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Prefaces

When I tell people about my LibTom projects and that I release them as public
domain they are often puzzled. They ask why I did it and especially why I
continue to work on them for free. The best I can explain it is “Because I can.”
Which seems odd and perhaps too terse for adult conversation. I often qualify
it with “I am able, I am willing.” which perhaps explains it better. I am the
first to admit there is not anything that special with what I have done. Perhaps
others can see that too and then we would have a society to be proud of. My
LibTom projects are what I am doing to give back to society in the form of tools
and knowledge that can help others in their endeavours.

I started writing this book because it was the most logical task to further my
goal of open academia. The LibTomMath source code itself was written to be
easy to follow and learn from. There are times, however, where pure C source
code does not explain the algorithms properly. Hence this book. The book
literally starts with the foundation of the library and works itself outwards to
the more complicated algorithms. The use of both pseudo–code and verbatim
source code provides a duality of “theory” and “practice” that the computer
science students of the world shall appreciate. I never deviate too far from
relatively straightforward algebra and I hope that this book can be a valuable
learning asset.

This book and indeed much of the LibTom projects would not exist in their
current form if it was not for a plethora of kind people donating their time,
resources and kind words to help support my work. Writing a text of significant
length (along with the source code) is a tiresome and lengthy process. Currently
the LibTom project is four years old, comprises of literally thousands of users
and over 100,000 lines of source code, TeX and other material. People like
Mads and Greg were there at the beginning to encourage me to work well. It
is amazing how timely validation from others can boost morale to continue the
project. Definitely my parents were there for me by providing room and board
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during the many months of work in 2003.
To my many friends whom I have met through the years I thank you for the

good times and the words of encouragement. I hope I honour your kind gestures
with this project.

Open Source. Open Academia. Open Minds.

Tom St Denis



I found the opportunity to work with Tom appealing for several reasons, not
only could I broaden my own horizons, but also contribute to educate others
facing the problem of having to handle big number mathematical calculations.

This book is Tom’s child and he has been caring and fostering the project
ever since the beginning with a clear mind of how he wanted the project to turn
out. I have helped by proofreading the text and we have had several discussions
about the layout and language used.

I hold a masters degree in cryptography from the University of Southern
Denmark and have always been interested in the practical aspects of cryptog-
raphy.

Having worked in the security consultancy business for several years in São
Paulo, Brazil, I have been in touch with a great deal of work in which multiple
precision mathematics was needed. Understanding the possibilities for speeding
up multiple precision calculations is often very important since we deal with
outdated machine architecture where modular reductions, for example, become
painfully slow.

This text is for people who stop and wonder when first examining algorithms
such as RSA for the first time and asks themselves, “You tell me this is only
secure for large numbers, fine; but how do you implement these numbers?”

Mads Rasmussen
São Paulo - SP

Brazil



It’s all because I broke my leg. That just happened to be at about the
same time that Tom asked for someone to review the section of the book about
Karatsuba multiplication. I was laid up, alone and immobile, and thought “Why
not?” I vaguely knew what Karatsuba multiplication was, but not really, so I
thought I could help, learn, and stop myself from watching daytime cable TV,
all at once.

At the time of writing this, I’ve still not met Tom or Mads in meatspace. I’ve
been following Tom’s progress since his first splash on the sci.crypt Usenet news
group. I watched him go from a clueless newbie, to the cryptographic equivalent
of a reformed smoker, to a real contributor to the field, over a period of about
two years. I’ve been impressed with his obvious intelligence, and astounded by
his productivity. Of course, he’s young enough to be my own child, so he doesn’t
have my problems with staying awake.

When I reviewed that single section of the book, in its very earliest form,
I was very pleasantly surprised. So I decided to collaborate more fully, and at
least review all of it, and perhaps write some bits too. There’s still a long way
to go with it, and I have watched a number of close friends go through the mill
of publication, so I think that the way to go is longer than Tom thinks it is.
Nevertheless, it’s a good effort, and I’m pleased to be involved with it.

Greg Rose, Sydney, Australia, June 2003.



Chapter 1

Introduction

1.1 Multiple Precision Arithmetic

1.1.1 What is Multiple Precision Arithmetic?

When we think of long-hand arithmetic such as addition or multiplication we
rarely consider the fact that we instinctively raise or lower the precision of the
numbers we are dealing with. For example, in decimal we almost immediate can
reason that 7 times 6 is 42. However, 42 has two digits of precision as opposed
to one digit we started with. Further multiplications of say 3 result in a larger
precision result 126. In these few examples we have multiple precisions for the
numbers we are working with. Despite the various levels of precision a single
subset1 of algorithms can be designed to accomodate them.

By way of comparison a fixed or single precision operation would lose pre-
cision on various operations. For example, in the decimal system with fixed
precision 6 · 7 = 2.

Essentially at the heart of computer based multiple precision arithmetic are
the same long-hand algorithms taught in schools to manually add, subtract,
multiply and divide.

1.1.2 The Need for Multiple Precision Arithmetic

The most prevalent need for multiple precision arithmetic, often referred to
as “bignum” math, is within the implementation of public-key cryptography

1With the occasional optimization.

1
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algorithms. Algorithms such as RSA [11] and Diffie-Hellman [12] require integers
of significant magnitude to resist known cryptanalytic attacks. For example, at
the time of this writing a typical RSA modulus would be at least greater than
10309. However, modern programming languages such as ISO C [18] and Java
[19] only provide instrinsic support for integers which are relatively small and
single precision.

Data Type Range
char −128 . . . 127
short −32768 . . . 32767
long −2147483648 . . . 2147483647

long long −9223372036854775808 . . . 9223372036854775807

Figure 1.1: Typical Data Types for the C Programming Language

The largest data type guaranteed to be provided by the ISO C programming
language2 can only represent values up to 1019 as shown in figure 1.1. On its
own the C language is insufficient to accomodate the magnitude required for
the problem at hand. An RSA modulus of magnitude 1019 could be trivially
factored3 on the average desktop computer, rendering any protocol based on
the algorithm insecure. Multiple precision algorithms solve this very problem
by extending the range of representable integers while using single precision
data types.

Most advancements in fast multiple precision arithmetic stem from the need
for faster and more efficient cryptographic primitives. Faster modular reduction
and exponentiation algorithms such as Barrett’s algorithm, which have appeared
in various cryptographic journals, can render algorithms such as RSA and Diffie-
Hellman more efficient. In fact, several major companies such as RSA Security,
Certicom and Entrust have built entire product lines on the implementation
and deployment of efficient algorithms.

However, cryptography is not the only field of study that can benefit from
fast multiple precision integer routines. Another auxiliary use of multiple pre-
cision integers is high precision floating point data types. The basic IEEE [13]
standard floating point type is made up of an integer mantissa q, an exponent
e and a sign bit s. Numbers are given in the form n = q · be · −1s where b = 2

2As per the ISO C standard. However, each compiler vendor is allowed to augment the
precision as they see fit.

3A Pollard-Rho factoring would take only 216 time.
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is the most common base for IEEE. Since IEEE floating point is meant to be
implemented in hardware the precision of the mantissa is often fairly small (23,
48 and 64 bits). The mantissa is merely an integer and a multiple precision in-
teger could be used to create a mantissa of much larger precision than hardware
alone can efficiently support. This approach could be useful where scientific
applications must minimize the total output error over long calculations.

Yet another use for large integers is within arithmetic on polynomials of large
characteristic (i.e. GF (p)[x] for large p). In fact the library discussed within
this text has already been used to form a polynomial basis library4.

1.1.3 Benefits of Multiple Precision Arithmetic

The benefit of multiple precision representations over single or fixed precision
representations is that no precision is lost while representing the result of an
operation which requires excess precision. For example, the product of two n-
bit integers requires at least 2n bits of precision to be represented faithfully.
A multiple precision algorithm would augment the precision of the destination
to accomodate the result while a single precision system would truncate excess
bits to maintain a fixed level of precision.

It is possible to implement algorithms which require large integers with fixed
precision algorithms. For example, elliptic curve cryptography (ECC ) is often
implemented on smartcards by fixing the precision of the integers to the maxi-
mum size the system will ever need. Such an approach can lead to vastly simpler
algorithms which can accomodate the integers required even if the host platform
cannot natively accomodate them5. However, as efficient as such an approach
may be, the resulting source code is not normally very flexible. It cannot, at
runtime, accomodate inputs of higher magnitude than the designer anticipated.

Multiple precision algorithms have the most overhead of any style of arith-
metic. For the the most part the overhead can be kept to a minimum with
careful planning, but overall, it is not well suited for most memory starved plat-
forms. However, multiple precision algorithms do offer the most flexibility in
terms of the magnitude of the inputs. That is, the same algorithms based on
multiple precision integers can accomodate any reasonable size input without
the designer’s explicit forethought. This leads to lower cost of ownership for the
code as it only has to be written and tested once.

4See http://poly.libtomcrypt.org for more details.
5For example, the average smartcard processor has an 8 bit accumulator.

http://poly.libtomcrypt.org
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1.2 Purpose of This Text

The purpose of this text is to instruct the reader regarding how to implement
efficient multiple precision algorithms. That is to not only explain a limited
subset of the core theory behind the algorithms but also the various “house
keeping” elements that are neglected by authors of other texts on the subject.
Several well reknowned texts [1, 2] give considerably detailed explanations of
the theoretical aspects of algorithms and often very little information regarding
the practical implementation aspects.

In most cases how an algorithm is explained and how it is actually imple-
mented are two very different concepts. For example, the Handbook of Applied
Cryptography (HAC ), algorithm 14.7 on page 594, gives a relatively simple
algorithm for performing multiple precision integer addition. However, the de-
scription lacks any discussion concerning the fact that the two integer inputs
may be of differing magnitudes. As a result the implementation is not as simple
as the text would lead people to believe. Similarly the division routine (al-
gorithm 14.20, pp. 598 ) does not discuss how to handle sign or handle the
dividend’s decreasing magnitude in the main loop (step #3 ).

Both texts also do not discuss several key optimal algorithms required such
as “Comba” and Karatsuba multipliers and fast modular inversion, which we
consider practical oversights. These optimal algorithms are vital to achieve any
form of useful performance in non-trivial applications.

To solve this problem the focus of this text is on the practical aspects of im-
plementing a multiple precision integer package. As a case study the “LibTom-
Math”6 package is used to demonstrate algorithms with real implementations7

that have been field tested and work very well. The LibTomMath library is
freely available on the Internet for all uses and this text discusses a very large
portion of the inner workings of the library.

The algorithms that are presented will always include at least one “pseudo-
code” description followed by the actual C source code that implements the
algorithm. The pseudo-code can be used to implement the same algorithm in
other programming languages as the reader sees fit.

This text shall also serve as a walkthrough of the creation of multiple preci-
sion algorithms from scratch. Showing the reader how the algorithms fit together
as well as where to start on various taskings.

6Available at http://math.libtomcrypt.com
7In the ISO C programming language.

http://math.libtomcrypt.com
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1.3 Discussion and Notation

1.3.1 Notation

Amultiple precision integer of n-digits shall be denoted as x = (xn−1, . . . , x1, x0)β
and represent the integer x ≡∑n−1

i=0 xiβ
i. The elements of the array x are said

to be the radix β digits of the integer. For example, x = (1, 2, 3)10 would
represent the integer 1 · 102 + 2 · 101 + 3 · 100 = 123.

The term “mp int” shall refer to a composite structure which contains the
digits of the integer it represents, as well as auxilary data required to manipulate
the data. These additional members are discussed further in section 2.2.1. For
the purposes of this text a “multiple precision integer” and an “mp int” are
assumed to be synonymous. When an algorithm is specified to accept an mp int
variable it is assumed the various auxliary data members are present as well.
An expression of the type variablename.item implies that it should evaluate to
the member named “item” of the variable. For example, a string of characters
may have a member “length” which would evaluate to the number of characters
in the string. If the string a equals “hello” then it follows that a.length = 5.

For certain discussions more generic algorithms are presented to help the
reader understand the final algorithm used to solve a given problem. When an
algorithm is described as accepting an integer input it is assumed the input is a
plain integer with no additional multiple-precision members. That is, algorithms
that use integers as opposed to mp ints as inputs do not concern themselves
with the housekeeping operations required such as memory management. These
algorithms will be used to establish the relevant theory which will subsequently
be used to describe a multiple precision algorithm to solve the same problem.

1.3.2 Precision Notation

The variable β represents the radix of a single digit of a multiple precision
integer and must be of the form qp for q, p ∈ Z

+. A single precision variable
must be able to represent integers in the range 0 ≤ x < qβ while a double
precision variable must be able to represent integers in the range 0 ≤ x < qβ2.
The extra radix-q factor allows additions and subtractions to proceed without
truncation of the carry. Since all modern computers are binary, it is assumed
that q is two.

Within the source code that will be presented for each algorithm, the data
typemp digit will represent a single precision integer type, while, the data type
mp word will represent a double precision integer type. In several algorithms
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(notably the Comba routines) temporary results will be stored in arrays of
double precision mp words. For the purposes of this text xj will refer to the
j’th digit of a single precision array and x̂j will refer to the j’th digit of a
double precision array. Whenever an expression is to be assigned to a double
precision variable it is assumed that all single precision variables are promoted
to double precision during the evaluation. Expressions that are assigned to a
single precision variable are truncated to fit within the precision of a single
precision data type.

For example, if β = 102 a single precision data type may represent a value in
the range 0 ≤ x < 103, while a double precision data type may represent a value
in the range 0 ≤ x < 105. Let a = 23 and b = 49 represent two single precision
variables. The single precision product shall be written as c ← a · b while the
double precision product shall be written as ĉ ← a · b. In this particular case,
ĉ = 1127 and c = 127. The most significant digit of the product would not fit
in a single precision data type and as a result c 6= ĉ.

1.3.3 Algorithm Inputs and Outputs

Within the algorithm descriptions all variables are assumed to be scalars of
either single or double precision as indicated. The only exception to this rule
is when variables have been indicated to be of type mp int. This distinction is
important as scalars are often used as array indicies and various other counters.

1.3.4 Mathematical Expressions

The ⌊ ⌋ brackets imply an expression truncated to an integer not greater than
the expression itself. For example, ⌊5.7⌋ = 5. Similarly the ⌈ ⌉ brackets imply
an expression rounded to an integer not less than the expression itself. For
example, ⌈5.1⌉ = 6. Typically when the / division symbol is used the intention
is to perform an integer division with truncation. For example, 5/2 = 2 which
will often be written as ⌊5/2⌋ = 2 for clarity. When an expression is written as
a fraction a real value division is implied, for example 5

2 = 2.5.

The norm of a multiple precision integer, for example ||x||, will be used to
represent the number of digits in the representation of the integer. For example,
||123|| = 3 and ||79452|| = 5.
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1.3.5 Work Effort

To measure the efficiency of the specified algorithms, a modified big-Oh notation
is used. In this system all single precision operations are considered to have the
same cost8. That is a single precision addition, multiplication and division are
assumed to take the same time to complete. While this is generally not true in
practice, it will simplify the discussions considerably.

Some algorithms have slight advantages over others which is why some con-
stants will not be removed in the notation. For example, a normal baseline
multiplication (section 5.2.1) requires O(n2) work while a baseline squaring

(section 5.3) requires O(n
2+n
2 ) work. In standard big-Oh notation these would

both be said to be equivalent to O(n2). However, in the context of the this text
this is not the case as the magnitude of the inputs will typically be rather small.
As a result small constant factors in the work effort will make an observable
difference in algorithm efficiency.

All of the algorithms presented in this text have a polynomial time work level.
That is, of the form O(nk) for n, k ∈ Z

+. This will help make useful comparisons
in terms of the speed of the algorithms and how various optimizations will help
pay off in the long run.

1.4 Exercises

Within the more advanced chapters a section will be set aside to give the reader
some challenging exercises related to the discussion at hand. These exercises are
not designed to be prize winning problems, but instead to be thought provoking.
Wherever possible the problems are forward minded, stating problems that will
be answered in subsequent chapters. The reader is encouraged to finish the
exercises as they appear to get a better understanding of the subject material.

That being said, the problems are designed to affirm knowledge of a partic-
ular subject matter. Students in particular are encouraged to verify they can
answer the problems correctly before moving on.

Similar to the exercises of [1, pp. ix] these exercises are given a scoring
system based on the difficulty of the problem. However, unlike [1] the problems
do not get nearly as hard. The scoring of these exercises ranges from one (the
easiest) to five (the hardest). The following table sumarizes the scoring system
used.

8Except where explicitly noted.
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[1] An easy problem that should only take the reader a manner of
minutes to solve. Usually does not involve much computer time
to solve.

[2] An easy problem that involves a marginal amount of computer
time usage. Usually requires a program to be written to
solve the problem.

[3] A moderately hard problem that requires a non-trivial amount
of work. Usually involves trivial research and development of
new theory from the perspective of a student.

[4] A moderately hard problem that involves a non-trivial amount
of work and research, the solution to which will demonstrate
a higher mastery of the subject matter.

[5] A hard problem that involves concepts that are difficult for a
novice to solve. Solutions to these problems will demonstrate a
complete mastery of the given subject.

Figure 1.2: Exercise Scoring System

Problems at the first level are meant to be simple questions that the reader
can answer quickly without programming a solution or devising new theory.
These problems are quick tests to see if the material is understood. Problems
at the second level are also designed to be easy but will require a program
or algorithm to be implemented to arrive at the answer. These two levels are
essentially entry level questions.

Problems at the third level are meant to be a bit more difficult than the
first two levels. The answer is often fairly obvious but arriving at an exacting
solution requires some thought and skill. These problems will almost always
involve devising a new algorithm or implementing a variation of another algo-
rithm previously presented. Readers who can answer these questions will feel
comfortable with the concepts behind the topic at hand.

Problems at the fourth level are meant to be similar to those of the level
three questions except they will require additional research to be completed.
The reader will most likely not know the answer right away, nor will the text
provide the exact details of the answer until a subsequent chapter.

Problems at the fifth level are meant to be the hardest problems relative to
all the other problems in the chapter. People who can correctly answer fifth
level problems have a mastery of the subject matter at hand.

Often problems will be tied together. The purpose of this is to start a chain
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of thought that will be discussed in future chapters. The reader is encouraged
to answer the follow-up problems and try to draw the relevance of problems.

1.5 Introduction to LibTomMath

1.5.1 What is LibTomMath?

LibTomMath is a free and open source multiple precision integer library written
entirely in portable ISO C. By portable it is meant that the library does not
contain any code that is computer platform dependent or otherwise problematic
to use on any given platform.

The library has been successfully tested under numerous operating systems
including Unix9, MacOS, Windows, Linux, PalmOS and on standalone hardware
such as the Gameboy Advance. The library is designed to contain enough
functionality to be able to develop applications such as public key cryptosystems
and still maintain a relatively small footprint.

1.5.2 Goals of LibTomMath

Libraries which obtain the most efficiency are rarely written in a high level
programming language such as C. However, even though this library is written
entirely in ISO C, considerable care has been taken to optimize the algorithm
implementations within the library. Specifically the code has been written to
work well with the GNU C Compiler (GCC ) on both x86 and ARM processors.
Wherever possible, highly efficient algorithms, such as Karatsuba multiplication,
sliding window exponentiation and Montgomery reduction have been provided
to make the library more efficient.

Even with the nearly optimal and specialized algorithms that have been in-
cluded the Application Programing Interface (API ) has been kept as simple
as possible. Often generic place holder routines will make use of specialized
algorithms automatically without the developer’s specific attention. One such
example is the generic multiplication algorithm mp mul() which will automat-
ically use Toom–Cook, Karatsuba, Comba or baseline multiplication based on
the magnitude of the inputs and the configuration of the library.

Making LibTomMath as efficient as possible is not the only goal of the
LibTomMath project. Ideally the library should be source compatible with
another popular library which makes it more attractive for developers to use.

9All of these trademarks belong to their respective rightful owners.
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In this case the MPI library was used as a API template for all the basic func-
tions. MPI was chosen because it is another library that fits in the same niche
as LibTomMath. Even though LibTomMath uses MPI as the template for the
function names and argument passing conventions, it has been written from
scratch by Tom St Denis.

The project is also meant to act as a learning tool for students, the logic
being that no easy-to-follow “bignum” library exists which can be used to teach
computer science students how to perform fast and reliable multiple precision
integer arithmetic. To this end the source code has been given quite a few
comments and algorithm discussion points.

1.6 Choice of LibTomMath

LibTomMath was chosen as the case study of this text not only because the
author of both projects is one and the same but for more worthy reasons. Other
libraries such as GMP [14], MPI [15], LIP [17] and OpenSSL [16] have multiple
precision integer arithmetic routines but would not be ideal for this text for
reasons that will be explained in the following sub-sections.

1.6.1 Code Base

The LibTomMath code base is all portable ISO C source code. This means that
there are no platform dependent conditional segments of code littered through-
out the source. This clean and uncluttered approach to the library means that
a developer can more readily discern the true intent of a given section of source
code without trying to keep track of what conditional code will be used.

The code base of LibTomMath is well organized. Each function is in its own
separate source code file which allows the reader to find a given function very
quickly. On average there are 76 lines of code per source file which makes the
source very easily to follow. By comparison MPI and LIP are single file projects
making code tracing very hard. GMP has many conditional code segments
which also hinder tracing.

When compiled with GCC for the x86 processor and optimized for speed
the entire library is approximately 100KiB10 which is fairly small compared to
GMP (over 250KiB). LibTomMath is slightly larger than MPI (which compiles
to about 50KiB) but LibTomMath is also much faster and more complete than
MPI.

10The notation “KiB” means 210 octets, similarly “MiB” means 220 octets.
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1.6.2 API Simplicity

LibTomMath is designed after the MPI library and shares the API design. Quite
often programs that use MPI will build with LibTomMath without change. The
function names correlate directly to the action they perform. Almost all of the
functions share the same parameter passing convention. The learning curve is
fairly shallow with the API provided which is an extremely valuable benefit for
the student and developer alike.

The LIP library is an example of a library with an API that is awkward to
work with. LIP uses function names that are often “compressed” to illegible
short hand. LibTomMath does not share this characteristic.

The GMP library also does not return error codes. Instead it uses a POSIX.1
[?] signal system where errors are signaled to the host application. This happens
to be the fastest approach but definitely not the most versatile. In effect a math
error (i.e. invalid input, heap error, etc) can cause a program to stop functioning
which is definitely undersireable in many situations.

1.6.3 Optimizations

While LibTomMath is certainly not the fastest library (GMP often beats LibTom-
Math by a factor of two) it does feature a set of optimal algorithms for tasks
such as modular reduction, exponentiation, multiplication and squaring. GMP
and LIP also feature such optimizations while MPI only uses baseline algorithms
with no optimizations. GMP lacks a few of the additional modular reduction
optimizations that LibTomMath features11.

LibTomMath is almost always an order of magnitude faster than the MPI
library at computationally expensive tasks such as modular exponentiation. In
the grand scheme of “bignum” libraries LibTomMath is faster than the average
library and usually slower than the best libraries such as GMP and OpenSSL
by only a small factor.

1.6.4 Portability and Stability

LibTomMath will build “out of the box” on any platform equipped with a mod-
ern version of the GNU C Compiler (GCC ). This means that without changes
the library will build without configuration or setting up any variables. LIP and
MPI will build “out of the box” as well but have numerous known bugs. Most

11At the time of this writing GMP only had Barrett and Montgomery modular reduction
algorithms.
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notably the author of MPI has recently stopped working on his library and LIP
has long since been discontinued.

GMP requires a configuration script to run and will not build out of the
box. GMP and LibTomMath are still in active development and are very stable
across a variety of platforms.

1.6.5 Choice

LibTomMath is a relatively compact, well documented, highly optimized and
portable library which seems only natural for the case study of this text. Various
source files from the LibTomMath project will be included within the text.
However, the reader is encouraged to download their own copy of the library to
actually be able to work with the library.



Chapter 2

Getting Started

2.1 Library Basics

The trick to writing any useful library of source code is to build a solid founda-
tion and work outwards from it. First, a problem along with allowable solution
parameters should be identified and analyzed. In this particular case the in-
ability to accomodate multiple precision integers is the problem. Futhermore,
the solution must be written as portable source code that is reasonably efficient
across several different computer platforms.

After a foundation is formed the remainder of the library can be designed
and implemented in a hierarchical fashion. That is, to implement the lowest
level dependencies first and work towards the most abstract functions last. For
example, before implementing a modular exponentiation algorithm one would
implement a modular reduction algorithm. By building outwards from a base
foundation instead of using a parallel design methodology the resulting project
is highly modular. Being highly modular is a desirable property of any project
as it often means the resulting product has a small footprint and updates are
easy to perform.

Usually when I start a project I will begin with the header files. I define
the data types I think I will need and prototype the initial functions that are
not dependent on other functions (within the library). After I implement these
base functions I prototype more dependent functions and implement them. The
process repeats until I implement all of the functions I require. For example, in
the case of LibTomMath I implemented functions such as mp init() well before

13
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I implemented mp mul() and even further before I implemented mp exptmod().
As an example as to why this design works note that the Karatsuba and Toom-
Cook multipliers were written after the dependent function mp exptmod() was
written. Adding the new multiplication algorithms did not require changes to
the mp exptmod() function itself and lowered the total cost of ownership (so to

speak) and of development for new algorithms. This methodology allows new
algorithms to be tested in a complete framework with relative ease.

Figure 2.1: Design Flow of the First Few Original LibTomMath Functions.

Only after the majority of the functions were in place did I pursue a less
hierarchical approach to auditing and optimizing the source code. For example,
one day I may audit the multipliers and the next day the polynomial basis
functions.

It only makes sense to begin the text with the preliminary data types and
support algorithms required as well. This chapter discusses the core algorithms
of the library which are the dependents for every other algorithm.

2.2 What is a Multiple Precision Integer?

Recall that most programming languages, in particular ISO C [18], only have
fixed precision data types that on their own cannot be used to represent values
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larger than their precision will allow. The purpose of multiple precision algo-
rithms is to use fixed precision data types to create and manipulate multiple
precision integers which may represent values that are very large.

As a well known analogy, school children are taught how to form numbers
larger than nine by prepending more radix ten digits. In the decimal system the
largest single digit value is 9. However, by concatenating digits together larger
numbers may be represented. Newly prepended digits (to the left) are said to
be in a different power of ten column. That is, the number 123 can be described
as having a 1 in the hundreds column, 2 in the tens column and 3 in the ones
column. Or more formally 123 = 1 · 102 + 2 · 101 + 3 · 100. Computer based
multiple precision arithmetic is essentially the same concept. Larger integers
are represented by adjoining fixed precision computer words with the exception
that a different radix is used.

What most people probably do not think about explicitly are the various
other attributes that describe a multiple precision integer. For example, the
integer 15410 has two immediately obvious properties. First, the integer is
positive, that is the sign of this particular integer is positive as opposed to
negative. Second, the integer has three digits in its representation. There is
an additional property that the integer posesses that does not concern pencil-
and-paper arithmetic. The third property is how many digits placeholders are
available to hold the integer.

The human analogy of this third property is ensuring there is enough space
on the paper to write the integer. For example, if one starts writing a large
number too far to the right on a piece of paper they will have to erase it and
move left. Similarly, computer algorithms must maintain strict control over
memory usage to ensure that the digits of an integer will not exceed the al-
lowed boundaries. These three properties make up what is known as a multiple
precision integer or mp int for short.

2.2.1 The mp int Structure

The mp int structure is the ISO C based manifestation of what represents a mul-
tiple precision integer. The ISO C standard does not provide for any such data
type but it does provide for making composite data types known as structures.
The following is the structure definition used within LibTomMath.

The mp int structure (fig. 2.2) can be broken down as follows.

1. The used parameter denotes how many digits of the array dp contain the
digits used to represent a given integer. The used count must be positive
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typedef struct {
int used, alloc, sign;
mp digit *dp;
} mp int;

Figure 2.2: The mp int Structure

(or zero) and may not exceed the alloc count.

2. The alloc parameter denotes how many digits are available in the array
to use by functions before it has to increase in size. When the used
count of a result would exceed the alloc count all of the algorithms will
automatically increase the size of the array to accommodate the precision
of the result.

3. The pointer dp points to a dynamically allocated array of digits that
represent the given multiple precision integer. It is padded with (alloc−
used) zero digits. The array is maintained in a least significant digit order.
As a pencil and paper analogy the array is organized such that the right
most digits are stored first starting at the location indexed by zero1 in the
array. For example, if dp contains {a, b, c, . . .} where dp0 = a, dp1 = b,
dp2 = c, . . . then it would represent the integer a+ bβ + cβ2 + . . .

4. The sign parameter denotes the sign as either zero/positive (MP ZPOS)
or negative (MP NEG).

Valid mp int Structures

Several rules are placed on the state of an mp int structure and are assumed to
be followed for reasons of efficiency. The only exceptions are when the structure
is passed to initialization functions such as mp init() and mp init copy().

1. The value of alloc may not be less than one. That is dp always points to
a previously allocated array of digits.

2. The value of used may not exceed alloc and must be greater than or
equal to zero.

1In C all arrays begin at zero.
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3. The value of used implies the digit at index (used − 1) of the dp array
is non-zero. That is, leading zero digits in the most significant positions
must be trimmed.

(a) Digits in the dp array at and above the used location must be zero.

4. The value of sign must be MP ZPOS if used is zero; this represents the
mp int value of zero.

2.3 Argument Passing

A convention of argument passing must be adopted early on in the development
of any library. Making the function prototypes consistent will help eliminate
many headaches in the future as the library grows to significant complexity. In
LibTomMath the multiple precision integer functions accept parameters from
left to right as pointers to mp int structures. That means that the source
(input) operands are placed on the left and the destination (output) on the
right. Consider the following examples.

mp_mul(&a, &b, &c); /* c = a * b */

mp_add(&a, &b, &a); /* a = a + b */

mp_sqr(&a, &b); /* b = a * a */

The left to right order is a fairly natural way to implement the functions
since it lets the developer read aloud the functions and make sense of them. For
example, the first function would read “multiply a and b and store in c”.

