/* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is library that provides for multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library is designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org */ #include /* integer signed division. c*b + d == a [e.g. a/b, c=quotient, d=remainder] * HAC pp.598 Algorithm 14.20 * * Note that the description in HAC is horribly incomplete. For example, * it doesn't consider the case where digits are removed from 'x' in the inner * loop. It also doesn't consider the case that y has fewer than three digits, etc.. * * The overall algorithm is as described as 14.20 from HAC but fixed to treat these cases. */ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) { mp_int q, x, y, t1, t2; int res, n, t, i, norm, neg; /* is divisor zero ? */ if (mp_iszero (b) == 1) { return MP_VAL; } /* if a < b then q=0, r = a */ if (mp_cmp_mag (a, b) == MP_LT) { if (d != NULL) { res = mp_copy (a, d); } else { res = MP_OKAY; } if (c != NULL) { mp_zero (c); } return res; } if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) { return res; } q.used = a->used + 2; if ((res = mp_init (&t1)) != MP_OKAY) { goto __Q; } if ((res = mp_init (&t2)) != MP_OKAY) { goto __T1; } if ((res = mp_init_copy (&x, a)) != MP_OKAY) { goto __T2; } if ((res = mp_init_copy (&y, b)) != MP_OKAY) { goto __X; } /* fix the sign */ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; x.sign = y.sign = MP_ZPOS; /* normalize both x and y, ensure that y >= b/2, [b == 2^DIGIT_BIT] */ norm = 0; while ((y.dp[y.used - 1] & (((mp_digit) 1) << (DIGIT_BIT - 1))) == ((mp_digit) 0)) { ++norm; if ((res = mp_mul_2 (&x, &x)) != MP_OKAY) { goto __Y; } if ((res = mp_mul_2 (&y, &y)) != MP_OKAY) { goto __Y; } } /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ n = x.used - 1; t = y.used - 1; /* step 2. while (x >= y*b^n-t) do { q[n-t] += 1; x -= y*b^{n-t} } */ if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b^{n-t} */ goto __Y; } while (mp_cmp (&x, &y) != MP_LT) { ++(q.dp[n - t]); if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) { goto __Y; } } /* reset y by shifting it back down */ mp_rshd (&y, n - t); /* step 3. for i from n down to (t + 1) */ for (i = n; i >= (t + 1); i--) { if (i > x.alloc) continue; /* step 3.1 if xi == yt then set q{i-t-1} to b-1, otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ if (x.dp[i] == y.dp[t]) { q.dp[i - t - 1] = ((1UL << DIGIT_BIT) - 1UL); } else { mp_word tmp; tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT); tmp |= ((mp_word) x.dp[i - 1]); tmp /= ((mp_word) y.dp[t]); if (tmp > (mp_word) MP_MASK) tmp = MP_MASK; q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); } /* step 3.2 while (q{i-t-1} * (yt * b + y{t-1})) > xi * b^2 + xi-1 * b + xi-2 do q{i-t-1} -= 1; */ q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK; do { q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK; /* find left hand */ mp_zero (&t1); t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; t1.dp[1] = y.dp[t]; t1.used = 2; if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) { goto __Y; } /* find right hand */ t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; t2.dp[2] = x.dp[i]; t2.used = 3; } while (mp_cmp (&t1, &t2) == MP_GT); /* step 3.3 x = x - q{i-t-1} * y * b^{i-t-1} */ if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) { goto __Y; } if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { goto __Y; } if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) { goto __Y; } /* step 3.4 if x < 0 then { x = x + y*b^{i-t-1}; q{i-t-1} -= 1; } */ if (x.sign == MP_NEG) { if ((res = mp_copy (&y, &t1)) != MP_OKAY) { goto __Y; } if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { goto __Y; } if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) { goto __Y; } q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; } } /* now q is the quotient and x is the remainder [which we have to normalize] */ /* get sign before writing to c */ x.sign = a->sign; if (c != NULL) { mp_clamp (&q); mp_exch (&q, c); c->sign = neg; } if (d != NULL) { mp_div_2d (&x, norm, &x, NULL); mp_clamp (&x); mp_exch (&x, d); } res = MP_OKAY; __Y:mp_clear (&y); __X:mp_clear (&x); __T2:mp_clear (&t2); __T1:mp_clear (&t1); __Q:mp_clear (&q); return res; }