From a20d9b102c67cbea0322f878f8784cd4ede13e97 Mon Sep 17 00:00:00 2001 From: Francois Perrad Date: Wed, 30 Aug 2017 19:13:53 +0200 Subject: [PATCH] format with astyle (step 4) --- bn_mp_prime_fermat.c | 46 ++++---- bn_mp_prime_is_divisible.c | 32 ++--- bn_mp_prime_is_prime.c | 74 ++++++------ bn_mp_prime_next_prime.c | 78 ++++++------ bn_mp_prime_rabin_miller_trials.c | 26 ++-- bn_mp_radix_size.c | 84 ++++++------- bn_mp_read_signed_bin.c | 24 ++-- bn_mp_read_unsigned_bin.c | 44 +++---- bn_mp_reduce_is_2k.c | 16 +-- bn_mp_reduce_is_2k_l.c | 6 +- bn_mp_reduce_setup.c | 10 +- bn_mp_rshd.c | 72 +++++------ bn_mp_set.c | 6 +- bn_mp_set_int.c | 34 +++--- bn_mp_shrink.c | 26 ++-- bn_mp_signed_bin_size.c | 2 +- bn_mp_sqr.c | 46 ++++---- bn_mp_sqrmod.c | 24 ++-- bn_mp_sqrtmod_prime.c | 190 +++++++++++++++--------------- bn_mp_sub_d.c | 110 ++++++++--------- bn_mp_submod.c | 24 ++-- 21 files changed, 487 insertions(+), 487 deletions(-) diff --git a/bn_mp_prime_fermat.c b/bn_mp_prime_fermat.c index d3b422f..37ad6ec 100644 --- a/bn_mp_prime_fermat.c +++ b/bn_mp_prime_fermat.c @@ -25,36 +25,36 @@ */ int mp_prime_fermat(mp_int *a, mp_int *b, int *result) { - mp_int t; - int err; + mp_int t; + int err; - /* default to composite */ - *result = MP_NO; + /* default to composite */ + *result = MP_NO; - /* ensure b > 1 */ - if (mp_cmp_d(b, 1) != MP_GT) { - return MP_VAL; - } + /* ensure b > 1 */ + if (mp_cmp_d(b, 1) != MP_GT) { + return MP_VAL; + } - /* init t */ - if ((err = mp_init(&t)) != MP_OKAY) { - return err; - } + /* init t */ + if ((err = mp_init(&t)) != MP_OKAY) { + return err; + } - /* compute t = b**a mod a */ - if ((err = mp_exptmod(b, a, a, &t)) != MP_OKAY) { - goto LBL_T; - } + /* compute t = b**a mod a */ + if ((err = mp_exptmod(b, a, a, &t)) != MP_OKAY) { + goto LBL_T; + } - /* is it equal to b? */ - if (mp_cmp(&t, b) == MP_EQ) { - *result = MP_YES; - } + /* is it equal to b? */ + if (mp_cmp(&t, b) == MP_EQ) { + *result = MP_YES; + } - err = MP_OKAY; + err = MP_OKAY; LBL_T: - mp_clear(&t); - return err; + mp_clear(&t); + return err; } #endif diff --git a/bn_mp_prime_is_divisible.c b/bn_mp_prime_is_divisible.c index 89a535f..92af330 100644 --- a/bn_mp_prime_is_divisible.c +++ b/bn_mp_prime_is_divisible.c @@ -22,26 +22,26 @@ */ int mp_prime_is_divisible(mp_int *a, int *result) { - int err, ix; - mp_digit res; + int err, ix; + mp_digit res; - /* default to not */ - *result = MP_NO; + /* default to not */ + *result = MP_NO; - for (ix = 0; ix < PRIME_SIZE; ix++) { - /* what is a mod LBL_prime_tab[ix] */ - if ((err = mp_mod_d(a, ltm_prime_tab[ix], &res)) != MP_OKAY) { - return err; - } + for (ix = 0; ix < PRIME_SIZE; ix++) { + /* what is a mod LBL_prime_tab[ix] */ + if ((err = mp_mod_d(a, ltm_prime_tab[ix], &res)) != MP_OKAY) { + return err; + } - /* is the residue zero? */ - if (res == 0) { - *result = MP_YES; - return MP_OKAY; - } - } + /* is the residue zero? */ + if (res == 0) { + *result = MP_YES; + return MP_OKAY; + } + } - return MP_OKAY; + return MP_OKAY; } #endif diff --git a/bn_mp_prime_is_prime.c b/bn_mp_prime_is_prime.c index 429f5fd..20a7d1f 100644 --- a/bn_mp_prime_is_prime.c +++ b/bn_mp_prime_is_prime.c @@ -24,58 +24,58 @@ */ int mp_prime_is_prime(mp_int *a, int t, int *result) { - mp_int b; - int ix, err, res; + mp_int b; + int ix, err, res; - /* default to no */ - *result = MP_NO; + /* default to no */ + *result = MP_NO; - /* valid value of t? */ - if ((t <= 0) || (t > PRIME_SIZE)) { - return MP_VAL; - } + /* valid value of t? */ + if ((t <= 0) || (t > PRIME_SIZE)) { + return MP_VAL; + } - /* is the input equal to one of the primes in the table? */ - for (ix = 0; ix < PRIME_SIZE; ix++) { + /* is the input equal to one of the primes in the table? */ + for (ix = 0; ix < PRIME_SIZE; ix++) { if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) { *result = 1; return MP_OKAY; } - } + } - /* first