Certain libraries (LIP by Lenstra for instance) accept parameters the other
way around, to mimic the order of assignment expressions. That is, the desti-
nation (output) is on the left and arguments (inputs) are on the right. In truth,
it is entirely a matter of preference. In the case of LibTomMath the convention
from the MPI library has been adopted.

Another very useful design consideration, provided for in LibTomMath, is
whether to allow argument sources to also be a destination. For example, the
second example (mp add) adds a to b and stores in a. This is an important
feature to implement since it allows the calling functions to cut down on the
number of variables it must maintain. However, to implement this feature spe-
cific care has to be given to ensure the destination is not modified before the
source is fully read.
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2.4 Return Values

A well implemented application, no matter what its purpose, should trap as
many runtime errors as possible and return them to the caller. By catching
runtime errors a library can be guaranteed to prevent undefined behaviour.
However, the end developer can still manage to cause a library to crash. For
example, by passing an invalid pointer an application may fault by dereferencing
memory not owned by the application.

In the case of LibTomMath the only errors that are checked for are related
to inappropriate inputs (division by zero for instance) and memory allocation
errors. It will not check that the mp int passed to any function is valid nor will
it check pointers for validity. Any function that can cause a runtime error will
return an error code as an int data type with one of the following values (fig
2.3).

Value Meaning
MP OKAY The function was successful
MP VAL One of the input value(s) was invalid
MP MEM The function ran out of heap memory

Figure 2.3: LibTomMath Error Codes

When an error is detected within a function it should free any memory it
allocated, often during the initialization of temporary mp ints, and return as
soon as possible. The goal is to leave the system in the same state it was when
the function was called. Error checking with this style of API is fairly simple.

int err;

if ((err = mp_add(&a, &b, &c)) != MP_OKAY) {

printf("Error: %s\n", mp_error_to_string(err));

exit(EXIT_FAILURE);

}

The GMP [14] library uses C style signals to flag errors which is of ques-
tionable use. Not all errors are fatal and it was not deemed ideal by the author
of LibTomMath to force developers to have signal handlers for such cases.
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2.5 Initialization and Clearing

The logical starting point when actually writing multiple precision integer func-
tions is the initialization and clearing of the mp int structures. These two
algorithms will be used by the majority of the higher level algorithms.

Given the basic mp int structure an initialization routine must first allocate
memory to hold the digits of the integer. Often it is optimal to allocate a
sufficiently large pre-set number of digits even though the initial integer will
represent zero. If only a single digit were allocated quite a few subsequent re-
allocations would occur when operations are performed on the integers. There
is a tradeoff between how many default digits to allocate and how many re-
allocations are tolerable. Obviously allocating an excessive amount of digits
initially will waste memory and become unmanageable.

If the memory for the digits has been successfully allocated then the rest of
the members of the structure must be initialized. Since the initial state of an
mp int is to represent the zero integer, the allocated digits must be set to zero.
The used count set to zero and sign set to MP ZPOS.

2.5.1 Initializing an mp int

An mp int is said to be initialized if it is set to a valid, preferably default, state
such that all of the members of the structure are set to valid values. The mp init
algorithm will perform such an action.

Algorithm mp init.
Input. An mp int a
Output. Allocate memory and initialize a to a known valid mp int state.

1. Allocate memory for MP PREC digits.
2. If the allocation failed return(MP MEM )
3. for n from 0 to MP PREC − 1 do
3.1 an ← 0

4. a.sign←MP ZPOS
5. a.used← 0
6. a.alloc←MP PREC
7. Return(MP OKAY )

Figure 2.4: Algorithm mp init
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Algorithm mp init. The purpose of this function is to initialize an mp int
structure so that the rest of the library can properly manipulte it. It is assumed
that the input may not have had any of its members previously initialized which
is certainly a valid assumption if the input resides on the stack.

Before any of the members such as sign, used or alloc are initialized the
memory for the digits is allocated. If this fails the function returns before setting
any of the other members. The MP PREC name represents a constant2 used
to dictate the minimum precision of newly initialized mp int integers. Ideally,
it is at least equal to the smallest precision number you’ll be working with.

Allocating a block of digits at first instead of a single digit has the benefit
of lowering the number of usually slow heap operations later functions will have
to perform in the future. If MP PREC is set correctly the slack memory and
the number of heap operations will be trivial.

Once the allocation has been made the digits have to be set to zero as well
as the used, sign and alloc members initialized. This ensures that the mp int
will always represent the default state of zero regardless of the original condition
of the input.

Remark. This function introduces the idiosyncrasy that all iterative loops,
commonly initiated with the “for” keyword, iterate incrementally when the “to”
keyword is placed between two expressions. For example, “for a from b to c do”
means that a subsequent expression (or body of expressions) are to be evaluated
upto c− b times so long as b ≤ c. In each iteration the variable a is substituted
for a new integer that lies inclusively between b and c. If b > c occured the loop
would not iterate. By contrast if the “downto” keyword were used in place of
“to” the loop would iterate decrementally.

File: bn mp init.c
016

017 /* init a new mp_int */

018 int mp_init (mp_int * a)

019 {
020 int i;

021

022 /* allocate memory required and clear it */

023 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);

024 if (a->dp == NULL) {
025 return MP_MEM;

026 }
027

2Defined in the “tommath.h” header file within LibTomMath.
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028 /* set the digits to zero */

029 for (i = 0; i < MP_PREC; i++) {
030 a->dp[i] = 0;

031 }
032

033 /* set the used to zero, allocated digits to the default precision

034 * and sign to positive */

035 a->used = 0;

036 a->alloc = MP_PREC;

037 a->sign = MP_ZPOS;

038

039 return MP_OKAY;

040 }
041 #endif

042

One immediate observation of this initializtion function is that it does not
return a pointer to a mp int structure. It is assumed that the caller has already
allocated memory for the mp int structure, typically on the application stack.
The call to mp init() is used only to initialize the members of the structure to
a known default state.

Here we see (line 23) the memory allocation is performed first. This allows us
to exit cleanly and quickly if there is an error. If the allocation fails the routine
will return MP MEM to the caller to indicate there was a memory error.
The function XMALLOC is what actually allocates the memory. Technically
XMALLOC is not a function but a macro defined in “tommath.h“. By default,
XMALLOC will evaluate to malloc() which is the C library’s built–in memory
allocation routine.

In order to assure the mp int is in a known state the digits must be set to
zero. On most platforms this could have been accomplished by using calloc()
instead of malloc(). However, to correctly initialize a integer type to a given
value in a portable fashion you have to actually assign the value. The for loop
(line 29) performs this required operation.

After the memory has been successfully initialized the remainder of the mem-
bers are initialized (lines 33 through 34) to their respective default states. At
this point the algorithm has succeeded and a success code is returned to the
calling function. If this function returns MP OKAY it is safe to assume the
mp int structure has been properly initialized and is safe to use with other
functions within the library.
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2.5.2 Clearing an mp int

When an mp int is no longer required by the application, the memory that has
been allocated for its digits must be returned to the application’s memory pool
with the mp clear algorithm.

Algorithm mp clear.
Input. An mp int a
Output. The memory for a shall be deallocated.

1. If a has been previously freed then return(MP OKAY ).
2. for n from 0 to a.used− 1 do
2.1 an ← 0

3. Free the memory allocated for the digits of a.
4. a.used← 0
5. a.alloc← 0
6. a.sign←MP ZPOS
7. Return(MP OKAY ).

Figure 2.5: Algorithm mp clear

Algorithm mp clear. This algorithm accomplishes two goals. First, it
clears the digits and the other mp int members. This ensures that if a developer
accidentally re-uses a cleared structure it is less likely to cause problems. The
second goal is to free the allocated memory.

The logic behind the algorithm is extended by marking cleared mp int struc-
tures so that subsequent calls to this algorithm will not try to free the memory
multiple times. Cleared mp ints are detectable by having a pre-defined invalid
digit pointer dp setting.

Once an mp int has been cleared the mp int structure is no longer in a
valid state for any other algorithm with the exception of algorithms mp init,
mp init copy, mp init size and mp clear.

File: bn mp clear.c
016

017 /* clear one (frees) */

018 void

019 mp_clear (mp_int * a)

020 {
021 int i;
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022

023 /* only do anything if a hasn’t been freed previously */

024 if (a->dp != NULL) {
025 /* first zero the digits */

026 for (i = 0; i < a->used; i++) {
027 a->dp[i] = 0;

028 }
029

030 /* free ram */

031 XFREE(a->dp);

032

033 /* reset members to make debugging easier */

034 a->dp = NULL;

035 a->alloc = a->used = 0;

036 a->sign = MP_ZPOS;

037 }
038 }
039 #endif

040

The algorithm only operates on the mp int if it hasn’t been previously
cleared. The if statement (line 24) checks to see if the dp member is not
NULL. If the mp int is a valid mp int then dp cannot be NULL in which case
the if statement will evaluate to true.

The digits of the mp int are cleared by the for loop (line 26) which assigns a
zero to every digit. Similar to mp init() the digits are assigned zero instead of
using block memory operations (such as memset()) since this is more portable.

The digits are deallocated off the heap via the XFREE macro. Similar
to XMALLOC the XFREE macro actually evaluates to a standard C library
function. In this case the free() function. Since free() only deallocates the
memory the pointer still has to be reset to NULL manually (line 34).

Now that the digits have been cleared and deallocated the other members
are set to their final values (lines 35 and 36).

2.6 Maintenance Algorithms

The previous sections describes how to initialize and clear an mp int structure.
To further support operations that are to be performed on mp int structures
(such as addition and multiplication) the dependent algorithms must be able to
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augment the precision of an mp int and initialize mp ints with differing initial
conditions.

These algorithms complete the set of low level algorithms required to work
with mp int structures in the higher level algorithms such as addition, multipli-
cation and modular exponentiation.

2.6.1 Augmenting an mp int’s Precision

When storing a value in an mp int structure, a sufficient number of digits must
be available to accomodate the entire result of an operation without loss of
precision. Quite often the size of the array given by the alloc member is large
enough to simply increase the used digit count. However, when the size of the
array is too small it must be re-sized appropriately to accomodate the result.
The mp grow algorithm will provide this functionality.
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Algorithm mp grow.
Input. An mp int a and an integer b.
Output. a is expanded to accomodate b digits.

1. if a.alloc ≥ b then return(MP OKAY )
2. u← b (mod MP PREC)
3. v ← b+ 2 ·MP PREC − u
4. Re-allocate the array of digits a to size v
5. If the allocation failed then return(MP MEM ).
6. for n from a.alloc to v − 1 do
6.1 an ← 0

7. a.alloc← v
8. Return(MP OKAY )

Figure 2.6: Algorithm mp grow

Algorithm mp grow. It is ideal to prevent re-allocations from being per-
formed if they are not required (step one). This is useful to prevent mp ints
from growing excessively in code that erroneously calls mp grow.

The requested digit count is padded up to next multiple of MP PREC
plus an additional MP PREC (steps two and three). This helps prevent many
trivial reallocations that would grow an mp int by trivially small values.

It is assumed that the reallocation (step four) leaves the lower a.alloc digits
of the mp int intact. This is much akin to how the realloc function from the
standard C library works. Since the newly allocated digits are assumed to
contain undefined values they are initially set to zero.

File: bn mp grow.c
016

017 /* grow as required */

018 int mp_grow (mp_int * a, int size)

019 {
020 int i;

021 mp_digit *tmp;

022

023 /* if the alloc size is smaller alloc more ram */

024 if (a->alloc < size) {
025 /* ensure there are always at least MP_PREC digits extra on top */

026 size += (MP_PREC * 2) - (size % MP_PREC);

027
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028 /* reallocate the array a->dp

029 *

030 * We store the return in a temporary variable

031 * in case the operation failed we don’t want

032 * to overwrite the dp member of a.

033 */

034 tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);

035 if (tmp == NULL) {
036 /* reallocation failed but "a" is still valid [can be freed] */

037 return MP_MEM;

038 }
039

040 /* reallocation succeeded so set a->dp */

041 a->dp = tmp;

042

043 /* zero excess digits */

044 i = a->alloc;

045 a->alloc = size;

046 for (; i < a->alloc; i++) {
047 a->dp[i] = 0;

048 }
049 }
050 return MP_OKAY;

051 }
052 #endif

053

A quick optimization is to first determine if a memory re-allocation is re-
quired at all. The if statement (line 24) checks if the allocmember of the mp int
is smaller than the requested digit count. If the count is not larger than alloc
the function skips the re-allocation part thus saving time.

When a re-allocation is performed it is turned into an optimal request to
save time in the future. The requested digit count is padded upwards to 2nd
multiple of MP PREC larger than alloc (line 26). The XREALLOC function
is used to re-allocate the memory. As per the other functions XREALLOC is
actually a macro which evaluates to realloc by default. The realloc function
leaves the base of the allocation intact which means the first alloc digits of the
mp int are the same as before the re-allocation. All that is left is to clear the
newly allocated digits and return.

Note that the re-allocation result is actually stored in a temporary pointer
tmp. This is to allow this function to return an error with a valid pointer.
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Earlier releases of the library stored the result of XREALLOC into the mp int
a. That would result in a memory leak if XREALLOC ever failed.

2.6.2 Initializing Variable Precision mp ints

Occasionally the number of digits required will be known in advance of an ini-
tialization, based on, for example, the size of input mp ints to a given algorithm.
The purpose of algorithm mp init size is similar to mp init except that it will
allocate at least a specified number of digits.

Algorithm mp init size.
Input. An mp int a and the requested number of digits b.
Output. a is initialized to hold at least b digits.

1. u← b (mod MP PREC)
2. v ← b+ 2 ·MP PREC − u
3. Allocate v digits.
4. for n from 0 to v − 1 do
4.1 an ← 0

5. a.sign←MP ZPOS
6. a.used← 0
7. a.alloc← v
8. Return(MP OKAY )

Figure 2.7: Algorithm mp init size

Algorithm mp init size. This algorithm will initialize an mp int structure
a like algorithm mp init with the exception that the number of digits allocated
can be controlled by the second input argument b. The input size is padded
upwards so it is a multiple of MP PREC plus an additionalMP PREC digits.
This padding is used to prevent trivial allocations from becoming a bottleneck
in the rest of the algorithms.

Like algorithm mp init, the mp int structure is initialized to a default state
representing the integer zero. This particular algorithm is useful if it is known
ahead of time the approximate size of the input. If the approximation is correct
no further memory re-allocations are required to work with the mp int.

File: bn mp init size.c
016

017 /* init an mp_init for a given size */
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018 int mp_init_size (mp_int * a, int size)

019 {
020 int x;

021

022 /* pad size so there are always extra digits */

023 size += (MP_PREC * 2) - (size % MP_PREC);

024

025 /* alloc mem */

026 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);

027 if (a->dp == NULL) {
028 return MP_MEM;

029 }
030

031 /* set the members */

032 a->used = 0;

033 a->alloc = size;

034 a->sign = MP_ZPOS;

035

036 /* zero the digits */

037 for (x = 0; x < size; x++) {
038 a->dp[x] = 0;

039 }
040

041 return MP_OKAY;

042 }
043 #endif

044

The number of digits b requested is padded (line 23) by first augmenting it
to the next multiple of MP PREC and then adding MP PREC to the result.
If the memory can be successfully allocated the mp int is placed in a default
state representing the integer zero. Otherwise, the error code MP MEM will
be returned (line 28).

The digits are allocated and set to zero at the same time with the calloc()
function (line @25,XCALLOC@). The used count is set to zero, the alloc
count set to the padded digit count and the sign flag set to MP ZPOS to
achieve a default valid mp int state (lines 32, 33 and 34). If the function returns
succesfully then it is correct to assume that the mp int structure is in a valid
state for the remainder of the functions to work with.
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2.6.3 Multiple Integer Initializations and Clearings

Occasionally a function will require a series of mp int data types to be made
available simultaneously. The purpose of algorithm mp init multi is to initialize
a variable length array of mp int structures in a single statement. It is essentially
a shortcut to multiple initializations.
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Algorithm mp init multi.
Input. Variable length array Vk of mp int variables of length k.
Output. The array is initialized such that each mp int of Vk is ready to use.

1. for n from 0 to k − 1 do
1.1. Initialize the mp int Vn (mp init)
1.2. If initialization failed then do
1.2.1. for j from 0 to n do
1.2.1.1. Free the mp int Vj (mp clear)

1.2.2. Return(MP MEM )
2. Return(MP OKAY )

Figure 2.8: Algorithm mp init multi

Algorithm mp init multi. The algorithm will initialize the array of mp int
variables one at a time. If a runtime error has been detected (step 1.2 ) all of
the previously initialized variables are cleared. The goal is an “all or nothing”
initialization which allows for quick recovery from runtime errors.

File: bn mp init multi.c

016 #include <stdarg.h>

017

018 int mp_init_multi(mp_int *mp, ...)

019 {
020 mp_err res = MP_OKAY; /* Assume ok until proven otherwise */

021 int n = 0; /* Number of ok inits */

022 mp_int* cur_arg = mp;

023 va_list args;

024

025 va_start(args, mp); /* init args to next argument from caller */

026 while (cur_arg != NULL) {
027 if (mp_init(cur_arg) != MP_OKAY) {
028 /* Oops - error! Back-track and mp_clear what we already

029 succeeded in init-ing, then return error.

030 */

031 va_list clean_args;

032

033 /* end the current list */

034 va_end(args);

035
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036 /* now start cleaning up */

037 cur_arg = mp;

038 va_start(clean_args, mp);

039 while (n-- != 0) {
040 mp_clear(cur_arg);

041 cur_arg = va_arg(clean_args, mp_int*);

042 }
043 va_end(clean_args);

044 res = MP_MEM;

045 break;

046 }
047 n++;

048 cur_arg = va_arg(args, mp_int*);

049 }
050 va_end(args);

051 return res; /* Assumed ok, if error flagged above. */

052 }
053

054 #endif

055

This function intializes a variable length list of mp int structure pointers.
However, instead of having the mp int structures in an actual C array they are
simply passed as arguments to the function. This function makes use of the
“...” argument syntax of the C programming language. The list is terminated
with a final NULL argument appended on the right.

The function uses the “stdarg.h” va functions to step portably through the
arguments to the function. A count n of succesfully initialized mp int structures
is maintained (line 47) such that if a failure does occur, the algorithm can
backtrack and free the previously initialized structures (lines 27 to 46).

2.6.4 Clamping Excess Digits

When a function anticipates a result will be n digits it is simpler to assume this is
true within the body of the function instead of checking during the computation.
For example, a multiplication of a i digit number by a j digit produces a result
of at most i+ j digits. It is entirely possible that the result is i+ j − 1 though,
with no final carry into the last position. However, suppose the destination had
to be first expanded (via mp grow) to accomodate i+ j − 1 digits than further
expanded to accomodate the final carry. That would be a considerable waste of
time since heap operations are relatively slow.
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The ideal solution is to always assume the result is i+ j and fix up the used
count after the function terminates. This way a single heap operation (at most)
is required. However, if the result was not checked there would be an excess
high order zero digit.

For example, suppose the product of two integers was xn = (0xn−1xn−2...x0)β .
The leading zero digit will not contribute to the precision of the result. In fact,
through subsequent operations more leading zero digits would accumulate to
the point the size of the integer would be prohibitive. As a result even though
the precision is very low the representation is excessively large.

The mp clamp algorithm is designed to solve this very problem. It will
trim high-order zeros by decrementing the used count until a non-zero most
significant digit is found. Also in this system, zero is considered to be a positive
number which means that if the used count is decremented to zero, the sign
must be set to MP ZPOS.

Algorithm mp clamp.
Input. An mp int a
Output. Any excess leading zero digits of a are removed

1. while a.used > 0 and aa.used−1 = 0 do
1.1 a.used← a.used− 1

2. if a.used = 0 then do
2.1 a.sign←MP ZPOS

Figure 2.9: Algorithm mp clamp

Algorithm mp clamp. As can be expected this algorithm is very simple.
The loop on step one is expected to iterate only once or twice at the most. For
example, this will happen in cases where there is not a carry to fill the last
position. Step two fixes the sign for when all of the digits are zero to ensure
that the mp int is valid at all times.

File: bn mp clamp.c

016

017 /* trim unused digits

018 *

019 * This is used to ensure that leading zero digits are

020 * trimed and the leading "used" digit will be non-zero
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021 * Typically very fast. Also fixes the sign if there

022 * are no more leading digits

023 */

024 void

025 mp_clamp (mp_int * a)

026 {
027 /* decrease used while the most significant digit is

028 * zero.

029 */

030 while (a->used > 0 && a->dp[a->used - 1] == 0) {
031 --(a->used);

032 }
033

034 /* reset the sign flag if used == 0 */

035 if (a->used == 0) {
036 a->sign = MP_ZPOS;

037 }
038 }
039 #endif

040

Note on line 27 how to test for the used count is made on the left of the &&
operator. In the C programming language the terms to && are evaluated left
to right with a boolean short-circuit if any condition fails. This is important
since if the used is zero the test on the right would fetch below the array. That
is obviously undesirable. The parenthesis on line 30 is used to make sure the
used count is decremented and not the pointer “a”.

Exercises

[1] Discuss the relevance of the used member of the mp int structure.

[1] Discuss the consequences of not using padding when performing allocations.

[2] Estimate an ideal value for MP PREC when performing 1024-bit RSA
encryption when β = 228.

[1] Discuss the relevance of the algorithm mp clamp. What does it prevent?

[1] Give an example of when the algorithm mp init copy might be useful.
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Chapter 3

Basic Operations

3.1 Introduction

In the previous chapter a series of low level algorithms were established that
dealt with initializing and maintaining mp int structures. This chapter will
discuss another set of seemingly non-algebraic algorithms which will form the
low level basis of the entire library. While these algorithm are relatively trivial
it is important to understand how they work before proceeding since these
algorithms will be used almost intrinsically in the following chapters.

The algorithms in this chapter deal primarily with more “programmer” re-
lated tasks such as creating copies of mp int structures, assigning small values
to mp int structures and comparisons of the values mp int structures represent.

3.2 Assigning Values to mp int Structures

3.2.1 Copying an mp int

Assigning the value that a given mp int structure represents to another mp int
structure shall be known as making a copy for the purposes of this text. The
copy of the mp int will be a separate entity that represents the same value as the
mp int it was copied from. The mp copy algorithm provides this functionality.

35
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Algorithm mp copy.
Input. An mp int a and b.
Output. Store a copy of a in b.

1. If b.alloc < a.used then grow b to a.used digits. (mp grow)
2. for n from 0 to a.used− 1 do
2.1 bn ← an

3. for n from a.used to b.used− 1 do
3.1 bn ← 0

4. b.used← a.used
5. b.sign← a.sign
6. return(MP OKAY )

Figure 3.1: Algorithm mp copy

Algorithm mp copy. This algorithm copies the mp int a such that upon
succesful termination of the algorithm the mp int b will represent the same
integer as the mp int a. The mp int b shall be a complete and distinct copy of
the mp int a meaing that the mp int a can be modified and it shall not affect
the value of the mp int b.

If b does not have enough room for the digits of a it must first have its
precision augmented via the mp grow algorithm. The digits of a are copied over
the digits of b and any excess digits of b are set to zero (step two and three).
The used and sign members of a are finally copied over the respective members
of b.

Remark. This algorithm also introduces a new idiosyncrasy that will be
used throughout the rest of the text. The error return codes of other algorithms
are not explicitly checked in the pseudo-code presented. For example, in step
one of the mp copy algorithm the return of mp grow is not explicitly checked to
ensure it succeeded. Text space is limited so it is assumed that if a algorithm
fails it will clear all temporarily allocated mp ints and return the error code
itself. However, the C code presented will demonstrate all of the error handling
logic required to implement the pseudo-code.

File: bn mp copy.c

016

017 /* copy, b = a */

018 int

019 mp_copy (mp_int * a, mp_int * b)
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020 {
021 int res, n;

022

023 /* if dst == src do nothing */

024 if (a == b) {
025 return MP_OKAY;

026 }
027

028 /* grow dest */

029 if (b->alloc < a->used) {
030 if ((res = mp_grow (b, a->used)) != MP_OKAY) {
031 return res;

032 }
033 }
034

035 /* zero b and copy the parameters over */

036 {
037 register mp_digit *tmpa, *tmpb;

038

039 /* pointer aliases */

040

041 /* source */

042 tmpa = a->dp;

043

044 /* destination */

045 tmpb = b->dp;

046

047 /* copy all the digits */

048 for (n = 0; n < a->used; n++) {
049 *tmpb++ = *tmpa++;

050 }
051

052 /* clear high digits */

053 for (; n < b->used; n++) {
054 *tmpb++ = 0;

055 }
056 }
057

058 /* copy used count and sign */

059 b->used = a->used;

060 b->sign = a->sign;

061 return MP_OKAY;
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062 }
063 #endif

064

Occasionally a dependent algorithm may copy an mp int effectively into itself
such as when the input and output mp int structures passed to a function are
one and the same. For this case it is optimal to return immediately without
copying digits (line 24).

The mp int b must have enough digits to accomodate the used digits of the
mp int a. If b.alloc is less than a.used the algorithm mp grow is used to augment
the precision of b (lines 29 to 33). In order to simplify the inner loop that copies
the digits from a to b, two aliases tmpa and tmpb point directly at the digits
of the mp ints a and b respectively. These aliases (lines 42 and 45) allow the
compiler to access the digits without first dereferencing the mp int pointers and
then subsequently the pointer to the digits.

After the aliases are established the digits from a are copied into b (lines
48 to 50) and then the excess digits of b are set to zero (lines 53 to 55). Both
“for” loops make use of the pointer aliases and in fact the alias for b is carried
through into the second “for” loop to clear the excess digits. This optimization
allows the alias to stay in a machine register fairly easy between the two loops.

Remarks. The use of pointer aliases is an implementation methodology
first introduced in this function that will be used considerably in other functions.
Technically, a pointer alias is simply a short hand alias used to lower the number
of pointer dereferencing operations required to access data. For example, a for
loop may resemble

for (x = 0; x < 100; x++) {
a->num[4]->dp[x] = 0;

}

This could be re-written using aliases as

mp_digit *tmpa;

a = a->num[4]->dp;

for (x = 0; x < 100; x++) {
*a++ = 0;

}

In this case an alias is used to access the array of digits within an mp int
structure directly. It may seem that a pointer alias is strictly not required as
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a compiler may optimize out the redundant pointer operations. However, there
are two dominant reasons to use aliases.

The first reason is that most compilers will not effectively optimize pointer
arithmetic. For example, some optimizations may work for the Microsoft Visual
C++ compiler (MSVC) and not for the GNU C Compiler (GCC). Also some
optimizations may work for GCC and not MSVC. As such it is ideal to find a
common ground for as many compilers as possible. Pointer aliases optimize the
code considerably before the compiler even reads the source code which means
the end compiled code stands a better chance of being faster.

The second reason is that pointer aliases often can make an algorithm simpler
to read. Consider the first “for” loop of the function mp copy() re-written to
not use pointer aliases.

/* copy all the digits */

for (n = 0; n < a->used; n++) {
b->dp[n] = a->dp[n];

}

Whether this code is harder to read depends strongly on the individual.
However, it is quantifiably slightly more complicated as there are four variables
within the statement instead of just two.

Nested Statements

Another commonly used technique in the source routines is that certain sections
of code are nested. This is used in particular with the pointer aliases to highlight
code phases. For example, a Comba multiplier (discussed in chapter six) will
typically have three different phases. First the temporaries are initialized, then
the columns calculated and finally the carries are propagated. In this example
the middle column production phase will typically be nested as it uses temporary
variables and aliases the most.

The nesting also simplies the source code as variables that are nested are
only valid for their scope. As a result the various temporary variables required
do not propagate into other sections of code.

3.2.2 Creating a Clone

Another common operation is to make a local temporary copy of an mp int
argument. To initialize an mp int and then copy another existing mp int into
the newly intialized mp int will be known as creating a clone. This is useful
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within functions that need to modify an argument but do not wish to actually
modify the original copy. The mp init copy algorithm has been designed to help
perform this task.

Algorithm mp init copy.
Input. An mp int a and b
Output. a is initialized to be a copy of b.

1. Init a. (mp init)
2. Copy b to a. (mp copy)
3. Return the status of the copy operation.

Figure 3.2: Algorithm mp init copy

Algorithm mp init copy. This algorithm will initialize an mp int variable
and copy another previously initialized mp int variable into it. As such this
algorithm will perform two operations in one step.

File: bn mp init copy.c

016

017 /* creates "a" then copies b into it */

018 int mp_init_copy (mp_int * a, mp_int * b)

019 {
020 int res;

021

022 if ((res = mp_init_size (a, b->used)) != MP_OKAY) {
023 return res;

024 }
025 return mp_copy (b, a);

026 }
027 #endif

028

This will initialize a and make it a verbatim copy of the contents of b. Note
that a will have its own memory allocated which means that b may be cleared
after the call and a will be left intact.
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3.3 Zeroing an Integer

Reseting an mp int to the default state is a common step in many algorithms.
The mp zero algorithm will be the algorithm used to perform this task.

Algorithm mp zero.
Input. An mp int a
Output. Zero the contents of a

1. a.used← 0
2. a.sign← MP ZPOS
3. for n from 0 to a.alloc− 1 do
3.1 an ← 0

Figure 3.3: Algorithm mp zero

Algorithm mp zero. This algorithm simply resets a mp int to the default
state.

