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1 Introduction

“LibTomMath” is a free and open source library that provides multiple-precision
integer functions required to form a basis of a public key cryptosystem. LibTom-
Math is written entire in portable ISO C source code and designed to have an
application interface much like that of MPI from Michael Fromberger.

LibTomMath was written from scratch by Tom St Denis but designed to be
drop in replacement for the MPI package. The algorithms within the library are
derived from descriptions as provided in the Handbook of Applied Cryptogra-
phy and Knuth’s “The Art of Computer Programming”. The library has been
extensively optimized and should provide quite comparable timings as compared
to many free and commercial libraries.

LibTomMath was designed with the following goals in mind:

1. Be a drop in replacement for MPI.

2. Be much faster than MPI.

3. Be written entirely in portable C.

All three goals have been achieved. Particularly the speed increase goal. For
example, a 512-bit modular exponentiation is four times faster1 with LibTom-
Math compared to MPI.

Being compatible with MPI means that applications that already use it can
be ported fairly quickly. Currently there are a few differences but there are
many similarities. In fact the average MPI based application can be ported in
under 15 minutes.

Thanks goes to Michael Fromberger for answering a couple questions and
Colin Percival for having the patience and courtesy to help debug and suggest
optimizations. They were both of great help!

2 Building Against LibTomMath

Building against LibTomMath is very simple because there is only one source
file. Simply add “bn.c” to your project and copy both “bn.c” and “bn.h” into
your project directory. There is no configuration nor building required before
hand.

If you are porting an MPI application to LibTomMath the first step will be to
remove all references to MPI and replace them with references to LibTomMath.
For example, substitute

#include "mpi.h"

with

#include "bn.h"
1On an Athlon XP with GCC 3.2
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Remove “mpi.c” from your project and replace it with “bn.c”. Note that
currently MPI has a few more functions than LibTomMath has (e.g. no square-
root code and a few others). Those are planned for future releases. In the
interim work arounds can be sought. Note that LibTomMath doesn’t lack any
functions required to build a cryptosystem.

3 Programming with LibTomMath

3.1 The mp int Structure

All multiple precision integers are stored in a structure called mp int. A mul-
tiple precision integer is essentially an array of mp digit. mp digit is defined
at the top of bn.h. Its type can be changed to suit a particular platform.

For example, when MP 8BIT is defined2 a mp digit is a unsigned char and
holds seven bits. Similarly when MP 16BIT is defined a mp digit is a unsigned
short and holds 15 bits. By default a mp digit is a unsigned long and holds 28
bits.

The choice of digit is particular to the platform at hand and what available
multipliers are provided. For MP 8BIT either a 8 × 8 ⇒ 16 or 16 × 16 ⇒ 16
multiplier is optimal. When MP 16BIT is defined either a 16 × 16 ⇒ 32 or
32× 32 ⇒ 32 multiplier is optimal. By default a 32× 32 ⇒ 64 or 64× 64 ⇒ 64
multiplier is optimal.

This gives the library some flexibility. For example, a i8051 has a 8×8 ⇒ 16
multiplier. The 16-bit x86 instruction set has a 16 × 16 ⇒ 32 multiplier. In
practice this library is not particularly designed for small devices like an i8051
due to the size. It is possible to strip out functions which are not required to
drop the code size. More realistically the library is well suited to 32 and 64-bit
processors that have decent integer multipliers. The AMD Athlon XP and Intel
Pentium 4 processors are examples of well suited processors.

Throughout the discussions there will be references to a used and alloc
members of an integer. The used member refers to how many digits are actually
used in the representation of the integer. The alloc member refers to how many
digits have been allocated off the heap. There is also the β quantity which is
equal to 2W where W is the number of bits in a digit (default is 28).

