
LibTomMath v0.14

A Free Multiple Precision Integer Library

http://math.libtomcrypt.org

Tom St Denis
tomstdenis@iahu.ca

March 12, 2003

1

1 Introduction

“LibTomMath” is a free and open source library that provides multiple-precision
integer functions required to form a basis of a public key cryptosystem. LibTom-
Math is written entire in portable ISO C source code and designed to have an
application interface much like that of MPI from Michael Fromberger.

LibTomMath was written from scratch by Tom St Denis but designed to be
drop in replacement for the MPI package. The algorithms within the library are
derived from descriptions as provided in the Handbook of Applied Cryptogra-
phy and Knuth’s “The Art of Computer Programming”. The library has been
extensively optimized and should provide quite comparable timings as compared
to many free and commercial libraries.

LibTomMath was designed with the following goals in mind:

1. Be a drop in replacement for MPI.

2. Be much faster than MPI.

3. Be written entirely in portable C.

All three goals have been achieved to one extent or another (actual figures
depend on what platform you are using).

Being compatible with MPI means that applications that already use it can
be ported fairly quickly. Currently there are a few differences but there are
many similarities. In fact the average MPI based application can be ported in
under 15 minutes.

Thanks goes to Michael Fromberger for answering a couple questions and
Colin Percival for having the patience and courtesy to help debug and suggest
optimizations. They were both of great help!

2 Building Against LibTomMath

As of v0.12 LibTomMath is not a simple single source file project like MPI.
LibTomMath retains the exact same API as MPI but is implemented differently.
To build LibTomMath you will need a copy of GNU cc and GNU make. Both
are free so if you don’t have a copy don’t whine to me about it.

To build the library type

make

This will build the library file libtommath.a. If you want to build the library
and also install it (in /usr/bin and /usr/include) then type

make install

Now within your application include “tommath.h” and link against libtom-
math.a to get MPI-like functionality.

2

2.1 Microsoft Visual C++

A makefile is also provided for MSVC (tested against MSVC 6.00 with SP5)
which allows the library to be used with that compiler as well. To build the
library type

nmake -f makefile.msvc

Which will build “tommath.lib”.

3 Programming with LibTomMath

3.1 The mp int Structure

All multiple precision integers are stored in a structure called mp int. A multi-
ple precision integer is essentially an array of mp digit. mp digit is defined at
the top of “tommath.h”. The type can be changed to suit a particular platform.

For example, when MP 8BIT is defined a mp digit is a unsigned char and
holds seven bits. Similarly when MP 16BIT is defined a mp digit is a unsigned
short and holds 15 bits. By default a mp digit is a unsigned long and holds 28
bits which is optimal for most 32 and 64 bit processors.

The choice of digit is particular to the platform at hand and what available
multipliers are provided. For MP 8BIT either a 8 × 8 ⇒ 16 or 16 × 16 ⇒ 16
multiplier is optimal. When MP 16BIT is defined either a 16 × 16 ⇒ 32 or
32× 32 ⇒ 32 multiplier is optimal. By default a 32× 32 ⇒ 64 or 64× 64 ⇒ 64
multiplier is optimal.

This gives the library some flexibility. For example, a i8051 has a 8×8 ⇒ 16
multiplier. The 16-bit x86 instruction set has a 16 × 16 ⇒ 32 multiplier. In
practice this library is not particularly designed for small devices like an i8051
due to the size. It is possible to strip out functions which are not required to
drop the code size. More realistically the library is well suited to 32 and 64-bit
processors that have decent integer multipliers. The AMD Athlon XP and Intel
Pentium 4 processors are examples of well suited processors.

Throughout the discussions there will be references to a used and alloc
members of an integer. The used member refers to how many digits are actually
used in the representation of the integer. The alloc member refers to how many
digits have been allocated off the heap. There is also the β quantity which is
equal to 2W where W is the number of bits in a digit (default is 28).