File: bn mp zero.c

016

017 /* set to zero */

018 void mp_zero (mp_int * a)

019 {
020 int n;

021 mp_digit *tmp;

022

023 a->sign = MP_ZPOS;

024 a->used = 0;

025

026 tmp = a->dp;

027 for (n = 0; n < a->alloc; n++) {
028 *tmp++ = 0;

029 }
030 }
031 #endif

032

After the function is completed, all of the digits are zeroed, the used count
is zeroed and the sign variable is set to MP ZPOS.
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3.4 Sign Manipulation

3.4.1 Absolute Value

With the mp int representation of an integer, calculating the absolute value is
trivial. The mp abs algorithm will compute the absolute value of an mp int.

Algorithm mp abs.
Input. An mp int a
Output. Computes b = |a|

1. Copy a to b. (mp copy)
2. If the copy failed return(MP MEM ).
3. b.sign←MP ZPOS
4. Return(MP OKAY )

Figure 3.4: Algorithm mp abs

Algorithm mp abs. This algorithm computes the absolute of an mp int
input. First it copies a over b. This is an example of an algorithm where the
check in mp copy that determines if the source and destination are equal proves
useful. This allows, for instance, the developer to pass the same mp int as the
source and destination to this function without addition logic to handle it.

File: bn mp abs.c

016

017 /* b = |a|

018 *

019 * Simple function copies the input and fixes the sign to positive

020 */

021 int

022 mp_abs (mp_int * a, mp_int * b)

023 {
024 int res;

025

026 /* copy a to b */

027 if (a != b) {
028 if ((res = mp_copy (a, b)) != MP_OKAY) {
029 return res;

030 }
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031 }
032

033 /* force the sign of b to positive */

034 b->sign = MP_ZPOS;

035

036 return MP_OKAY;

037 }
038 #endif

039

This fairly trivial algorithm first eliminates non–required duplications (line
27) and then sets the sign flag to MP ZPOS.

3.4.2 Integer Negation

With the mp int representation of an integer, calculating the negation is also
trivial. The mp neg algorithm will compute the negative of an mp int input.

Algorithm mp neg.
Input. An mp int a
Output. Computes b = −a

1. Copy a to b. (mp copy)
2. If the copy failed return(MP MEM ).
3. If a.used = 0 then return(MP OKAY ).
4. If a.sign = MP ZPOS then do
4.1 b.sign = MP NEG.

5. else do
5.1 b.sign = MP ZPOS.

6. Return(MP OKAY )

Figure 3.5: Algorithm mp neg

Algorithm mp neg. This algorithm computes the negation of an input.
First it copies a over b. If a has no used digits then the algorithm returns
immediately. Otherwise it flips the sign flag and stores the result in b. Note
that if a had no digits then it must be positive by definition. Had step three
been omitted then the algorithm would return zero as negative.

File: bn mp neg.c
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016

017 /* b = -a */

018 int mp_neg (mp_int * a, mp_int * b)

019 {
020 int res;

021 if (a != b) {
022 if ((res = mp_copy (a, b)) != MP_OKAY) {
023 return res;

024 }
025 }
026

027 if (mp_iszero(b) != MP_YES) {
028 b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;

029 } else {
030 b->sign = MP_ZPOS;

031 }
032

033 return MP_OKAY;

034 }
035 #endif

036

Like mp abs() this function avoids non–required duplications (line 21) and
then sets the sign. We have to make sure that only non–zero values get a sign
of MP NEG. If the mp int is zero than the sign is hard–coded to MP ZPOS.

3.5 Small Constants

3.5.1 Setting Small Constants

Often a mp int must be set to a relatively small value such as 1 or 2. For these
cases the mp set algorithm is useful.
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Algorithm mp set.
Input. An mp int a and a digit b
Output. Make a equivalent to b

1. Zero a (mp zero).
2. a0 ← b (mod β)

3. a.used←
{

1 if a0 > 0
0 if a0 = 0

Figure 3.6: Algorithm mp set

Algorithm mp set. This algorithm sets a mp int to a small single digit
value. Step number 1 ensures that the integer is reset to the default state. The
single digit is set (modulo β) and the used count is adjusted accordingly.

File: bn mp set.c

016

017 /* set to a digit */

018 void mp_set (mp_int * a, mp_digit b)

019 {
020 mp_zero (a);

021 a->dp[0] = b & MP_MASK;

022 a->used = (a->dp[0] != 0) ? 1 : 0;

023 }
024 #endif

025

First we zero (line 20) the mp int to make sure that the other members
are initialized for a small positive constant. mp zero() ensures that the sign is
positive and the used count is zero. Next we set the digit and reduce it modulo
β (line 21). After this step we have to check if the resulting digit is zero or not.
If it is not then we set the used count to one, otherwise to zero.

We can quickly reduce modulo β since it is of the form 2k and a quick binary
AND operation with 2k − 1 will perform the same operation.

One important limitation of this function is that it will only set one digit.
The size of a digit is not fixed, meaning source that uses this function should
take that into account. Only trivially small constants can be set using this
function.
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3.5.2 Setting Large Constants

To overcome the limitations of the mp set algorithm the mp set int algorithm is
ideal. It accepts a “long” data type as input and will always treat it as a 32-bit
integer.

Algorithm mp set int.
Input. An mp int a and a “long” integer b
Output. Make a equivalent to b

1. Zero a (mp zero)
2. for n from 0 to 7 do
2.1 a← a · 16 (mp mul2d)
2.2 u← ⌊b/24(7−n)⌋ (mod 16)
2.3 a0 ← a0 + u
2.4 a.used← a.used+ 1

3. Clamp excess used digits (mp clamp)

Figure 3.7: Algorithm mp set int

Algorithm mp set int. The algorithm performs eight iterations of a sim-
ple loop where in each iteration four bits from the source are added to the
mp int. Step 2.1 will multiply the current result by sixteen making room for
four more bits in the less significant positions. In step 2.2 the next four bits from
the source are extracted and are added to the mp int. The used digit count
is incremented to reflect the addition. The used digit counter is incremented
since if any of the leading digits were zero the mp int would have zero digits
used and the newly added four bits would be ignored.

Excess zero digits are trimmed in steps 2.1 and 3 by using higher level
algorithms mp mul2d and mp clamp.

File: bn mp set int.c
016

017 /* set a 32-bit const */

018 int mp_set_int (mp_int * a, unsigned long b)

019 {
020 int x, res;

021

022 mp_zero (a);

023
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024 /* set four bits at a time */

025 for (x = 0; x < 8; x++) {
026 /* shift the number up four bits */

027 if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
028 return res;

029 }
030

031 /* OR in the top four bits of the source */

032 a->dp[0] |= (b >> 28) & 15;

033

034 /* shift the source up to the next four bits */

035 b <<= 4;

036

037 /* ensure that digits are not clamped off */

038 a->used += 1;

039 }
040 mp_clamp (a);

041 return MP_OKAY;

042 }
043 #endif

044

This function sets four bits of the number at a time to handle all practical
DIGIT BIT sizes. The weird addition on line 38 ensures that the newly added
in bits are added to the number of digits. While it may not seem obvious as
to why the digit counter does not grow exceedingly large it is because of the
shift on line 27 as well as the call to mp clamp() on line 40. Both functions will
clamp excess leading digits which keeps the number of used digits low.

3.6 Comparisons

3.6.1 Unsigned Comparisions

Comparing a multiple precision integer is performed with the exact same al-
gorithm used to compare two decimal numbers. For example, to compare
1, 234 to 1, 264 the digits are extracted by their positions. That is we com-
pare 1 · 103 + 2 · 102 + 3 · 101 + 4 · 100 to 1 · 103 + 2 · 102 + 6 · 101 + 4 · 100 by
comparing single digits at a time starting with the highest magnitude positions.
If any leading digit of one integer is greater than a digit in the same position of
another integer then obviously it must be greater.
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The first comparision routine that will be developed is the unsigned magni-
tude compare which will perform a comparison based on the digits of two mp int
variables alone. It will ignore the sign of the two inputs. Such a function is use-
ful when an absolute comparison is required or if the signs are known to agree
in advance.

To facilitate working with the results of the comparison functions three con-
stants are required.

Constant Meaning
MP GT Greater Than
MP EQ Equal To
MP LT Less Than

Figure 3.8: Comparison Return Codes

Algorithm mp cmp mag.
Input. Two mp ints a and b.
Output. Unsigned comparison results (a to the left of b).

1. If a.used > b.used then return(MP GT )
2. If a.used < b.used then return(MP LT )
3. for n from a.used− 1 to 0 do
3.1 if an > bn then return(MP GT )
3.2 if an < bn then return(MP LT )

4. Return(MP EQ)

Figure 3.9: Algorithm mp cmp mag

Algorithm mp cmp mag. By saying “a to the left of b” it is meant that
the comparison is with respect to a, that is if a is greater than b it will return
MP GT and similar with respect to when a = b and a < b. The first two
steps compare the number of digits used in both a and b. Obviously if the
digit counts differ there would be an imaginary zero digit in the smaller number
where the leading digit of the larger number is. If both have the same number
of digits than the actual digits themselves must be compared starting at the
leading digit.
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By step three both inputs must have the same number of digits so its safe to
start from either a.used−1 or b.used−1 and count down to the zero’th digit. If
after all of the digits have been compared, no difference is found, the algorithm
returns MP EQ.

File: bn mp cmp mag.c

016

017 /* compare maginitude of two ints (unsigned) */

018 int mp_cmp_mag (mp_int * a, mp_int * b)

019 {
020 int n;

021 mp_digit *tmpa, *tmpb;

022

023 /* compare based on # of non-zero digits */

024 if (a->used > b->used) {
025 return MP_GT;

026 }
027

028 if (a->used < b->used) {
029 return MP_LT;

030 }
031

032 /* alias for a */

033 tmpa = a->dp + (a->used - 1);

034

035 /* alias for b */

036 tmpb = b->dp + (a->used - 1);

037

038 /* compare based on digits */

039 for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
040 if (*tmpa > *tmpb) {
041 return MP_GT;

042 }
043

044 if (*tmpa < *tmpb) {
045 return MP_LT;

046 }
047 }
048 return MP_EQ;

049 }
050 #endif

051
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The two if statements (lines 24 and 28) compare the number of digits in
the two inputs. These two are performed before all of the digits are compared
since it is a very cheap test to perform and can potentially save considerable
time. The implementation given is also not valid without those two statements.
b.alloc may be smaller than a.used, meaning that undefined values will be read
from b past the end of the array of digits.

3.6.2 Signed Comparisons

Comparing with sign considerations is also fairly critical in several routines
(division for example). Based on an unsigned magnitude comparison a trivial
signed comparison algorithm can be written.

Algorithm mp cmp.
Input. Two mp ints a and b
Output. Signed Comparison Results (a to the left of b)

1. if a.sign = MP NEG and b.sign = MP ZPOS then return(MP LT )
2. if a.sign = MP ZPOS and b.sign = MP NEG then return(MP GT )
3. if a.sign = MP NEG then
3.1 Return the unsigned comparison of b and a (mp cmp mag)

4 Otherwise
4.1 Return the unsigned comparison of a and b

Figure 3.10: Algorithm mp cmp

Algorithm mp cmp. The first two steps compare the signs of the two
inputs. If the signs do not agree then it can return right away with the ap-
propriate comparison code. When the signs are equal the digits of the inputs
must be compared to determine the correct result. In step three the unsigned
comparision flips the order of the arguments since they are both negative. For
instance, if −a > −b then |a| < |b|. Step number four will compare the two
when they are both positive.

File: bn mp cmp.c

016

017 /* compare two ints (signed)*/

018 int

019 mp_cmp (mp_int * a, mp_int * b)
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020 {
021 /* compare based on sign */

022 if (a->sign != b->sign) {
023 if (a->sign == MP_NEG) {
024 return MP_LT;

025 } else {
026 return MP_GT;

027 }
028 }
029

030 /* compare digits */

031 if (a->sign == MP_NEG) {
032 /* if negative compare opposite direction */

033 return mp_cmp_mag(b, a);

034 } else {
035 return mp_cmp_mag(a, b);

036 }
037 }
038 #endif

039

The two if statements (lines 22 and 23) perform the initial sign comparison.
If the signs are not the equal then which ever has the positive sign is larger.
The inputs are compared (line 31) based on magnitudes. If the signs were both
negative then the unsigned comparison is performed in the opposite direction
(line 33). Otherwise, the signs are assumed to be both positive and a forward
direction unsigned comparison is performed.

Exercises

[2] Modify algorithm mp set int to accept as input a variable length array of bits.

[3] Give the probability that algorithm mp cmp mag will have to compare k digits
of two random digits (of equal magnitude) before a difference is found.

[1] Suggest a simple method to speed up the implementation of mp cmp mag based
on the observations made in the previous problem.
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Chapter 4

Basic Arithmetic

4.1 Introduction

At this point algorithms for initialization, clearing, zeroing, copying, compar-
ing and setting small constants have been established. The next logical set of
algorithms to develop are addition, subtraction and digit shifting algorithms.
These algorithms make use of the lower level algorithms and are the cruicial
building block for the multiplication algorithms. It is very important that these
algorithms are highly optimized. On their own they are simple O(n) algorithms
but they can be called from higher level algorithms which easily places them at
O(n2) or even O(n3) work levels.

All of the algorithms within this chapter make use of the logical bit shift
operations denoted by << and >> for left and right logical shifts respectively. A
logical shift is analogous to sliding the decimal point of radix-10 representations.
For example, the real number 0.9345 is equivalent to 93.45% which is found
by sliding the the decimal two places to the right (multiplying by β2 = 102).
Algebraically a binary logical shift is equivalent to a division or multiplication
by a power of two. For example, a << k = a · 2k while a >> k = ⌊a/2k⌋.

One significant difference between a logical shift and the way decimals are
shifted is that digits below the zero’th position are removed from the number.
For example, consider 11012 >> 1 using decimal notation this would produce
110.12. However, with a logical shift the result is 1102.

53
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4.2 Addition and Subtraction

In common twos complement fixed precision arithmetic negative numbers are
easily represented by subtraction from the modulus. For example, with 32-bit
integers a − b (mod 232) is the same as a + (232 − b) (mod 232) since 232 ≡
0 (mod 232). As a result subtraction can be performed with a trivial series of
logical operations and an addition.

However, in multiple precision arithmetic negative numbers are not repre-
sented in the same way. Instead a sign flag is used to keep track of the sign of the
integer. As a result signed addition and subtraction are actually implemented
as conditional usage of lower level addition or subtraction algorithms with the
sign fixed up appropriately.

The lower level algorithms will add or subtract integers without regard to
the sign flag. That is they will add or subtract the magnitude of the integers
respectively.

4.2.1 Low Level Addition

An unsigned addition of multiple precision integers is performed with the same
long-hand algorithm used to add decimal numbers. That is to add the trailing
digits first and propagate the resulting carry upwards. Since this is a lower level
algorithm the name will have a “s ” prefix. Historically that convention stems
from the MPI library where “s ” stood for static functions that were hidden
from the developer entirely.
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Algorithm s mp add.
Input. Two mp ints a and b
Output. The unsigned addition c = |a|+ |b|.

1. if a.used > b.used then
1.1 min← b.used
1.2 max← a.used
1.3 x← a

2. else
2.1 min← a.used
2.2 max← b.used
2.3 x← b

3. If c.alloc < max+ 1 then grow c to hold at least max+ 1 digits (mp grow)
4. oldused← c.used
5. c.used← max+ 1
6. u← 0
7. for n from 0 to min− 1 do
7.1 cn ← an + bn + u
7.2 u← cn >> lg(β)
7.3 cn ← cn (mod β)

8. if min 6= max then do
8.1 for n from min to max− 1 do
8.1.1 cn ← xn + u
8.1.2 u← cn >> lg(β)
8.1.3 cn ← cn (mod β)

9. cmax ← u
10. if olduse > max then
10.1 for n from max+ 1 to oldused− 1 do
10.1.1 cn ← 0

11. Clamp excess digits in c. (mp clamp)
12. Return(MP OKAY )

Figure 4.1: Algorithm s mp add

Algorithm s mp add. This algorithm is loosely based on algorithm 14.7
of HAC [2, pp. 594] but has been extended to allow the inputs to have different
magnitudes. Coincidentally the description of algorithm A in Knuth [1, pp. 266]
shares the same deficiency as the algorithm from [2]. Even the MIX pseudo
machine code presented by Knuth [1, pp. 266-267] is incapable of handling
inputs which are of different magnitudes.

The first thing that has to be accomplished is to sort out which of the two
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inputs is the largest. The addition logic will simply add all of the smallest input
to the largest input and store that first part of the result in the destination.
Then it will apply a simpler addition loop to excess digits of the larger input.

The first two steps will handle sorting the inputs such that min and max
hold the digit counts of the two inputs. The variable x will be an mp int alias
for the largest input or the second input b if they have the same number of
digits. After the inputs are sorted the destination c is grown as required to
accomodate the sum of the two inputs. The original used count of c is copied
and set to the new used count.

At this point the first addition loop will go through as many digit positions
that both inputs have. The carry variable µ is set to zero outside the loop.
Inside the loop an “addition” step requires three statements to produce one
digit of the summand. First two digits from a and b are added together along
with the carry µ. The carry of this step is extracted and stored in µ and finally
the digit of the result cn is truncated within the range 0 ≤ cn < β.

Now all of the digit positions that both inputs have in common have been
exhausted. If min 6= max then x is an alias for one of the inputs that has more
digits. A simplified addition loop is then used to essentially copy the remaining
digits and the carry to the destination.

The final carry is stored in cmax and digits above max upto oldused are
zeroed which completes the addition.

File: bn s mp add.c
016

017 /* low level addition, based on HAC pp.594, Algorithm 14.7 */

018 int

019 s_mp_add (mp_int * a, mp_int * b, mp_int * c)

020 {
021 mp_int *x;

022 int olduse, res, min, max;

023

024 /* find sizes, we let |a| <= |b| which means we have to sort

025 * them. "x" will point to the input with the most digits

026 */

027 if (a->used > b->used) {
028 min = b->used;

029 max = a->used;

030 x = a;

031 } else {
032 min = a->used;

033 max = b->used;
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034 x = b;

035 }
036

037 /* init result */

038 if (c->alloc < max + 1) {
039 if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
040 return res;

041 }
042 }
043

044 /* get old used digit count and set new one */

045 olduse = c->used;

046 c->used = max + 1;

047

048 {
049 register mp_digit u, *tmpa, *tmpb, *tmpc;

050 register int i;

051

052 /* alias for digit pointers */

053

054 /* first input */

055 tmpa = a->dp;

056

057 /* second input */

058 tmpb = b->dp;

059

060 /* destination */

061 tmpc = c->dp;

062

063 /* zero the carry */

064 u = 0;

065 for (i = 0; i < min; i++) {
066 /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */

067 *tmpc = *tmpa++ + *tmpb++ + u;

068

069 /* U = carry bit of T[i] */

070 u = *tmpc >> ((mp_digit)DIGIT_BIT);

071

072 /* take away carry bit from T[i] */

073 *tmpc++ &= MP_MASK;

074 }
075
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076 /* now copy higher words if any, that is in A+B

077 * if A or B has more digits add those in

078 */

079 if (min != max) {
080 for (; i < max; i++) {
081 /* T[i] = X[i] + U */

082 *tmpc = x->dp[i] + u;

083

084 /* U = carry bit of T[i] */

085 u = *tmpc >> ((mp_digit)DIGIT_BIT);

086

087 /* take away carry bit from T[i] */

088 *tmpc++ &= MP_MASK;

089 }
090 }
091

092 /* add carry */

093 *tmpc++ = u;

094

095 /* clear digits above oldused */

096 for (i = c->used; i < olduse; i++) {
097 *tmpc++ = 0;

098 }
099 }
100

101 mp_clamp (c);

102 return MP_OKAY;

103 }
104 #endif

105

We first sort (lines 27 to 35) the inputs based on magnitude and determine
the min and max variables. Note that x is a pointer to an mp int assigned to
the largest input, in effect it is a local alias. Next we grow the destination (37
to 42) ensure that it can accomodate the result of the addition.

Similar to the implementation of mp copy this function uses the braced code
and local aliases coding style. The three aliases that are on lines 55, 58 and 61
represent the two inputs and destination variables respectively. These aliases are
used to ensure the compiler does not have to dereference a, b or c (respectively)
to access the digits of the respective mp int.

The initial carry u will be cleared (line 64), note that u is of type mp digit
which ensures type compatibility within the implementation. The initial addi-
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tion (line 65 to 74) adds digits from both inputs until the smallest input runs
out of digits. Similarly the conditional addition loop (line 80 to 90) adds the
remaining digits from the larger of the two inputs. The addition is finished with
the final carry being stored in tmpc (line 93). Note the “++” operator within
the same expression. After line 93, tmpc will point to the c.used’th digit of the
mp int c. This is useful for the next loop (line 96 to 99) which set any old upper
digits to zero.

4.2.2 Low Level Subtraction

The low level unsigned subtraction algorithm is very similar to the low level
unsigned addition algorithm. The principle difference is that the unsigned sub-
traction algorithm requires the result to be positive. That is when computing
a − b the condition |a| ≥ |b| must be met for this algorithm to function prop-
erly. Keep in mind this low level algorithm is not meant to be used in higher
level algorithms directly. This algorithm as will be shown can be used to create
functional signed addition and subtraction algorithms.

For this algorithm a new variable is required to make the description simpler.
Recall from section 1.3.1 that a mp digit must be able to represent the range
0 ≤ x < 2β for the algorithms to work correctly. However, it is allowable that a
mp digit represent a larger range of values. For this algorithm we will assume
that the variable γ represents the number of bits available in a mp digit (this
implies 2γ > β).

For example, the default for LibTomMath is to use a “unsigned long” for the
mp digit “type” while β = 228. In ISO C an “unsigned long” data type must
be able to represent 0 ≤ x < 232 meaning that in this case γ ≥ 32.
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Algorithm s mp sub.
Input. Two mp ints a and b (|a| ≥ |b|)
Output. The unsigned subtraction c = |a| − |b|.

1. min← b.used
2. max← a.used
3. If c.alloc < max then grow c to hold at least max digits. (mp grow)
4. oldused← c.used
5. c.used← max
6. u← 0
7. for n from 0 to min− 1 do
7.1 cn ← an − bn − u
7.2 u← cn >> (γ − 1)
7.3 cn ← cn (mod β)

8. if min < max then do
8.1 for n from min to max− 1 do
8.1.1 cn ← an − u
8.1.2 u← cn >> (γ − 1)
8.1.3 cn ← cn (mod β)

9. if oldused > max then do
9.1 for n from max to oldused− 1 do
9.1.1 cn ← 0

10. Clamp excess digits of c. (mp clamp).
11. Return(MP OKAY ).

Figure 4.2: Algorithm s mp sub

Algorithm s mp sub. This algorithm performs the unsigned subtraction
of two mp int variables under the restriction that the result must be positive.
That is when passing variables a and b the condition that |a| ≥ |b| must be
met for the algorithm to function correctly. This algorithm is loosely based on
algorithm 14.9 [2, pp. 595] and is similar to algorithm S in [1, pp. 267] as well.
As was the case of the algorithm s mp add both other references lack discussion
concerning various practical details such as when the inputs differ in magnitude.

The initial sorting of the inputs is trivial in this algorithm since a is guar-
anteed to have at least the same magnitude of b. Steps 1 and 2 set the min
and max variables. Unlike the addition routine there is guaranteed to be no
carry which means that the final result can be at most max digits in length as
opposed to max + 1. Similar to the addition algorithm the used count of c is
copied locally and set to the maximal count for the operation.
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The subtraction loop that begins on step seven is essentially the same as
the addition loop of algorithm s mp add except single precision subtraction is
used instead. Note the use of the γ variable to extract the carry (also known

as the borrow) within the subtraction loops. Under the assumption that two’s
complement single precision arithmetic is used this will successfully extract the
desired carry.

For example, consider subtracting 01012 from 01002 where γ = 4 and β = 2.
The least significant bit will force a carry upwards to the third bit which will
be set to zero after the borrow. After the very first bit has been subtracted
4 − 1 ≡ 00112 will remain, When the third bit of 01012 is subtracted from the
result it will cause another carry. In this case though the carry will be forced
to propagate all the way to the most significant bit.

Recall that β < 2γ . This means that if a carry does occur just before the
lg(β)’th bit it will propagate all the way to the most significant bit. Thus, the
high order bits of the mp digit that are not part of the actual digit will either
be all zero, or all one. All that is needed is a single zero or one bit for the carry.
Therefore a single logical shift right by γ − 1 positions is sufficient to extract
the carry. This method of carry extraction may seem awkward but the reason
for it becomes apparent when the implementation is discussed.

If b has a smaller magnitude than a then step 9 will force the carry and copy
operation to propagate through the larger input a into c. Step 10 will ensure
that any leading digits of c above the max’th position are zeroed.

File: bn s mp sub.c
016

017 /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */

018 int

019 s_mp_sub (mp_int * a, mp_int * b, mp_int * c)

020 {
021 int olduse, res, min, max;

022

023 /* find sizes */

024 min = b->used;

025 max = a->used;

026

027 /* init result */

028 if (c->alloc < max) {
029 if ((res = mp_grow (c, max)) != MP_OKAY) {
030 return res;

031 }
032 }
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033 olduse = c->used;

034 c->used = max;

035

036 {
037 register mp_digit u, *tmpa, *tmpb, *tmpc;

038 register int i;

039

040 /* alias for digit pointers */

041 tmpa = a->dp;

042 tmpb = b->dp;

043 tmpc = c->dp;

044

045 /* set carry to zero */

046 u = 0;

047 for (i = 0; i < min; i++) {
048 /* T[i] = A[i] - B[i] - U */

049 *tmpc = *tmpa++ - *tmpb++ - u;

050

051 /* U = carry bit of T[i]

052 * Note this saves performing an AND operation since

053 * if a carry does occur it will propagate all the way to the

054 * MSB. As a result a single shift is enough to get the carry

055 */

056 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));

057

058 /* Clear carry from T[i] */

059 *tmpc++ &= MP_MASK;

060 }
061

062 /* now copy higher words if any, e.g. if A has more digits than B */

063 for (; i < max; i++) {
064 /* T[i] = A[i] - U */

065 *tmpc = *tmpa++ - u;

066

067 /* U = carry bit of T[i] */

068 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));

069

070 /* Clear carry from T[i] */

071 *tmpc++ &= MP_MASK;

072 }
073

074 /* clear digits above used (since we may not have grown result above) */
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075 for (i = c->used; i < olduse; i++) {
076 *tmpc++ = 0;

077 }
078 }
079

080 mp_clamp (c);

081 return MP_OKAY;

082 }
083

084 #endif

085

Like low level addition we “sort” the inputs. Except in this case the sorting
is hardcoded (lines 24 and 25). In reality the min and max variables are only
aliases and are only used to make the source code easier to read. Again the
pointer alias optimization is used within this algorithm. The aliases tmpa,
tmpb and tmpc are initialized (lines 41, 42 and 43) for a, b and c respectively.

The first subtraction loop (lines 46 through 60) subtract digits from both
inputs until the smaller of the two inputs has been exhausted. As remarked
earlier there is an implementation reason for using the “awkward” method of
extracting the carry (line 56). The traditional method for extracting the carry
would be to shift by lg(β) positions and logically AND the least significant bit.
The AND operation is required because all of the bits above the lg(β)’th bit
will be set to one after a carry occurs from subtraction. This carry extraction
requires two relatively cheap operations to extract the carry. The other method
is to simply shift the most significant bit to the least significant bit thus ex-
tracting the carry with a single cheap operation. This optimization only works
on twos compliment machines which is a safe assumption to make.

If a has a larger magnitude than b an additional loop (lines 63 through 72)
is required to propagate the carry through a and copy the result to c.

4.2.3 High Level Addition

Now that both lower level addition and subtraction algorithms have been estab-
lished an effective high level signed addition algorithm can be established. This
high level addition algorithm will be what other algorithms and developers will
use to perform addition of mp int data types.

Recall from section 5.2 that an mp int represents an integer with an unsigned
mantissa (the array of digits) and a sign flag. A high level addition is actually



64 CHAPTER 4. BASIC ARITHMETIC

performed as a series of eight separate cases which can be optimized down to
three unique cases.

Algorithm mp add.
Input. Two mp ints a and b
Output. The signed addition c = a+ b.

1. if a.sign = b.sign then do
1.1 c.sign← a.sign
1.2 c← |a|+ |b| (s mp add)

2. else do
2.1 if |a| < |b| then do (mp cmp mag)
2.1.1 c.sign← b.sign
2.1.2 c← |b| − |a| (s mp sub)

2.2 else do
2.2.1 c.sign← a.sign
2.2.2 c← |a| − |b|

3. Return(MP OKAY ).

Figure 4.3: Algorithm mp add

Algorithm mp add. This algorithm performs the signed addition of two
mp int variables. There is no reference algorithm to draw upon from either
[1] or [2] since they both only provide unsigned operations. The algorithm is
fairly straightforward but restricted since subtraction can only produce positive
results.

Figure 4.4 lists all of the eight possible input combinations and is sorted to
show that only three specific cases need to be handled. The return code of the
unsigned operations at step 1.2, 2.1.2 and 2.2.2 are forwarded to step three to
check for errors. This simplifies the description of the algorithm considerably
and best follows how the implementation actually was achieved.

Also note how the sign is set before the unsigned addition or subtrac-
tion is performed. Recall from the descriptions of algorithms s mp add and
s mp sub that the mp clamp function is used at the end to trim excess digits.
The mp clamp algorithm will set the sign to MP ZPOS when the used digit
count reaches zero.

