.g. M[x] = G**x mod P
*
* The first half of the table is not
* computed though accept for M[0] and M[1]
*/
if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
goto __MU;
}
/* compute the value at M[1<<(winsize-1)] by squaring
* M[1] (winsize-1) times
*/
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto __MU;
}
for (x = 0; x < (winsize - 1); x++) {
if ((err = mp_sqr (&M[1 << (winsize - 1)],
&M[1 << (winsize - 1)])) != MP_OKAY) {
goto __MU;
}
if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
goto __MU;
}
}
/* create upper table */
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
goto __MU;
}
if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
goto __MU;
}
}
/* setup result */
if ((err = mp_init (&res)) != MP_OKAY) {
goto __MU;
}
mp_set (&res, 1);
/* set initial mode and bit cnt */
mode = 0;
bitcnt = 1;
buf = 0;
digidx = X->used - 1;
bitcpy = 0;
bitbuf = 0;
for (;;) {
/* grab next digit as required */
if (--bitcnt == 0) {
if (digidx == -1) {
break;
}
buf = X->dp[digidx--];
bitcnt = (int) DIGIT_BIT;
}
/* grab the next msb from the exponent */
y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
buf <<= (mp_digit)1;
/* if the bit is zero and mode == 0 then we ignore it
* These represent the leading zero bits before the first 1 bit
* in the exponent. Technically this opt is not required but it
* does lower the # of trivial squaring/reductions used
*/
if (mode == 0 && y == 0)
continue;
/* if the bit is zero and mode == 1 then we square */
if (mode == 1 && y == 0) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES;
}
continue;
}
/* else we add it to the window */
bitbuf |= (y << (winsize - ++bitcpy));
mode = 2;
if (bitcpy == winsize) {
/* ok window is filled so square as required and multiply */
/* square first */
for (x = 0; x < winsize; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES;
}
}
/* then multiply */
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
goto __MU;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __MU;
}
/* empty window and reset */
bitcpy = 0;
bitbuf = 0;
mode = 1;
}
}
/* if bits remain then square/multiply */
if (mode == 2 && bitcpy > 0) {
/* square then multiply if the bit is set */
for (x = 0; x < bitcpy; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES;
}
bitbuf <<= 1;
if ((bitbuf & (1 << winsize)) != 0) {
/* then multiply */
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
goto __RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES;
}
}
}
}
mp_exch (&res, Y);
err = MP_OKAY;
__RES:mp_clear (&res);
__MU:mp_clear (&mu);
__M:
mp_clear(&M[1]);
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
mp_clear (&M[x]);
}
return err;
}

View File

@ -75,7 +75,7 @@ while (<IN>) {
$line = 0;
$tmp = $m[1];
$tmp =~ s/_/"\\_"/ge;
print OUT "\\index{$tmp}\n\\vspace{+3mm}\\begin{small}\n\\hspace{-5.1mm}{\\bf File}: $tmp\n\\vspace{-3mm}\n\\begin{alltt}\n";
print OUT "\\vspace{+3mm}\\begin{small}\n\\hspace{-5.1mm}{\\bf File}: $tmp\n\\vspace{-3mm}\n\\begin{alltt}\n";
$wroteline += 5;
if ($skipheader == 1) {
@ -248,7 +248,7 @@ while (<IN>) {
chomp($_);
@m = split(",", $_);
print OUT "\\begin{center}\n\\begin{figure}[here]\n\\includegraphics{pics/$m[1]$graph}\n";
print OUT "\\caption{$m[2]}\n\\end{figure}\n\\end{center}\n";
print OUT "\\caption{$m[2]}\n\\label{pic:$m[1]}\n\\end{figure}\n\\end{center}\n";
$wroteline += 4;
} else {
print OUT $_;

View File

@ -1,3 +1,14 @@
July 2nd, 2003
v0.22 -- Fixed up mp_invmod so the result is properly in range now [was always congruent to the inverse...]
-- Fixed up s_mp_exptmod and mp_exptmod_fast so the lower half of the pre-computed table isn't allocated
which makes the algorithm use half as much ram.
-- Fixed the install script not to make the book :-) [which isn't included anyways]
-- added mp_cnt_lsb() which counts how many of the lsbs are zero
-- optimized mp_gcd() to use the new mp_cnt_lsb() to replace multiple divisions by two by a single division.
-- applied similar optimization to mp_prime_miller_rabin().
-- Fixed a bug in both mp_invmod() and fast_mp_invmod() which tested for odd
via "mp_iseven() == 0" which is not valid [since zero is not even either].
June 19th, 2003
v0.21 -- Fixed bug in mp_mul_d which would not handle sign correctly [would not always forward it]
-- Removed the #line lines from gen.pl [was in violation of ISO C]