3.2 Calling Functions

Most functions expect pointers to mp int’s as parameters. To save on memory
usage it is possible to have source variables as destinations. For example:

mp_add(&x, &y, &x); /* x = x + y */
mp_mul(&x, &z, &x); /* x = x * z */
mp_div_2(&x, &x); /* x = x / 2 */

2When building bn.c.
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4 Quick Overview

4.1 Basic Functionality

Essentially all LibTomMath functions return one of three values to indicate if the
function worked as desired. A function will return MP OKAY if the function
was successful. A function will return MP MEM if it ran out of memory and
MP VAL if the input was invalid.

Before an mp int can be used it must be initialized with

int mp_init(mp_int *a);

For example, consider the following.

#include "bn.h"
int main(void)
{

mp_int num;
if (mp_init(&num) != MP_OKAY) {

printf("Error initializing a mp_int.\n");
}
return 0;

}

A mp int can be freed from memory with

void mp_clear(mp_int *a);

This will zero the memory and free the allocated data. There are a set of
trivial functions to manipulate the value of an mp int.

/* set to zero */
void mp_zero(mp_int *a);

/* set to a digit */
void mp_set(mp_int *a, mp_digit b);

/* set a 32-bit const */
int mp_set_int(mp_int *a, unsigned long b);

/* init to a given number of digits */
int mp_init_size(mp_int *a, int size);

/* copy, b = a */
int mp_copy(mp_int *a, mp_int *b);

/* inits and copies, a = b */
int mp_init_copy(mp_int *a, mp_int *b);
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The mp zero function will clear the contents of a mp int and set it to
positive. The mp set function will zero the integer and set the first digit to
a value specified. The mp set int function will zero the integer and set the
first 32-bits to a given value. It is important to note that using mp set can
have unintended side effects when either the MP 8BIT or MP 16BIT defines
are enabled. By default the library will accept the ranges of values MPI will
(and more).

The mp init size function will initialize the integer and set the allocated
size to a given value. The allocated digits are zero’ed by default but not marked
as used. The mp copy function will copy the digits (and sign) of the first pa-
rameter into the integer specified by the second parameter. The mp init copy
will initialize the first integer specified and copy the second one into it. Note
that the order is reversed from that of mp copy. This odd “bug” was kept to
maintain compatibility with MPI.

4.2 Digit Manipulations

There are a class of functions that provide simple digit manipulations such as
shifting and modulo reduction of powers of two.

/* right shift by "b" digits */
void mp_rshd(mp_int *a, int b);

/* left shift by "b" digits */
int mp_lshd(mp_int *a, int b);

/* c = a / 2^b */
int mp_div_2d(mp_int *a, int b, mp_int *c);

/* b = a/2 */
int mp_div_2(mp_int *a, mp_int *b);

/* c = a * 2^b */
int mp_mul_2d(mp_int *a, int b, mp_int *c);

/* b = a*2 */
int mp_mul_2(mp_int *a, mp_int *b);

/* c = a mod 2^d */
int mp_mod_2d(mp_int *a, int b, mp_int *c);

4.3 Basic Arithmetic

Next are the class of functions which provide basic arithmetic.

/* b = -a */
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int mp_neg(mp_int *a, mp_int *b);

/* b = |a| */
int mp_abs(mp_int *a, mp_int *b);

/* compare a to b */
int mp_cmp(mp_int *a, mp_int *b);

/* compare |a| to |b| */
int mp_cmp_mag(mp_int *a, mp_int *b);

/* c = a + b */
int mp_add(mp_int *a, mp_int *b, mp_int *c);

/* c = a - b */
int mp_sub(mp_int *a, mp_int *b, mp_int *c);

/* c = a * b */
int mp_mul(mp_int *a, mp_int *b, mp_int *c);

/* b = a^2 */
int mp_sqr(mp_int *a, mp_int *b);

/* a/b => cb + d == a */
int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);

/* c = a mod b, 0 <= c < b */
int mp_mod(mp_int *a, mp_int *b, mp_int *c);

4.4 Single Digit Functions

/* compare against a single digit */
int mp_cmp_d(mp_int *a, mp_digit b);

/* c = a + b */
int mp_add_d(mp_int *a, mp_digit b, mp_int *c);

/* c = a - b */
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);

/* c = a * b */
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);

/* a/b => cb + d == a */
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
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/* c = a mod b, 0 <= c < b */
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);

Note that care should be taken for the value of the digit passed. By default,
any 28-bit integer is a valid digit that can be passed into the function. However,
if MP 8BIT or MP 16BIT is defined only 7 or 15-bit (respectively) integers can
be passed into it.