For example, consider performing −a + a with algorithm mp add. By the
description of the algorithm the sign is set to MP NEG which would produce
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Sign of a Sign of b |a| > |b| Unsigned Operation Result Sign Flag

+ + Yes c = a+ b a.sign

+ + No c = a+ b a.sign

− − Yes c = a+ b a.sign

− − No c = a+ b a.sign

+ − No c = b− a b.sign

− + No c = b− a b.sign

+ − Yes c = a− b a.sign

− + Yes c = a− b a.sign

Figure 4.4: Addition Guide Chart

a result of −0. However, since the sign is set first then the unsigned addition
is performed the subsequent usage of algorithm mp clamp within algorithm
s mp add will force −0 to become 0.

File: bn mp add.c

016

017 /* high level addition (handles signs) */

018 int mp_add (mp_int * a, mp_int * b, mp_int * c)

019 {
020 int sa, sb, res;

021

022 /* get sign of both inputs */

023 sa = a->sign;

024 sb = b->sign;

025

026 /* handle two cases, not four */

027 if (sa == sb) {
028 /* both positive or both negative */

029 /* add their magnitudes, copy the sign */

030 c->sign = sa;

031 res = s_mp_add (a, b, c);

032 } else {
033 /* one positive, the other negative */

034 /* subtract the one with the greater magnitude from */

035 /* the one of the lesser magnitude. The result gets */

036 /* the sign of the one with the greater magnitude. */
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037 if (mp_cmp_mag (a, b) == MP_LT) {
038 c->sign = sb;

039 res = s_mp_sub (b, a, c);

040 } else {
041 c->sign = sa;

042 res = s_mp_sub (a, b, c);

043 }
044 }
045 return res;

046 }
047

048 #endif

049

The source code follows the algorithm fairly closely. The most notable new
source code addition is the usage of the res integer variable which is used to
pass result of the unsigned operations forward. Unlike in the algorithm, the
variable res is merely returned as is without explicitly checking it and returning
the constant MP OKAY. The observation is this algorithm will succeed or fail
only if the lower level functions do so. Returning their return code is sufficient.

4.2.4 High Level Subtraction

The high level signed subtraction algorithm is essentially the same as the high
level signed addition algorithm.
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Algorithm mp sub.
Input. Two mp ints a and b
Output. The signed subtraction c = a− b.

1. if a.sign 6= b.sign then do
1.1 c.sign← a.sign
1.2 c← |a|+ |b| (s mp add)

2. else do
2.1 if |a| ≥ |b| then do (mp cmp mag)
2.1.1 c.sign← a.sign
2.1.2 c← |a| − |b| (s mp sub)

2.2 else do

2.2.1 c.sign←
{

MP ZPOS if a.sign = MP NEG
MP NEG otherwise

2.2.2 c← |b| − |a|
3. Return(MP OKAY ).

Figure 4.5: Algorithm mp sub

Algorithm mp sub. This algorithm performs the signed subtraction of
two inputs. Similar to algorithm mp add there is no reference in either [1] or
[2]. Also this algorithm is restricted by algorithm s mp sub. Chart 4.6 lists the
eight possible inputs and the operations required.

Sign of a Sign of b |a| ≥ |b| Unsigned Operation Result Sign Flag

+ − Yes c = a+ b a.sign

+ − No c = a+ b a.sign

− + Yes c = a+ b a.sign

− + No c = a+ b a.sign

+ + Yes c = a− b a.sign

− − Yes c = a− b a.sign

+ + No c = b− a opposite of a.sign

− − No c = b− a opposite of a.sign

Figure 4.6: Subtraction Guide Chart
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Similar to the case of algorithm mp add the sign is set first before the un-
signed addition or subtraction. That is to prevent the algorithm from producing
−a−−a = −0 as a result.

File: bn mp sub.c

016

017 /* high level subtraction (handles signs) */

018 int

019 mp_sub (mp_int * a, mp_int * b, mp_int * c)

020 {
021 int sa, sb, res;

022

023 sa = a->sign;

024 sb = b->sign;

025

026 if (sa != sb) {
027 /* subtract a negative from a positive, OR */

028 /* subtract a positive from a negative. */

029 /* In either case, ADD their magnitudes, */

030 /* and use the sign of the first number. */

031 c->sign = sa;

032 res = s_mp_add (a, b, c);

033 } else {
034 /* subtract a positive from a positive, OR */

035 /* subtract a negative from a negative. */

036 /* First, take the difference between their */

037 /* magnitudes, then... */

038 if (mp_cmp_mag (a, b) != MP_LT) {
039 /* Copy the sign from the first */

040 c->sign = sa;

041 /* The first has a larger or equal magnitude */

042 res = s_mp_sub (a, b, c);

043 } else {
044 /* The result has the *opposite* sign from */

045 /* the first number. */

046 c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;

047 /* The second has a larger magnitude */

048 res = s_mp_sub (b, a, c);

049 }
050 }
051 return res;

052 }
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053

054 #endif

055

Much like the implementation of algorithm mp add the variable res is used
to catch the return code of the unsigned addition or subtraction operations and
forward it to the end of the function. On line 38 the “not equal to” MP LT
expression is used to emulate a “greater than or equal to” comparison.

4.3 Bit and Digit Shifting

It is quite common to think of a multiple precision integer as a polynomial in
x, that is y = f(β) where f(x) =

∑n−1
i=0 aix

i. This notation arises within dis-
cussion of Montgomery and Diminished Radix Reduction as well as Karatsuba
multiplication and squaring.

In order to facilitate operations on polynomials in x as above a series of
simple “digit” algorithms have to be established. That is to shift the digits left
or right as well to shift individual bits of the digits left and right. It is important
to note that not all “shift” operations are on radix-β digits.

4.3.1 Multiplication by Two

In a binary system where the radix is a power of two multiplication by two not
only arises often in other algorithms it is a fairly efficient operation to perform.
A single precision logical shift left is sufficient to multiply a single digit by two.
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Algorithm mp mul 2.
Input. One mp int a
Output. b = 2a.

1. If b.alloc < a.used+ 1 then grow b to hold a.used+ 1 digits. (mp grow)
2. oldused← b.used
3. b.used← a.used
4. r ← 0
5. for n from 0 to a.used− 1 do
5.1 rr ← an >> (lg(β)− 1)
5.2 bn ← (an << 1) + r (mod β)
5.3 r ← rr

6. If r 6= 0 then do
6.1 bn+1 ← r
6.2 b.used← b.used+ 1

7. If b.used < oldused− 1 then do
7.1 for n from b.used to oldused− 1 do
7.1.1 bn ← 0

8. b.sign← a.sign
9. Return(MP OKAY ).

Figure 4.7: Algorithm mp mul 2

Algorithm mp mul 2. This algorithm will quickly multiply a mp int by
two provided β is a power of two. Neither [1] nor [2] describe such an algorithm
despite the fact it arises often in other algorithms. The algorithm is setup much
like the lower level algorithm s mp add since it is for all intents and purposes
equivalent to the operation b = |a|+ |a|.

Step 1 and 2 grow the input as required to accomodate the maximum number
of used digits in the result. The initial used count is set to a.used at step 4.
Only if there is a final carry will the used count require adjustment.

Step 6 is an optimization implementation of the addition loop for this specific
case. That is since the two values being added together are the same there is
no need to perform two reads from the digits of a. Step 6.1 performs a single
precision shift on the current digit an to obtain what will be the carry for the
next iteration. Step 6.2 calculates the n’th digit of the result as single precision
shift of an plus the previous carry. Recall from section 4.1 that an << 1 is
equivalent to an ·2. An iteration of the addition loop is finished with forwarding
the carry to the next iteration.

Step 7 takes care of any final carry by setting the a.used’th digit of the
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result to the carry and augmenting the used count of b. Step 8 clears any
leading digits of b in case it originally had a larger magnitude than a.

File: bn mp mul 2.c
016

017 /* b = a*2 */

018 int mp_mul_2(mp_int * a, mp_int * b)

019 {
020 int x, res, oldused;

021

022 /* grow to accomodate result */

023 if (b->alloc < a->used + 1) {
024 if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
025 return res;

026 }
027 }
028

029 oldused = b->used;

030 b->used = a->used;

031

032 {
033 register mp_digit r, rr, *tmpa, *tmpb;

034

035 /* alias for source */

036 tmpa = a->dp;

037

038 /* alias for dest */

039 tmpb = b->dp;

040

041 /* carry */

042 r = 0;

043 for (x = 0; x < a->used; x++) {
044

045 /* get what will be the *next* carry bit from the

046 * MSB of the current digit

047 */

048 rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));

049

050 /* now shift up this digit, add in the carry [from the previous] */

051 *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;

052

053 /* copy the carry that would be from the source

054 * digit into the next iteration
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055 */

056 r = rr;

057 }
058

059 /* new leading digit? */

060 if (r != 0) {
061 /* add a MSB which is always 1 at this point */

062 *tmpb = 1;

063 ++(b->used);

064 }
065

066 /* now zero any excess digits on the destination

067 * that we didn’t write to

068 */

069 tmpb = b->dp + b->used;

070 for (x = b->used; x < oldused; x++) {
071 *tmpb++ = 0;

072 }
073 }
074 b->sign = a->sign;

075 return MP_OKAY;

076 }
077 #endif

078

This implementation is essentially an optimized implementation of s mp add
for the case of doubling an input. The only noteworthy difference is the use of
the logical shift operator on line 51 to perform a single precision doubling.

4.3.2 Division by Two

A division by two can just as easily be accomplished with a logical shift right
as multiplication by two can be with a logical shift left.
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Algorithm mp div 2.
Input. One mp int a
Output. b = a/2.

1. If b.alloc < a.used then grow b to hold a.used digits. (mp grow)
2. If the reallocation failed return(MP MEM ).
3. oldused← b.used
4. b.used← a.used
5. r ← 0
6. for n from b.used− 1 to 0 do
6.1 rr ← an (mod 2)
6.2 bn ← (an >> 1) + (r << (lg(β)− 1)) (mod β)
6.3 r ← rr

7. If b.used < oldused− 1 then do
7.1 for n from b.used to oldused− 1 do
7.1.1 bn ← 0

8. b.sign← a.sign
9. Clamp excess digits of b. (mp clamp)
10. Return(MP OKAY ).

Figure 4.8: Algorithm mp div 2

Algorithm mp div 2. This algorithm will divide an mp int by two using
logical shifts to the right. Like mp mul 2 it uses a modified low level addition
core as the basis of the algorithm. Unlike mp mul 2 the shift operations work
from the leading digit to the trailing digit. The algorithm could be written to
work from the trailing digit to the leading digit however, it would have to stop
one short of a.used − 1 digits to prevent reading past the end of the array of
digits.

Essentially the loop at step 6 is similar to that of mp mul 2 except the logical
shifts go in the opposite direction and the carry is at the least significant bit
not the most significant bit.

File: bn mp div 2.c
016

017 /* b = a/2 */

018 int mp_div_2(mp_int * a, mp_int * b)

019 {
020 int x, res, oldused;

021

022 /* copy */
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023 if (b->alloc < a->used) {
024 if ((res = mp_grow (b, a->used)) != MP_OKAY) {
025 return res;

026 }
027 }
028

029 oldused = b->used;

030 b->used = a->used;

031 {
032 register mp_digit r, rr, *tmpa, *tmpb;

033

034 /* source alias */

035 tmpa = a->dp + b->used - 1;

036

037 /* dest alias */

038 tmpb = b->dp + b->used - 1;

039

040 /* carry */

041 r = 0;

042 for (x = b->used - 1; x >= 0; x--) {
043 /* get the carry for the next iteration */

044 rr = *tmpa & 1;

045

046 /* shift the current digit, add in carry and store */

047 *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));

048

049 /* forward carry to next iteration */

050 r = rr;

051 }
052

053 /* zero excess digits */

054 tmpb = b->dp + b->used;

055 for (x = b->used; x < oldused; x++) {
056 *tmpb++ = 0;

057 }
058 }
059 b->sign = a->sign;

060 mp_clamp (b);

061 return MP_OKAY;

062 }
063 #endif

064
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4.4 Polynomial Basis Operations

Recall from section 4.3 that any integer can be represented as a polynomial in
x as y = f(β). Such a representation is also known as the polynomial basis
[3, pp. 48]. Given such a notation a multiplication or division by x amounts
to shifting whole digits a single place. The need for such operations arises in
several other higher level algorithms such as Barrett and Montgomery reduction,
integer division and Karatsuba multiplication.

Converting from an array of digits to polynomial basis is very simple. Con-
sider the integer y ≡ (a2, a1, a0)β and recall that y =

∑2
i=0 aiβ

i. Simply
replace β with x and the expression is in polynomial basis. For example,
f(x) = 8x + 9 is the polynomial basis representation for 89 using radix ten.
That is, f(10) = 8(10) + 9 = 89.

4.4.1 Multiplication by x

Given a polynomial in x such as f(x) = anx
n + an−1x

n−1 + ...+ a0 multiplying
by x amounts to shifting the coefficients up one degree. In this case f(x) · x =
anx

n+1 + an−1x
n + ...+ a0x. From a scalar basis point of view multiplying by

x is equivalent to multiplying by the integer β.
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Algorithm mp lshd.
Input. One mp int a and an integer b

Output. a← a · βb (equivalent to multiplication by xb).

1. If b ≤ 0 then return(MP OKAY ).
2. If a.alloc < a.used+ b then grow a to at least a.used+ b digits. (mp grow).
3. If the reallocation failed return(MP MEM ).
4. a.used← a.used+ b
5. i← a.used− 1
6. j ← a.used− 1− b
7. for n from a.used− 1 to b do
7.1 ai ← aj

7.2 i← i− 1
7.3 j ← j − 1

8. for n from 0 to b− 1 do
8.1 an ← 0

9. Return(MP OKAY ).

Figure 4.9: Algorithm mp lshd

Algorithm mp lshd. This algorithm multiplies an mp int by the b’th
power of x. This is equivalent to multiplying by βb. The algorithm differs
from the other algorithms presented so far as it performs the operation in place
instead storing the result in a separate location. The motivation behind this
change is due to the way this function is typically used. Algorithms such as
mp add store the result in an optionally different third mp int because the orig-
inal inputs are often still required. Algorithm mp lshd (and similarly algorithm

mp rshd) is typically used on values where the original value is no longer re-
quired. The algorithm will return success immediately if b ≤ 0 since the rest of
algorithm is only valid when b > 0.

First the destination a is grown as required to accomodate the result. The
counters i and j are used to form a sliding window over the digits of a of length
b. The head of the sliding window is at i (the leading digit) and the tail at j
(the trailing digit). The loop on step 7 copies the digit from the tail to the head.
In each iteration the window is moved down one digit. The last loop on step 8
sets the lower b digits to zero.
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Figure 4.10: Sliding Window Movement

File: bn mp lshd.c
016

017 /* shift left a certain amount of digits */

018 int mp_lshd (mp_int * a, int b)

019 {
020 int x, res;

021

022 /* if its less than zero return */

023 if (b <= 0) {
024 return MP_OKAY;

025 }
026

027 /* grow to fit the new digits */

028 if (a->alloc < a->used + b) {
029 if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
030 return res;

031 }
032 }
033

034 {
035 register mp_digit *top, *bottom;

036

037 /* increment the used by the shift amount then copy upwards */

038 a->used += b;
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039

040 /* top */

041 top = a->dp + a->used - 1;

042

043 /* base */

044 bottom = a->dp + a->used - 1 - b;

045

046 /* much like mp_rshd this is implemented using a sliding window

047 * except the window goes the otherway around. Copying from

048 * the bottom to the top. see bn_mp_rshd.c for more info.

049 */

050 for (x = a->used - 1; x >= b; x--) {
051 *top-- = *bottom--;

052 }
053

054 /* zero the lower digits */

055 top = a->dp;

056 for (x = 0; x < b; x++) {
057 *top++ = 0;

058 }
059 }
060 return MP_OKAY;

061 }
062 #endif

063

The if statement (line 23) ensures that the b variable is greater than zero
since we do not interpret negative shift counts properly. The used count is
incremented by b before the copy loop begins. This elminates the need for an
additional variable in the for loop. The variable top (line 41) is an alias for the
leading digit while bottom (line 44) is an alias for the trailing edge. The aliases
form a window of exactly b digits over the input.

4.4.2 Division by x

Division by powers of x is easily achieved by shifting the digits right and remov-
ing any that will end up to the right of the zero’th digit.
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Algorithm mp rshd.
Input. One mp int a and an integer b

Output. a← a/βb (Divide by xb).

1. If b ≤ 0 then return.
2. If a.used ≤ b then do
2.1 Zero a. (mp zero).
2.2 Return.

3. i← 0
4. j ← b
5. for n from 0 to a.used− b− 1 do
5.1 ai ← aj

5.2 i← i+ 1
5.3 j ← j + 1

6. for n from a.used− b to a.used− 1 do
6.1 an ← 0

7. a.used← a.used− b
8. Return.

Figure 4.11: Algorithm mp rshd

Algorithm mp rshd. This algorithm divides the input in place by the b’th
power of x. It is analogous to dividing by a βb but much quicker since it does
not require single precision division. This algorithm does not actually return an
error code as it cannot fail.

If the input b is less than one the algorithm quickly returns without per-
forming any work. If the used count is less than or equal to the shift count b
then it will simply zero the input and return.

After the trivial cases of inputs have been handled the sliding window is
setup. Much like the case of algorithm mp lshd a sliding window that is b digits
wide is used to copy the digits. Unlike mp lshd the window slides in the opposite
direction from the trailing to the leading digit. Also the digits are copied from
the leading to the trailing edge.

Once the window copy is complete the upper digits must be zeroed and the
used count decremented.

File: bn mp rshd.c

016

017 /* shift right a certain amount of digits */

018 void mp_rshd (mp_int * a, int b)
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019 {
020 int x;

021

022 /* if b <= 0 then ignore it */

023 if (b <= 0) {
024 return;

025 }
026

027 /* if b > used then simply zero it and return */

028 if (a->used <= b) {
029 mp_zero (a);

030 return;

031 }
032

033 {
034 register mp_digit *bottom, *top;

035

036 /* shift the digits down */

037

038 /* bottom */

039 bottom = a->dp;

040

041 /* top [offset into digits] */

042 top = a->dp + b;

043

044 /* this is implemented as a sliding window where

045 * the window is b-digits long and digits from

046 * the top of the window are copied to the bottom

047 *

048 * e.g.

049

050 b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->

051 /\ | ---->

052 \-------------------/ ---->

053 */

054 for (x = 0; x < (a->used - b); x++) {
055 *bottom++ = *top++;

056 }
057

058 /* zero the top digits */

059 for (; x < a->used; x++) {
060 *bottom++ = 0;
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061 }
062 }
063

064 /* remove excess digits */

065 a->used -= b;

066 }
067 #endif

068

The only noteworthy element of this routine is the lack of a return type since
it cannot fail. Like mp lshd() we form a sliding window except we copy in the
other direction. After the window (line 59) we then zero the upper digits of the
input to make sure the result is correct.

4.5 Powers of Two

Now that algorithms for moving single bits as well as whole digits exist algo-
rithms for moving the “in between” distances are required. For example, to
quickly multiply by 2k for any k without using a full multiplier algorithm would
prove useful. Instead of performing single shifts k times to achieve a multi-
plication by 2±k a mixture of whole digit shifting and partial digit shifting is
employed.

4.5.1 Multiplication by Power of Two
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Algorithm mp mul 2d.
Input. One mp int a and an integer b

Output. c← a · 2b.

1. c← a. (mp copy)
2. If c.alloc < c.used+ ⌊b/lg(β)⌋+ 2 then grow c accordingly.
3. If the reallocation failed return(MP MEM ).
4. If b ≥ lg(β) then

4.1 c← c · β⌊b/lg(β)⌋ (mp lshd).
4.2 If step 4.1 failed return(MP MEM ).

5. d← b (mod lg(β))
6. If d 6= 0 then do

6.1 mask ← 2d

6.2 r ← 0
6.3 for n from 0 to c.used− 1 do
6.3.1 rr ← cn >> (lg(β)− d) (mod mask)
6.3.2 cn ← (cn << d) + r (mod β)
6.3.3 r ← rr

6.4 If r > 0 then do
6.4.1 cc.used ← r
6.4.2 c.used← c.used+ 1

7. Return(MP OKAY ).

Figure 4.12: Algorithm mp mul 2d

Algorithm mp mul 2d. This algorithm multiplies a by 2b and stores the
result in c. The algorithm uses algorithm mp lshd and a derivative of algorithm
mp mul 2 to quickly compute the product.

First the algorithm will multiply a by x⌊b/lg(β)⌋ which will ensure that the
remainder multiplicand is less than β. For example, if b = 37 and β = 228 then
this step will multiply by x leaving a multiplication by 237−28 = 29 left.

After the digits have been shifted appropriately at most lg(β)− 1 shifts are
left to perform. Step 5 calculates the number of remaining shifts required. If
it is non-zero a modified shift loop is used to calculate the remaining product.
Essentially the loop is a generic version of algorithm mp mul 2 designed to
handle any shift count in the range 1 ≤ x < lg(β). The mask variable is used
to extract the upper d bits to form the carry for the next iteration.

This algorithm is loosely measured as a O(2n) algorithm which means that
if the input is n-digits that it takes 2n “time” to complete. It is possible to
optimize this algorithm down to a O(n) algorithm at a cost of making the
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algorithm slightly harder to follow.

File: bn mp mul 2d.c
016

017 /* shift left by a certain bit count */

018 int mp_mul_2d (mp_int * a, int b, mp_int * c)

019 {
020 mp_digit d;

021 int res;

022

023 /* copy */

024 if (a != c) {
025 if ((res = mp_copy (a, c)) != MP_OKAY) {
026 return res;

027 }
028 }
029

030 if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
031 if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
032 return res;

033 }
034 }
035

036 /* shift by as many digits in the bit count */

037 if (b >= (int)DIGIT_BIT) {
038 if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
039 return res;

040 }
041 }
042

043 /* shift any bit count < DIGIT_BIT */

044 d = (mp_digit) (b % DIGIT_BIT);

045 if (d != 0) {
046 register mp_digit *tmpc, shift, mask, r, rr;

047 register int x;

048

049 /* bitmask for carries */

050 mask = (((mp_digit)1) << d) - 1;

051

052 /* shift for msbs */

053 shift = DIGIT_BIT - d;

054

055 /* alias */
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056 tmpc = c->dp;

057

058 /* carry */

059 r = 0;

060 for (x = 0; x < c->used; x++) {
061 /* get the higher bits of the current word */

062 rr = (*tmpc >> shift) & mask;

063

064 /* shift the current word and OR in the carry */

065 *tmpc = ((*tmpc << d) | r) & MP_MASK;

066 ++tmpc;

067

068 /* set the carry to the carry bits of the current word */

069 r = rr;

070 }
071

072 /* set final carry */

073 if (r != 0) {
074 c->dp[(c->used)++] = r;

075 }
076 }
077 mp_clamp (c);

078 return MP_OKAY;

079 }
080 #endif

081

The shifting is performed in–place which means the first step (line 24) is to
copy the input to the destination. We avoid calling mp copy() by making sure
the mp ints are different. The destination then has to be grown (line 31) to
accomodate the result.

If the shift count b is larger than lg(β) then a call to mp lshd() is used to
handle all of the multiples of lg(β). Leaving only a remaining shift of lg(β)− 1
or fewer bits left. Inside the actual shift loop (lines 45 to 76) we make use
of pre–computed values shift and mask. These are used to extract the carry
bit(s) to pass into the next iteration of the loop. The r and rr variables form a
chain between consecutive iterations to propagate the carry.

4.5.2 Division by Power of Two
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Algorithm mp div 2d.
Input. One mp int a and an integer b

Output. c← ⌊a/2b⌋, d← a (mod 2b).

1. If b ≤ 0 then do
1.1 c← a (mp copy)
1.2 d← 0 (mp zero)
1.3 Return(MP OKAY ).

2. c← a

3. d← a (mod 2b) (mp mod 2d)
4. If b ≥ lg(β) then do

4.1 c← ⌊c/β⌊b/lg(β)⌋⌋ (mp rshd).
5. k ← b (mod lg(β))
6. If k 6= 0 then do

6.1 mask ← 2k

6.2 r ← 0
6.3 for n from c.used− 1 to 0 do
6.3.1 rr ← cn (mod mask)
6.3.2 cn ← (cn >> k) + (r << (lg(β)− k))
6.3.3 r ← rr

7. Clamp excess digits of c. (mp clamp)
8. Return(MP OKAY ).

Figure 4.13: Algorithm mp div 2d

Algorithm mp div 2d. This algorithm will divide an input a by 2b and
produce the quotient and remainder. The algorithm is designed much like al-
gorithm mp mul 2d by first using whole digit shifts then single precision shifts.
This algorithm will also produce the remainder of the division by using algo-
rithm mp mod 2d.

File: bn mp div 2d.c

016

017 /* shift right by a certain bit count (store quotient in c, optional remaind

er in d) */

018 int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)

019 {
020 mp_digit D, r, rr;

021 int x, res;

022 mp_int t;

023
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024

025 /* if the shift count is <= 0 then we do no work */

026 if (b <= 0) {
027 res = mp_copy (a, c);

028 if (d != NULL) {
029 mp_zero (d);

030 }
031 return res;

032 }
033

034 if ((res = mp_init (&t)) != MP_OKAY) {
035 return res;

036 }
037

038 /* get the remainder */

039 if (d != NULL) {
040 if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
041 mp_clear (&t);

042 return res;

043 }
044 }
045

046 /* copy */

047 if ((res = mp_copy (a, c)) != MP_OKAY) {
048 mp_clear (&t);

049 return res;

050 }
051

052 /* shift by as many digits in the bit count */

053 if (b >= (int)DIGIT_BIT) {
054 mp_rshd (c, b / DIGIT_BIT);

055 }
056

057 /* shift any bit count < DIGIT_BIT */

058 D = (mp_digit) (b % DIGIT_BIT);

059 if (D != 0) {
060 register mp_digit *tmpc, mask, shift;

061

062 /* mask */

063 mask = (((mp_digit)1) << D) - 1;

064

065 /* shift for lsb */
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066 shift = DIGIT_BIT - D;

067

068 /* alias */

069 tmpc = c->dp + (c->used - 1);

070

071 /* carry */

072 r = 0;

073 for (x = c->used - 1; x >= 0; x--) {
074 /* get the lower bits of this word in a temp */

075 rr = *tmpc & mask;

076

077 /* shift the current word and mix in the carry bits from the previous

word */

078 *tmpc = (*tmpc >> D) | (r << shift);

079 --tmpc;

080

081 /* set the carry to the carry bits of the current word found above */

082 r = rr;

083 }
084 }
085 mp_clamp (c);

086 if (d != NULL) {
087 mp_exch (&t, d);

088 }
089 mp_clear (&t);

090 return MP_OKAY;

091 }
092 #endif

093

The implementation of algorithm mp div 2d is slightly different than the
algorithm specifies. The remainder d may be optionally ignored by passing
NULL as the pointer to the mp int variable. The temporary mp int variable t
is used to hold the result of the remainder operation until the end. This allows
d and a to represent the same mp int without modifying a before the quotient
is obtained.

The remainder of the source code is essentially the same as the source code
for mp mul 2d. The only significant difference is the direction of the shifts.
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4.5.3 Remainder of Division by Power of Two

The last algorithm in the series of polynomial basis power of two algorithms
is calculating the remainder of division by 2b. This algorithm benefits from
the fact that in twos complement arithmetic a (mod 2b) is the same as a AND
2b − 1.

Algorithm mp mod 2d.
Input. One mp int a and an integer b

Output. c← a (mod 2b).

1. If b ≤ 0 then do
1.1 c← 0 (mp zero)
1.2 Return(MP OKAY ).

2. If b > a.used · lg(β) then do
2.1 c← a (mp copy)
2.2 Return the result of step 2.1.

3. c← a
4. If step 3 failed return(MP MEM ).
5. for n from ⌈b/lg(β)⌉ to c.used do
5.1 cn ← 0

6. k ← b (mod lg(β))

7. c⌊b/lg(β)⌋ ← c⌊b/lg(β)⌋ (mod 2k).
8. Clamp excess digits of c. (mp clamp)
9. Return(MP OKAY ).

Figure 4.14: Algorithm mp mod 2d

Algorithm mp mod 2d. This algorithm will quickly calculate the value
of a (mod 2b). First if b is less than or equal to zero the result is set to zero. If b
is greater than the number of bits in a then it simply copies a to c and returns.
Otherwise, a is copied to b, leading digits are removed and the remaining leading
digit is trimed to the exact bit count.

File: bn mp mod 2d.c

016

017 /* calc a value mod 2**b */

018 int

019 mp_mod_2d (mp_int * a, int b, mp_int * c)

020 {
021 int x, res;
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022

023 /* if b is <= 0 then zero the int */

024 if (b <= 0) {
025 mp_zero (c);

026 return MP_OKAY;

027 }
028

029 /* if the modulus is larger than the value than return */

030 if (b >= (int) (a->used * DIGIT_BIT)) {
031 res = mp_copy (a, c);

032 return res;

033 }
034

035 /* copy */

036 if ((res = mp_copy (a, c)) != MP_OKAY) {
037 return res;

038 }
039

040 /* zero digits above the last digit of the modulus */

041 for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x+

+) {
042 c->dp[x] = 0;

043 }
044 /* clear the digit that is not completely outside/inside the modulus */

045 c->dp[b / DIGIT_BIT] &=

046 (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digi

t) 1));

047 mp_clamp (c);

048 return MP_OKAY;

049 }
050 #endif

051

We first avoid cases of b ≤ 0 by simply mp zero()’ing the destination in such
cases. Next if 2b is larger than the input we just mp copy() the input and return
right away. After this point we know we must actually perform some work to
produce the remainder.

Recalling that reducing modulo 2k and a binary “and” with 2k − 1 are
numerically equivalent we can quickly reduce the number. First we zero any
digits above the last digit in 2b (line 41). Next we reduce the leading digit of
both (line 45) and then mp clamp().
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Exercises

[3] Devise an algorithm that performs a · 2b for generic values of b
in O(n) time.