View File

@ -64,6 +64,19 @@ int main(void)
mp_init(&f);
srand(time(NULL));
#if 0
/* test mp_cnt_lsb */
mp_set(&a, 1);
for (ix = 0; ix < 128; ix++) {
if (mp_cnt_lsb(&a) != ix) {
printf("Failed at %d\n", ix);
return 0;
}
mp_mul_2(&a, &a);
}
#endif
/* test mp_reduce_2k */
#if 0
for (cnt = 3; cnt <= 4096; ++cnt) {
@ -325,8 +338,6 @@ int main(void)
/* force KARA and TOOM to enable despite cutoffs */
KARATSUBA_SQR_CUTOFF = KARATSUBA_MUL_CUTOFF = 110;
TOOM_SQR_CUTOFF = TOOM_MUL_CUTOFF = 150;
for (;;) {
/* randomly clear and re-init one variable, this has the affect of triming the alloc space */

View File

@ -1,2 +1,2 @@
256-bits (k = 36113) = 115792089237316195423570985008687907853269984665640564039457584007913129603823
512-bits (k = 38117) = 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006045979
256-bits (k = 36113) = 115792089237316195423570985008687907853269984665640564039457584007913129603823
512-bits (k = 38117) = 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006045979

View File

@ -1,6 +1,6 @@
CFLAGS += -I./ -Wall -W -Wshadow -O3 -fomit-frame-pointer -funroll-loops
VERSION=0.21
VERSION=0.22
default: libtommath.a
@ -29,25 +29,25 @@ bn_mp_mulmod.o bn_mp_sqrmod.o bn_mp_gcd.o bn_mp_lcm.o bn_fast_mp_invmod.o bn_mp_
bn_mp_reduce.o bn_mp_montgomery_setup.o bn_fast_mp_montgomery_reduce.o bn_mp_montgomery_reduce.o \
bn_mp_exptmod_fast.o bn_mp_exptmod.o bn_mp_2expt.o bn_mp_n_root.o bn_mp_jacobi.o bn_reverse.o \
bn_mp_count_bits.o bn_mp_read_unsigned_bin.o bn_mp_read_signed_bin.o bn_mp_to_unsigned_bin.o \
bn_mp_to_signed_bin.o bn_mp_unsigned_bin_size.o bn_mp_signed_bin_size.o bn_radix.o \
bn_mp_to_signed_bin.o bn_mp_unsigned_bin_size.o bn_mp_signed_bin_size.o \
bn_mp_xor.o bn_mp_and.o bn_mp_or.o bn_mp_rand.o bn_mp_montgomery_calc_normalization.o \
bn_mp_prime_is_divisible.o bn_prime_tab.o bn_mp_prime_fermat.o bn_mp_prime_miller_rabin.o \
bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o bn_mp_multi.o \
bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \
bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o
bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o
libtommath.a: $(OBJECTS)
$(AR) $(ARFLAGS) libtommath.a $(OBJECTS)
ranlib libtommath.a
install: libtommath.a docs
install: libtommath.a
install -d -g root -o root $(DESTDIR)$(LIBPATH)
install -d -g root -o root $(DESTDIR)$(INCPATH)
install -d -g root -o root $(DESTDIR)$(DATAPATH)
install -g root -o root $(LIBNAME) $(DESTDIR)$(LIBPATH)
install -g root -o root $(HEADERS) $(DESTDIR)$(INCPATH)
install -g root -o root bn.pdf $(DESTDIR)$(DATAPATH)
test: libtommath.a demo/demo.o
$(CC) demo/demo.o libtommath.a -o test
@ -103,6 +103,6 @@ clean:
zipup: clean manual poster
perl gen.pl ; mv mpi.c pre_gen/ ; \
cd .. ; rm -rf ltm* libtommath-$(VERSION) ; mkdir libtommath-$(VERSION) ; \
cp -R ./libtommath/* ./libtommath-$(VERSION)/ ; cp tdcal.pdf ./libtommath-$(VERSION)/ ; cd ./libtommath-$(VERSION) ; rm -f tommath.src tommath.tex tommath.out ; cd pics ; rm -f * ; cd .. ; cd .. ; ls ; \
cp -R ./libtommath/* ./libtommath-$(VERSION)/ ; cp tdcal.pdf ./libtommath-$(VERSION)/ ; cd ./libtommath-$(VERSION) ; rm -f tommath.src tommath.tex tommath.out ; cd pics ; rm -f *.tif *.ps *.pdf ; cd .. ; cd .. ; ls ; \
tar -c libtommath-$(VERSION)/* > ltm-$(VERSION).tar ; \
bzip2 -9vv ltm-$(VERSION).tar ; zip -9 -r ltm-$(VERSION).zip libtommath-$(VERSION)/*