3.2 Calling Functions

Most functions expect pointers to mp int’s as parameters. To save on memory
usage it is possible to have source variables as destinations. The arguements
are read left to right so to compute x + y = z you would pass the arguments in
the order x, y, z. For example:

3

mp_add(&x, &y, &x); /* x = x + y */
mp_mul(&y, &x, &z); /* z = y * x */
mp_div_2(&x, &y); /* y = x / 2 */

3.3 Return Values

All functions that return errors will return MP OKAY if the function was
succesful. It will return MP MEM if it ran out of heap memory or MP VAL
if one of the arguements is out of range.

3.4 Basic Functionality

Before an mp int can be used it must be initialized with

int mp_init(mp_int *a);

For example, consider the following.

#include "tommath.h"
int main(void)
{

mp_int num;
if (mp_init(&num) != MP_OKAY) {

printf("Error initializing a mp_int.\n");
}
return 0;

}

A mp int can be freed from memory with

void mp_clear(mp_int *a);

This will zero the memory and free the allocated data. There are a set of
trivial functions to manipulate the value of an mp int.

/* set to zero */
void mp_zero(mp_int *a);

/* set to a digit */
void mp_set(mp_int *a, mp_digit b);

/* set a 32-bit const */
int mp_set_int(mp_int *a, unsigned long b);

/* init to a given number of digits */
int mp_init_size(mp_int *a, int size);

4

/* copy, b = a */
int mp_copy(mp_int *a, mp_int *b);

/* inits and copies, a = b */
int mp_init_copy(mp_int *a, mp_int *b);

The mp zero function will clear the contents of a mp int and set it to
positive. The mp set function will zero the integer and set the first digit to
a value specified. The mp set int function will zero the integer and set the
first 32-bits to a given value. It is important to note that using mp set can
have unintended side effects when either the MP 8BIT or MP 16BIT defines
are enabled. By default the library will accept the ranges of values MPI will
(and more).

The mp init size function will initialize the integer and set the allocated
size to a given value. The allocated digits are zero’ed by default but not marked
as used. The mp copy function will copy the digits (and sign) of the first pa-
rameter into the integer specified by the second parameter. The mp init copy
will initialize the first integer specified and copy the second one into it. Note
that the order is reversed from that of mp copy. This odd “bug” was kept to
maintain compatibility with MPI.

3.5 Digit Manipulations

There are a class of functions that provide simple digit manipulations such as
shifting and modulo reduction of powers of two.

/* right shift by "b" digits */
void mp_rshd(mp_int *a, int b);

/* left shift by "b" digits */
int mp_lshd(mp_int *a, int b);

/* c = a / 2^b */
int mp_div_2d(mp_int *a, int b, mp_int *c);

/* b = a/2 */
int mp_div_2(mp_int *a, mp_int *b);

/* c = a * 2^b */
int mp_mul_2d(mp_int *a, int b, mp_int *c);

/* b = a*2 */
int mp_mul_2(mp_int *a, mp_int *b);

/* c = a mod 2^d */
int mp_mod_2d(mp_int *a, int b, mp_int *c);

5

/* computes a = 2^b */
int mp_2expt(mp_int *a, int b);

/* makes a pseudo-random int of a given size */
int mp_rand(mp_int *a, int digits);

3.6 Binary Operations

/* c = a XOR b */
int mp_xor(mp_int *a, mp_int *b, mp_int *c);

/* c = a OR b */
int mp_or(mp_int *a, mp_int *b, mp_int *c);

/* c = a AND b */
int mp_and(mp_int *a, mp_int *b, mp_int *c);

3.7 Basic Arithmetic

Next are the class of functions which provide basic arithmetic.

/* b = -a */
int mp_neg(mp_int *a, mp_int *b);

/* b = |a| */
int mp_abs(mp_int *a, mp_int *b);

/* compare a to b */
int mp_cmp(mp_int *a, mp_int *b);

/* compare |a| to |b| */
int mp_cmp_mag(mp_int *a, mp_int *b);

/* c = a + b */
int mp_add(mp_int *a, mp_int *b, mp_int *c);

/* c = a - b */
int mp_sub(mp_int *a, mp_int *b, mp_int *c);

/* c = a * b */
int mp_mul(mp_int *a, mp_int *b, mp_int *c);

6

/* b = a^2 */
int mp_sqr(mp_int *a, mp_int *b);

/* a/b => cb + d == a */
int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);