perform trial division */ - if ((err = mp_prime_is_divisible(a, &res)) != MP_OKAY) { - return err; - } + /* first perform trial division */ + if ((err = mp_prime_is_divisible(a, &res)) != MP_OKAY) { + return err; + } - /* return if it was trivially divisible */ - if (res == MP_YES) { - return MP_OKAY; - } + /* return if it was trivially divisible */ + if (res == MP_YES) { + return MP_OKAY; + } - /* now perform the miller-rabin rounds */ - if ((err = mp_init(&b)) != MP_OKAY) { - return err; - } + /* now perform the miller-rabin rounds */ + if ((err = mp_init(&b)) != MP_OKAY) { + return err; + } - for (ix = 0; ix < t; ix++) { - /* set the prime */ - mp_set(&b, ltm_prime_tab[ix]); + for (ix = 0; ix < t; ix++) { + /* set the prime */ + mp_set(&b, ltm_prime_tab[ix]); - if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { - goto LBL_B; - } + if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { + goto LBL_B; + } - if (res == MP_NO) { - goto LBL_B; - } - } + if (res == MP_NO) { + goto LBL_B; + } + } - /* passed the test */ - *result = MP_YES; + /* passed the test */ + *result = MP_YES; LBL_B: - mp_clear(&b); - return err; + mp_clear(&b); + return err; } #endif diff --git a/bn_mp_prime_next_prime.c b/bn_mp_prime_next_prime.c index 8f63f5f..f383cbb 100644 --- a/bn_mp_prime_next_prime.c +++ b/bn_mp_prime_next_prime.c @@ -38,28 +38,28 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style) if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) { /* find which prime it is bigger than */ for (x = PRIME_SIZE - 2; x >= 0; x--) { - if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) { - if (bbs_style == 1) { - /* ok we found a prime smaller or - * equal [so the next is larger] - * - * however, the prime must be - * congruent to 3 mod 4 - */ - if ((ltm_prime_tab[x + 1] & 3) != 3) { - /* scan upwards for a prime congruent to 3 mod 4 */ - for (y = x + 1; y < PRIME_SIZE; y++) { - if ((ltm_prime_tab[y] & 3) == 3) { - mp_set(a, ltm_prime_tab[y]); - return MP_OKAY; - } - } - } - } else { - mp_set(a, ltm_prime_tab[x + 1]); - return MP_OKAY; - } - } + if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) { + if (bbs_style == 1) { + /* ok we found a prime smaller or + * equal [so the next is larger] + * + * however, the prime must be + * congruent to 3 mod 4 + */ + if ((ltm_prime_tab[x + 1] & 3) != 3) { + /* scan upwards for a prime congruent to 3 mod 4 */ + for (y = x + 1; y < PRIME_SIZE; y++) { + if ((ltm_prime_tab[y] & 3) == 3) { + mp_set(a, ltm_prime_tab[y]); + return MP_OKAY; + } + } + } + } else { + mp_set(a, ltm_prime_tab[x + 1]); + return MP_OKAY; + } + } } /* at this point a maybe 1 */ if (mp_cmp_d(a, 1) == MP_EQ) { @@ -118,18 +118,18 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style) /* compute the new residue without using division */ for (x = 1; x < PRIME_SIZE; x++) { - /* add the step to each residue */ - res_tab[x] += kstep; + /* add the step to each residue */ + res_tab[x] += kstep; - /* subtract the modulus [instead of using division] */ - if (res_tab[x] >= ltm_prime_tab[x]) { - res_tab[x] -= ltm_prime_tab[x]; - } + /* subtract the modulus [instead of using division] */ + if (res_tab[x] >= ltm_prime_tab[x]) { + res_tab[x] -= ltm_prime_tab[x]; + } - /* set flag if zero */ - if (res_tab[x] == 0) { - y = 1; - } + /* set flag if zero */ + if (res_tab[x] == 0) { + y = 1; + } } } while ((y == 1) && (step < ((((mp_digit)1) << DIGIT_BIT) - kstep))); @@ -145,13 +145,13 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style) /* is this prime? */ for (x = 0; x < t; x++) { - mp_set(&b, ltm_prime_tab[x]); - if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { - goto LBL_ERR; - } - if (res == MP_NO) { - break; - } + mp_set(&b, ltm_prime_tab[x]); + if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { + goto LBL_ERR; + } + if (res == MP_NO) { + break; + } } if (res == MP_YES) { diff --git a/bn_mp_prime_rabin_miller_trials.c b/bn_mp_prime_rabin_miller_trials.c index 378ceb2..cde309a 100644 --- a/bn_mp_prime_rabin_miller_trials.c +++ b/bn_mp_prime_rabin_miller_trials.c @@ -19,14 +19,14 @@ static const struct { int k, t; } sizes[] = { -{ 128, 28 }, -{ 256, 16 }, -{ 384, 10 }, -{ 512, 7 }, -{ 640, 6 }, -{ 768, 5 }, -{ 896, 4 }, -{ 1024, 4 } + { 128, 28 }, + { 256, 16 }, + { 384, 10 }, + { 512, 7 }, + { 640, 6 }, + { 768, 5 }, + { 896, 4 }, + { 1024, 4 } }; /* returns # of RM trials required for a given bit size */ @@ -35,11 +35,11 @@ int mp_prime_rabin_miller_trials(int size) int x; for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) { - if (sizes[x].k == size) { - return sizes[x].t; - } else if (sizes[x].k > size) { - return (x == 0) ? sizes[0].t : sizes[x - 1].t; - } + if (sizes[x].k == size) { + return sizes[x].t; + } else if (sizes[x].k > size) { + return (x == 0) ? sizes[0].t : sizes[x - 1].t; + } } return sizes[x-1].t + 1; } diff --git a/bn_mp_radix_size.c b/bn_mp_radix_size.c index 555a8a0..a6e2f04 100644 --- a/bn_mp_radix_size.c +++ b/bn_mp_radix_size.c @@ -18,57 +18,57 @@ /* returns size of ASCII reprensentation */ int mp_radix_size(mp_int *a, int radix, int *size) { - int res, digs; - mp_int t; - mp_digit d; + int res, digs; + mp_int t; + mp_digit d; - *size = 0; + *size = 0; - /* make sure the radix is in range */ - if ((radix < 2) || (radix > 64)) { - return MP_VAL; - } + /* make sure the radix is in range */ + if ((radix < 2) || (radix > 64)) { + return MP_VAL; + } - if (mp_iszero(a) == MP_YES) { - *size = 2; - return MP_OKAY; - } + if (mp_iszero(a) == MP_YES) { + *size = 2; + return MP_OKAY; + } - /* special case for binary */ - if (radix == 2) { - *size = mp_count_bits(a) + ((a->sign == MP_NEG) ? 1 : 0) + 1; - return MP_OKAY; - } + /* special case for binary */ + if (radix == 2) { + *size = mp_count_bits(a) + ((a->sign == MP_NEG) ? 1 : 0) + 1; + return MP_OKAY; + } - /* digs is the digit count */ - digs = 0; + /* digs is the digit count */ + digs = 0; - /* if it's negative add one for the sign */ - if (a->sign == MP_NEG) { - ++digs; - } + /* if it's negative add one for the sign */ + if (a->sign == MP_NEG) { + ++digs; + } - /* init a copy of the input */ - if ((res = mp_init_copy(&t, a)) != MP_OKAY) { - return res; - } - - /* force temp to positive */ - t.sign = MP_ZPOS; - - /* fetch out all of the digits */ - while (mp_iszero(&t) == MP_NO) { - if ((res = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) { - mp_clear(&t); + /* init a copy of the input */ + if ((res = mp_init_copy(&t, a)) != MP_OKAY) { return res; - } - ++digs; - } - mp_clear(&t); + } - /* return digs + 1, the 1 is for the NULL byte that would be required. */ - *size = digs + 1; - return MP_OKAY; + /* force temp to positive */ + t.sign = MP_ZPOS; + + /* fetch out all of the digits */ + while (mp_iszero(&t) == MP_NO) { + if ((res = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) { + mp_clear(&t); + return res; + } + ++digs; + } + mp_clear(&t); + + /* return digs + 1, the 1 is for the NULL byte that would be required. */ + *size = digs + 1; + return MP_OKAY; } #endif diff --git a/bn_mp_read_signed_bin.c b/bn_mp_read_signed_bin.c index fba1d51..eabc803 100644 --- a/bn_mp_read_signed_bin.c +++ b/bn_mp_read_signed_bin.c @@ -18,21 +18,21 @@ /* read signed bin, big endian, first byte is 0==positive or 1==negative */ int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c) { - int res; + int res; - /* read magnitude */ - if ((res = mp_read_unsigned_bin(a, b + 1, c - 1)) != MP_OKAY) { - return res; - } + /* read magnitude */ + if ((res = mp_read_unsigned_bin(a, b + 1, c - 1)) != MP_OKAY) { + return res; + } - /* first byte is 0 for positive, non-zero for negative */ - if (b[0] == 0) { - a->sign = MP_ZPOS; - } else { - a->sign = MP_NEG; - } + /* first byte is 0 for