[3] Devise an efficient algorithm to multiply by small low hamming
weight values such as 3, 5 and 9. Extend it to handle all values
upto 64 with a hamming weight less than three.

[2] Modify the preceding algorithm to handle values of the form
2k − 1 as well.

[3] Using only algorithms mp mul 2, mp div 2 and mp add create an
algorithm to multiply two integers in roughly O(2n2) time for
any n-bit input. Note that the time of addition is ignored in the
calculation.

[5] Improve the previous algorithm to have a working time of at most

O
(

2(k−1)n+
(

2n2

k

))

for an appropriate choice of k. Again ignore

the cost of addition.

[2] Devise a chart to find optimal values of k for the previous problem
for n = 64 . . . 1024 in steps of 64.

[2] Using only algorithms mp abs and mp sub devise another method for
calculating the result of a signed comparison.



Chapter 5

Multiplication and Squaring

5.1 The Multipliers

For most number theoretic problems including certain public key cryptographic
algorithms, the “multipliers” form the most important subset of algorithms of
any multiple precision integer package. The set of multiplier algorithms include
integer multiplication, squaring and modular reduction where in each of the
algorithms single precision multiplication is the dominant operation performed.
This chapter will discuss integer multiplication and squaring, leaving modular
reductions for the subsequent chapter.

The importance of the multiplier algorithms is for the most part driven
by the fact that certain popular public key algorithms are based on modular
exponentiation, that is computing d ≡ ab (mod c) for some arbitrary choice of
a, b, c and d. During a modular exponentiation the majority1 of the processor
time is spent performing single precision multiplications.

For centuries general purpose multiplication has required a lengthly O(n2)
process, whereby each digit of one multiplicand has to be multiplied against
every digit of the other multiplicand. Traditional long-hand multiplication is
based on this process; while the techniques can differ the overall algorithm used
is essentially the same. Only “recently” have faster algorithms been studied.
First Karatsuba multiplication was discovered in 1962. This algorithm can

1Roughly speaking a modular exponentiation will spend about 40% of the time performing
modular reductions, 35% of the time performing squaring and 25% of the time performing
multiplications.

91



92 CHAPTER 5. MULTIPLICATION AND SQUARING

multiply two numbers with considerably fewer single precision multiplications
when compared to the long-hand approach. This technique led to the discov-
ery of polynomial basis algorithms (good reference? ) and subquently Fourier
Transform based solutions.

5.2 Multiplication

5.2.1 The Baseline Multiplication

Computing the product of two integers in software can be achieved using a
trivial adaptation of the standard O(n2) long-hand multiplication algorithm
that school children are taught. The algorithm is considered an O(n2) algorithm
since for two n-digit inputs n2 single precision multiplications are required. More
specifically for a m and n digit input m · n single precision multiplications are
required. To simplify most discussions, it will be assumed that the inputs have
comparable number of digits.

The “baseline multiplication” algorithm is designed to act as the “catch-all”
algorithm, only to be used when the faster algorithms cannot be used. This
algorithm does not use any particularly interesting optimizations and should
ideally be avoided if possible. One important facet of this algorithm, is that
it has been modified to only produce a certain amount of output digits as res-
olution. The importance of this modification will become evident during the
discussion of Barrett modular reduction. Recall that for a n and m digit input
the product will be at most n + m digits. Therefore, this algorithm can be
reduced to a full multiplier by having it produce n+m digits of the product.

Recall from sub-section 4.2.2 the definition of γ as the number of bits in
the type mp digit. We shall now extend the variable set to include α which
shall represent the number of bits in the type mp word. This implies that
2α > 2 · β2. The constant δ = 2α−2lg(β) will represent the maximal weight of
any column in a product (see sub-section 5.2.2 for more information).
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Algorithm s mp mul digs.
Input. mp int a, mp int b and an integer digs

Output. c← |a| · |b| (mod βdigs).

1. If min(a.used, b.used) < δ then do
1.1 Calculate c = |a| · |b| by the Comba method (see algorithm 5.5).
1.2 Return the result of step 1.1

Allocate and initialize a temporary mp int.
2. Init t to be of size digs
3. If step 2 failed return(MP MEM ).
4. t.used← digs

Compute the product.
5. for ix from 0 to a.used− 1 do
5.1 u← 0
5.2 pb← min(b.used, digs− ix)
5.3 If pb < 1 then goto step 6.
5.4 for iy from 0 to pb− 1 do
5.4.1 r̂ ← tiy+ix + aix · biy + u
5.4.2 tiy+ix ← r̂ (mod β)
5.4.3 u← ⌊r̂/β⌋

5.5 if ix+ pb < digs then do
5.5.1 tix+pb ← u

6. Clamp excess digits of t.
7. Swap c with t
8. Clear t
9. Return(MP OKAY ).

Figure 5.1: Algorithm s mp mul digs

Algorithm s mp mul digs. This algorithm computes the unsigned prod-
uct of two inputs a and b, limited to an output precision of digs digits. While it
may seem a bit awkward to modify the function from its simple O(n2) descrip-
tion, the usefulness of partial multipliers will arise in a subsequent algorithm.
The algorithm is loosely based on algorithm 14.12 from [2, pp. 595] and is simi-
lar to Algorithm M of Knuth [1, pp. 268]. Algorithm s mp mul digs differs from
these cited references since it can produce a variable output precision regardless
of the precision of the inputs.

The first thing this algorithm checks for is whether a Comba multiplier can
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be used instead. If the minimum digit count of either input is less than δ, then
the Comba method may be used instead. After the Comba method is ruled out,
the baseline algorithm begins. A temporary mp int variable t is used to hold
the intermediate result of the product. This allows the algorithm to be used to
compute products when either a = c or b = c without overwriting the inputs.

All of step 5 is the infamous O(n2) multiplication loop slightly modified to
only produce upto digs digits of output. The pb variable is given the count of
digits to read from b inside the nested loop. If pb ≤ 1 then no more output
digits can be produced and the algorithm will exit the loop. The best way to
think of the loops are as a series of pb× 1 multiplications. That is, in each pass
of the innermost loop aix is multiplied against b and the result is added (with
an appropriate shift) to t.

For example, consider multiplying 576 by 241. That is equivalent to com-
puting 100(1)(576) + 101(4)(576) + 102(2)(576) which is best visualized in the
following table.

5 7 6
× 2 4 1

5 7 6 100(1)(576)
2 3 6 1 6 101(4)(576) + 100(1)(576)

1 3 8 8 1 6 102(2)(576) + 101(4)(576) + 100(1)(576)

Figure 5.2: Long-Hand Multiplication Diagram

Each row of the product is added to the result after being shifted to the left
(multiplied by a power of the radix ) by the appropriate count. That is in pass
ix of the inner loop the product is added starting at the ix’th digit of the reult.

Step 5.4.1 introduces the hat symbol (e.g. r̂) which represents a double pre-
cision variable. The multiplication on that step is assumed to be a double wide
output single precision multiplication. That is, two single precision variables
are multiplied to produce a double precision result. The step is somewhat op-
timized from a long-hand multiplication algorithm because the carry from the
addition in step 5.4.1 is propagated through the nested loop. If the carry was
not propagated immediately it would overflow the single precision digit tix+iy

and the result would be lost.

At step 5.5 the nested loop is finished and any carry that was left over should
be forwarded. The carry does not have to be added to the ix+ pb’th digit since
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that digit is assumed to be zero at this point. However, if ix + pb ≥ digs the
carry is not set as it would make the result exceed the precision requested.

File: bn s mp mul digs.c
016

017 /* multiplies |a| * |b| and only computes upto digs digits of result

018 * HAC pp. 595, Algorithm 14.12 Modified so you can control how

019 * many digits of output are created.

020 */

021 int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)

022 {
023 mp_int t;

024 int res, pa, pb, ix, iy;

025 mp_digit u;

026 mp_word r;

027 mp_digit tmpx, *tmpt, *tmpy;

028

029 /* can we use the fast multiplier? */

030 if (((digs) < MP_WARRAY) &&

031 MIN (a->used, b->used) <

032 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
033 return fast_s_mp_mul_digs (a, b, c, digs);

034 }
035

036 if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
037 return res;

038 }
039 t.used = digs;

040

041 /* compute the digits of the product directly */

042 pa = a->used;

043 for (ix = 0; ix < pa; ix++) {
044 /* set the carry to zero */

045 u = 0;

046

047 /* limit ourselves to making digs digits of output */

048 pb = MIN (b->used, digs - ix);

049

050 /* setup some aliases */

051 /* copy of the digit from a used within the nested loop */

052 tmpx = a->dp[ix];

053

054 /* an alias for the destination shifted ix places */
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055 tmpt = t.dp + ix;

056

057 /* an alias for the digits of b */

058 tmpy = b->dp;

059

060 /* compute the columns of the output and propagate the carry */

061 for (iy = 0; iy < pb; iy++) {
062 /* compute the column as a mp_word */

063 r = ((mp_word)*tmpt) +

064 ((mp_word)tmpx) * ((mp_word)*tmpy++) +

065 ((mp_word) u);

066

067 /* the new column is the lower part of the result */

068 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

069

070 /* get the carry word from the result */

071 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));

072 }
073 /* set carry if it is placed below digs */

074 if (ix + iy < digs) {
075 *tmpt = u;

076 }
077 }
078

079 mp_clamp (&t);

080 mp_exch (&t, c);

081

082 mp_clear (&t);

083 return MP_OKAY;

084 }
085 #endif

086

First we determine (line 30) if the Comba method can be used first since it’s
faster. The conditions for sing the Comba routine are that min(a.used, b.used) <
δ and the number of digits of output is less than MP WARRAY. This new
constant is used to control the stack usage in the Comba routines. By default
it is set to δ but can be reduced when memory is at a premium.

If we cannot use the Comba method we proceed to setup the baseline routine.
We allocate the the destination mp int t (line 36) to the exact size of the output
to avoid further re–allocations. At this point we now begin the O(n2) loop.

This implementation of multiplication has the caveat that it can be trimmed
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to only produce a variable number of digits as output. In each iteration of the
outer loop the pb variable is set (line 48) to the maximum number of inner loop
iterations.

Inside the inner loop we calculate r̂ as the mp word product of the two
mp digits and the addition of the carry from the previous iteration. A particu-
larly important observation is that most modern optimizing C compilers (GCC
for instance) can recognize that a N × N → 2N multiplication is all that is
required for the product. In x86 terms for example, this means using the MUL
instruction.

Each digit of the product is stored in turn (line 68) and the carry propagated
(line 71) to the next iteration.

5.2.2 Faster Multiplication by the “Comba” Method

One of the huge drawbacks of the “baseline” algorithms is that at the O(n2)
level the carry must be computed and propagated upwards. This makes the
nested loop very sequential and hard to unroll and implement in parallel. The
“Comba” [4] method is named after little known (in cryptographic venues) Paul
G. Comba who described a method of implementing fast multipliers that do
not require nested carry fixup operations. As an interesting aside it seems that
Paul Barrett describes a similar technique in his 1986 paper [7] written five years
before.

At the heart of the Comba technique is once again the long-hand algorithm.
Except in this case a slight twist is placed on how the columns of the result are
produced. In the standard long-hand algorithm rows of products are produced
then added together to form the final result. In the baseline algorithm the
columns are added together after each iteration to get the result instantaneously.

In the Comba algorithm the columns of the result are produced entirely
independently of each other. That is at the O(n2) level a simple multiplication
and addition step is performed. The carries of the columns are propagated after
the nested loop to reduce the amount of work requiored. Succintly the first step
of the algorithm is to compute the product vector ~x as follows.

~xn =
∑

i+j=n

aibj , ∀n ∈ {0, 1, 2, . . . , i+ j} (5.1)

Where ~xn is the n′th column of the output vector. Consider the following
example which computes the vector ~x for the multiplication of 576 and 241.
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5 7 6 First Input

× 2 4 1 Second Input

1 · 5 = 5 1 · 7 = 7 1 · 6 = 6 First pass
4 · 5 = 20 4 · 7 + 5 = 33 4 · 6 + 7 = 31 6 Second pass

2 · 5 = 10 2 · 7 + 20 = 34 2 · 6 + 33 = 45 31 6 Third pass

10 34 45 31 6 Final Result

Figure 5.3: Comba Multiplication Diagram

At this point the vector x = 〈10, 34, 45, 31, 6〉 is the result of the first step of
the Comba multipler. Now the columns must be fixed by propagating the carry
upwards. The resultant vector will have one extra dimension over the input
vector which is congruent to adding a leading zero digit.

Algorithm Comba Fixup.
Input. Vector ~x of dimension k
Output. Vector ~x such that the carries have been propagated.

1. for n from 0 to k − 1 do
1.1 ~xn+1 ← ~xn+1 + ⌊~xn/β⌋
1.2 ~xn ← ~xn (mod β)

2. Return(~x).

Figure 5.4: Algorithm Comba Fixup

With that algorithm and k = 5 and β = 10 the following vector is produced
~x = 〈1, 3, 8, 8, 1, 6〉. In this case 241 · 576 is in fact 138816 and the procedure
succeeded. If the algorithm is correct and as will be demonstrated shortly more
efficient than the baseline algorithm why not simply always use this algorithm?

Column Weight.

At the nested O(n2) level the Comba method adds the product of two single
precision variables to each column of the output independently. A serious ob-
stacle is if the carry is lost, due to lack of precision before the algorithm has a
chance to fix the carries. For example, in the multiplication of two three-digit
numbers the third column of output will be the sum of three single precision
multiplications. If the precision of the accumulator for the output digits is less
then 3·(β−1)2 then an overflow can occur and the carry information will be lost.
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For any m and n digit inputs the maximum weight of any column is min(m,n)
which is fairly obvious.

The maximum number of terms in any column of a product is known as the
“column weight” and strictly governs when the algorithm can be used. Recall
from earlier that a double precision type has α bits of resolution and a single
precision digit has lg(β) bits of precision. Given these two quantities we must
not violate the following

k · (β − 1)
2
< 2α (5.2)

Which reduces to

k ·
(

β2 − 2β + 1
)

< 2α (5.3)

Let ρ = lg(β) represent the number of bits in a single precision digit. By
further re-arrangement of the equation the final solution is found.

k <
2α

(22ρ − 2ρ+1 + 1)
(5.4)

The defaults for LibTomMath are β = 228 and α = 264 which means that k is
bounded by k < 257. In this configuration the smaller input may not have more
than 256 digits if the Comba method is to be used. This is quite satisfactory
for most applications since 256 digits would allow for numbers in the range
of 0 ≤ x < 27168 which, is much larger than most public key cryptographic
algorithms require.
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Algorithm fast s mp mul digs.
Input. mp int a, mp int b and an integer digs

Output. c← |a| · |b| (mod βdigs).

Place an array of MP WARRAY single precision digits named W on the stack.
1. If c.alloc < digs then grow c to digs digits. (mp grow)
2. If step 1 failed return(MP MEM ).

3. pa← MIN(digs, a.used+ b.used)

4. Ŵ ← 0
5. for ix from 0 to pa− 1 do
5.1 ty ← MIN(b.used− 1, ix)
5.2 tx← ix− ty
5.3 iy ← MIN(a.used− tx, ty + 1)
5.4 for iz from 0 to iy − 1 do

5.4.1 Ŵ ← Ŵ + atx+iybty−iy

5.5 Wix ← Ŵ (mod β)

5.6 Ŵ ← ⌊ Ŵ/β⌋

6. oldused← c.used
7. c.used← digs
8. for ix from 0 to pa do
8.1 cix ←Wix

9. for ix from pa+ 1 to oldused− 1 do
9.1 cix ← 0

10. Clamp c.
11. Return MP OKAY.

Figure 5.5: Algorithm fast s mp mul digs

Algorithm fast s mp mul digs. This algorithm performs the unsigned
multiplication of a and b using the Comba method limited to digs digits of
precision.

The outer loop of this algorithm is more complicated than that of the baseline
multiplier. This is because on the inside of the loop we want to produce one
column per pass. This allows the accumulator Ŵ to be placed in CPU registers
and reduce the memory bandwidth to two mp digit reads per iteration.

The ty variable is set to the minimum count of ix or the number of digits in
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b. That way if a has more digits than b this will be limited to b.used− 1. The
tx variable is set to the to the distance past b.used the variable ix is. This is
used for the immediately subsequent statement where we find iy.

The variable iy is the minimum digits we can read from either a or b before
running out. Computing one column at a time means we have to scan one integer
upwards and the other downwards. a starts at tx and b starts at ty. In each
pass we are producing the ix’th output column and we note that tx+ ty = ix.
As we move tx upwards we have to move ty downards so the equality remains
valid. The iy variable is the number of iterations until tx ≥ a.used or ty < 0
occurs.

After every inner pass we store the lower half of the accumulator into Wix

and then propagate the carry of the accumulator into the next round by dividing
Ŵ by β.

To measure the benefits of the Comba method over the baseline method
consider the number of operations that are required. If the cost in terms of
time of a multiply and addition is p and the cost of a carry propagation is q
then a baseline multiplication would require O

(

(p+ q)n2
)

time to multiply two
n-digit numbers. The Comba method requires only O(pn2 + qn) time, however
in practice, the speed increase is actually much more. With O(n) space the
algorithm can be reduced to O(pn + qn) time by implementing the n multiply
and addition operations in the nested loop in parallel.

File: bn fast s mp mul digs.c
016

017 /* Fast (comba) multiplier

018 *

019 * This is the fast column-array [comba] multiplier. It is

020 * designed to compute the columns of the product first

021 * then handle the carries afterwards. This has the effect

022 * of making the nested loops that compute the columns very

023 * simple and schedulable on super-scalar processors.

024 *

025 * This has been modified to produce a variable number of

026 * digits of output so if say only a half-product is required

027 * you don’t have to compute the upper half (a feature

028 * required for fast Barrett reduction).

029 *

030 * Based on Algorithm 14.12 on pp.595 of HAC.

031 *

032 */

033 int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
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034 {
035 int olduse, res, pa, ix, iz;

036 mp_digit W[MP_WARRAY];

037 register mp_word _W;

038

039 /* grow the destination as required */

040 if (c->alloc < digs) {
041 if ((res = mp_grow (c, digs)) != MP_OKAY) {
042 return res;

043 }
044 }
045

046 /* number of output digits to produce */

047 pa = MIN(digs, a->used + b->used);

048

049 /* clear the carry */

050 _W = 0;

051 for (ix = 0; ix < pa; ix++) {
052 int tx, ty;

053 int iy;

054 mp_digit *tmpx, *tmpy;

055

056 /* get offsets into the two bignums */

057 ty = MIN(b->used-1, ix);

058 tx = ix - ty;

059

060 /* setup temp aliases */

061 tmpx = a->dp + tx;

062 tmpy = b->dp + ty;

063

064 /* this is the number of times the loop will iterrate, essentially

065 while (tx++ < a->used && ty-- >= 0) { ... }
066 */

067 iy = MIN(a->used-tx, ty+1);

068

069 /* execute loop */

070 for (iz = 0; iz < iy; ++iz) {
071 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);

072

073 }
074

075 /* store term */
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076 W[ix] = ((mp_digit)_W) & MP_MASK;

077

078 /* make next carry */

079 _W = _W >> ((mp_word)DIGIT_BIT);

080 }
081

082 /* setup dest */

083 olduse = c->used;

084 c->used = pa;

085

086 {
087 register mp_digit *tmpc;

088 tmpc = c->dp;

089 for (ix = 0; ix < pa+1; ix++) {
090 /* now extract the previous digit [below the carry] */

091 *tmpc++ = W[ix];

092 }
093

094 /* clear unused digits [that existed in the old copy of c] */

095 for (; ix < olduse; ix++) {
096 *tmpc++ = 0;

097 }
098 }
099 mp_clamp (c);

100 return MP_OKAY;

101 }
102 #endif

103

As per the pseudo–code we first calculate pa (line 47) as the number of digits
to output. Next we begin the outer loop to produce the individual columns of
the product. We use the two aliases tmpx and tmpy (lines 61, 62) to point
inside the two multiplicands quickly.

The inner loop (lines 70 to 73) of this implementation is where the tradeoff
come into play. Originally this comba implementation was “row–major” which
means it adds to each of the columns in each pass. After the outer loop it would
then fix the carries. This was very fast except it had an annoying drawback.
You had to read a mp word and two mp digits and write one mp word per
iteration. On processors such as the Athlon XP and P4 this did not matter
much since the cache bandwidth is very high and it can keep the ALU fed with
data. It did, however, matter on older and embedded cpus where cache is often
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slower and also often doesn’t exist. This new algorithm only performs two reads
per iteration under the assumption that the compiler has aliased Ŵ to a CPU
register.

After the inner loop we store the current accumulator in W and shift Ŵ
(lines 76, 79) to forward it as a carry for the next pass. After the outer loop we
use the final carry (line 76) as the last digit of the product.

5.2.3 Polynomial Basis Multiplication

To break the O(n2) barrier in multiplication requires a completely different
look at integer multiplication. In the following algorithms the use of polynomial
basis representation for two integers a and b as f(x) =

∑n
i=0 aix

i and g(x) =
∑n

i=0 bix
i respectively, is required. In this system both f(x) and g(x) have n+1

terms and are of the n’th degree.

The product a · b ≡ f(x)g(x) is the polynomial W (x) =
∑2n

i=0 wix
i. The

coefficients wi will directly yield the desired product when β is substituted for
x. The direct solution to solve for the 2n + 1 coefficients requires O(n2) time
and would in practice be slower than the Comba technique.

However, numerical analysis theory indicates that only 2n+1 distinct points
in W (x) are required to determine the values of the 2n+1 unknown coefficients.
This means by finding ζy = W (y) for 2n + 1 small values of y the coefficients
of W (x) can be found with Gaussian elimination. This technique is also occa-
sionally refered to as the interpolation technique (references please...) since in
effect an interpolation based on 2n+1 points will yield a polynomial equivalent
to W (x).

The coefficients of the polynomial W (x) are unknown which makes finding
W (y) for any value of y impossible. However, since W (x) = f(x)g(x) the
equivalent ζy = f(y)g(y) can be used in its place. The benefit of this technique
stems from the fact that f(y) and g(y) are much smaller than either a or b
respectively. As a result finding the 2n + 1 relations required by multiplying
f(y)g(y) involves multiplying integers that are much smaller than either of the
inputs.

When picking points to gather relations there are always three obvious points
to choose, y = 0, 1 and ∞. The ζ0 term is simply the product W (0) = w0 =
a0 · b0. The ζ1 term is the product W (1) = (

∑n
i=0 ai) (

∑n
i=0 bi). The third

point ζ∞ is less obvious but rather simple to explain. The 2n+ 1’th coefficient
of W (x) is numerically equivalent to the most significant column in an integer
multiplication. The point at ∞ is used symbolically to represent the most
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Split into n Parts Exponent Notes
2 1.584962501 This is Karatsuba Multiplication.
3 1.464973520 This is Toom-Cook Multiplication.
4 1.403677461
5 1.365212389
10 1.278753601
100 1.149426538
1000 1.100270931
10000 1.075252070

Figure 5.6: Asymptotic Running Time of Polynomial Basis Multiplication

significant column, that is W (∞) = w2n = anbn. Note that the points at y = 0
and ∞ yield the coefficients w0 and w2n directly.

If more points are required they should be of small values and powers of two
such as 2q and the related mirror points (2q)

2n · ζ2−q for small values of q. The

term “mirror point” stems from the fact that (2q)
2n · ζ2−q can be calculated in

the exact opposite fashion as ζ2q . For example, when n = 2 and q = 1 then
following two equations are equivalent to the point ζ2 and its mirror.

ζ2 = f(2)g(2) = (4a2 + 2a1 + a0)(4b2 + 2b1 + b0)

16 · ζ 1
2
= 4f(

1

2
) · 4g(1

2
) = (a2 + 2a1 + 4a0)(b2 + 2b1 + 4b0) (5.5)

Using such points will allow the values of f(y) and g(y) to be independently
calculated using only left shifts. For example, when n = 2 the polynomial f(2q)
is equal to 2q((2qa2) + a1) + a0. This technique of polynomial representation is
known as Horner’s method.

As a general rule of the algorithm when the inputs are split into n parts
each there are 2n − 1 multiplications. Each multiplication is of multiplicands
that have n times fewer digits than the inputs. The asymptotic running time of
this algorithm is O

(

klgn(2n−1)
)

for k digit inputs (assuming they have the same

number of digits). Figure 5.6 summarizes the exponents for various values of n.
At first it may seem like a good idea to choose n = 1000 since the exponent

is approximately 1.1. However, the overhead of solving for the 2001 terms of
W (x) will certainly consume any savings the algorithm could offer for all but
exceedingly large numbers.
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Cutoff Point

The polynomial basis multiplication algorithms all require fewer single precision
multiplications than a straight Comba approach. However, the algorithms incur
an overhead (at the O(n) work level) since they require a system of equations to
be solved. This makes the polynomial basis approach more costly to use with
small inputs.

Let m represent the number of digits in the multiplicands (assume both

multiplicands have the same number of digits). There exists a point y such that
when m < y the polynomial basis algorithms are more costly than Comba, when
m = y they are roughly the same cost and when m > y the Comba methods
are slower than the polynomial basis algorithms.

The exact location of y depends on several key architectural elements of the
computer platform in question.

1. The ratio of clock cycles for single precision multiplication versus other
simpler operations such as addition, shifting, etc. For example on the
AMD Athlon the ratio is roughly 17 : 1 while on the Intel P4 it is 29 : 1.
The higher the ratio in favour of multiplication the lower the cutoff point
y will be.

2. The complexity of the linear system of equations (for the coefficients of

W (x)) is. Generally speaking as the number of splits grows the complexity
grows substantially. Ideally solving the system will only involve addition,
subtraction and shifting of integers. This directly reflects on the ratio
previous mentioned.

3. To a lesser extent memory bandwidth and function call overheads. Pro-
vided the values are in the processor cache this is less of an influence over
the cutoff point.

A clean cutoff point separation occurs when a point y is found such that
all of the cutoff point conditions are met. For example, if the point is too low
then there will be values of m such that m > y and the Comba method is still
faster. Finding the cutoff points is fairly simple when a high resolution timer is
available.

5.2.4 Karatsuba Multiplication

Karatsuba [5] multiplication when originally proposed in 1962 was among the
first set of algorithms to break the O(n2) barrier for general purpose mul-
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tiplication. Given two polynomial basis representations f(x) = ax + b and
g(x) = cx+ d, Karatsuba proved with light algebra [6] that the following poly-
nomial is equivalent to multiplication of the two integers the polynomials rep-
resent.

f(x) · g(x) = acx2 + ((a+ b)(c+ d)− (ac+ bd))x+ bd (5.6)

Using the observation that ac and bd could be re-used only three half sized
multiplications would be required to produce the product. Applying this al-
gorithm recursively, the work factor becomes O(nlg(3)) which is substantially
better than the work factor O(n2) of the Comba technique. It turns out what
Karatsuba did not know or at least did not publish was that this is simply
polynomial basis multiplication with the points ζ0, ζ∞ and ζ1. Consider the
resultant system of equations.

ζ0 = w0

ζ1 = w2 + w1 + w0

ζ∞ = w2

By adding the first and last equation to the equation in the middle the term
w1 can be isolated and all three coefficients solved for. The simplicity of this
system of equations has made Karatsuba fairly popular. In fact the cutoff point
is often fairly low2 making it an ideal algorithm to speed up certain public key
cryptosystems such as RSA and Diffie-Hellman.

2With LibTomMath 0.18 it is 70 and 109 digits for the Intel P4 and AMD Athlon respec-
tively.
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Algorithm mp karatsuba mul.
Input. mp int a and mp int b
Output. c← |a| · |b|

1. Init the following mp int variables: x0, x1, y0, y1, t1, x0y0, x1y1.
2. If step 2 failed then return(MP MEM ).

Split the input. e.g. a = x1 · βB + x0
3. B ← min(a.used, b.used)/2
4. x0← a (mod βB) (mp mod 2d)
5. y0← b (mod βB)
6. x1← ⌊a/βB⌋ (mp rshd)
7. y1← ⌊b/βB⌋

Calculate the three products.
8. x0y0← x0 · y0 (mp mul)
9. x1y1← x1 · y1
10. t1← x1 + x0 (mp add)
11. x0← y1 + y0
12. t1← t1 · x0

Calculate the middle term.
13. x0← x0y0 + x1y1
14. t1← t1− x0 (s mp sub)

Calculate the final product.
15. t1← t1 · βB (mp lshd)
16. x1y1← x1y1 · β2B

17. t1← x0y0 + t1
18. c← t1 + x1y1
19. Clear all of the temporary variables.
20. Return(MP OKAY ).

Figure 5.7: Algorithm mp karatsuba mul

Algorithm mp karatsuba mul. This algorithm computes the unsigned
product of two inputs using the Karatsuba multiplication algorithm. It is loosely
based on the description from Knuth [1, pp. 294-295].

In order to split the two inputs into their respective halves, a suitable radix

point must be chosen. The radix point chosen must be used for both of the
inputs meaning that it must be smaller than the smallest input. Step 3 chooses
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the radix point B as half of the smallest input used count. After the radix
point is chosen the inputs are split into lower and upper halves. Step 4 and 5
compute the lower halves. Step 6 and 7 computer the upper halves.

After the halves have been computed the three intermediate half-size prod-
ucts must be computed. Step 8 and 9 compute the trivial products x0 · y0
and x1 · y1. The mp int x0 is used as a temporary variable after x1 + x0 has
been computed. By using x0 instead of an additional temporary variable, the
algorithm can avoid an addition memory allocation operation.

The remaining steps 13 through 18 compute the Karatsuba polynomial
through a variety of digit shifting and addition operations.