/* c = a mod b, 0 <= c < b */
int mp_mod(mp_int *a, mp_int *b, mp_int *c);

3.8 Single Digit Functions

/* compare against a single digit */
int mp_cmp_d(mp_int *a, mp_digit b);

/* c = a + b */
int mp_add_d(mp_int *a, mp_digit b, mp_int *c);

/* c = a - b */
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);

/* c = a * b */
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);

/* a/b => cb + d == a */
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);

/* c = a mod b, 0 <= c < b */
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);

Note that care should be taken for the value of the digit passed. By default,
any 28-bit integer is a valid digit that can be passed into the function. However,
if MP 8BIT or MP 16BIT is defined only 7 or 15-bit (respectively) integers can
be passed into it.

3.9 Modular Arithmetic

There are some trivial modular arithmetic functions.

/* d = a + b (mod c) */
int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);

/* d = a - b (mod c) */
int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);

/* d = a * b (mod c) */
int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);

7

/* c = a * a (mod b) */
int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);

/* c = 1/a (mod b) */
int mp_invmod(mp_int *a, mp_int *b, mp_int *c);

/* c = (a, b) */
int mp_gcd(mp_int *a, mp_int *b, mp_int *c);

/* c = [a, b] or (a*b)/(a, b) */
int mp_lcm(mp_int *a, mp_int *b, mp_int *c);

/* find the b’th root of a */
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);

/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
int mp_jacobi(mp_int *a, mp_int *n, int *c);

/* used to setup the Barrett reduction for a given modulus b */
int mp_reduce_setup(mp_int *a, mp_int *b);

/* Barrett Reduction, computes a (mod b) with a precomputed value c
*
* Assumes that 0 < a <= b^2, note if 0 > a > -(b^2) then you can merely
* compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
*/

int mp_reduce(mp_int *a, mp_int *b, mp_int *c);

/* setups the montgomery reduction */
int mp_montgomery_setup(mp_int *a, mp_digit *mp);

/* computes xR^-1 == x (mod N) via Montgomery Reduction */
int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);

/* d = a^b (mod c) */
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);

3.10 Radix Conversions

To read or store integers in other formats there are the following functions.

int mp_unsigned_bin_size(mp_int *a);
int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
int mp_to_unsigned_bin(mp_int *a, unsigned char *b);

8

int mp_signed_bin_size(mp_int *a);
int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
int mp_to_signed_bin(mp_int *a, unsigned char *b);

int mp_read_radix(mp_int *a, unsigned char *str, int radix);
int mp_toradix(mp_int *a, unsigned char *str, int radix);
int mp_radix_size(mp_int *a, int radix);

The integers are stored in big endian format as most libraries (and MPI)
expect. The mp read radix and mp toradix functions read and write (re-
spectively) null terminated ASCII strings in a given radix. Valid values for the
radix are between 2 and 64 (inclusively).

4 Function Analysis

Throughout the function analysis the variable N will denote the average size of
an input to a function as measured by the number of digits it has. The variable
W will denote the number of bits per word and c will denote a small constant
amount of work. The big-oh notation will be abused slightly to consider numbers
that do not grow to infinity. That is we shall consider O(N/2) 6= O(N) which
is an abuse of the notation.

4.1 Digit Manipulation Functions

The class of digit manipulation functions such as mp rshd, mp lshd and
mp mul 2 are all very simple functions to analyze.

4.1.1 mp rshd(mp int *a, int b)

Shifts a by given number of digits to the right and is equivalent to dividing
by βb. The work is performed in-place which means the input and output are
the same. If the shift count b is less than or equal to zero the function returns
without doing any work. If the the shift count is larger than the number of
digits in a then a is simply zeroed without shifting digits.

This function requires no additional memory and O(N) time.

4.1.2 mp lshd(mp int *a, int b)

Shifts a by a given number of digits to the left and is equivalent to multiplying
by βb. The work is performed in-place which means the input and output are
the same. If the shift count b is less than or equal to zero the function returns
success without doing any work.

This function requires O(b) additional digits of memory and O(N) time.

9

4.1.3 mp div 2d(mp int *a, int b, mp int *c, mp int *d)

Shifts a by a given number of bits to the right and is equivalent to dividing by
2b. The shifted number is stored in the c parameter. The remainder of a/2b is
optionally stored in d (if it is not passed as NULL). If the shift count b is less
than or equal to zero the function places a in c and returns success.