View File

@ -1,37 +1,39 @@
#
# Borland C++Builder Makefile (makefile.bcc)
#
LIB = tlib
CC = bcc32
CFLAGS = -c -O2 -I.
OBJECTS=bncore.obj bn_mp_init.obj bn_mp_clear.obj bn_mp_exch.obj bn_mp_grow.obj bn_mp_shrink.obj \
bn_mp_clamp.obj bn_mp_zero.obj bn_mp_set.obj bn_mp_set_int.obj bn_mp_init_size.obj bn_mp_copy.obj \
bn_mp_init_copy.obj bn_mp_abs.obj bn_mp_neg.obj bn_mp_cmp_mag.obj bn_mp_cmp.obj bn_mp_cmp_d.obj \
bn_mp_rshd.obj bn_mp_lshd.obj bn_mp_mod_2d.obj bn_mp_div_2d.obj bn_mp_mul_2d.obj bn_mp_div_2.obj \
bn_mp_mul_2.obj bn_s_mp_add.obj bn_s_mp_sub.obj bn_fast_s_mp_mul_digs.obj bn_s_mp_mul_digs.obj \
bn_fast_s_mp_mul_high_digs.obj bn_s_mp_mul_high_digs.obj bn_fast_s_mp_sqr.obj bn_s_mp_sqr.obj \
bn_mp_add.obj bn_mp_sub.obj bn_mp_karatsuba_mul.obj bn_mp_mul.obj bn_mp_karatsuba_sqr.obj \
bn_mp_sqr.obj bn_mp_div.obj bn_mp_mod.obj bn_mp_add_d.obj bn_mp_sub_d.obj bn_mp_mul_d.obj \
bn_mp_div_d.obj bn_mp_mod_d.obj bn_mp_expt_d.obj bn_mp_addmod.obj bn_mp_submod.obj \
bn_mp_mulmod.obj bn_mp_sqrmod.obj bn_mp_gcd.obj bn_mp_lcm.obj bn_fast_mp_invmod.obj bn_mp_invmod.obj \
bn_mp_reduce.obj bn_mp_montgomery_setup.obj bn_fast_mp_montgomery_reduce.obj bn_mp_montgomery_reduce.obj \
bn_mp_exptmod_fast.obj bn_mp_exptmod.obj bn_mp_2expt.obj bn_mp_n_root.obj bn_mp_jacobi.obj bn_reverse.obj \
bn_mp_count_bits.obj bn_mp_read_unsigned_bin.obj bn_mp_read_signed_bin.obj bn_mp_to_unsigned_bin.obj \
bn_mp_to_signed_bin.obj bn_mp_unsigned_bin_size.obj bn_mp_signed_bin_size.obj bn_radix.obj \
bn_mp_xor.obj bn_mp_and.obj bn_mp_or.obj bn_mp_rand.obj bn_mp_montgomery_calc_normalization.obj \
bn_mp_prime_is_divisible.obj bn_prime_tab.obj bn_mp_prime_fermat.obj bn_mp_prime_miller_rabin.obj \
bn_mp_prime_is_prime.obj bn_mp_prime_next_prime.obj bn_mp_dr_reduce.obj bn_mp_multi.obj \
bn_mp_dr_is_modulus.obj bn_mp_dr_setup.obj bn_mp_reduce_setup.obj \
bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \
bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj
TARGET = libtommath.lib
$(TARGET): $(OBJECTS)
.c.obj:
$(CC) $(CFLAGS) $<
#
# Borland C++Builder Makefile (makefile.bcc)
#
LIB = tlib
CC = bcc32
CFLAGS = -c -O2 -I.
OBJECTS=bncore.obj bn_mp_init.obj bn_mp_clear.obj bn_mp_exch.obj bn_mp_grow.obj bn_mp_shrink.obj \
bn_mp_clamp.obj bn_mp_zero.obj bn_mp_set.obj bn_mp_set_int.obj bn_mp_init_size.obj bn_mp_copy.obj \
bn_mp_init_copy.obj bn_mp_abs.obj bn_mp_neg.obj bn_mp_cmp_mag.obj bn_mp_cmp.obj bn_mp_cmp_d.obj \
bn_mp_rshd.obj bn_mp_lshd.obj bn_mp_mod_2d.obj bn_mp_div_2d.obj bn_mp_mul_2d.obj bn_mp_div_2.obj \
bn_mp_mul_2.obj bn_s_mp_add.obj bn_s_mp_sub.obj bn_fast_s_mp_mul_digs.obj bn_s_mp_mul_digs.obj \
bn_fast_s_mp_mul_high_digs.obj bn_s_mp_mul_high_digs.obj bn_fast_s_mp_sqr.obj bn_s_mp_sqr.obj \
bn_mp_add.obj bn_mp_sub.obj bn_mp_karatsuba_mul.obj bn_mp_mul.obj bn_mp_karatsuba_sqr.obj \
bn_mp_sqr.obj bn_mp_div.obj bn_mp_mod.obj bn_mp_add_d.obj bn_mp_sub_d.obj bn_mp_mul_d.obj \
bn_mp_div_d.obj bn_mp_mod_d.obj bn_mp_expt_d.obj bn_mp_addmod.obj bn_mp_submod.obj \
bn_mp_mulmod.obj bn_mp_sqrmod.obj bn_mp_gcd.obj bn_mp_lcm.obj bn_fast_mp_invmod.obj bn_mp_invmod.obj \
bn_mp_reduce.obj bn_mp_montgomery_setup.obj bn_fast_mp_montgomery_reduce.obj bn_mp_montgomery_reduce.obj \
bn_mp_exptmod_fast.obj bn_mp_exptmod.obj bn_mp_2expt.obj bn_mp_n_root.obj bn_mp_jacobi.obj bn_reverse.obj \
bn_mp_count_bits.obj bn_mp_read_unsigned_bin.obj bn_mp_read_signed_bin.obj bn_mp_to_unsigned_bin.obj \
bn_mp_to_signed_bin.obj bn_mp_unsigned_bin_size.obj bn_mp_signed_bin_size.obj \
bn_mp_xor.obj bn_mp_and.obj bn_mp_or.obj bn_mp_rand.obj bn_mp_montgomery_calc_normalization.obj \
bn_mp_prime_is_divisible.obj bn_prime_tab.obj bn_mp_prime_fermat.obj bn_mp_prime_miller_rabin.obj \
bn_mp_prime_is_prime.obj bn_mp_prime_next_prime.obj bn_mp_dr_reduce.obj bn_mp_multi.obj \
bn_mp_dr_is_modulus.obj bn_mp_dr_setup.obj bn_mp_reduce_setup.obj \
bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \
bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \
bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \
bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj
TARGET = libtommath.lib
$(TARGET): $(OBJECTS)
.c.obj:
$(CC) $(CFLAGS) $<
$(LIB) $(TARGET) -+$@

