#include "tommath_private.h" #ifdef BN_MP_PRIME_FROBENIUS_UNDERWOOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. */ #ifdef MP_8BIT /* * floor of positive solution of * (2^16)-1 = (a+4)*(2*a+5) * TODO: that is too small, would have to use a bigint for a instead */ #define LTM_FROBENIUS_UNDERWOOD_A 177 /* * Commented out to allow Travis's tests to run * Don't forget to switch it back on in production or we'll find it at TDWTF.com! */ /* #warning "Frobenius test not fully usable with MP_8BIT!" */ #else /* * floor of positive solution of * (2^31)-1 = (a+4)*(2*a+5) * TODO: that might be too small */ #define LTM_FROBENIUS_UNDERWOOD_A 32764 #endif int mp_prime_frobenius_underwood(const mp_int *N, int *result) { mp_int T1z,T2z,Np1z,sz,tz; int a, ap2, length, i, j, isset; int e = MP_OKAY; *result = MP_NO; if ((e = mp_init_multi(&T1z,&T2z,&Np1z,&sz,&tz, NULL)) != MP_OKAY) { goto LBL_FU_ERR; } for (a = 0; a < LTM_FROBENIUS_UNDERWOOD_A; a++) { /* TODO: That's ugly! No, really, it is! */ if (a==2||a==4||a==7||a==8||a==10||a==14||a==18||a==23||a==26||a==28) { continue; } /* (32764^2 - 4) < 2^31, no bigint for >MP_8BIT needed) */ if ((e = mp_set_long(&T1z,(unsigned long)a)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_sqr(&T1z,&T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_sub_d(&T1z,4,&T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_kronecker(&T1z, N, &j)) != MP_OKAY) { goto LBL_FU_ERR; } if (j == -1) { break; } if (j == 0) { /* composite */ goto LBL_FU_ERR; } } if (a >= LTM_FROBENIUS_UNDERWOOD_A) { e = MP_VAL; goto LBL_FU_ERR; } /* Composite if N and (a+4)*(2*a+5) are not coprime */ if ((e = mp_set_long(&T1z, (unsigned long)((a+4)*(2*a+5)))) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_gcd(N,&T1z,&T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if (!(T1z.used == 1 && T1z.dp[0] == 1u)) { goto LBL_FU_ERR; } ap2 = a + 2; if ((e = mp_add_d(N,1u,&Np1z)) != MP_OKAY) { goto LBL_FU_ERR; } mp_set(&sz,1u); mp_set(&tz,2u); length = mp_count_bits(&Np1z); for (i = length - 2; i >= 0; i--) { /* * temp = (sz*(a*sz+2*tz))%N; * tz = ((tz-sz)*(tz+sz))%N; * sz = temp; */ if ((e = mp_mul_2(&tz,&T2z)) != MP_OKAY) { goto LBL_FU_ERR; } /* a = 0 at about 50% of the cases (non-square and odd input) */ if (a != 0) { if ((e = mp_mul_d(&sz,(mp_digit)a,&T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_add(&T1z,&T2z,&T2z)) != MP_OKAY) { goto LBL_FU_ERR; } } if ((e = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_sub(&tz, &sz, &T2z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_add(&sz, &tz, &sz)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_mul(&sz, &T2z, &tz)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_mod(&tz, N, &tz)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_mod(&T1z, N, &sz)) != MP_OKAY) { goto LBL_FU_ERR; } if ((isset = mp_get_bit(&Np1z,i)) == MP_VAL) { e = isset; goto LBL_FU_ERR; } if (isset == MP_YES) { /* * temp = (a+2) * sz + tz * tz = 2 * tz - sz * sz = temp */ if (a == 0) { if ((e = mp_mul_2(&sz,&T1z)) != MP_OKAY) { goto LBL_FU_ERR; } } else { if ((e = mp_mul_d(&sz, (mp_digit) ap2, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } } if ((e = mp_add(&T1z, &tz, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_sub(&T2z, &sz, &tz)) != MP_OKAY) { goto LBL_FU_ERR; } mp_exch(&sz,&T1z); } } if ((e = mp_set_long(&T1z, (unsigned long)(2 * a + 5))) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_mod(&T1z,N,&T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if (mp_iszero(&sz) && (mp_cmp(&tz, &T1z) == MP_EQ)) { *result = MP_YES; goto LBL_FU_ERR; } LBL_FU_ERR: mp_clear_multi(&T1z,&T2z,&Np1z,&sz,&tz, NULL); return e; } #endif