This function requires O(2 · N) additional digits of memory and O(2 · N)
time.

4.1.4 mp mul 2d(mp int *a, int b, mp int *c)

Shifts a by a given number of bits to the left and is equivalent to multiplying
by 2b. The shifted number is placed in the c parameter. If the shift count b is
less than or equal to zero the function places a in c and returns success.

This function requires O(N) additional digits of memory and O(2 ·N) time.

4.1.5 mp mul 2(mp int *a, mp int *b)

Multiplies a by two and stores in b. This function is hard coded todo a shift by
one place so it is faster than calling mp mul 2d with a count of one.

This function requires O(N) additional digits of memory and O(N) time.

4.1.6 mp div 2(mp int *a, mp int *b)

Divides a by two and stores in b. This function is hard coded todo a shift by
one place so it is faster than calling mp div 2d with a count of one.

This function requires O(N) additional digits of memory and O(N) time.

4.1.7 mp mod 2d(mp int *a, int b, mp int *c)

Performs the action of reducing a modulo 2b and stores the result in c. If the
shift count b is less than or equal to zero the function places a in c and returns
success.

This function requires O(N) additional digits of memory and O(2 ·N) time.

4.1.8 mp 2expt(mp int *a, int b)

Computes a = 2b by first setting a to zero then OR’ing the correct bit to get
the right value.

4.1.9 mp rand(mp int *a, int digits)

Computes a pseudo-random (via rand()) integer that is always “digits” digits
in length. Not for cryptographic use.

10

4.2 Binary Arithmetic

4.2.1 mp xor(mp int *a, mp int *b, mp int *c)

Computes c = a⊕ b, pseudo-extends with zeroes whichever of a or b is shorter
such that the length of c is the maximum length of the two inputs.

4.2.2 mp or(mp int *a, mp int *b, mp int *c)

Computes c = a ∨ b, pseudo-extends with zeroes whichever of a or b is shorter
such that the length of c is the maximum length of the two inputs.

4.2.3 mp and(mp int *a, mp int *b, mp int *c)

Computes c = a ∧ b, pseudo-extends with zeroes whichever of a or b is shorter
such that the length of c is the maximum length of the two inputs.

4.3 Basic Arithmetic

4.3.1 mp cmp(mp int *a, mp int *b)

Performs a signed comparison between a and b returning MP GT if a is larger
than b.

This function requires no additional memory and O(N) time.

4.3.2 mp cmp mag(mp int *a, mp int *b)

Performs a unsigned comparison between a and b returning MP GT is a is
larger than b. Note that this comparison is unsigned which means it will report,
for example, −5 > 3. By comparison mp cmp will report −5 < 3.

This function requires no additional memory and O(N) time.

4.3.3 mp add(mp int *a, mp int *b, mp int *c)

Computes c = a + b using signed arithmetic. Handles the sign of the numbers
which means it will subtract as required, e.g. a +−b turns into a− b.

This function requires no additional memory and O(N) time.

4.3.4 mp sub(mp int *a, mp int *b, mp int *c)

Computes c = a − b using signed arithmetic. Handles the sign of the numbers
which means it will add as required, e.g. a−−b turns into a + b.

This function requires no additional memory and O(N) time.

11

4.3.5 mp mul(mp int *a, mp int *b, mp int *c)

Computes c = a · b using signed arithmetic. Handles the sign of the numbers
correctly which means it will correct the sign of the product as required, e.g.
a · −b turns into −ab.

This function requires O(N2) time for small inputs and O(N1.584) time for
relatively large inputs (above the KARATSUBA MUL CUTOFF value defined
in bncore.c.). There is considerable overhead in the Karatsuba method which
only pays off when the digit count is fairly high (typically around 80). For small
inputs the function requires O(2N) memory, otherwise it requires O(6·lg(N)·N)
memory.

4.3.6 mp sqr(mp int *a, mp int *b)

Computes b = a2 and fixes the sign of b to be positive.
This function has a running time and memory requirement profile very sim-

ilar to that of the mp mul function. It is always faster and uses less memory for
the larger inputs.