4.5 Modular Arithmetic

There are some trivial modular arithmetic functions.

/* d = a + b (mod c) */
int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);

/* d = a - b (mod c) */
int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);

/* d = a * b (mod c) */
int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);

/* c = a * a (mod b) */
int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);

/* c = 1/a (mod b) */
int mp_invmod(mp_int *a, mp_int *b, mp_int *c);

/* c = (a, b) */
int mp_gcd(mp_int *a, mp_int *b, mp_int *c);

/* c = [a, b] or (a*b)/(a, b) */
int mp_lcm(mp_int *a, mp_int *b, mp_int *c);

/* find the b’th root of a */
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);

/* d = a^b (mod c) */
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);

4.6 Radix Conversions

To read or store integers in other formats there are the following functions.

int mp_unsigned_bin_size(mp_int *a);
int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
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int mp_signed_bin_size(mp_int *a);
int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
int mp_to_signed_bin(mp_int *a, unsigned char *b);

int mp_read_radix(mp_int *a, unsigned char *str, int radix);
int mp_toradix(mp_int *a, unsigned char *str, int radix);
int mp_radix_size(mp_int *a, int radix);

The integers are stored in big endian format as most libraries (and MPI)
expect. The mp read radix and mp toradix functions read and write (re-
spectively) null terminated ASCII strings in a given radix. Valid values for the
radix are between 2 and 64 (inclusively).

5 Function Analysis

Throughout the function analysis the variable N will denote the average size of
an input to a function as measured by the number of digits it has. The variable
W will denote the number of bits per word and c will denote a small constant
amount of work. The big-oh notation will be abused slightly to consider numbers
that do not grow to infinity. That is we shall consider O(N/2) 6= O(N) which
is an abuse of the notation.

5.1 Digit Manipulation Functions

The class of digit manipulation functions such as mp rshd, mp lshd and
mp mul 2 are all very simple functions to analyze.

5.1.1 mp rshd(mp int *a, int b)

Shifts a by given number of digits to the right and is equivalent to dividing
by βb. The work is performed in-place which means the input and output are
the same. If the shift count b is less than or equal to zero the function returns
without doing any work. If the the shift count is larger than the number of
digits in a then a is simply zeroed without shifting digits.

This function requires no additional memory and O(N) time.

5.1.2 mp lshd(mp int *a, int b)

Shifts a by a given number of digits to the left and is equivalent to multiplying
by βb. The work is performed in-place which means the input and output are
the same. If the shift count b is less than or equal to zero the function returns
success without doing any work.

This function requires O(b) additional digits of memory and O(N) time.
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5.1.3 mp div 2d(mp int *a, int b, mp int *c, mp int *d)

Shifts a by a given number of bits to the right and is equivalent to dividing by
2b. The shifted number is stored in the c parameter. The remainder of a/2b is
optionally stored in d (if it is not passed as NULL). If the shift count b is less
than or equal to zero the function places a in c and returns success.

This function requires O(2 · N) additional digits of memory and O(2 · N)
time.

5.1.4 mp mul 2d(mp int *a, int b, mp int *c)

Shifts a by a given number of bits to the left and is equivalent to multiplying
by 2b. The shifted number is placed in the c parameter. If the shift count b is
less than or equal to zero the function places a in c and returns success.

This function requires O(N) additional digits of memory and O(2 ·N) time.

5.1.5 mp mod 2d(mp int *a, int b, mp int *c)

Performs the action of reducing a modulo 2b and stores the result in c. If the
shift count b is less than or equal to zero the function places a in c and returns
success.

This function requires O(N) additional digits of memory and O(2 ·N) time.

5.2 Basic Arithmetic

5.2.1 mp cmp(mp int *a, mp int *b)

Performs a signed comparison between a and b returning MP GT is a is larger
than b.