positive, non-zero for negative */ + if (b[0] == 0) { + a->sign = MP_ZPOS; + } else { + a->sign = MP_NEG; + } - return MP_OKAY; + return MP_OKAY; } #endif diff --git a/bn_mp_read_unsigned_bin.c b/bn_mp_read_unsigned_bin.c index 8a9ee8b..ad9f05f 100644 --- a/bn_mp_read_unsigned_bin.c +++ b/bn_mp_read_unsigned_bin.c @@ -18,35 +18,35 @@ /* reads a unsigned char array, assumes the msb is stored first [big endian] */ int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c) { - int res; + int res; - /* make sure there are at least two digits */ - if (a->alloc < 2) { - if ((res = mp_grow(a, 2)) != MP_OKAY) { - return res; - } - } + /* make sure there are at least two digits */ + if (a->alloc < 2) { + if ((res = mp_grow(a, 2)) != MP_OKAY) { + return res; + } + } - /* zero the int */ - mp_zero(a); + /* zero the int */ + mp_zero(a); - /* read the bytes in */ - while (c-- > 0) { - if ((res = mp_mul_2d(a, 8, a)) != MP_OKAY) { - return res; - } + /* read the bytes in */ + while (c-- > 0) { + if ((res = mp_mul_2d(a, 8, a)) != MP_OKAY) { + return res; + } #ifndef MP_8BIT - a->dp[0] |= *b++; - a->used += 1; + a->dp[0] |= *b++; + a->used += 1; #else - a->dp[0] = (*b & MP_MASK); - a->dp[1] |= ((*b++ >> 7U) & 1); - a->used += 2; + a->dp[0] = (*b & MP_MASK); + a->dp[1] |= ((*b++ >> 7U) & 1); + a->used += 2; #endif - } - mp_clamp(a); - return MP_OKAY; + } + mp_clamp(a); + return MP_OKAY; } #endif diff --git a/bn_mp_reduce_is_2k.c b/bn_mp_reduce_is_2k.c index 939bfd1..c733ca9 100644 --- a/bn_mp_reduce_is_2k.c +++ b/bn_mp_reduce_is_2k.c @@ -32,14 +32,14 @@ int mp_reduce_is_2k(mp_int *a) /* Test every bit from the second digit up, must be 1 */ for (ix = DIGIT_BIT; ix < iy; ix++) { - if ((a->dp[iw] & iz) == 0) { - return MP_NO; - } - iz <<= 1; - if (iz > (mp_digit)MP_MASK) { - ++iw; - iz = 1; - } + if ((a->dp[iw] & iz) == 0) { + return MP_NO; + } + iz <<= 1; + if (iz > (mp_digit)MP_MASK) { + ++iw; + iz = 1; + } } } return MP_YES; diff --git a/bn_mp_reduce_is_2k_l.c b/bn_mp_reduce_is_2k_l.c index 24a96eb..d4804d5 100644 --- a/bn_mp_reduce_is_2k_l.c +++ b/bn_mp_reduce_is_2k_l.c @@ -27,9 +27,9 @@ int mp_reduce_is_2k_l(mp_int *a) } else if (a->used > 1) { /* if more than half of the digits are -1 we're sold */ for (iy = ix = 0; ix < a->used; ix++) { - if (a->dp[ix] == MP_MASK) { - ++iy; - } + if (a->dp[ix] == MP_MASK) { + ++iy; + } } return (iy >= (a->used/2)) ? MP_YES : MP_NO; diff --git a/bn_mp_reduce_setup.c b/bn_mp_reduce_setup.c index ee2bda6..00ff61c 100644 --- a/bn_mp_reduce_setup.c +++ b/bn_mp_reduce_setup.c @@ -20,12 +20,12 @@ */ int mp_reduce_setup(mp_int *a, mp_int *b) { - int res; + int res; - if ((res = mp_2expt(a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) { - return res; - } - return mp_div(a, b, a, NULL); + if ((res = mp_2expt(a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) { + return res; + } + return mp_div(a, b, a, NULL); } #endif diff --git a/bn_mp_rshd.c b/bn_mp_rshd.c index dcd58ce..fd06735 100644 --- a/bn_mp_rshd.c +++ b/bn_mp_rshd.c @@ -18,52 +18,52 @@ /* shift right a certain amount of digits */ void mp_rshd(mp_int *a, int b) { - int x; + int x; - /* if b <= 0 then ignore it */ - if (b <= 0) { - return; - } + /* if b <= 0 then ignore it */ + if (b <= 0) { + return; + } - /* if b > used then simply zero it and return */ - if (a->used <= b) { - mp_zero(a); - return; - } + /* if b > used then simply zero it and return */ + if (a->used <= b) { + mp_zero(a); + return; + } - { - mp_digit *bottom, *top; + { + mp_digit *bottom, *top; - /* shift the digits down */ + /* shift the digits down */ - /* bottom */ - bottom = a->dp; + /* bottom */ + bottom = a->dp; - /* top [offset into digits] */ - top = a->dp + b; + /* top [offset into digits] */ + top = a->dp + b; - /* this is implemented as a sliding window where - * the window is b-digits long and digits from - * the top of the window are copied