4.3.7 mp div(mp int *a, mp int *b, mp int *c, mp int *d)

Computes c = ba/bc and d ≡ a (mod b). The division is signed which means
the sign of the output is not always positive. The sign of the remainder equals
the sign of a while the sign of the quotient equals the product of the ratios
(a/|a|) · (b/|b|). Both c and d can be optionally passed as NULL if the value is
not desired. For example, if you want only the quotient of x/y then mp div(&x,
&y, &z, NULL) is acceptable.

This function requires O(4 ·N) memory and O(3 ·N2) time.

4.3.8 mp mod(mp int *a, mp int *b, mp int *c)

Computes c ≡ a (mod b) but with the added condition that 0 ≤ c < b. That is
a normal division is performed and if the remainder is negative b is added to it.
Since adding b modulo b is equivalent to adding zero (0 ≡ b (mod b)) the result
is accurate. The results are undefined when b ≤ 0, in theory the routine will
still give a properly congruent answer but it will not always be positive.

This function requires O(4 ·N) memory and O(3 ·N2) time.

4.4 Number Theoretic Functions

4.4.1 mp addmod, mp submod, mp mulmod, mp sqrmod

These functions take the time of their host function plus the time it takes to
perform a division. For example, mp addmod takes O(N + 3 ·N2) time. Note
that if you are performing many modular operations in a row with the same
modulus you should consider Barrett reductions.

Also note that these functions use mp mod which means the result are guar-
anteed to be positive.

12

4.4.2 mp invmod(mp int *a, mp int *b, mp int *c)

This function will find c = 1/a (mod b) for any value of a such that (a, b) = 1
and b > 0. When b is odd a “fast” variant is used which finds the inverse twice as
fast. If no inverse is found (e.g. (a, b) 6= 1) then the function returns MP VAL
and the result in c is undefined.

4.4.3 mp gcd(mp int *a, mp int *b, mp int *c)

Finds the greatest common divisor of both a and b and places the result in c.
Will work with either positive or negative inputs.

Functions requires no additional memory and approximately O(N · log(N))
time.

4.4.4 mp lcm(mp int *a, mp int *b, mp int *c)

Finds the least common multiple of both a and b and places the result in c. Will
work with either positive or negative inputs. This is calculated by dividing the
product of a and b by the greatest common divisor of both.

Functions requires no additional memory and approximately O(4 ·N2) time.

4.4.5 mp n root(mp int *a, mp digit b, mp int *c)

Finds the b’th root of a and stores it in b. The roots are found such that
|c|b ≤ |a|. Uses the Newton approximation approach which means it converges
in O(logβN) time to a final result. Each iteration requires b multiplications and
one division for a total work of O(6N2 · logβN) = O(6N3 · logβ).

If the input a is negative and b is even the function returns MP VAL.
Otherwise the function will return a root that has a sign that agrees with the
sign of a.

4.4.6 mp jacobi(mp int *a, mp int *n, int *c)

Computes c =
(

a
n

)
or the Jacobi function of (a, n) and stores the result in an

integer addressed by c. Since the result of the Jacobi function
(

a
n

)
∈ {−1, 0, 1}

it seemed natural to store the result in a simple C style int. If n is prime then
the Jacobi function produces the same results as the Legendre function1. This
means if n is prime then

(
a
n

)
is equal to 1 if a is a quadratic residue modulo n

or −1 if it is not.

4.4.7 mp exptmod(mp int *a, mp int *b, mp int *c, mp int *d)

Computes d = ab (mod c) using a sliding window k-ary exponentiation algo-
rithm. For an α-bit exponent it performs α squarings and at most bα/kc+2k−1

1Source: Handbook of Applied Cryptography, pp. 73

13

multiplications. The value of k is chosen to minimize the number of multipli-
cations required for a given value of α. Barrett or Montgomery reductions are
used to reduce the squared or multiplied temporary results modulo c.

4.5 Fast Modular Reductions

4.5.1 mp reduce(mp int *a, mp int *b, mp int *c)

Computes a Barrett reduction in-place of a modulo b with respect to c. In
essence it computes a ≡ a (mod b) provided 0 ≤ a ≤ b2. The value of c is
precomputed with the function mp reduce setup(). The modulus b must be
larger than zero.