File: bn mp karatsuba mul.c
016

017 /* c = |a| * |b| using Karatsuba Multiplication using

018 * three half size multiplications

019 *

020 * Let B represent the radix [e.g. 2**DIGIT_BIT] and

021 * let n represent half of the number of digits in

022 * the min(a,b)

023 *

024 * a = a1 * B**n + a0

025 * b = b1 * B**n + b0

026 *

027 * Then, a * b =>

028 a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0

029 *

030 * Note that a1b1 and a0b0 are used twice and only need to be

031 * computed once. So in total three half size (half # of

032 * digit) multiplications are performed, a0b0, a1b1 and

033 * (a1+b1)(a0+b0)

034 *

035 * Note that a multiplication of half the digits requires

036 * 1/4th the number of single precision multiplications so in

037 * total after one call 25% of the single precision multiplications

038 * are saved. Note also that the call to mp_mul can end up back

039 * in this function if the a0, a1, b0, or b1 are above the threshold.

040 * This is known as divide-and-conquer and leads to the famous

041 * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than

042 * the standard O(N**2) that the baseline/comba methods use.

043 * Generally though the overhead of this method doesn’t pay off

044 * until a certain size (N ~ 80) is reached.

045 */
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046 int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)

047 {
048 mp_int x0, x1, y0, y1, t1, x0y0, x1y1;

049 int B, err;

050

051 /* default the return code to an error */

052 err = MP_MEM;

053

054 /* min # of digits */

055 B = MIN (a->used, b->used);

056

057 /* now divide in two */

058 B = B >> 1;

059

060 /* init copy all the temps */

061 if (mp_init_size (&x0, B) != MP_OKAY)

062 goto ERR;

063 if (mp_init_size (&x1, a->used - B) != MP_OKAY)

064 goto X0;

065 if (mp_init_size (&y0, B) != MP_OKAY)

066 goto X1;

067 if (mp_init_size (&y1, b->used - B) != MP_OKAY)

068 goto Y0;

069

070 /* init temps */

071 if (mp_init_size (&t1, B * 2) != MP_OKAY)

072 goto Y1;

073 if (mp_init_size (&x0y0, B * 2) != MP_OKAY)

074 goto T1;

075 if (mp_init_size (&x1y1, B * 2) != MP_OKAY)

076 goto X0Y0;

077

078 /* now shift the digits */

079 x0.used = y0.used = B;

080 x1.used = a->used - B;

081 y1.used = b->used - B;

082

083 {
084 register int x;

085 register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;

086

087 /* we copy the digits directly instead of using higher level functions
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088 * since we also need to shift the digits

089 */

090 tmpa = a->dp;

091 tmpb = b->dp;

092

093 tmpx = x0.dp;

094 tmpy = y0.dp;

095 for (x = 0; x < B; x++) {
096 *tmpx++ = *tmpa++;

097 *tmpy++ = *tmpb++;

098 }
099

100 tmpx = x1.dp;

101 for (x = B; x < a->used; x++) {
102 *tmpx++ = *tmpa++;

103 }
104

105 tmpy = y1.dp;

106 for (x = B; x < b->used; x++) {
107 *tmpy++ = *tmpb++;

108 }
109 }
110

111 /* only need to clamp the lower words since by definition the

112 * upper words x1/y1 must have a known number of digits

113 */

114 mp_clamp (&x0);

115 mp_clamp (&y0);

116

117 /* now calc the products x0y0 and x1y1 */

118 /* after this x0 is no longer required, free temp [x0==t2]! */

119 if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)

120 goto X1Y1; /* x0y0 = x0*y0 */

121 if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)

122 goto X1Y1; /* x1y1 = x1*y1 */

123

124 /* now calc x1+x0 and y1+y0 */

125 if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)

126 goto X1Y1; /* t1 = x1 - x0 */

127 if (s_mp_add (&y1, &y0, &x0) != MP_OKAY)

128 goto X1Y1; /* t2 = y1 - y0 */

129 if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
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130 goto X1Y1; /* t1 = (x1 + x0) * (y1 + y0) */

131

132 /* add x0y0 */

133 if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)

134 goto X1Y1; /* t2 = x0y0 + x1y1 */

135 if (s_mp_sub (&t1, &x0, &t1) != MP_OKAY)

136 goto X1Y1; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */

137

138 /* shift by B */

139 if (mp_lshd (&t1, B) != MP_OKAY)

140 goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */

141 if (mp_lshd (&x1y1, B * 2) != MP_OKAY)

142 goto X1Y1; /* x1y1 = x1y1 << 2*B */

143

144 if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)

145 goto X1Y1; /* t1 = x0y0 + t1 */

146 if (mp_add (&t1, &x1y1, c) != MP_OKAY)

147 goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */

148

149 /* Algorithm succeeded set the return code to MP_OKAY */

150 err = MP_OKAY;

151

152 X1Y1:mp_clear (&x1y1);

153 X0Y0:mp_clear (&x0y0);

154 T1:mp_clear (&t1);

155 Y1:mp_clear (&y1);

156 Y0:mp_clear (&y0);

157 X1:mp_clear (&x1);

158 X0:mp_clear (&x0);

159 ERR:

160 return err;

161 }
162 #endif

163

The new coding element in this routine, not seen in previous routines, is
the usage of goto statements. The conventional wisdom is that goto statements
should be avoided. This is generally true, however when every single function
call can fail, it makes sense to handle error recovery with a single piece of
code. Lines 61 to 75 handle initializing all of the temporary variables required.
Note how each of the if statements goes to a different label in case of failure.
This allows the routine to correctly free only the temporaries that have been
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successfully allocated so far.
The temporary variables are all initialized using the mp init size routine

since they are expected to be large. This saves the additional reallocation that
would have been necessary. Also x0, x1, y0 and y1 have to be able to hold at
least their respective number of digits for the next section of code.

The first algebraic portion of the algorithm is to split the two inputs into
their halves. However, instead of using mp mod 2d and mp rshd to extract
the halves, the respective code has been placed inline within the body of the
function. To initialize the halves, the used and sign members are copied first.
The first for loop on line 101 copies the lower halves. Since they are both the
same magnitude it is simpler to calculate both lower halves in a single loop. The
for loop on lines 106 and 106 calculate the upper halves x1 and y1 respectively.

By inlining the calculation of the halves, the Karatsuba multiplier has a
slightly lower overhead and can be used for smaller magnitude inputs.

When line 150 is reached, the algorithm has completed succesfully. The
“error status” variable err is set to MP OKAY so that the same code that
handles errors can be used to clear the temporary variables and return.

5.2.5 Toom-Cook 3-Way Multiplication

Toom-Cook 3-Way [?] multiplication is essentially the polynomial basis algo-
rithm for n = 2 except that the points are chosen such that ζ is easy to compute
and the resulting system of equations easy to reduce. Here, the points ζ0, 16·ζ 1

2
,

ζ1, ζ2 and ζ∞ make up the five required points to solve for the coefficients of
the W (x).

With the five relations that Toom-Cook specifies, the following system of
equations is formed.

ζ0 = 0w4 + 0w3 + 0w2 + 0w1 + 1w0

16 · ζ 1
2

= 1w4 + 2w3 + 4w2 + 8w1 + 16w0

ζ1 = 1w4 + 1w3 + 1w2 + 1w1 + 1w0

ζ2 = 16w4 + 8w3 + 4w2 + 2w1 + 1w0

ζ∞ = 1w4 + 0w3 + 0w2 + 0w1 + 0w0

A trivial solution to this matrix requires 12 subtractions, two multiplications
by a small power of two, two divisions by a small power of two, two divisions
by three and one multiplication by three. All of these 19 sub-operations require
less than quadratic time, meaning that the algorithm can be faster than a base-
line multiplication. However, the greater complexity of this algorithm places
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the cutoff point (TOOM MUL CUTOFF) where Toom-Cook becomes more
efficient much higher than the Karatsuba cutoff point.

Algorithm mp toom mul.
Input. mp int a and mp int b
Output. c← a · b

Split a and b into three pieces. E.g. a = a2β
2k + a1β

k + a0

1. k ← ⌊min(a.used, b.used)/3⌋

2. a0 ← a (mod βk)

3. a1 ← ⌊a/β
k⌋, a1 ← a1 (mod βk)

4. a2 ← ⌊a/β
2k⌋, a2 ← a2 (mod βk)

5. b0 ← a (mod βk)

6. b1 ← ⌊a/β
k⌋, b1 ← b1 (mod βk)

7. b2 ← ⌊a/β
2k⌋, b2 ← b2 (mod βk)

Find the five equations for w0, w1, ..., w4.
8. w0 ← a0 · b0
9. w4 ← a2 · b2
10. tmp1 ← 2 · a0, tmp1 ← a1 + tmp1, tmp1 ← 2 · tmp1, tmp1 ← tmp1 + a2

11. tmp2 ← 2 · b0, tmp2 ← b1 + tmp2, tmp2 ← 2 · tmp2, tmp2 ← tmp2 + b2
12. w1 ← tmp1 · tmp2
13. tmp1 ← 2 · a2, tmp1 ← a1 + tmp1, tmp1 ← 2 · tmp1, tmp1 ← tmp1 + a0

14. tmp2 ← 2 · b2, tmp2 ← b1 + tmp2, tmp2 ← 2 · tmp2, tmp2 ← tmp2 + b0
15. w3 ← tmp1 · tmp2
16. tmp1 ← a0 + a1, tmp1 ← tmp1 + a2, tmp2 ← b0 + b1, tmp2 ← tmp2 + b2
17. w2 ← tmp1 · tmp2

Continued on the next page.

Figure 5.8: Algorithm mp toom mul
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Algorithm mp toom mul (continued).
Input. mp int a and mp int b
Output. c← a · b

Now solve the system of equations.
18. w1 ← w4 − w1, w3 ← w3 − w0

19. w1 ← ⌊w1/2⌋, w3 ← ⌊w3/2⌋
20. w2 ← w2 − w0, w2 ← w2 − w4

21. w1 ← w1 − w2, w3 ← w3 − w2

22. tmp1 ← 8 · w0, w1 ← w1 − tmp1, tmp1 ← 8 · w4, w3 ← w3 − tmp1
23. w2 ← 3 · w2, w2 ← w2 − w1, w2 ← w2 − w3

24. w1 ← w1 − w2, w3 ← w3 − w2

25. w1 ← ⌊w1/3⌋, w3 ← ⌊w3/3⌋

Now substitute βk for x by shifting w0, w1, ..., w4.
26. for n from 1 to 4 do

26.1 wn ← wn · β
nk

27. c← w0 + w1, c← c+ w2, c← c+ w3, c← c+ w4

28. Return(MP OKAY )

Figure 5.9: Algorithm mp toom mul (continued)

Algorithm mp toom mul. This algorithm computes the product of two
mp int variables a and b using the Toom-Cook approach. Compared to the
Karatsuba multiplication, this algorithm has a lower asymptotic running time of
approximately O(n1.464) but at an obvious cost in overhead. In this description,
several statements have been compounded to save space. The intention is that
the statements are executed from left to right across any given step.

The two inputs a and b are first split into three k-digit integers a0, a1, a2
and b0, b1, b2 respectively. From these smaller integers the coefficients of the
polynomial basis representations f(x) and g(x) are known and can be used to
find the relations required.

The first two relations w0 and w4 are the points ζ0 and ζ∞ respectively. The
relation w1, w2 and w3 correspond to the points 16 · ζ 1

2
, ζ2 and ζ1 respectively.

These are found using logical shifts to independently find f(y) and g(y) which
significantly speeds up the algorithm.

After the five relations w0, w1, . . . , w4 have been computed, the system they
represent must be solved in order for the unknown coefficients w1, w2 and w3

to be isolated. The steps 18 through 25 perform the system reduction required
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as previously described. Each step of the reduction represents the comparable
matrix operation that would be performed had this been performed by pencil.
For example, step 18 indicates that row 1 must be subtracted from row 4 and
simultaneously row 0 subtracted from row 3.

Once the coeffients have been isolated, the polynomial W (x) =
∑2n

i=0 wix
i

is known. By substituting βk for x, the integer result a · b is produced.

File: bn mp toom mul.c

016

017 /* multiplication using the Toom-Cook 3-way algorithm

018 *

019 * Much more complicated than Karatsuba but has a lower

020 * asymptotic running time of O(N**1.464). This algorithm is

021 * only particularly useful on VERY large inputs

022 * (we’re talking 1000s of digits here...).

023 */

024 int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)

025 {
026 mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;

027 int res, B;

028

029 /* init temps */

030 if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,

031 &a0, &a1, &a2, &b0, &b1,

032 &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
033 return res;

034 }
035

036 /* B */

037 B = MIN(a->used, b->used) / 3;

038

039 /* a = a2 * B**2 + a1 * B + a0 */

040 if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
041 goto ERR;

042 }
043

044 if ((res = mp_copy(a, &a1)) != MP_OKAY) {
045 goto ERR;

046 }
047 mp_rshd(&a1, B);

048 if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) {
049 goto ERR;
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050 }
051

052 if ((res = mp_copy(a, &a2)) != MP_OKAY) {
053 goto ERR;

054 }
055 mp_rshd(&a2, B*2);

056

057 /* b = b2 * B**2 + b1 * B + b0 */

058 if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
059 goto ERR;

060 }
061

062 if ((res = mp_copy(b, &b1)) != MP_OKAY) {
063 goto ERR;

064 }
065 mp_rshd(&b1, B);

066 (void)mp_mod_2d(&b1, DIGIT_BIT * B, &b1);

067

068 if ((res = mp_copy(b, &b2)) != MP_OKAY) {
069 goto ERR;

070 }
071 mp_rshd(&b2, B*2);

072

073 /* w0 = a0*b0 */

074 if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
075 goto ERR;

076 }
077

078 /* w4 = a2 * b2 */

079 if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
080 goto ERR;

081 }
082

083 /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */

084 if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
085 goto ERR;

086 }
087 if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
088 goto ERR;

089 }
090 if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
091 goto ERR;
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092 }
093 if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
094 goto ERR;

095 }
096

097 if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
098 goto ERR;

099 }
100 if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
101 goto ERR;

102 }
103 if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
104 goto ERR;

105 }
106 if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
107 goto ERR;

108 }
109

110 if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
111 goto ERR;

112 }
113

114 /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */

115 if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
116 goto ERR;

117 }
118 if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
119 goto ERR;

120 }
121 if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
122 goto ERR;

123 }
124 if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
125 goto ERR;

126 }
127

128 if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
129 goto ERR;

130 }
131 if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
132 goto ERR;

133 }
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134 if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
135 goto ERR;

136 }
137 if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
138 goto ERR;

139 }
140

141 if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
142 goto ERR;

143 }
144

145

146 /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */

147 if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
148 goto ERR;

149 }
150 if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
151 goto ERR;

152 }
153 if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) {
154 goto ERR;

155 }
156 if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
157 goto ERR;

158 }
159 if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
160 goto ERR;

161 }
162

163 /* now solve the matrix

164

165 0 0 0 0 1

166 1 2 4 8 16

167 1 1 1 1 1

168 16 8 4 2 1

169 1 0 0 0 0

170

171 using 12 subtractions, 4 shifts,

172 2 small divisions and 1 small multiplication

173 */

174

175 /* r1 - r4 */
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176 if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
177 goto ERR;

178 }
179 /* r3 - r0 */

180 if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
181 goto ERR;

182 }
183 /* r1/2 */

184 if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
185 goto ERR;

186 }
187 /* r3/2 */

188 if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
189 goto ERR;

190 }
191 /* r2 - r0 - r4 */

192 if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
193 goto ERR;

194 }
195 if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
196 goto ERR;

197 }
198 /* r1 - r2 */

199 if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
200 goto ERR;

201 }
202 /* r3 - r2 */

203 if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
204 goto ERR;

205 }
206 /* r1 - 8r0 */

207 if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
208 goto ERR;

209 }
210 if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
211 goto ERR;

212 }
213 /* r3 - 8r4 */

214 if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
215 goto ERR;

216 }
217 if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
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218 goto ERR;

219 }
220 /* 3r2 - r1 - r3 */

221 if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
222 goto ERR;

223 }
224 if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
225 goto ERR;

226 }
227 if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
228 goto ERR;

229 }
230 /* r1 - r2 */

231 if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
232 goto ERR;

233 }
234 /* r3 - r2 */

235 if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
236 goto ERR;

237 }
238 /* r1/3 */

239 if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
240 goto ERR;

241 }
242 /* r3/3 */

243 if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
244 goto ERR;

245 }
246

247 /* at this point shift W[n] by B*n */

248 if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
249 goto ERR;

250 }
251 if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
252 goto ERR;

253 }
254 if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
255 goto ERR;

256 }
257 if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
258 goto ERR;

259 }
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260

261 if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
262 goto ERR;

263 }
264 if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
265 goto ERR;

266 }
267 if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
268 goto ERR;

269 }
270 if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
271 goto ERR;

272 }
273

274 ERR:

275 mp_clear_multi(&w0, &w1, &w2, &w3, &w4,

276 &a0, &a1, &a2, &b0, &b1,

277 &b2, &tmp1, &tmp2, NULL);

278 return res;

279 }
280

281 #endif

282

The first obvious thing to note is that this algorithm is complicated. The
complexity is worth it if you are multiplying very large numbers. For example, a
10,000 digit multiplication takes approximaly 99,282,205 fewer single precision
multiplications with Toom–Cook than a Comba or baseline approach (this is a
savings of more than 99%). For most “crypto” sized numbers this algorithm is
not practical as Karatsuba has a much lower cutoff point.

First we split a and b into three roughly equal portions. This has been
accomplished (lines 40 to 71) with combinations of mp rshd() and mp mod 2d()
function calls. At this point a = a2 · β2 + a1 · β + a0 and similiarly for b.

Next we compute the five points w0, w1, w2, w3 and w4. Recall that w0 and
w4 can be computed directly from the portions so we get those out of the way
first (lines 74 and 79). Next we compute w1, w2 and w3 using Horners method.

After this point we solve for the actual values of w1, w2 and w3 by reducing
the 5× 5 system which is relatively straight forward.
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5.2.6 Signed Multiplication

Now that algorithms to handle multiplications of every useful dimensions have
been developed, a rather simple finishing touch is required. So far all of the
multiplication algorithms have been unsigned multiplications which leaves only
a signed multiplication algorithm to be established.

Algorithm mp mul.
Input. mp int a and mp int b
Output. c← a · b

1. If a.sign = b.sign then
1.1 sign = MP ZPOS

2. else
2.1 sign = MP ZNEG

3. If min(a.used, b.used) ≥ TOOM MUL CUTOFF then
3.1 c← a · b using algorithm mp toom mul

4. else if min(a.used, b.used) ≥ KARATSUBA MUL CUTOFF then
4.1 c← a · b using algorithm mp karatsuba mul

5. else
5.1 digs← a.used+ b.used+ 1
5.2 If digs < MP ARRAY and min(a.used, b.used) ≤ δ then

5.2.1 c← a · b (mod βdigs) using algorithm fast s mp mul digs.
5.3 else

5.3.1 c← a · b (mod βdigs) using algorithm s mp mul digs.
6. c.sign← sign
7. Return the result of the unsigned multiplication performed.

Figure 5.10: Algorithm mp mul

Algorithm mp mul. This algorithm performs the signed multiplication
of two inputs. It will make use of any of the three unsigned multiplication
algorithms available when the input is of appropriate size. The sign of the
result is not set until the end of the algorithm since algorithm s mp mul digs
will clear it.

File: bn mp mul.c

016

017 /* high level multiplication (handles sign) */

018 int mp_mul (mp_int * a, mp_int * b, mp_int * c)

019 {
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020 int res, neg;

021 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;

022

023 /* use Toom-Cook? */

024 #ifdef BN_MP_TOOM_MUL_C

025 if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
026 res = mp_toom_mul(a, b, c);

027 } else

028 #endif

029 #ifdef BN_MP_KARATSUBA_MUL_C

030 /* use Karatsuba? */

031 if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
032 res = mp_karatsuba_mul (a, b, c);

033 } else

034 #endif

035 {
036 /* can we use the fast multiplier?

037 *

038 * The fast multiplier can be used if the output will

039 * have less than MP_WARRAY digits and the number of

040 * digits won’t affect carry propagation

041 */

042 int digs = a->used + b->used + 1;

043

044 #ifdef BN_FAST_S_MP_MUL_DIGS_C

045 if ((digs < MP_WARRAY) &&

046 MIN(a->used, b->used) <=

047 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
048 res = fast_s_mp_mul_digs (a, b, c, digs);

049 } else

050 #endif

051 {
052 #ifdef BN_S_MP_MUL_DIGS_C

053 res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */

054 #else

055 res = MP_VAL;

056 #endif

057 }
058 }
059 c->sign = (c->used > 0) ? neg : MP_ZPOS;

060 return res;

061 }
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062 #endif

063

The implementation is rather simplistic and is not particularly noteworthy.
Line 23 computes the sign of the result using the “?” operator from the C
programming language. Line 47 computes δ using the fact that 1 << k is equal
to 2k.

5.3 Squaring

Squaring is a special case of multiplication where both multiplicands are equal.
At first it may seem like there is no significant optimization available but in fact
there is. Consider the multiplication of 576 against 241. In total there will be
nine single precision multiplications performed which are 1 · 6, 1 · 7, 1 · 5, 4 · 6,
4 · 7, 4 · 5, 2 · 6, 2 · 7 and 2 · 5. Now consider the multiplication of 123 against
123. The nine products are 3 ·3, 3 ·2, 3 ·1, 2 ·3, 2 ·2, 2 ·1, 1 ·3, 1 ·2 and 1 ·1. On
closer inspection some of the products are equivalent. For example, 3 · 2 = 2 · 3
and 3 · 1 = 1 · 3.

For any n-digit input, there are
(n2+n)

2 possible unique single precision multi-
plications required compared to the n2 required for multiplication. The following
diagram gives an example of the operations required.

1 2 3
× 1 2 3

3 · 1 3 · 2 3 · 3 Row 0
2 · 1 2 · 2 2 · 3 Row 1

1 · 1 1 · 2 1 · 3 Row 2

Figure 5.11: Squaring Optimization Diagram

Starting from zero and numbering the columns from right to left a very sim-
ple pattern becomes obvious. For the purposes of this discussion let x represent
the number being squared. The first observation is that in row k the 2k’th
column of the product has a (xk)

2
term in it.

The second observation is that every column j in row k where j 6= 2k is
part of a double product. Every non-square term of a column will appear twice
hence the name “double product”. Every odd column is made up entirely of
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double products. In fact every column is made up of double products and at
most one square (see the exercise section).

The third and final observation is that for row k the first unique non-square
term, that is, one that hasn’t already appeared in an earlier row, occurs at
column 2k + 1. For example, on row 1 of the previous squaring, column one is
part of the double product with column one from row zero. Column two of row
one is a square and column three is the first unique column.

5.3.1 The Baseline Squaring Algorithm

The baseline squaring algorithm is meant to be a catch-all squaring algorithm.
It will handle any of the input sizes that the faster routines will not handle.

Algorithm s mp sqr. This algorithm computes the square of an input us-
ing the three observations on squaring. It is based fairly faithfully on algorithm
14.16 of HAC [2, pp.596-597]. Similar to algorithm s mp mul digs, a temporary
mp int is allocated to hold the result of the squaring. This allows the destination
mp int to be the same as the source mp int.

The outer loop of this algorithm begins on step 4. It is best to think of the
outer loop as walking down the rows of the partial results, while the inner loop
computes the columns of the partial result. Step 4.1 and 4.2 compute the square
term for each row, and step 4.3 and 4.4 propagate the carry and compute the
double products.

The requirement that a mp word be able to represent the range 0 ≤ x <
2β2 arises from this very algorithm. The product aixaiy will lie in the range
0 ≤ x ≤ β2 − 2β + 1 which is obviously less than β2 meaning that when it is
multiplied by two, it can be properly represented by a mp word.

Similar to algorithm s mp mul digs, after every pass of the inner loop, the
destination is correctly set to the sum of all of the partial results calculated so
far. This involves expensive carry propagation which will be eliminated in the
next algorithm.

File: bn s mp sqr.c
016

017 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */

018 int s_mp_sqr (mp_int * a, mp_int * b)

019 {
020 mp_int t;

021 int res, ix, iy, pa;

022 mp_word r;

023 mp_digit u, tmpx, *tmpt;
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Algorithm s mp sqr.
Input. mp int a
Output. b← a2

1. Init a temporary mp int of at least 2 · a.used+ 1 digits. (mp init size)
2. If step 1 failed return(MP MEM )
3. t.used← 2 · a.used+ 1
4. For ix from 0 to a.used− 1 do
Calculate the square.

4.1 r̂ ← t2ix + (aix)
2

4.2 t2ix ← r̂ (mod β)
Calculate the double products after the square.
4.3 u← ⌊r̂/β⌋
4.4 For iy from ix+ 1 to a.used− 1 do
4.4.1 r̂ ← 2 · aixaiy + tix+iy + u
4.4.2 tix+iy ← r̂ (mod β)
4.4.3 u← ⌊r̂/β⌋

Set the last carry.
4.5 While u > 0 do
4.5.1 iy ← iy + 1
4.5.2 r̂ ← tix+iy + u
4.5.3 tix+iy ← r̂ (mod β)
4.5.4 u← ⌊r̂/β⌋

5. Clamp excess digits of t. (mp clamp)
6. Exchange b and t.
7. Clear t (mp clear)
8. Return(MP OKAY )

Figure 5.12: Algorithm s mp sqr

024

025 pa = a->used;

026 if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
027 return res;

028 }
029

030 /* default used is maximum possible size */

031 t.used = 2*pa + 1;

032

033 for (ix = 0; ix < pa; ix++) {
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034 /* first calculate the digit at 2*ix */

035 /* calculate double precision result */

036 r = ((mp_word) t.dp[2*ix]) +

037 ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);

038

039 /* store lower part in result */

040 t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));

041

042 /* get the carry */

043 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

044

045 /* left hand side of A[ix] * A[iy] */

046 tmpx = a->dp[ix];

047

048 /* alias for where to store the results */

049 tmpt = t.dp + (2*ix + 1);

050

051 for (iy = ix + 1; iy < pa; iy++) {
052 /* first calculate the product */

053 r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);

054

055 /* now calculate the double precision result, note we use

056 * addition instead of *2 since it’s easier to optimize

057 */

058 r = ((mp_word) *tmpt) + r + r + ((mp_word) u);

059

060 /* store lower part */

061 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

062

063 /* get carry */

064 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

065 }
066 /* propagate upwards */

067 while (u != ((mp_digit) 0)) {
068 r = ((mp_word) *tmpt) + ((mp_word) u);

069 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

070 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

071 }
072 }
073

074 mp_clamp (&t);

075 mp_exch (&t, b);
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076 mp_clear (&t);

077 return MP_OKAY;

078 }
079 #endif

080

Inside the outer loop (line 33) the square term is calculated on line 36. The
carry (line 43) has been extracted from the mp word accumulator using a right
shift. Aliases for aix and tix+iy are initialized (lines 46 and 49) to simplify the
inner loop. The doubling is performed using two additions (line 58) since it is
usually faster than shifting, if not at least as fast.

The important observation is that the inner loop does not begin at iy = 0
like for multiplication. As such the inner loops get progressively shorter as the
algorithm proceeds. This is what leads to the savings compared to using a
multiplication to square a number.

5.3.2 Faster Squaring by the “Comba” Method

A major drawback to the baseline method is the requirement for single precision
shifting inside the O(n2) nested loop. Squaring has an additional drawback that
it must double the product inside the inner loop as well. As for multiplication,
the Comba technique can be used to eliminate these performance hazards.

The first obvious solution is to make an array of mp words which will hold all
of the columns. This will indeed eliminate all of the carry propagation operations
from the inner loop. However, the inner product must still be doubled O(n2)
times. The solution stems from the simple fact that 2a+2b+2c = 2(a+ b+ c).
That is the sum of all of the double products is equal to double the sum of all
the products. For example, ab+ ba+ ac+ ca = 2ab+ 2ac = 2(ab+ ac).

However, we cannot simply double all of the columns, since the squares
appear only once per row. The most practical solution is to have two mp word
arrays. One array will hold the squares and the other array will hold the double
products. With both arrays the doubling and carry propagation can be moved
to a O(n) work level outside the O(n2) level. In this case, we have an even
simpler solution in mind.
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Algorithm fast s mp sqr.
Input. mp int a
Output. b← a2

Place an array of MP WARRAY mp digits named W on the stack.
1. If b.alloc < 2a.used+ 1 then grow b to 2a.used+ 1 digits. (mp grow).
2. If step 1 failed return(MP MEM ).

3. pa← 2 · a.used

4. Ŵ1← 0
5. for ix from 0 to pa− 1 do

5.1 Ŵ ← 0
5.2 ty ← MIN(a.used− 1, ix)
5.3 tx← ix− ty
5.4 iy ← MIN(a.used− tx, ty + 1)
5.5 iy ← MIN(iy, ⌊(ty − tx+ 1) /2⌋)
5.6 for iz from 0 to iz − 1 do

5.6.1 Ŵ ← Ŵ + atx+izaty−iz

5.7 Ŵ ← 2 · Ŵ + Ŵ1
5.8 if ix is even then

5.8.1 Ŵ ← Ŵ +
(

a⌊ix/2⌋

)2

5.9 Wix ← Ŵ (mod β)

5.10 Ŵ1← ⌊ Ŵ/β⌋

6. oldused← b.used
7. b.used← 2 · a.used
8. for ix from 0 to pa− 1 do
8.1 bix ←Wix

9. for ix from pa to oldused− 1 do
9.1 bix ← 0

10. Clamp excess digits from b. (mp clamp)
11. Return(MP OKAY ).

Figure 5.13: Algorithm fast s mp sqr

Algorithm fast s mp sqr. This algorithm computes the square of an in-
put using the Comba technique. It is designed to be a replacement for algorithm
s mp sqr when the number of input digits is less than MP WARRAY and less
than δ

2 . This algorithm is very similar to the Comba multiplier except with a
few key differences we shall make note of.
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First, we have an accumulator and carry variables Ŵ and Ŵ1 respectively.
This is because the inner loop products are to be doubled. If we had added the
previous carry in we would be doubling too much. Next we perform an addition
MIN condition on iy (step 5.5) to prevent overlapping digits. For example, a3 ·a5
is equal a5 · a3. Whereas in the multiplication case we would have 5 < a.used
and 3 ≥ 0 is maintained since we double the sum of the products just outside
the inner loop we have to avoid doing this. This is also a good thing since we
perform fewer multiplications and the routine ends up being faster.