This function requires no additional memory and O(N) time.

5.2.2 mp cmp mag(mp int *a, mp int *b)

Performs a unsigned comparison between a and b returning MP GT is a is
larger than b. Note that this comparison is unsigned which means it will report,
for example, −5 > 3. By comparison mp cmp will report −5 < 3.

This function requires no additional memory and O(N) time.

5.2.3 mp add(mp int *a, mp int *b, mp int *c)

Computes c = a + b using signed arithmetic. Handles the sign of the numbers
which means it will subtract as required, e.g. a +−b turns into a− b.

This function requires no additional memory and O(N) time.
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5.2.4 mp sub(mp int *a, mp int *b, mp int *c)

Computes c = a − b using signed arithmetic. Handles the sign of the numbers
which means it will add as required, e.g. a−−b turns into a + b.

This function requires no additional memory and O(N) time.

5.2.5 mp mul(mp int *a, mp int *b, mp int *c)

Computes c = a · b using signed arithmetic. Handles the sign of the numbers
correctly which means it will correct the sign of the product as required, e.g.
a · −b turns into −ab.

For relatively small inputs, that is less than 80 digits a standard baseline or
comba-baseline multiplier is used. It requires no additional memory and O(N2)
time. The comba-baseline multiplier is only used if it can safely be used without
losing carry digits. The comba method is faster than the baseline method but
cannot always be used which is why both are provided. The code will automat-
ically determine when it can be used. If the digit count is higher than 80 for
the inputs than a Karatsuba multiplier is used which requires approximately
O(6 ·N) memory and O(N lg(3)) time.

5.2.6 mp sqr(mp int *a, mp int *b)

Computes b = a2. For relatively small inputs, that is less than 80 digits a
modified squaring or comba-squaring algorithm is used. It requires no additional
memory and O((N2 + N)/2) time. The comba-squaring method is used only if
it can be safely used without losing carry digits. After 80 digits a Karatsuba
squaring algorithm is used whcih requires approximately O(4 ·N) memory and
O(N lg(3)) time.

5.2.7 mp div(mp int *a, mp int *b, mp int *c, mp int *d)

Computes c = ba/bc and d ≡ a (mod b). The division is signed which means
the sign of the output is not always positive. The sign of the remainder equals
the sign of a while the sign of the quotient equals the product of the ratios
(a/|a|) · (b/|b|). Both c and d can be optionally passed as NULL if the value is
not desired. For example, if you want only the quotient of x/y then mp div(&x,
&y, &z, NULL) is acceptable.

This function requires O(4 ·N) memory and O(3 ·N2) time.

5.2.8 mp mod(mp int *a, mp int *b, mp int *c)

Computes c ≡ a (mod b) but with the added condition that 0 ≤ c < b. That is
a normal division is performed and if the remainder is negative b is added to it.
Since adding b modulo b is equivalent to adding zero (0 ≡ b (mod b)) the result
is accurate. The results are undefined when b ≤ 0, in theory the routine will
still give a properly congruent answer but it will not always be positive.

This function requires O(4 ·N) memory and O(3 ·N2) time.
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5.3 Number Theoretic Functions

5.3.1 mp addmod, mp submod, mp mulmod, mp sqrmod

These functions take the time of their host function plus the time it takes to
perform a division. For example, mp addmod takes O(N + 3 ·N2) time. Note
that if you are performing many modular operations in a row with the same
modulus you should consider Barrett reductions.

Also note that these functions use mp mod which means the result are guar-
anteed to be positive.

5.3.2 mp invmod(mp int *a, mp int *b, mp int *c)

This function will find c = 1/a (mod b) for any value of a such that (a, b) = 1
and b > 0. When b is odd a “fast” variant is used which finds the inverse twice
as fast.

5.3.3 mp gcd(mp int *a, mp int *b, mp int *c)

Finds the greatest common divisor of both a and b and places the result in c.
Will work with either positive or negative inputs.

Functions requires no additional memory and approximately O(N · log(N))
time.