The Barrett reduction function has been optimized to use partial multipliers
which means compared to MPI it performs have the number of single precision
multipliers (provided they have the same size digits). The partial multipliers
(one of which is shared with mp mul) both have baseline and comba variants.
Barrett reduction can reduce a number modulo a n−digit modulus with approx-
imately 2n2 single precision multiplications.

4.5.2 mp montgomery reduce(mp int *a, mp int *m, mp digit mp)

Computes a Montgomery reduction in-place of a modulo b with respect to mp.
If b is some n−digit modulus then R = βn+1. The result of this function is
aR−1 (mod b) provided that 0 ≤ a ≤ b2. The value of mp is precomputed with
the function mp montgomery setup(). The modulus b must be odd and larger
than zero.

The Montgomery reduction comes in two variants. A standard baseline
and a fast comba method. The baseline routine is in fact slower than the
Barrett reductions, however, the comba routine is much faster. Montomgery
reduction can reduce a number modulo a n−digit modulus with approximately
n2 + n single precision multiplications. Compared to Barrett reductions the
montgomery reduction requires half as many multiplications as n →∞.

Note that the final result of a Montgomery reduction is not just the value
reduced modulo b. You have to multiply by R modulo b to get the real result.
At first that may not seem like such a worthwhile routine, however, the exptmod
function can be made to take advantage of this such that only one normalization
at the end is required.

This stems from the fact that if a → aR−1 through Montgomery reduction
and if a = vR and b = uR then a2 → v2R2R−1 ≡ v2R and ab → uvRRR−1 ≡
uvR. The next useful observation is that through the reduction a → vRR−1 ≡ v
which means given a final result it can be normalized with a single reduction.
Now a series of complicated modular operations can be optimized if all the vari-
ables are initially multiplied by R then the final result normalized by performing
an extra reduction.

If many variables are to be normalized the simplest method to setup the
variables is to first compute x̂ ≡ R2 mod m. Now all the variables in the

14

system can be multiplied by x̂ and reduced with Montgomery reduction. This
means that two long divisions would be required to setup x̂ and a multiplication
followed by reduction for each variable.

A very useful observation is that multiplying by R = βn amounts to perform-
ing a left shift by n positions which requires no single precision multiplications.

5 Timing Analysis

5.1 Digit Size

The first major constribution to the time savings is the fact that 28 bits are
stored per digit instead of the MPI defualt of 16. This means in many of the
algorithms the savings can be considerable. Consider a baseline multiplier with
a 1024-bit input. With MPI the input would be 64 16-bit digits whereas in
LibTomMath it would be 37 28-bit digits. A savings of 642 − 372 = 2727 single
precision multiplications.

5.2 Multiplication Algorithms

For most inputs a typical baseline O(n2) multiplier is used which is similar to
that of MPI. There are two variants of the baseline multiplier. The normal and
the fast comba variant. The normal baseline multiplier is the exact same as the
algorithm from MPI. The fast comba baseline multiplier is optimized for cases
where the number of input digits N is less than or equal to 2w/β2. Where w is
the number of bits in a mp word or simply lg(β). By default a mp word is 64-
bits which means N ≤ 256 is allowed which represents numbers upto 7, 168 bits.
However, since the Karatsuba multiplier (discussed below) will kick in before
that size the slower baseline algorithm (that MPI uses) should never really be
used in a default configuration.

The fast comba baseline multiplier is optimized by removing the carry op-
erations from the inner loop. This is often referred to as the “comba” method
since it computes the products a columns first then figures out the carries. To
accomodate this the result of the inner multiplications must be stored in words
large enough not to lose the carry bits. This is why there is a limit of 2w/β2

digits in the input. This optimization has the effect of making a very simple
and efficient inner loop.

5.2.1 Karatsuba Multiplier

For large inputs, typically 80 digits2 or more the Karatsuba multiplication
method is used. This method has significant overhead but an asymptotic run-
ning time of O(n1.584) which means for fairly large inputs this method is faster
than the baseline (or comba) algorithm. The Karatsuba implementation is

2By default that is 2240-bits or more.