Finally the last difference is the addition of the “square” term outside the
inner loop (step 5.8). We add in the square only to even outputs and it is the
square of the term at the ⌊ix/2⌋ position.

File: bn fast s mp sqr.c
016

017 /* the jist of squaring...

018 * you do like mult except the offset of the tmpx [one that

019 * starts closer to zero] can’t equal the offset of tmpy.

020 * So basically you set up iy like before then you min it with

021 * (ty-tx) so that it never happens. You double all those

022 * you add in the inner loop

023

024 After that loop you do the squares and add them in.

025 */

026

027 int fast_s_mp_sqr (mp_int * a, mp_int * b)

028 {
029 int olduse, res, pa, ix, iz;

030 mp_digit W[MP_WARRAY], *tmpx;

031 mp_word W1;

032

033 /* grow the destination as required */

034 pa = a->used + a->used;

035 if (b->alloc < pa) {
036 if ((res = mp_grow (b, pa)) != MP_OKAY) {
037 return res;

038 }
039 }
040

041 /* number of output digits to produce */

042 W1 = 0;

043 for (ix = 0; ix < pa; ix++) {
044 int tx, ty, iy;
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045 mp_word _W;

046 mp_digit *tmpy;

047

048 /* clear counter */

049 _W = 0;

050

051 /* get offsets into the two bignums */

052 ty = MIN(a->used-1, ix);

053 tx = ix - ty;

054

055 /* setup temp aliases */

056 tmpx = a->dp + tx;

057 tmpy = a->dp + ty;

058

059 /* this is the number of times the loop will iterrate, essentially

060 while (tx++ < a->used && ty-- >= 0) { ... }
061 */

062 iy = MIN(a->used-tx, ty+1);

063

064 /* now for squaring tx can never equal ty

065 * we halve the distance since they approach at a rate of 2x

066 * and we have to round because odd cases need to be executed

067 */

068 iy = MIN(iy, (ty-tx+1)>>1);

069

070 /* execute loop */

071 for (iz = 0; iz < iy; iz++) {
072 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);

073 }
074

075 /* double the inner product and add carry */

076 _W = _W + _W + W1;

077

078 /* even columns have the square term in them */

079 if ((ix&1) == 0) {
080 _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);

081 }
082

083 /* store it */

084 W[ix] = (mp_digit)(_W & MP_MASK);

085

086 /* make next carry */
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087 W1 = _W >> ((mp_word)DIGIT_BIT);

088 }
089

090 /* setup dest */

091 olduse = b->used;

092 b->used = a->used+a->used;

093

094 {
095 mp_digit *tmpb;

096 tmpb = b->dp;

097 for (ix = 0; ix < pa; ix++) {
098 *tmpb++ = W[ix] & MP_MASK;

099 }
100

101 /* clear unused digits [that existed in the old copy of c] */

102 for (; ix < olduse; ix++) {
103 *tmpb++ = 0;

104 }
105 }
106 mp_clamp (b);

107 return MP_OKAY;

108 }
109 #endif

110

This implementation is essentially a copy of Comba multiplication with the
appropriate changes added to make it faster for the special case of squaring.

5.3.3 Polynomial Basis Squaring

The same algorithm that performs optimal polynomial basis multiplication can
be used to perform polynomial basis squaring. The minor exception is that
ζy = f(y)g(y) is actually equivalent to ζy = f(y)2 since f(y) = g(y). Instead
of performing 2n+1 multiplications to find the ζ relations, squaring operations
are performed instead.

5.3.4 Karatsuba Squaring

Let f(x) = ax + b represent the polynomial basis representation of a number

to square. Let h(x) = (f(x))
2
represent the square of the polynomial. The
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Karatsuba equation can be modified to square a number with the following
equation.

h(x) = a2x2 +
(

(a+ b)2 − (a2 + b2)
)

x+ b2 (5.7)

Upon closer inspection this equation only requires the calculation of three
half-sized squares: a2, b2 and (a + b)2. As in Karatsuba multiplication, this
algorithm can be applied recursively on the input and will achieve an asymptotic
running time of O

(

nlg(3)
)

.
If the asymptotic times of Karatsuba squaring and multiplication are the

same, why not simply use the multiplication algorithm instead? The answer to
this arises from the cutoff point for squaring. As in multiplication there exists
a cutoff point, at which the time required for a Comba based squaring and a
Karatsuba based squaring meet. Due to the overhead inherent in the Karatsuba
method, the cutoff point is fairly high. For example, on an AMD Athlon XP
processor with β = 228, the cutoff point is around 127 digits.

Consider squaring a 200 digit number with this technique. It will be split
into two 100 digit halves which are subsequently squared. The 100 digit halves
will not be squared using Karatsuba, but instead using the faster Comba based
squaring algorithm. If Karatsuba multiplication were used instead, the 100 digit
numbers would be squared with a slower Comba based multiplication.
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Algorithm mp karatsuba sqr.
Input. mp int a
Output. b← a2

1. Initialize the following temporary mp ints: x0, x1, t1, t2, x0x0 and x1x1.
2. If any of the initializations on step 1 failed return(MP MEM ).

Split the input. e.g. a = x1βB + x0
3. B ← ⌊a.used/2⌋
4. x0← a (mod βB) (mp mod 2d)
5. x1← ⌊a/βB⌋ (mp lshd)

Calculate the three squares.
6. x0x0← x02 (mp sqr)
7. x1x1← x12

8. t1← x1 + x0 (s mp add)
9. t1← t12

Compute the middle term.
10. t2← x0x0 + x1x1 (s mp add)
11. t1← t1− t2

Compute final product.
12. t1← t1βB (mp lshd)
13. x1x1← x1x1β2B

14. t1← t1 + x0x0
15. b← t1 + x1x1
16. Return(MP OKAY ).

Figure 5.14: Algorithm mp karatsuba sqr

Algorithm mp karatsuba sqr. This algorithm computes the square of
an input a using the Karatsuba technique. This algorithm is very similar to
the Karatsuba based multiplication algorithm with the exception that the three
half-size multiplications have been replaced with three half-size squarings.

The radix point for squaring is simply placed exactly in the middle of the
digits when the input has an odd number of digits, otherwise it is placed just
below the middle. Step 3, 4 and 5 compute the two halves required using B as
the radix point. The first two squares in steps 6 and 7 are rather straightforward
while the last square is of a more compact form.



136 CHAPTER 5. MULTIPLICATION AND SQUARING

By expanding (x1 + x0)
2
, the x12 and x02 terms in the middle disappear,

that is (x0−x1)2− (x12+x02) = 2 ·x0 ·x1. Now if 5n single precision additions
and a squaring of n-digits is faster than multiplying two n-digit numbers and
doubling then this method is faster. Assuming no further recursions occur, the
difference can be estimated with the following inequality.

Let p represent the cost of a single precision addition and q the cost of a
single precision multiplication both in terms of time3.

5pn+
q(n2 + n)

2
≤ pn+ qn2 (5.8)

For example, on an AMD Athlon XP processor p = 1
3 and q = 6. This

implies that the following inequality should hold.

5n
3 + 3n2 + 3n < n

3 + 6n2

5
3 + 3n+ 3 < 1

3 + 6n
13
9 < n

This results in a cutoff point around n = 2. As a consequence it is ac-
tually faster to compute the middle term the “long way” on processors where
multiplication is substantially slower4 than simpler operations such as addition.

File: bn mp karatsuba sqr.c

016

017 /* Karatsuba squaring, computes b = a*a using three

018 * half size squarings

019 *

020 * See comments of karatsuba_mul for details. It

021 * is essentially the same algorithm but merely

022 * tuned to perform recursive squarings.

023 */

024 int mp_karatsuba_sqr (mp_int * a, mp_int * b)

025 {
026 mp_int x0, x1, t1, t2, x0x0, x1x1;

027 int B, err;

028

029 err = MP_MEM;

030

3Or machine clock cycles.
4On the Athlon there is a 1:17 ratio between clock cycles for addition and multiplication.

On the Intel P4 processor this ratio is 1:29 making this method even more beneficial. The
only common exception is the ARMv4 processor which has a ratio of 1:7.
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031 /* min # of digits */

032 B = a->used;

033

034 /* now divide in two */

035 B = B >> 1;

036

037 /* init copy all the temps */

038 if (mp_init_size (&x0, B) != MP_OKAY)

039 goto ERR;

040 if (mp_init_size (&x1, a->used - B) != MP_OKAY)

041 goto X0;

042

043 /* init temps */

044 if (mp_init_size (&t1, a->used * 2) != MP_OKAY)

045 goto X1;

046 if (mp_init_size (&t2, a->used * 2) != MP_OKAY)

047 goto T1;

048 if (mp_init_size (&x0x0, B * 2) != MP_OKAY)

049 goto T2;

050 if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)

051 goto X0X0;

052

053 {
054 register int x;

055 register mp_digit *dst, *src;

056

057 src = a->dp;

058

059 /* now shift the digits */

060 dst = x0.dp;

061 for (x = 0; x < B; x++) {
062 *dst++ = *src++;

063 }
064

065 dst = x1.dp;

066 for (x = B; x < a->used; x++) {
067 *dst++ = *src++;

068 }
069 }
070

071 x0.used = B;

072 x1.used = a->used - B;
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073

074 mp_clamp (&x0);

075

076 /* now calc the products x0*x0 and x1*x1 */

077 if (mp_sqr (&x0, &x0x0) != MP_OKAY)

078 goto X1X1; /* x0x0 = x0*x0 */

079 if (mp_sqr (&x1, &x1x1) != MP_OKAY)

080 goto X1X1; /* x1x1 = x1*x1 */

081

082 /* now calc (x1+x0)**2 */

083 if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)

084 goto X1X1; /* t1 = x1 - x0 */

085 if (mp_sqr (&t1, &t1) != MP_OKAY)

086 goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */

087

088 /* add x0y0 */

089 if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)

090 goto X1X1; /* t2 = x0x0 + x1x1 */

091 if (s_mp_sub (&t1, &t2, &t1) != MP_OKAY)

092 goto X1X1; /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */

093

094 /* shift by B */

095 if (mp_lshd (&t1, B) != MP_OKAY)

096 goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */

097 if (mp_lshd (&x1x1, B * 2) != MP_OKAY)

098 goto X1X1; /* x1x1 = x1x1 << 2*B */

099

100 if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)

101 goto X1X1; /* t1 = x0x0 + t1 */

102 if (mp_add (&t1, &x1x1, b) != MP_OKAY)

103 goto X1X1; /* t1 = x0x0 + t1 + x1x1 */

104

105 err = MP_OKAY;

106

107 X1X1:mp_clear (&x1x1);

108 X0X0:mp_clear (&x0x0);

109 T2:mp_clear (&t2);

110 T1:mp_clear (&t1);

111 X1:mp_clear (&x1);

112 X0:mp_clear (&x0);

113 ERR:

114 return err;
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115 }
116 #endif

117

This implementation is largely based on the implementation of algorithm
mp karatsuba mul. It uses the same inline style to copy and shift the input into
the two halves. The loop from line 53 to line 69 has been modified since only one
input exists. The used count of both x0 and x1 is fixed up and x0 is clamped
before the calculations begin. At this point x1 and x0 are valid equivalents to
the respective halves as if mp rshd and mp mod 2d had been used.

By inlining the copy and shift operations the cutoff point for Karatsuba
multiplication can be lowered. On the Athlon the cutoff point is exactly at the
point where Comba squaring can no longer be used (128 digits). On slower
processors such as the Intel P4 it is actually below the Comba limit (at 110

digits).
This routine uses the same error trap coding style as mp karatsuba sqr. As

the temporary variables are initialized errors are redirected to the error trap
higher up. If the algorithm completes without error the error code is set to
MP OKAY and mp clears are executed normally.

5.3.5 Toom-Cook Squaring

The Toom-Cook squaring algorithm mp toom sqr is heavily based on the al-
gorithm mp toom mul with the exception that squarings are used instead of
multiplication to find the five relations. The reader is encouraged to read the
description of the latter algorithm and try to derive their own Toom-Cook squar-
ing algorithm.

5.3.6 High Level Squaring
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Algorithm mp sqr.
Input. mp int a
Output. b← a2

1. If a.used ≥ TOOM SQR CUTOFF then
1.1 b← a2 using algorithm mp toom sqr

2. else if a.used ≥ KARATSUBA SQR CUTOFF then
2.1 b← a2 using algorithm mp karatsuba sqr

3. else
3.1 digs← a.used+ b.used+ 1
3.2 If digs < MP ARRAY and a.used ≤ δ then
3.2.1 b← a2 using algorithm fast s mp sqr.

3.3 else
3.3.1 b← a2 using algorithm s mp sqr.

4. b.sign←MP ZPOS
5. Return the result of the unsigned squaring performed.

Figure 5.15: Algorithm mp sqr

Algorithm mp sqr. This algorithm computes the square of the input us-
ing one of four different algorithms. If the input is very large and has at least
TOOM SQR CUTOFF orKARATSUBA SQR CUTOFF digits then ei-
ther the Toom-Cook or the Karatsuba Squaring algorithm is used. If neither
of the polynomial basis algorithms should be used then either the Comba or
baseline algorithm is used.

File: bn mp sqr.c

016

017 /* computes b = a*a */

018 int

019 mp_sqr (mp_int * a, mp_int * b)

020 {
021 int res;

022

023 #ifdef BN_MP_TOOM_SQR_C

024 /* use Toom-Cook? */

025 if (a->used >= TOOM_SQR_CUTOFF) {
026 res = mp_toom_sqr(a, b);

027 /* Karatsuba? */

028 } else

029 #endif
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030 #ifdef BN_MP_KARATSUBA_SQR_C

031 if (a->used >= KARATSUBA_SQR_CUTOFF) {
032 res = mp_karatsuba_sqr (a, b);

033 } else

034 #endif

035 {
036 #ifdef BN_FAST_S_MP_SQR_C

037 /* can we use the fast comba multiplier? */

038 if ((a->used * 2 + 1) < MP_WARRAY &&

039 a->used <

040 (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
041 res = fast_s_mp_sqr (a, b);

042 } else

043 #endif

044 {
045 #ifdef BN_S_MP_SQR_C

046 res = s_mp_sqr (a, b);

047 #else

048 res = MP_VAL;

049 #endif

050 }
051 }
052 b->sign = MP_ZPOS;

053 return res;

054 }
055 #endif

056
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Exercises

[3] Devise an efficient algorithm for selection of the radix point to handle inputs
that have different number of digits in Karatsuba multiplication.

[2] In section 5.3 the fact that every column of a squaring is made up
of double products and at most one square is stated. Prove this statement.

[3] Prove the equation for Karatsuba squaring.

[1] Prove that Karatsuba squaring requires O
(

nlg(3)
)

time.

[2] Determine the minimal ratio between addition and multiplication clock cycles
required for equation 6.7 to be true.

[3] Implement a threaded version of Comba multiplication (and squaring) where you
compute subsets of the columns in each thread. Determine a cutoff point where
it is effective and add the logic to mp mul() and mp sqr().

[4] Same as the previous but also modify the Karatsuba and Toom-Cook. You must
increase the throughput of mp exptmod() for random odd moduli in the range
512 . . . 4096 bits significantly (> 2x) to complete this challenge.



Chapter 6

Modular Reduction

6.1 Basics of Modular Reduction

Modular reduction is an operation that arises quite often within public key
cryptography algorithms and various number theoretic algorithms, such as fac-
toring. Modular reduction algorithms are the third class of algorithms of the
“multipliers” set. A number a is said to be reduced modulo another number b by
finding the remainder of the division a/b. Full integer division with remainder
is a topic to be covered in 8.1.

Modular reduction is equivalent to solving for r in the following equation.
a = bq + r where q = ⌊a/b⌋. The result r is said to be “congruent to a modulo
b” which is also written as r ≡ a (mod b). In other vernacular r is known as
the “modular residue” which leads to “quadratic residue”1 and other forms of
residues.

Modular reductions are normally used to create either finite groups, rings or
fields. The most common usage for performance driven modular reductions is
in modular exponentiation algorithms. That is to compute d = ab (mod c) as
fast as possible. This operation is used in the RSA and Diffie-Hellman public
key algorithms, for example. Modular multiplication and squaring also ap-
pears as a fundamental operation in elliptic curve cryptographic algorithms.
As will be discussed in the subsequent chapter there exist fast algorithms for
computing modular exponentiations without having to perform (in this exam-

ple) b − 1 multiplications. These algorithms will produce partial results in the

1That’s fancy talk for b ≡ a2 (mod p).
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range 0 ≤ x < c2 which can be taken advantage of to create several efficient
algorithms. They have also been used to create redundancy check algorithms
known as CRCs, error correction codes such as Reed-Solomon and solve a variety
of number theoeretic problems.

6.2 The Barrett Reduction

The Barrett reduction algorithm [7] was inspired by fast division algorithms
which multiply by the reciprocal to emulate division. Barretts observation was
that the residue c of a modulo b is equal to

c = a− b · ⌊a/b⌋ (6.1)

Since algorithms such as modular exponentiation would be using the same
modulus extensively, typical DSP2 intuition would indicate the next step would
be to replace a/b by a multiplication by the reciprocal. However, DSP intuition
on its own will not work as these numbers are considerably larger than the
precision of common DSP floating point data types. It would take another
common optimization to optimize the algorithm.

6.2.1 Fixed Point Arithmetic

The trick used to optimize the above equation is based on a technique of em-
ulating floating point data types with fixed precision integers. Fixed point
arithmetic would become very popular as it greatly optimize the “3d-shooter”
genre of games in the mid 1990s when floating point units were fairly slow if not
unavailable. The idea behind fixed point arithmetic is to take a normal k-bit
integer data type and break it into p-bit integer and a q-bit fraction part (where
p+ q = k).

In this system a k-bit integer n would actually represent n/2q. For example,
with q = 4 the integer n = 37 would actually represent the value 2.3125. To
multiply two fixed point numbers the integers are multiplied using traditional
arithmetic and subsequently normalized by moving the implied decimal point
back to where it should be. For example, with q = 4 to multiply the integers
9 and 5 they must be converted to fixed point first by multiplying by 2q. Let
a = 9(2q) represent the fixed point representation of 9 and b = 5(2q) represent

2It is worth noting that Barrett’s paper targeted the DSP56K processor.
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the fixed point representation of 5. The product ab is equal to 45(22q) which
when normalized by dividing by 2q produces 45(2q).

This technique became popular since a normal integer multiplication and
logical shift right are the only required operations to perform a multiplication
of two fixed point numbers. Using fixed point arithmetic, division can be easily
approximated by multiplying by the reciprocal. If 2q is equivalent to one than
2q/b is equivalent to the fixed point approximation of 1/b using real arithmetic.
Using this fact dividing an integer a by another integer b can be achieved with
the following expression.

⌊a/b⌋ ∼ ⌊(a · ⌊2q/b⌋)/2q⌋ (6.2)

The precision of the division is proportional to the value of q. If the divisor
b is used frequently as is the case with modular exponentiation pre-computing
2q/b will allow a division to be performed with a multiplication and a right shift.
Both operations are considerably faster than division on most processors.

Consider dividing 19 by 5. The correct result is ⌊19/5⌋ = 3. With q = 3
the reciprocal is ⌊2q/5⌋ = 1 which leads to a product of 19 which when divided
by 2q produces 2. However, with q = 4 the reciprocal is ⌊2q/5⌋ = 3 and the
result of the emulated division is ⌊3 · 19/2q⌋ = 3 which is correct. The value
of 2q must be close to or ideally larger than the dividend. In effect if a is the
dividend then q should allow 0 ≤ ⌊a/2q⌋ ≤ 1 in order for this approach to work
correctly. Plugging this form of divison into the original equation the following
modular residue equation arises.

c = a− b · ⌊(a · ⌊2q/b⌋)/2q⌋ (6.3)

Using the notation from [7] the value of ⌊2q/b⌋ will be represented by the µ
symbol. Using the µ variable also helps re-inforce the idea that it is meant to
be computed once and re-used.

c = a− b · ⌊(a · µ)/2q⌋ (6.4)

Provided that 2q ≥ a this algorithm will produce a quotient that is either
exactly correct or off by a value of one. In the context of Barrett reduction the
value of a is bound by 0 ≤ a ≤ (b − 1)2 meaning that 2q ≥ b2 is sufficient to
ensure the reciprocal will have enough precision.

Let n represent the number of digits in b. This algorithm requires approxi-
mately 2n2 single precision multiplications to produce the quotient and another
n2 single precision multiplications to find the residue. In total 3n2 single preci-
sion multiplications are required to reduce the number.
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For example, if b = 1179677 and q = 41 (2q > b2), then the reciprocal µ
is equal to ⌊2q/b⌋ = 1864089. Consider reducing a = 180388626447 modulo
b using the above reduction equation. The quotient using the new formula
is ⌊(a · µ)/2q⌋ = 152913. By subtracting 152913b from a the correct residue
a ≡ 677346 (mod b) is found.

6.2.2 Choosing a Radix Point

Using the fixed point representation a modular reduction can be performed with
3n2 single precision multiplications. If that were the best that could be achieved
a full division3 might as well be used in its place. The key to optimizing the
reduction is to reduce the precision of the initial multiplication that finds the
quotient.

Let a represent the number of which the residue is sought. Let b represent
the modulus used to find the residue. Let m represent the number of digits in
b. For the purposes of this discussion we will assume that the number of digits
in a is 2m, which is generally true if two m-digit numbers have been multiplied.
Dividing a by b is the same as dividing a 2m digit integer by a m digit integer.
Digits below the m− 1’th digit of a will contribute at most a value of 1 to the
quotient because βk < b for any 0 ≤ k ≤ m− 1. Another way to express this is
by re-writing a as two parts. If a′ ≡ a (mod bm) and a′′ = a−a′ then a

b ≡ a′+a′′

b

which is equivalent to a′

b + a′′

b . Since a′ is bound to be less than b the quotient

is bound by 0 ≤ a′

b < 1.
Since the digits of a′ do not contribute much to the quotient the observation

is that they might as well be zero. However, if the digits “might as well be zero”
they might as well not be there in the first place. Let q0 = ⌊a/βm−1⌋ represent
the input with the irrelevant digits trimmed. Now the modular reduction is
trimmed to the almost equivalent equation

c = a− b · ⌊(q0 · µ)/βm+1⌋ (6.5)

Note that the original divisor 2q has been replaced with βm+1 where in this
case q is a multiple of lg(β). Also note that the exponent on the divisor when
added to the amount q0 was shifted by equals 2m. If the optimization had
not been performed the divisor would have the exponent 2m so in the end the
exponents do “add up”. Using the above equation the quotient ⌊(q0 · µ)/βm+1⌋
can be off from the true quotient by at most two. The original fixed point

3A division requires approximately O(2cn2) single precision multiplications for a small
value of c. See 8.1 for further details.
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quotient can be off by as much as one (provided the radix point is chosen suitably)
and now that the lower irrelevent digits have been trimmed the quotient can be
off by an additional value of one for a total of at most two. This implies that
0 ≤ a − b · ⌊(q0 · µ)/βm+1⌋ < 3b. By first subtracting b times the quotient and
then conditionally subtracting b once or twice the residue is found.

The quotient is now found using (m + 1)(m) = m2 + m single precision
multiplications and the residue with an additional m2 single precision multipli-
cations, ignoring the subtractions required. In total 2m2 + m single precision
multiplications are required to find the residue. This is considerably faster than
the original attempt.

For example, let β = 10 represent the radix of the digits. Let b = 9999
represent the modulus which implies m = 4. Let a = 99929878 represent the
value of which the residue is desired. In this case q = 8 since 107 < 99992

meaning that µ = ⌊βq/b⌋ = 10001. With the new observation the multiplicand
for the quotient is equal to q0 = ⌊a/βm−1⌋ = 99929. The quotient is then
⌊(q0 · µ)/βm+1⌋ = 9993. Subtracting 9993b from a and the correct residue
a ≡ 9871 (mod b) is found.

6.2.3 Trimming the Quotient

So far the reduction algorithm has been optimized from 3m2 single precision
multiplications down to 2m2 +m single precision multiplications. As it stands
now the algorithm is already fairly fast compared to a full integer division algo-
rithm. However, there is still room for optimization.

After the first multiplication inside the quotient (q0 · µ) the value is shifted
right by m+1 places effectively nullifying the lower half of the product. It would
be nice to be able to remove those digits from the product to effectively cut down
the number of single precision multiplications. If the number of digits in the
modulus m is far less than β a full product is not required for the algorithm to
work properly. In fact the lower m − 2 digits will not affect the upper half of
the product at all and do not need to be computed.

The value of µ is a m-digit number and q0 is a m + 1 digit number. Using
a full multiplier (m + 1)(m) = m2 + m single precision multiplications would
be required. Using a multiplier that will only produce digits at and above the

m − 1’th digit reduces the number of single precision multiplications to m2+m
2

single precision multiplications.
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6.2.4 Trimming the Residue

After the quotient has been calculated it is used to reduce the input. As previ-
ously noted the algorithm is not exact and it can be off by a small multiple of
the modulus, that is 0 ≤ a− b · ⌊(q0 · µ)/βm+1⌋ < 3b. If b is m digits than the
result of reduction equation is a value of at most m+ 1 digits (provided 3 < β)
implying that the upper m− 1 digits are implicitly zero.

The next optimization arises from this very fact. Instead of computing
b · ⌊(q0 · µ)/βm+1⌋ using a full O(m2) multiplication algorithm only the lower
m + 1 digits of the product have to be computed. Similarly the value of a can
be reduced modulo βm+1 before the multiple of b is subtracted which simplifes
the subtraction as well. A multiplication that produces only the lower m + 1

digits requires m2+3m−2
2 single precision multiplications.

With both optimizations in place the algorithm is the algorithm Barrett
proposed. It requires m2 + 2m − 1 single precision multiplications which is
considerably faster than the straightforward 3m2 method.

6.2.5 The Barrett Algorithm
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Algorithm mp reduce.
Input. mp int a, mp int b and µ = ⌊β2m/b⌋,m = ⌈lgβ(b)⌉, (0 ≤ a < b2, b > 1)
Output. a (mod b)

Let m represent the number of digits in b.
1. Make a copy of a and store it in q. (mp init copy)
2. q ← ⌊q/βm−1⌋ (mp rshd)

Produce the quotient.
3. q ← q · µ (note: only produce digits at or above m− 1)
4. q ← ⌊q/βm+1⌋

Subtract the multiple of modulus from the input.
5. a← a (mod βm+1) (mp mod 2d)
6. q ← q · b (mod βm+1) (s mp mul digs)
7. a← a− q (mp sub)

Add βm+1 if a carry occured.
8. If a < 0 then (mp cmp d)
8.1 q ← 1 (mp set)
8.2 q ← q · βm+1 (mp lshd)
8.3 a← a+ q

Now subtract the modulus if the residue is too large (e.g. quotient too small).
9. While a ≥ b do (mp cmp)
9.1 c← a− b

10. Clear q.
11. Return(MP OKAY )

Figure 6.1: Algorithm mp reduce

Algorithm mp reduce. This algorithm will reduce the input a modulo
b in place using the Barrett algorithm. It is loosely based on algorithm 14.42
of HAC [2, pp. 602] which is based on the paper from Paul Barrett [7]. The
algorithm has several restrictions and assumptions which must be adhered to
for the algorithm to work.

First the modulus b is assumed to be positive and greater than one. If the
modulus were less than or equal to one than subtracting a multiple of it would
either accomplish nothing or actually enlarge the input. The input a must be
in the range 0 ≤ a < b2 in order for the quotient to have enough precision. If a
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is the product of two numbers that were already reduced modulo b, this will not
be a problem. Technically the algorithm will still work if a ≥ b2 but it will take
much longer to finish. The value of µ is passed as an argument to this algorithm
and is assumed to be calculated and stored before the algorithm is used.

Recall that the multiplication for the quotient on step 3 must only produce
digits at or above them−1’th position. An algorithm called s mp mul high digs
which has not been presented is used to accomplish this task. The algorithm
is based on s mp mul digs except that instead of stopping at a given level of
precision it starts at a given level of precision. This optimal algorithm can only
be used if the number of digits in b is very much smaller than β.

While it is known that a ≥ b · ⌊(q0 · µ)/βm+1⌋ only the lower m + 1 digits
are being used to compute the residue, so an implied “borrow” from the higher
digits might leave a negative result. After the multiple of the modulus has
been subtracted from a the residue must be fixed up in case it is negative. The
invariant βm+1 must be added to the residue to make it positive again.

The while loop at step 9 will subtract b until the residue is less than b. If
the algorithm is performed correctly this step is performed at most twice, and
on average once. However, if a ≥ b2 than it will iterate substantially more times
than it should.

File: bn mp reduce.c
016

017 /* reduces x mod m, assumes 0 < x < m**2, mu is

018 * precomputed via mp_reduce_setup.