to the bottom - * - * e.g. + /* this is implemented as a sliding window where + * the window is b-digits long and digits from + * the top of the window are copied to the bottom + * + * e.g. - b-2 | b-1 | b0 | b1 | b2 | ... | bb | ----> - /\ | ----> - \-------------------/ ----> - */ - for (x = 0; x < (a->used - b); x++) { - *bottom++ = *top++; - } + b-2 | b-1 | b0 | b1 | b2 | ... | bb | ----> + /\ | ----> + \-------------------/ ----> + */ + for (x = 0; x < (a->used - b); x++) { + *bottom++ = *top++; + } - /* zero the top digits */ - for (; x < a->used; x++) { - *bottom++ = 0; - } - } + /* zero the top digits */ + for (; x < a->used; x++) { + *bottom++ = 0; + } + } - /* remove excess digits */ - a->used -= b; + /* remove excess digits */ + a->used -= b; } #endif diff --git a/bn_mp_set.c b/bn_mp_set.c index 6be217f..eaf7fed 100644 --- a/bn_mp_set.c +++ b/bn_mp_set.c @@ -18,9 +18,9 @@ /* set to a digit */ void mp_set(mp_int *a, mp_digit b) { - mp_zero(a); - a->dp[0] = b & MP_MASK; - a->used = (a->dp[0] != 0) ? 1 : 0; + mp_zero(a); + a->dp[0] = b & MP_MASK; + a->used = (a->dp[0] != 0) ? 1 : 0; } #endif diff --git a/bn_mp_set_int.c b/bn_mp_set_int.c index 90a3097..4c71180 100644 --- a/bn_mp_set_int.c +++ b/bn_mp_set_int.c @@ -18,28 +18,28 @@ /* set a 32-bit const */ int mp_set_int(mp_int *a, unsigned long b) { - int x, res; + int x, res; - mp_zero(a); + mp_zero(a); - /* set four bits at a time */ - for (x = 0; x < 8; x++) { - /* shift the number up four bits */ - if ((res = mp_mul_2d(a, 4, a)) != MP_OKAY) { - return res; - } + /* set four bits at a time */ + for (x = 0; x < 8; x++) { + /* shift the number up four bits */ + if ((res = mp_mul_2d(a, 4, a)) != MP_OKAY) { + return res; + } - /* OR in the top four bits of the source */ - a->dp[0] |= (b >> 28) & 15; + /* OR in the top four bits of the source */ + a->dp[0] |= (b >> 28) & 15; - /* shift the source up to the next four bits */ - b <<= 4; + /* shift the source up to the next four bits */ + b <<= 4; - /* ensure that digits are not clamped off */ - a->used += 1; - } - mp_clamp(a); - return MP_OKAY; + /* ensure that digits are not clamped off */ + a->used += 1; + } + mp_clamp(a); + return MP_OKAY; } #endif diff --git a/bn_mp_shrink.c b/bn_mp_shrink.c index 1df3a46..8ac1f33 100644 --- a/bn_mp_shrink.c +++ b/bn_mp_shrink.c @@ -18,21 +18,21 @@ /* shrink a bignum */ int mp_shrink(mp_int *a) { - mp_digit *tmp; - int used = 1; + mp_digit *tmp; + int used = 1; - if (a->used > 0) { - used = a->used; - } + if (a->used > 0) { + used = a->used; + } - if (a->alloc != used) { - if ((tmp = OPT_CAST(mp_digit) XREALLOC(a->dp, sizeof (mp_digit) * used)) == NULL) { - return MP_MEM; - } - a->dp = tmp; - a->alloc = used; - } - return MP_OKAY; + if (a->alloc != used) { + if ((tmp = OPT_CAST(mp_digit) XREALLOC(a->dp, sizeof(mp_digit) * used)) == NULL) { + return MP_MEM; + } + a->dp = tmp; + a->alloc = used; + } + return MP_OKAY; } #endif diff --git a/bn_mp_signed_bin_size.c b/bn_mp_signed_bin_size.c index 90b50ca..082aeca 100644 --- a/bn_mp_signed_bin_size.c +++ b/bn_mp_signed_bin_size.c @@ -18,7 +18,7 @@ /* get the size for an signed equivalent */ int mp_signed_bin_size(mp_int *a) { - return 1 + mp_unsigned_bin_size(a); + return 1 + mp_unsigned_bin_size(a); } #endif diff --git a/bn_mp_sqr.c b/bn_mp_sqr.c index 46cd99e..e2e8641 100644 --- a/bn_mp_sqr.c +++ b/bn_mp_sqr.c @@ -18,39 +18,39 @@ /* computes b = a*a */ int mp_sqr(mp_int *a, mp_int *b) { - int res; + int res; #ifdef BN_MP_TOOM_SQR_C - /* use Toom-Cook? */ - if (a->used >= TOOM_SQR_CUTOFF) { - res = mp_toom_sqr(a, b); - /* Karatsuba? */ - } else + /* use Toom-Cook? */ + if (a->used >= TOOM_SQR_CUTOFF) { + res = mp_toom_sqr(a, b); + /* Karatsuba? */ + } else #endif #ifdef BN_MP_KARATSUBA_SQR_C - if (a->used >= KARATSUBA_SQR_CUTOFF) { - res = mp_karatsuba_sqr(a, b); - } else + if (a->used >= KARATSUBA_SQR_CUTOFF) { + res = mp_karatsuba_sqr(a, b); + } else #endif - { + { #ifdef BN_FAST_S_MP_SQR_C - /* can we use the fast comba multiplier? */ - if ((((a->used * 2) + 1) < MP_WARRAY) && - (a->used < - (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) - 1)))) { - res = fast_s_mp_sqr(a, b); - } else + /* can we use the fast comba multiplier? */ + if ((((a->used * 2) + 1) < MP_WARRAY) && + (a->used < + (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) - 1)))) { + res = fast_s_mp_sqr(a, b); + } else #endif - { + { #ifdef BN_S_MP_SQR_C - res = s_mp_sqr(a, b); + res = s_mp_sqr(a, b); #else - res = MP_VAL; + res = MP_VAL; #endif - } - } - b->sign = MP_ZPOS; - return res; + } + } + b->sign = MP_ZPOS; + return res; } #endif diff --git a/bn_mp_sqrmod.c b/bn_mp_sqrmod.c index 5b24cb9..96a7574 100644 --- a/bn_mp_sqrmod.c +++ b/bn_mp_sqrmod.c @@ -18,20 +18,20 @@ /* c = a * a (mod b) */ int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c) { - int res; - mp_int t; + int res; + mp_int t; - if ((res = mp_init(&t)) != MP_OKAY) { - return res; - } + if ((res = mp_init(&t)) != MP_OKAY) { + return res; + } - if ((res = mp_sqr(a, &t)) != MP_OKAY) { - mp_clear(&t); - return res; - } - res = mp_mod(&t, b, c); - mp_clear(&t); - return res; + if ((res = mp_sqr(a, &t)) != MP_OKAY) { + mp_clear(&t); + return res; + } + res = mp_mod(&t, b, c); + mp_clear(&t); + return res; } #endif diff --git a/bn_mp_sqrtmod_prime.c b/bn_mp_sqrtmod_prime.c index 73ef24b..12b427c 100644 --- a/bn_mp_sqrtmod_prime.c +++ b/bn_mp_sqrtmod_prime.c @@ -17,108 +17,108 @@ int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret) { - int res, legendre; - mp_int t1, C, Q, S, Z, M, T, R, two; - mp_digit i; + int res, legendre; + mp_int t1, C, Q, S, Z, M, T, R, two; + mp_digit i; - /* first handle the simple cases */ - if (mp_cmp_d(n, 0) == MP_EQ) { - mp_zero(ret); - return MP_OKAY; - } - if (mp_cmp_d(prime, 2) == MP_EQ) return MP_VAL; /* prime must be odd */ - if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY) return res; - if (legendre == -1) return MP_VAL; /* quadratic non-residue mod prime */ + /* first handle the simple cases */ + if (mp_cmp_d(n, 0) == MP_EQ) { + mp_zero(ret); + return MP_OKAY; + } + if (mp_cmp_d(prime, 2) == MP_EQ) return MP_VAL; /* prime must be odd */ + if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY) return res; + if (legendre == -1) return MP_VAL; /* quadratic non-residue mod prime */ - if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) { - return res; - } + if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) { + return res; + } - /* SPECIAL CASE: if prime mod 4 == 3 - * compute directly: res = n^(prime+1)/4 mod prime - * Handbook of Applied Cryptography algorithm 3.36 - */ - if ((res = mp_mod_d(prime, 4, &i)) != MP_OKAY) goto cleanup; - if (i == 3) { - if ((res = mp_add_d(prime, 1, &t1)) != MP_OKAY) goto cleanup; - if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; - if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; - if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto cleanup; - res = MP_OKAY; - goto cleanup; - } - - /* NOW: Tonelli-Shanks algorithm */ - - /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */ - if ((res = mp_copy(prime, &Q)) != MP_OKAY) goto cleanup; - if ((res = mp_sub_d(&Q, 1, &Q)) != MP_OKAY) goto cleanup; - /* Q = prime - 1 */ - mp_zero(&S); - /* S = 0 */ - while (mp_iseven(&Q) != MP_NO) { - if ((res = mp_div_2(&Q, &Q)) != MP_OKAY) goto cleanup; - /* Q = Q / 2 */ - if ((res = mp_add_d(&S, 1, &S)) != MP_OKAY) goto cleanup; - /* S = S + 1 */ - } - - /* find a Z such that the Legendre symbol (Z|prime) == -1 */ - if ((res = mp_set_int(&Z, 2)) != MP_OKAY) goto cleanup; - /* Z = 2 */ - while (1) { - if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY) goto cleanup; - if (legendre == -1) break; - if ((res = mp_add_d(&Z, 1, &Z)) != MP_OKAY) goto