View File

@ -19,13 +19,15 @@ bn_mp_mulmod.obj bn_mp_sqrmod.obj bn_mp_gcd.obj bn_mp_lcm.obj bn_fast_mp_invmod.
bn_mp_reduce.obj bn_mp_montgomery_setup.obj bn_fast_mp_montgomery_reduce.obj bn_mp_montgomery_reduce.obj \
bn_mp_exptmod_fast.obj bn_mp_exptmod.obj bn_mp_2expt.obj bn_mp_n_root.obj bn_mp_jacobi.obj bn_reverse.obj \
bn_mp_count_bits.obj bn_mp_read_unsigned_bin.obj bn_mp_read_signed_bin.obj bn_mp_to_unsigned_bin.obj \
bn_mp_to_signed_bin.obj bn_mp_unsigned_bin_size.obj bn_mp_signed_bin_size.obj bn_radix.obj \
bn_mp_to_signed_bin.obj bn_mp_unsigned_bin_size.obj bn_mp_signed_bin_size.obj \
bn_mp_xor.obj bn_mp_and.obj bn_mp_or.obj bn_mp_rand.obj bn_mp_montgomery_calc_normalization.obj \
bn_mp_prime_is_divisible.obj bn_prime_tab.obj bn_mp_prime_fermat.obj bn_mp_prime_miller_rabin.obj \
bn_mp_prime_is_prime.obj bn_mp_prime_next_prime.obj bn_mp_dr_reduce.obj bn_mp_multi.obj \
bn_mp_dr_is_modulus.obj bn_mp_dr_setup.obj bn_mp_reduce_setup.obj \
bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \
bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj
bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \
bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \
bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj

View File

@ -107,7 +107,7 @@ int main(void)
sleep(1);
t1 = clock();
}
n = fgetc(rng) % 13;
if (n == 0) {

BIN
pics/expt_state.sxd Normal file

Binary file not shown.