15

recursive which means for extremely large inputs they will benefit from the
algorithm.

The algorithm is based on the observation that if

x = x0 + x1β

y = y0 + y1β (1)

Where x0, x1, y0, y1 are half the size of their respective summand than

x · y = x1y1β
2 + ((x1 − y1)(x0 − y0) + x0y0 + x1y1)β + x0y0 (2)

It is trivial that from this only three products have to be produced: x0y0, x1y1, (x1−
y1)(x0− y0) which are all of half size numbers. A multiplication of two half size
numbers requires only 1

4 of the original work which means with no recursion
the Karatsuba algorithm achieves a running time of 3n2

4 . The routine provided
does recursion which is where the O(n1.584) work factor comes from.

The multiplication by β and β2 amount to digit shift operations. The extra
overhead in the Karatsuba method comes from extracting the half size numbers
x0, x1, y0, y1 and performing the various smaller calculations.

The library has been fairly optimized to extract the digits using hard-coded
routines instead of the hire level functions however there is still significant over-
head to optimize away.

MPI only implements the slower baseline multiplier where carries are dealt
with in the inner loop. As a result even at smaller numbers (below the Karatsuba
cutoff) the LibTomMath multipliers are faster.

5.3 Squaring Algorithms

Similar to the multiplication algorithms there are two baseline squaring algo-
rithms. Both have an asymptotic running time of O((t2 + t)/2). The normal
baseline squaring is the same from MPI and the fast method is a “comba” squar-
ing algorithm. The comba method is used if the number of digits N is less than
2w−1/β2 which by default covers numbers upto 3, 584 bits.

There is also a Karatsuba squaring method which achieves a running time
of O(n1.584) after considerably large inputs.

MPI only implements the slower baseline squaring algorithm. As a result
LibTomMath is considerably faster at squaring than MPI is.

5.4 Exponentiation Algorithms

LibTomMath implements a sliding window k-ary left to right exponentiation
algorithm. For a given exponent size L an appropriate window size k is cho-
sen. There are always at most L modular squarings and bL/kc modular mul-
tiplications. The k-ary method works by precomputing values g(x) = bx for
2k−1 ≤ x < 2k and a given base b. Then the multiplications are grouped in

16

windows of k bits. The sliding window technique has the benefit that it can skip
multiplications if there are zero bits following or preceding a window. Consider
the exponent e = 111100012 if k = 2 then there will be a two squarings, a multi-
plication of g(3), two squarings, a multiplication of g(3), four squarings and and
a multiplication by g(1). In total there are 8 squarings and 3 multiplications.

MPI uses a binary square-multiply method for exponentiation. For the same
exponent e = 111100012 it would have had to perform 8 squarings and 5 multi-
plications. There is a precomputation phase for the method LibTomMath uses
but it generally cuts down considerably on the number of multiplications. Con-
sider a 512-bit exponent. The worst case for the LibTomMath method results in
512 squarings and 124 multiplications. The MPI method would have 512 squar-
ings and 512 multiplications. Randomly every 2k bits another multiplication is
saved via the sliding-window technique on top of the savings the k-ary method
provides.

Both LibTomMath and MPI use Barrett reduction instead of division to
reduce the numbers modulo the modulus given. However, LibTomMath can
take advantage of the fact that the multiplications required within the Barrett
reduction do not have to give full precision. As a result the reduction step is
much faster and just as accurate. The LibTomMath code will automatically
determine at run-time (e.g. when its called) whether the faster multiplier can
be used. The faster multipliers have also been optimized into the two variants
(baseline and comba baseline).

LibTomMath also has a variant of the exptmod function that uses Mont-
gomery reductions instead of Barrett reductions which is faster. The code will
automatically detect when the Montgomery version can be used (Requires the
modulus to be odd and below the MONTGOMERY EXPT CUTOFF size). The
Montgomery routine is essentially a copy of the Barrett exponentiation routine
except it uses Montgomery reduction.

As a result of all these changes exponentiation in LibTomMath is much
faster than compared to MPI. On most ALU-strong processors (AMD Athlon
for instance) exponentiation in LibTomMath is often more then ten times faster
than MPI.

17