cleanup; - /* Z = Z + 1 */ - } - - if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto cleanup; - /* C = Z ^ Q mod prime */ - if ((res = mp_add_d(&Q, 1, &t1)) != MP_OKAY) goto cleanup; - if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; - /* t1 = (Q + 1) / 2 */ - if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto cleanup; - /* R = n ^ ((Q + 1) / 2) mod prime */ - if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto cleanup; - /* T = n ^ Q mod prime */ - if ((res = mp_copy(&S, &M)) != MP_OKAY) goto cleanup; - /* M = S */ - if ((res = mp_set_int(&two, 2)) != MP_OKAY) goto cleanup; - - res = MP_VAL; - while (1) { - if ((res = mp_copy(&T, &t1)) != MP_OKAY) goto cleanup; - i = 0; - while (1) { - if (mp_cmp_d(&t1, 1) == MP_EQ) break; - if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup; - i++; - } - if (i == 0) { - if ((res = mp_copy(&R, ret)) != MP_OKAY) goto cleanup; + /* SPECIAL CASE: if prime mod 4 == 3 + * compute directly: res = n^(prime+1)/4 mod prime + * Handbook of Applied Cryptography algorithm 3.36 + */ + if ((res = mp_mod_d(prime, 4, &i)) != MP_OKAY) goto cleanup; + if (i == 3) { + if ((res = mp_add_d(prime, 1, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto cleanup; res = MP_OKAY; goto cleanup; - } - if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto cleanup; - if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY) goto cleanup; - if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto cleanup; - /* t1 = 2 ^ (M - i - 1) */ - if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto cleanup; - /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */ - if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto cleanup; - /* C = (t1 * t1) mod prime */ - if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto cleanup; - /* R = (R * t1) mod prime */ - if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto cleanup; - /* T = (T * C) mod prime */ - mp_set(&M, i); - /* M = i */ - } + } + + /* NOW: Tonelli-Shanks algorithm */ + + /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */ + if ((res = mp_copy(prime, &Q)) != MP_OKAY) goto cleanup; + if ((res = mp_sub_d(&Q, 1, &Q)) != MP_OKAY) goto cleanup; + /* Q = prime - 1 */ + mp_zero(&S); + /* S = 0 */ + while (mp_iseven(&Q) != MP_NO) { + if ((res = mp_div_2(&Q, &Q)) != MP_OKAY) goto cleanup; + /* Q = Q / 2 */ + if ((res = mp_add_d(&S, 1, &S)) != MP_OKAY) goto cleanup; + /* S = S + 1 */ + } + + /* find a Z such that the Legendre symbol (Z|prime) == -1 */ + if ((res = mp_set_int(&Z, 2)) != MP_OKAY) goto cleanup; + /* Z = 2 */ + while (1) { + if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY) goto cleanup; + if (legendre == -1) break; + if ((res = mp_add_d(&Z, 1, &Z)) != MP_OKAY) goto cleanup; + /* Z = Z + 1 */ + } + + if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto cleanup; + /* C = Z ^ Q mod prime */ + if ((res = mp_add_d(&Q, 1, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; + /* t1 = (Q + 1) / 2 */ + if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto cleanup; + /* R = n ^ ((Q + 1) / 2) mod prime */ + if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto cleanup; + /* T = n ^ Q mod prime */ + if ((res = mp_copy(&S, &M)) != MP_OKAY) goto cleanup; + /* M = S */ + if ((res = mp_set_int(&two, 2)) != MP_OKAY) goto cleanup; + + res = MP_VAL; + while (1) { + if ((res = mp_copy(&T, &t1)) != MP_OKAY) goto cleanup; + i = 0; + while (1) { + if (mp_cmp_d(&t1, 1) == MP_EQ) break; + if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup; + i++; + } + if (i == 0) { + if ((res = mp_copy(&R, ret)) != MP_OKAY) goto cleanup; + res = MP_OKAY; + goto cleanup; + } + if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto cleanup; + /* t1 = 2 ^ (M - i - 1) */ + if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto cleanup; + /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */ + if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto cleanup; + /* C = (t1 * t1) mod prime */ + if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto cleanup; + /* R = (R * t1) mod prime */ + if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto cleanup; + /* T = (T * C) mod prime */ + mp_set(&M, i); + /* M = i */ + } cleanup: - mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); - return res; + mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); + return res; } #endif diff --git a/bn_mp_sub_d.c b/bn_mp_sub_d.c index 83a107a..7016abc 100644 --- a/bn_mp_sub_d.c +++ b/bn_mp_sub_d.c @@ -18,71 +18,71 @@ /* single digit subtraction */ int mp_sub_d(mp_int *a, mp_digit b, mp_int *c) { - mp_digit *tmpa, *tmpc, mu; - int res, ix, oldused; + mp_digit *tmpa, *tmpc, mu; + int res, ix, oldused; - /* grow c as required */ - if (c->alloc < (a->used + 1)) { - if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { - return res; - } - } + /* grow c as required */ + if (c->alloc < (a->used + 1)) { + if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { + return res; + } + } - /* if a is negative just do an unsigned - * addition [with fudged signs] - */ - if (a->sign == MP_NEG) { - a->sign = MP_ZPOS; - res = mp_add_d(a, b, c); - a->sign = c->sign = MP_NEG; + /* if a is negative just do an unsigned + * addition [with fudged signs] + */ + if (a->sign == MP_NEG) { + a->sign = MP_ZPOS; + res = mp_add_d(a, b, c); + a->sign = c->sign = MP_NEG; - /* clamp */ - mp_clamp(c); + /* clamp */ + mp_clamp(c); - return res; - } + return res; + } - /* setup regs */ - oldused = c->used; - tmpa = a->dp; - tmpc = c->dp; + /* setup regs */ + oldused = c->used; + tmpa = a->dp; + tmpc = c->dp; - /* if a <= b simply fix the single digit */ - if (((a->used == 1) && (a->dp[0] <= b)) || (a->used == 0)) { - if (a->used == 1) { - *tmpc++ = b - *tmpa; - } else { - *tmpc++ = b; - } - ix = 1; + /* if a <= b simply fix the single digit */ + if (((a->used == 1) && (a->dp[0] <= b)) || (a->used == 0)) { + if (a->used == 1) { + *tmpc++ = b - *tmpa; + } else { + *tmpc++ = b; + } + ix = 1; - /* negative/1digit */ - c->sign = MP_NEG; - c->used = 1; - } else { - /* positive/size */ - c->sign = MP_ZPOS; - c->used = a->used; + /* negative/1digit */ + c->sign = MP_NEG; + c->used = 1; + } else { + /* positive/size */ + c->sign = MP_ZPOS; + c->used = a->used; - /* subtract first digit */ - *tmpc = *tmpa++ - b; - mu = *tmpc >> ((sizeof(mp_digit) * CHAR_BIT) - 1); - *tmpc++ &= MP_MASK; + /* subtract first digit */ + *tmpc = *tmpa++ - b; + mu = *tmpc >> ((sizeof(mp_digit) * CHAR_BIT) - 1); + *tmpc++ &= MP_MASK; - /* handle rest of the digits */ - for (ix = 1; ix < a->used; ix++) { - *tmpc = *tmpa++ - mu; - mu = *tmpc >> ((sizeof(mp_digit) * CHAR_BIT) - 1); - *tmpc++ &= MP_MASK; - } - } + /* handle rest of the digits */ + for (ix = 1; ix < a->used; ix++) { + *tmpc = *tmpa++ - mu; + mu = *tmpc >> ((sizeof(mp_digit) * CHAR_BIT) - 1); + *tmpc++ &= MP_MASK; + } + } - /* zero excess digits */ - while (ix++ < oldused) { - *tmpc++ = 0; - } - mp_clamp(c); - return MP_OKAY; + /* zero excess digits */ + while (ix++ < oldused) { + *tmpc++ = 0; + } + mp_clamp(c); + return MP_OKAY; } #endif diff --git a/bn_mp_submod.c b/bn_mp_submod.c index ad7cb1b..510fb19 100644 --- a/bn_mp_submod.c +++ b/bn_mp_submod.c @@ -18,21 +18,21 @@ /* d = a - b (mod c) */ int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d) { - int res; - mp_int t; + int res; + mp_int t; - if ((res = mp_init(&t)) != MP_OKAY) { - return res; - } + if ((res = mp_init(&t)) != MP_OKAY) { + return res; + } - if ((res = mp_sub(a, b, &t)) != MP_OKAY) { - mp_clear(&t); - return res; - } - res = mp_mod(&t, c, d); - mp_clear(&t); - return res; + if ((res = mp_sub(a, b, &t)) != MP_OKAY) { + mp_clear(&t); + return res; + } + res = mp_mod(&t, c, d); + mp_clear(&t); + return res; } #endif