30
pics/makefile Normal file
View File

@ -0,0 +1,30 @@
# makes the images... yeah
default: pses
sliding_window.ps: sliding_window.tif
tiff2ps -c -e sliding_window.tif > sliding_window.ps
expt_state.ps: expt_state.tif
tiff2ps -c -e expt_state.tif > expt_state.ps
primality.ps: primality.tif
tiff2ps -c -e primality.tif > primality.ps
sliding_window.pdf: sliding_window.ps
epstopdf sliding_window.ps
expt_state.pdf: expt_state.ps
epstopdf expt_state.ps
primality.pdf: primality.ps
epstopdf primality.ps
pses: sliding_window.ps expt_state.ps primality.ps
pdfes: sliding_window.pdf expt_state.pdf primality.pdf
clean:
rm -rf *.ps *.pdf .xvpics

BIN
pics/sliding_window.sxd Normal file

Binary file not shown.

Binary file not shown.

File diff suppressed because it is too large Load Diff

46
test.c Normal file
View File

@ -0,0 +1,46 @@
#include <tommath.h>
int main(int argc, char ** argv) {
const unsigned int a = 65537;
char b[] =
"272621192922230283305477639564135351471136149273956463844361347729298759183125368038593484043149128512765280523210111782526587388894777249539002925324108547349408624093466297893486263619517809026841716115227596170065100354451708345238523975900663359145770823068375223714001310312030819080370340176730626251422070";
char radix[1000];
mp_int vala, valb, valc;
if (mp_init(&vala) != MP_OKAY) {
fprintf(stderr, "failed to init vala\n");
exit(1);
}
if (mp_init(&valb) != MP_OKAY) {
fprintf(stderr, "failed to init valb\n");
exit(1);
}
if (mp_init(&valc) != MP_OKAY) {
fprintf(stderr, "failed to init valc\n");
exit(1);
}
if (mp_set_int(&vala, 65537) != MP_OKAY) {
fprintf(stderr, "failed to set vala to 65537\n");
exit(1);
}
if (mp_read_radix(&valb, b, 10) != MP_OKAY) {
fprintf(stderr, "failed to set valb to %s\n", b);
exit(1);
}
if (mp_invmod(&vala, &valb, &valc) != MP_OKAY) {
fprintf(stderr, "mp_invmod failed\n");
exit(1);
}
if (mp_toradix(&valc, radix, 10) != MP_OKAY) {
fprintf(stderr, "failed to convert value to radix 10\n");
exit(1);
}
fprintf(stderr, "a = %d\nb = %s\nc = %s\n", a, b, radix);
return 0;
}

View File

@ -120,7 +120,7 @@ extern int KARATSUBA_MUL_CUTOFF,
TOOM_SQR_CUTOFF;
/* various build options */
#define MP_PREC 64 /* default digits of precision (must be power of two) */
#define MP_PREC 64 /* default digits of precision (must be power of two) */
/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */
@ -166,7 +166,7 @@ int mp_init_size(mp_int *a, int size);
/* ---> Basic Manipulations <--- */
#define mp_iszero(a) (((a)->used == 0) ? 1 : 0)
#define mp_iseven(a) (((a)->used == 0 || (((a)->dp[0] & 1) == 0)) ? 1 : 0)
#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? 1 : 0)
#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? 1 : 0)
/* set to zero */
@ -213,6 +213,9 @@ int mp_mod_2d(mp_int *a, int b, mp_int *c);
/* computes a = 2**b */
int mp_2expt(mp_int *a, int b);
/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(mp_int *a);
/* makes a pseudo-random int of a given size */
int mp_rand(mp_int *a, int digits);
@ -451,6 +454,8 @@ int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y);
void bn_reverse(unsigned char *s, int len);
extern const char *mp_s_rmap;
#ifdef __cplusplus
}
#endif