5.3.4 mp lcm(mp int *a, mp int *b, mp int *c)

Finds the least common multiple of both a and b and places the result in c. Will
work with either positive or negative inputs. This is calculated by dividing the
product of a and b by the greatest common divisor of both.

Functions requires no additional memory and approximately O(4 ·N2) time.

5.3.5 mp n root(mp int *a, mp digit b, mp int c)

Finds the b’th root of a and stores it in b. The roots are found such that
|c|b ≤ |a|. Uses the Newton approximation approach which means it converges
in O(logβN ) time to a final result. Each iteration requires b multiplications and
one division for a total work of O(6N2 · logβN ) = O(6N3 · logβ).

If the input a is negative and b is even the function returns an error. Oth-
erwise the function will return a root that has a sign that agrees with the sign
of a.

5.3.6 mp exptmod(mp int *a, mp int *b, mp int *c, mp int *d)

Computes d = ab (mod c) using a sliding window k-ary exponentiation algo-
rithm. For an α-bit exponent it performs α squarings and at most bα/kc + k
multiplications. The value of k is chosen to minimize the number of multiplica-
tions required for a given value of α. Barrett reductions are used to reduce the
squared or multiplied temporary results modulo c. A Barrett reduction requires
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one division that is performed only and two half multipliers of N digit numbers
resulting in approximation O((N2)/2) work.

Let γ = bα/kc + k represent the total multiplications. The total work of a
exponentiation is therefore, O(3·N2+(α+γ)·((N2)/2)+α·((N2+N)/2)+γ ·N2)
which simplies to O(3 · N2 + γN2 + α(N2 + (N/2))). The bulk of the time is
spent in the Barrett reductions and the squaring algorithms. Since γ < α it
makes sense to optimize first the Barrett and squaring routines first. Significant
improvements in the future will most likely stem from optimizing these instead
of optimizing the multipliers.

6 Timing Analysis

6.1 Observed Timings

A simple test program “demo.c” was developed which builds with either MPI
or LibTomMath (without modification). The test was conducted on an AMD
Athlon XP processor with 266Mhz DDR memory and the GCC 3.2 compiler3.
The multiplications and squarings were repeated 100,000 times each while the
modular exponentiation (exptmod) were performed 50 times each. The “inver-
sions” refers to multiplicative inversions modulo an odd number of a given size.
The RDTSC (Read Time Stamp Counter) instruction was used to measure the
time the entire iterations took and was divided by the number of iterations to
get an average. The following results were observed.

3With build options “-O3 -fomit-frame-pointer -funroll-loops”
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Operation Size (bits) Time with MPI (cycles) Time with LibTomMath (cycles)

Inversion 128 264,083 59,782
Inversion 256 549,370 146,915
Inversion 512 1,675,975 367,172
Inversion 1024 5,237,957 1,054,158
Inversion 2048 17,871,944 3,459,683
Inversion 4096 66,610,468 11,834,556

Multiply 128 1,426 451
Multiply 256 2,551 958
Multiply 512 7,913 2,476
Multiply 1024 28,496 7,927
Multiply 2048 109,897 282,24
Multiply 4096 469,970 104,681

Square 128 1,319 511
Square 256 1,776 947
Square 512 5,399 2,153
Square 1024 18,991 5,733
Square 2048 72,126 17,621
Square 4096 306,269 70,168

Exptmod 512 32,021,586 4,472,406
Exptmod 768 97,595,492 10,427,845
Exptmod 1024 223,302,532 20,561,722
Exptmod 2048 1,682,223,369 113,978,803
Exptmod 2560 3,268,615,571 236,650,133
Exptmod 3072 5,597,240,141 373,449,291
Exptmod 4096 13,347,270,891 787,568,457

Note that the figures do fluctuate but their magnitudes are relatively intact.
The purpose of the chart is not to get an exact timing but to compare the two
libraries. For example, in all of the tests the exact time for a 512-bit squaring
operation was not the same. The observed times were all approximately 2,500
cycles, more importantly they were always faster than the timings observed with
MPI by about the same magnitude.

6.2 Digit Size

The first major constribution to the time savings is the fact that 28 bits are
stored per digit instead of the MPI defualt of 16. This means in many of the
algorithms the savings can be considerable. Consider a baseline multiplier with
a 1024-bit input. With MPI the input would be 64 16-bit digits whereas in
LibTomMath it would be 37 28-bit digits. A savings of 642 − 372 = 2727 single
precision multiplications.

6.3 Multiplication Algorithms

For most inputs a typical baseline O(n2) multiplier is used which is similar to
that of MPI. There are two variants of the baseline multiplier. The normal
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and the fast variants. The normal baseline multiplier is the exact same as the
algorithm from MPI. The fast baseline multiplier is optimized for cases where
the number of input digits N is less than or equal to 2w/β2. Where w is the
number of bits in a mp word. By default a mp word is 64-bits which means
N ≤ 256 is allowed which represents numbers upto 7168 bits.

The fast baseline multiplier is optimized by removing the carry operations
from the inner loop. This is often referred to as the “comba” method since it
computes the products a columns first then figures out the carries. This has the
effect of making a very simple and paralizable inner loop.

For large inputs, typically 80 digits4 or more the Karatsuba method is
used. This method has significant overhead but an asymptotic running time
of O(n1.584) which means for fairly large inputs this method is faster. The
Karatsuba implementation is recursive which means for extremely large inputs
they will benefit from the algorithm.

MPI only implements the slower baseline multiplier where carries are dealt
with in the inner loop. As a result even at smaller numbers (below the Karatsuba
cutoff) the LibTomMath multipliers are faster.

6.4 Squaring Algorithms

Similar to the multiplication algorithms there are two baseline squaring algo-
rithms. Both have an asymptotic running time of O((t2 + t)/2). The normal
baseline squaring is the same from MPI and the fast is a “comba” squaring
algorithm. The comba method is used if the number of digits N is less than
2w−1/β2 which by default covers numbers upto 3584 bits.

There is also a Karatsuba squaring method which achieves a running time
of O(n1.584) after considerably large inputs.

MPI only implements the slower baseline squaring algorithm. As a result
LibTomMath is considerably faster at squaring than MPI is.

6.5 Exponentiation Algorithms

LibTomMath implements a sliding window k-ary left to right exponentiation
algorithm. For a given exponent size L an appropriate window size k is chosen.
There are always at most L modular squarings and bL/kc modular multiplica-
tions. The k-ary method works by precomputing values g(x) = bx for 0 ≤ x < 2k

and a given base b. Then the multiplications are grouped in windows of k bits.
The sliding window technique has the benefit that it can skip multiplications
if there are zero bits following or preceding a window. Consider the exponent
e = 111100012 if k = 2 then there will be a two squarings, a multiplication of
g(3), two squarings, a multiplication of g(3), four squarings and and a multipli-
cation by g(1). In total there are 8 squarings and 3 multiplications.

MPI uses a binary square-multiply method. For the same exponent e it
would have had 8 squarings and 5 multiplications. There is a precomputation

4By default that is 2240-bits or more.
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phase for the method LibTomMath uses but it generally cuts down considerably
on the number of multiplications. Consider a 512-bit exponent. The worst case
for the LibTomMath method results in 512 squarings and 124 multiplications.
The MPI method would have 512 squarings and 512 multiplications. Randomly
every 2k bits another multiplication is saved via the sliding-window technique
on top of the savings the k-ary method provides.

Both LibTomMath and MPI use Barrett reduction instead of division to
reduce the numbers modulo the modulus given. However, LibTomMath can
take advantage of the fact that the multiplications required within the Barrett
reduction do not have to give full precision. As a result the reduction step is
much faster and just as accurate. The LibTomMath code will automatically
determine at run-time (e.g. when its called) whether the faster multiplier can
be used. The faster multipliers have also been optimized into the two variants
(baseline and comba baseline).

As a result of all these changes exponentiation in LibTomMath is much faster
than compared to MPI.
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