019 * From HAC pp.604 Algorithm 14.42

020 */

021 int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)

022 {
023 mp_int q;

024 int res, um = m->used;

025

026 /* q = x */

027 if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
028 return res;

029 }
030

031 /* q1 = x / b**(k-1) */

032 mp_rshd (&q, um - 1);

033

034 /* according to HAC this optimization is ok */

035 if (((mp_digit) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
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036 if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
037 goto CLEANUP;

038 }
039 } else {
040 #ifdef BN_S_MP_MUL_HIGH_DIGS_C

041 if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
042 goto CLEANUP;

043 }
044 #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)

045 if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
046 goto CLEANUP;

047 }
048 #else

049 {
050 res = MP_VAL;

051 goto CLEANUP;

052 }
053 #endif

054 }
055

056 /* q3 = q2 / b**(k+1) */

057 mp_rshd (&q, um + 1);

058

059 /* x = x mod b**(k+1), quick (no division) */

060 if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
061 goto CLEANUP;

062 }
063

064 /* q = q * m mod b**(k+1), quick (no division) */

065 if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
066 goto CLEANUP;

067 }
068

069 /* x = x - q */

070 if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
071 goto CLEANUP;

072 }
073

074 /* If x < 0, add b**(k+1) to it */

075 if (mp_cmp_d (x, 0) == MP_LT) {
076 mp_set (&q, 1);

077 if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
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078 goto CLEANUP;

079 if ((res = mp_add (x, &q, x)) != MP_OKAY)

080 goto CLEANUP;

081 }
082

083 /* Back off if it’s too big */

084 while (mp_cmp (x, m) != MP_LT) {
085 if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
086 goto CLEANUP;

087 }
088 }
089

090 CLEANUP:

091 mp_clear (&q);

092

093 return res;

094 }
095 #endif

096

The first multiplication that determines the quotient can be performed by
only producing the digits from m−1 and up. This essentially halves the number
of single precision multiplications required. However, the optimization is only
safe if β is much larger than the number of digits in the modulus. In the source
code this is evaluated on lines 36 to 43 where algorithm s mp mul high digs is
used when it is safe to do so.

6.2.6 The Barrett Setup Algorithm

In order to use algorithm mp reduce the value of µ must be calculated in ad-
vance. Ideally this value should be computed once and stored for future use so
that the Barrett algorithm can be used without delay.
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Algorithm mp reduce setup.
Input. mp int a (a > 1)
Output. µ← ⌊β2m/a⌋

1. µ← 22·lg(β)·m (mp 2expt)
2. µ← ⌊µ/b⌋ (mp div)
3. Return(MP OKAY )

Figure 6.2: Algorithm mp reduce setup

Algorithm mp reduce setup. This algorithm computes the reciprocal µ
required for Barrett reduction. First β2m is calculated as 22·lg(β)·m which is
equivalent and much faster. The final value is computed by taking the integer
quotient of ⌊µ/b⌋.

File: bn mp reduce setup.c

016

017 /* pre-calculate the value required for Barrett reduction

018 * For a given modulus "b" it calulates the value required in "a"

019 */

020 int mp_reduce_setup (mp_int * a, mp_int * b)

021 {
022 int res;

023

024 if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
025 return res;

026 }
027 return mp_div (a, b, a, NULL);

028 }
029 #endif

030

This simple routine calculates the reciprocal µ required by Barrett reduction.
Note the extended usage of algorithm mp div where the variable which would
received the remainder is passed as NULL. As will be discussed in 8.1 the division
routine allows both the quotient and the remainder to be passed as NULL
meaning to ignore the value.
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6.3 The Montgomery Reduction

Montgomery reduction4 [8] is by far the most interesting form of reduction in
common use. It computes a modular residue which is not actually equal to the
residue of the input yet instead equal to a residue times a constant. However,
as perplexing as this may sound the algorithm is relatively simple and very
efficient.

Throughout this entire section the variable n will represent the modulus
used to form the residue. As will be discussed shortly the value of n must be
odd. The variable x will represent the quantity of which the residue is sought.
Similar to the Barrett algorithm the input is restricted to 0 ≤ x < n2. To begin
the description some simple number theory facts must be established.

Fact 1. Adding n to x does not change the residue since in effect it adds
one to the quotient ⌊x/n⌋. Another way to explain this is that n is (or multiples

of n are) congruent to zero modulo n. Adding zero will not change the value of
the residue.

Fact 2. If x is even then performing a division by two in Z is congruent to
x · 2−1 (mod n). Actually this is an application of the fact that if x is evenly
divisible by any k ∈ Z then division in Z will be congruent to multiplication by
k−1 modulo n.

From these two simple facts the following simple algorithm can be derived.

4Thanks to Niels Ferguson for his insightful explanation of the algorithm.
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Algorithm Montgomery Reduction.
Input. Integer x, n and k

Output. 2−kx (mod n)

1. for t from 1 to k do
1.1 If x is odd then
1.1.1 x← x+ n

1.2 x← x/2
2. Return x.

Figure 6.3: Algorithm Montgomery Reduction

The algorithm reduces the input one bit at a time using the two congruencies
stated previously. Inside the loop n, which is odd, is added to x if x is odd.
This forces x to be even which allows the division by two in Z to be congruent
to a modular division by two. Since x is assumed to be initially much larger
than n the addition of n will contribute an insignificant magnitude to x. Let
r represent the final result of the Montgomery algorithm. If k > lg(n) and
0 ≤ x < n2 then the final result is limited to 0 ≤ r < ⌊x/2k⌋+n. As a result at
most a single subtraction is required to get the residue desired.

Step number (t) Result (x)

1 x+ n = 5812, x/2 = 2906

2 x/2 = 1453

3 x+ n = 1710, x/2 = 855

4 x+ n = 1112, x/2 = 556

5 x/2 = 278

6 x/2 = 139

7 x+ n = 396, x/2 = 198

8 x/2 = 99

9 x+ n = 356, x/2 = 178

Figure 6.4: Example of Montgomery Reduction (I)

Consider the example in figure 6.4 which reduces x = 5555 modulo n = 257
when k = 9 (note βk = 512 which is larger than n). The result of the algorithm
r = 178 is congruent to the value of 2−9 · 5555 (mod 257). When r is multiplied
by 29 modulo 257 the correct residue r ≡ 158 is produced.

Let k = ⌊lg(n)⌋+1 represent the number of bits in n. The current algorithm
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requires 2k2 single precision shifts and k2 single precision additions. At this rate
the algorithm is most certainly slower than Barrett reduction and not terribly
useful. Fortunately there exists an alternative representation of the algorithm.

Algorithm Montgomery Reduction (modified I).

Input. Integer x, n and k (2k > n)

Output. 2−kx (mod n)

1. for t from 1 to k do
1.1 If the t’th bit of x is one then
1.1.1 x← x+ 2tn

2. Return x/2k.

Figure 6.5: Algorithm Montgomery Reduction (modified I)

This algorithm is equivalent since 2tn is a multiple of n and the lower k bits
of x are zero by step 2. The number of single precision shifts has now been
reduced from 2k2 to k2 + k which is only a small improvement.

Step number (t) Result (x) Result (x) in Binary

– 5555 1010110110011

1 x+ 20n = 5812 1011010110100

2 5812 1011010110100

3 x+ 22n = 6840 1101010111000

4 x+ 23n = 8896 10001011000000

5 8896 10001011000000

6 8896 10001011000000

7 x+ 26n = 25344 110001100000000

8 25344 110001100000000

9 x+ 27n = 91136 10110010000000000

– x/2k = 178

Figure 6.6: Example of Montgomery Reduction (II)

Figure 6.6 demonstrates the modified algorithm reducing x = 5555 modulo
n = 257 with k = 9. With this algorithm a single shift right at the end is
the only right shift required to reduce the input instead of k right shifts inside
the loop. Note that for the iterations t = 2, 5, 6 and 8 where the result x is
not changed. In those iterations the t’th bit of x is zero and the appropriate
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multiple of n does not need to be added to force the t’th bit of the result to
zero.

6.3.1 Digit Based Montgomery Reduction

Instead of computing the reduction on a bit-by-bit basis it is actually much
faster to compute it on digit-by-digit basis. Consider the previous algorithm
re-written to compute the Montgomery reduction in this new fashion.

Algorithm Montgomery Reduction (modified II).

Input. Integer x, n and k (βk > n)

Output. β−kx (mod n)

1. for t from 0 to k − 1 do
1.1 x← x+ µnβt

2. Return x/βk.

Figure 6.7: Algorithm Montgomery Reduction (modified II)

The value µnβt is a multiple of the modulus nmeaning that it will not change
the residue. If the first digit of the value µnβt equals the negative (modulo β)
of the t’th digit of x then the addition will result in a zero digit. This problem
breaks down to solving the following congruency.

xt + µn0 ≡ 0 (mod β)
µn0 ≡ −xt (mod β)

µ ≡ −xt/n0 (mod β)

In each iteration of the loop on step 1 a new value of µ must be calculated.
The value of −1/n0 (mod β) is used extensively in this algorithm and should be
precomputed. Let ρ represent the negative of the modular inverse of n0 modulo
β.

For example, let β = 10 represent the radix. Let n = 17 represent the
modulus which implies k = 2 and ρ ≡ 7. Let x = 33 represent the value to
reduce.
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Step (t) Value of x Value of µ
– 33 –
0 33 + µn = 50 1
1 50 + µnβ = 900 5

Figure 6.8: Example of Montgomery Reduction

The final result 900 is then divided by βk to produce the final result 9.
The first observation is that 9 6≡ x (mod n) which implies the result is not the
modular residue of x modulo n. However, recall that the residue is actually
multiplied by β−k in the algorithm. To get the true residue the value must
be multiplied by βk. In this case βk ≡ 15 (mod n) and the correct residue is
9 · 15 ≡ 16 (mod n).

6.3.2 Baseline Montgomery Reduction

The baseline Montgomery reduction algorithm will produce the residue for any
size input. It is designed to be a catch-all algororithm for Montgomery reduc-
tions.
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Algorithm mp montgomery reduce.
Input. mp int x, mp int n and a digit ρ ≡ −1/n0 (mod n).

(0 ≤ x < n2, n > 1, (n, β) = 1, βk > n)

Output. β−kx (mod n)

1. digs← 2n.used+ 1
2. If digs < MP ARRAY and m.used < δ then
2.1 Use algorithm fast mp montgomery reduce instead.

Setup x for the reduction.
3. If x.alloc < digs then grow x to digs digits.
4. x.used← digs

Eliminate the lower k digits.
5. For ix from 0 to k − 1 do
5.1 µ← xix · ρ (mod β)
5.2 u← 0
5.3 For iy from 0 to k − 1 do
5.3.1 r̂ ← µniy + xix+iy + u
5.3.2 xix+iy ← r̂ (mod β)
5.3.3 u← ⌊r̂/β⌋

5.4 While u > 0 do
5.4.1 iy ← iy + 1
5.4.2 xix+iy ← xix+iy + u
5.4.3 u← ⌊xix+iy/β⌋
5.4.4 xix+iy ← xix+iy (mod β)

Divide by βk and fix up as required.

6. x← ⌊x/βk⌋
7. If x ≥ n then
7.1 x← x− n

8. Return(MP OKAY ).

Figure 6.9: Algorithm mp montgomery reduce

Algorithm mp montgomery reduce. This algorithm reduces the input
x modulo n in place using the Montgomery reduction algorithm. The algorithm
is loosely based on algorithm 14.32 of [2, pp.601] except it merges the multi-
plication of µnβt with the addition in the inner loop. The restrictions on this
algorithm are fairly easy to adapt to. First 0 ≤ x < n2 bounds the input to
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numbers in the same range as for the Barrett algorithm. Additionally if n > 1
and n is odd there will exist a modular inverse ρ. ρ must be calculated in ad-
vance of this algorithm. Finally the variable k is fixed and a pseudonym for
n.used.

Step 2 decides whether a faster Montgomery algorithm can be used. It is
based on the Comba technique meaning that there are limits on the size of the
input. This algorithm is discussed in sub-section 6.3.3.

Step 5 is the main reduction loop of the algorithm. The value of µ is calcu-
lated once per iteration in the outer loop. The inner loop calculates x+ µnβix

by multiplying µn and adding the result to x shifted by ix digits. Both the
addition and multiplication are performed in the same loop to save time and
memory. Step 5.4 will handle any additional carries that escape the inner loop.

Using a quick inspection this algorithm requires n single precision multipli-
cations for the outer loop and n2 single precision multiplications in the inner
loop. In total n2+n single precision multiplications which compares favourably
to Barrett at n2 + 2n− 1 single precision multiplications.

File: bn mp montgomery reduce.c

016

017 /* computes xR**-1 == x (mod N) via Montgomery Reduction */

018 int

019 mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)

020 {
021 int ix, res, digs;

022 mp_digit mu;

023

024 /* can the fast reduction [comba] method be used?

025 *

026 * Note that unlike in mul you’re safely allowed *less*

027 * than the available columns [255 per default] since carries

028 * are fixed up in the inner loop.

029 */

030 digs = n->used * 2 + 1;

031 if ((digs < MP_WARRAY) &&

032 n->used <

033 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
034 return fast_mp_montgomery_reduce (x, n, rho);

035 }
036

037 /* grow the input as required */

038 if (x->alloc < digs) {
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039 if ((res = mp_grow (x, digs)) != MP_OKAY) {
040 return res;

041 }
042 }
043 x->used = digs;

044

045 for (ix = 0; ix < n->used; ix++) {
046 /* mu = ai * rho mod b

047 *

048 * The value of rho must be precalculated via

049 * montgomery_setup() such that

050 * it equals -1/n0 mod b this allows the

051 * following inner loop to reduce the

052 * input one digit at a time

053 */

054 mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);

055

056 /* a = a + mu * m * b**i */

057 {
058 register int iy;

059 register mp_digit *tmpn, *tmpx, u;

060 register mp_word r;

061

062 /* alias for digits of the modulus */

063 tmpn = n->dp;

064

065 /* alias for the digits of x [the input] */

066 tmpx = x->dp + ix;

067

068 /* set the carry to zero */

069 u = 0;

070

071 /* Multiply and add in place */

072 for (iy = 0; iy < n->used; iy++) {
073 /* compute product and sum */

074 r = ((mp_word)mu) * ((mp_word)*tmpn++) +

075 ((mp_word) u) + ((mp_word) * tmpx);

076

077 /* get carry */

078 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

079

080 /* fix digit */
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081 *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));

082 }
083 /* At this point the ix’th digit of x should be zero */

084

085

086 /* propagate carries upwards as required*/

087 while (u != 0) {
088 *tmpx += u;

089 u = *tmpx >> DIGIT_BIT;

090 *tmpx++ &= MP_MASK;

091 }
092 }
093 }
094

095 /* at this point the n.used’th least

096 * significant digits of x are all zero

097 * which means we can shift x to the

098 * right by n.used digits and the

099 * residue is unchanged.

100 */

101

102 /* x = x/b**n.used */

103 mp_clamp(x);

104 mp_rshd (x, n->used);

105

106 /* if x >= n then x = x - n */

107 if (mp_cmp_mag (x, n) != MP_LT) {
108 return s_mp_sub (x, n, x);

109 }
110

111 return MP_OKAY;

112 }
113 #endif

114

This is the baseline implementation of the Montgomery reduction algorithm.
Lines 30 to 35 determine if the Comba based routine can be used instead. Line
48 computes the value of µ for that particular iteration of the outer loop.

The multiplication µnβix is performed in one step in the inner loop. The
alias tmpx refers to the ix’th digit of x and the alias tmpn refers to the modulus
n.
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6.3.3 Faster “Comba” Montgomery Reduction

The Montgomery reduction requires fewer single precision multiplications than
a Barrett reduction, however it is much slower due to the serial nature of the
inner loop. The Barrett reduction algorithm requires two slightly modified mul-
tipliers which can be implemented with the Comba technique. The Montgomery
reduction algorithm cannot directly use the Comba technique to any significant
advantage since the inner loop calculates a k × 1 product k times.

The biggest obstacle is that at the ix’th iteration of the outer loop the value
of xix is required to calculate µ. This means the carries from 0 to ix− 1 must
have been propagated upwards to form a valid ix’th digit. The solution as it
turns out is very simple. Perform a Comba like multiplier and inside the outer
loop just after the inner loop fix up the ix+ 1’th digit by forwarding the carry.

With this change in place the Montgomery reduction algorithm can be per-
formed with a Comba style multiplication loop which substantially increases the
speed of the algorithm.
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Algorithm fast mp montgomery reduce.
Input. mp int x, mp int n and a digit ρ ≡ −1/n0 (mod n).

(0 ≤ x < n2, n > 1, (n, β) = 1, βk > n)

Output. β−kx (mod n)

Place an array of MP WARRAY mp word variables called Ŵ on the stack.
1. if x.alloc < n.used+ 1 then grow x to n.used+ 1 digits.

Copy the digits of x into the array Ŵ
2. For ix from 0 to x.used− 1 do

2.1 Ŵix ← xix

3. For ix from x.used to 2n.used− 1 do

3.1 Ŵix ← 0
Elimiate the lower k digits.
4. for ix from 0 to n.used− 1 do

4.1 µ← Ŵix · ρ (mod β)
4.2 For iy from 0 to n.used− 1 do

4.2.1 Ŵiy+ix ← Ŵiy+ix + µ · niy

4.3 Ŵix+1 ← Ŵix+1 + ⌊Ŵix/β⌋
Propagate carries upwards.
5. for ix from n.used to 2n.used+ 1 do

5.1 Ŵix+1 ← Ŵix+1 + ⌊Ŵix/β⌋
Shift right and reduce modulo β simultaneously.
6. for ix from 0 to n.used+ 1 do

6.1 xix ← Ŵix+n.used (mod β)
Zero excess digits and fixup x.
7. if x.used > n.used+ 1 then do
7.1 for ix from n.used+ 1 to x.used− 1 do
7.1.1 xix ← 0

8. x.used← n.used+ 1
9. Clamp excessive digits of x.
10. If x ≥ n then
10.1 x← x− n

11. Return(MP OKAY ).

Figure 6.10: Algorithm fast mp montgomery reduce

Algorithm fast mp montgomery reduce. This algorithm will compute
the Montgomery reduction of x modulo n using the Comba technique. It is on
most computer platforms significantly faster than algorithm mp montgomery reduce
and algorithm mp reduce (Barrett reduction). The algorithm has the same re-
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strictions on the input as the baseline reduction algorithm. An additional two
restrictions are imposed on this algorithm. The number of digits k in the the
modulus n must not violate MP WARRAY > 2k+1 and n < δ. When β = 228

this algorithm can be used to reduce modulo a modulus of at most 3, 556 bits
in length.

As in the other Comba reduction algorithms there is a Ŵ array which stores
the columns of the product. It is initially filled with the contents of x with
the excess digits zeroed. The reduction loop is very similar the to the baseline
loop at heart. The multiplication on step 4.1 can be single precision only since
ab (mod β) ≡ (a mod β)(b mod β). Some multipliers such as those on the ARM
processors take a variable length time to complete depending on the number of
bytes of result it must produce. By performing a single precision multiplication
instead half the amount of time is spent.

Also note that digit Ŵix must have the carry from the ix− 1’th digit propa-
gated upwards in order for this to work. That is what step 4.3 will do. In effect
over the n.used iterations of the outer loop the n.used’th lower columns all have
the their carries propagated forwards. Note how the upper bits of those same
words are not reduced modulo β. This is because those values will be discarded
shortly and there is no point.

Step 5 will propagate the remainder of the carries upwards. On step 6 the
columns are reduced modulo β and shifted simultaneously as they are stored in
the destination x.

File: bn fast mp montgomery reduce.c
016

017 /* computes xR**-1 == x (mod N) via Montgomery Reduction

018 *

019 * This is an optimized implementation of montgomery_reduce

020 * which uses the comba method to quickly calculate the columns of the

021 * reduction.

022 *

023 * Based on Algorithm 14.32 on pp.601 of HAC.

024 */

025 int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)

026 {
027 int ix, res, olduse;

028 mp_word W[MP_WARRAY];

029

030 /* get old used count */

031 olduse = x->used;

032
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033 /* grow a as required */

034 if (x->alloc < n->used + 1) {
035 if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
036 return res;

037 }
038 }
039

040 /* first we have to get the digits of the input into

041 * an array of double precision words W[...]

042 */

043 {
044 register mp_word *_W;

045 register mp_digit *tmpx;

046

047 /* alias for the W[] array */

048 _W = W;

049

050 /* alias for the digits of x*/

051 tmpx = x->dp;

052

053 /* copy the digits of a into W[0..a->used-1] */

054 for (ix = 0; ix < x->used; ix++) {
055 *_W++ = *tmpx++;

056 }
057

058 /* zero the high words of W[a->used..m->used*2] */

059 for (; ix < n->used * 2 + 1; ix++) {
060 *_W++ = 0;

061 }
062 }
063

064 /* now we proceed to zero successive digits

065 * from the least significant upwards

066 */

067 for (ix = 0; ix < n->used; ix++) {
068 /* mu = ai * m’ mod b

069 *

070 * We avoid a double precision multiplication (which isn’t required)

071 * by casting the value down to a mp_digit. Note this requires

072 * that W[ix-1] have the carry cleared (see after the inner loop)

073 */

074 register mp_digit mu;
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075 mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);

076

077 /* a = a + mu * m * b**i

078 *

079 * This is computed in place and on the fly. The multiplication

080 * by b**i is handled by offseting which columns the results

081 * are added to.

082 *

083 * Note the comba method normally doesn’t handle carries in the

084 * inner loop In this case we fix the carry from the previous

085 * column since the Montgomery reduction requires digits of the

086 * result (so far) [see above] to work. This is

087 * handled by fixing up one carry after the inner loop. The

088 * carry fixups are done in order so after these loops the

089 * first m->used words of W[] have the carries fixed

090 */

091 {
092 register int iy;

093 register mp_digit *tmpn;

094 register mp_word *_W;

095

096 /* alias for the digits of the modulus */

097 tmpn = n->dp;

098

099 /* Alias for the columns set by an offset of ix */

100 _W = W + ix;

101

102 /* inner loop */

103 for (iy = 0; iy < n->used; iy++) {
104 *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);

105 }
106 }
107

108 /* now fix carry for next digit, W[ix+1] */

109 W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);

110 }
111

112 /* now we have to propagate the carries and

113 * shift the words downward [all those least

114 * significant digits we zeroed].

115 */

116 {
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117 register mp_digit *tmpx;

118 register mp_word *_W, *_W1;

119

120 /* nox fix rest of carries */

121

122 /* alias for current word */

123 _W1 = W + ix;

124

125 /* alias for next word, where the carry goes */

126 _W = W + ++ix;

127

128 for (; ix <= n->used * 2 + 1; ix++) {
129 *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);

130 }
131

132 /* copy out, A = A/b**n

133 *

134 * The result is A/b**n but instead of converting from an

135 * array of mp_word to mp_digit than calling mp_rshd

136 * we just copy them in the right order

137 */

138

139 /* alias for destination word */

140 tmpx = x->dp;

141

142 /* alias for shifted double precision result */

143 _W = W + n->used;

144

145 for (ix = 0; ix < n->used + 1; ix++) {
146 *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));

147 }
148

149 /* zero oldused digits, if the input a was larger than

150 * m->used+1 we’ll have to clear the digits

151 */

152 for (; ix < olduse; ix++) {
153 *tmpx++ = 0;

154 }
155 }
156

157 /* set the max used and clamp */

158 x->used = n->used + 1;
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159 mp_clamp (x);

160

161 /* if A >= m then A = A - m */

162 if (mp_cmp_mag (x, n) != MP_LT) {
163 return s_mp_sub (x, n, x);

164 }
165 return MP_OKAY;

166 }
167 #endif

168

The Ŵ array is first filled with digits of x on line 50 then the rest of the
digits are zeroed on line 54. Both loops share the same alias variables to make
the code easier to read.

The value of µ is calculated in an interesting fashion. First the value Ŵix

is reduced modulo β and cast to a mp digit. This forces the compiler to use a
single precision multiplication and prevents any concerns about loss of precision.
Line 109 fixes the carry for the next iteration of the loop by propagating the
carry from Ŵix to Ŵix+1.

The for loop on line 108 propagates the rest of the carries upwards through
the columns. The for loop on line 125 reduces the columns modulo β and shifts
them k places at the same time. The alias Ŵ actually refers to the array Ŵ
starting at the n.used’th digit, that is Ŵt = Ŵn.used+t.

6.3.4 Montgomery Setup

To calculate the variable ρ a relatively simple algorithm will be required.
Algorithm mp montgomery setup. This algorithm will calculate the

value of ρ required within the Montgomery reduction algorithms. It uses a very
interesting trick to calculate 1/n0 when β is a power of two.

File: bn mp montgomery setup.c

016

017 /* setups the montgomery reduction stuff */

018 int

019 mp_montgomery_setup (mp_int * n, mp_digit * rho)

020 {
021 mp_digit x, b;

022

023 /* fast inversion mod 2**k

024 *
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Algorithm mp montgomery setup.
Input. mp int n (n > 1 and (n, 2) = 1)
Output. ρ ≡ −1/n0 (mod β)

1. b← n0

2. If b is even return(MP VAL)
3. x← (((b+ 2) AND 4) << 1) + b
4. for k from 0 to ⌈lg(lg(β))⌉ − 2 do
4.1 x← x · (2− bx)

5. ρ← β − x (mod β)
6. Return(MP OKAY ).

Figure 6.11: Algorithm mp montgomery setup

025 * Based on the fact that

026 *

027 * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)

028 * => 2*X*A - X*X*A*A = 1

029 * => 2*(1) - (1) = 1

030 */

031 b = n->dp[0];

032

033 if ((b & 1) == 0) {
034 return MP_VAL;

035 }
036

037 x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */

038 x *= 2 - b * x; /* here x*a==1 mod 2**8 */

039 #if !defined(MP_8BIT)

040 x *= 2 - b * x; /* here x*a==1 mod 2**16 */

041 #endif

042 #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))

043 x *= 2 - b * x; /* here x*a==1 mod 2**32 */

044 #endif

045 #ifdef MP_64BIT

046 x *= 2 - b * x; /* here x*a==1 mod 2**64 */

047 #endif

048

049 /* rho = -1/m mod b */

050 *rho = (mp_digit)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
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051

052 return MP_OKAY;

053 }
054 #endif

055

This source code computes the value of ρ required to perform Montgomery
reduction. It has been modified to avoid performing excess multiplications when
β is not the default 28-bits.

6.4 The Diminished Radix Algorithm

The Diminished Radix method of modular reduction [9] is a fairly clever tech-
nique which can be more efficient than either the Barrett or Montgomery meth-
ods for certain forms of moduli. The technique is based on the following simple
congruence.

(x mod n) + k⌊x/n⌋ ≡ x (mod (n− k)) (6.6)

This observation was used in the MMB [10] block cipher to create a diffusion
primitive. It used the fact that if n = 231 and k = 1 that then a x86 multiplier
could produce the 62-bit product and use the “shrd” instruction to perform a
double-precision right shift. The proof of the above equation is very simple.
First write x in the product form.

x = qn+ r (6.7)

Now reduce both sides modulo (n− k).

x ≡ qk + r (mod (n− k)) (6.8)

The variable n reduces modulo n − k to k. By putting q = ⌊x/n⌋ and
r = x mod n into the equation the original congruence is reproduced, thus
concluding the proof. The following algorithm is based on this observation.

This algorithm will reduce x modulo n − k and return the residue. If 0 ≤
x < (n − k)2 then the algorithm will loop almost always once or twice and
occasionally three times. For simplicity sake the value of x is bounded by the
following simple polynomial.

0 ≤ x < n2 + k2 − 2nk (6.9)
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Algorithm Diminished Radix Reduction.
Input. Integer x, n, k
Output. x mod (n− k)

1. q ← ⌊x/n⌋
2. q ← k · q
3. x← x (mod n)
4. x← x+ q
5. If x ≥ (n− k) then
5.1 x← x− (n− k)
5.2 Goto step 1.

6. Return x

Figure 6.12: Algorithm Diminished Radix Reduction

The true bound is 0 ≤ x < (n− k− 1)2 but this has quite a few more terms.
The value of q after step 1 is bounded by the following.

q < n− 2k − k2/n (6.10)

Since k2 is going to be considerably smaller than n that term will always be
zero. The value of x after step 3 is bounded trivially as 0 ≤ x < n. By step
four the sum x+ q is bounded by

0 ≤ q + x < (k + 1)n− 2k2 − 1 (6.11)

With a second pass q will be loosely bounded by 0 ≤ q < k2 after step 2
while x will still be loosely bounded by 0 ≤ x < n after step 3. After the second
pass it is highly unlike that the sum in step 4 will exceed n − k. In practice
fewer than three passes of the algorithm are required to reduce virtually every
input in the range 0 ≤ x < (n− k − 1)2.

Figure 6.13 demonstrates the reduction of x = 123456789 modulo n−k = 253
when n = 256 and k = 3. Note that even while x is considerably larger than
(n − k − 1)2 = 63504 the algorithm still converges on the modular residue
exceedingly fast. In this case only three passes were required to find the residue
x ≡ 126.
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x = 123456789, n = 256, k = 3

q ← ⌊x/n⌋ = 482253
q ← q ∗ k = 1446759
x← x mod n = 21
x← x+ q = 1446780
x← x− (n− k) = 1446527

q ← ⌊x/n⌋ = 5650
q ← q ∗ k = 16950
x← x mod n = 127
x← x+ q = 17077
x← x− (n− k) = 16824

q ← ⌊x/n⌋ = 65
q ← q ∗ k = 195
x← x mod n = 184
x← x+ q = 379
x← x− (n− k) = 126

Figure 6.13: Example Diminished Radix Reduction

6.4.1 Choice of Moduli

On the surface this algorithm looks like a very expensive algorithm. It requires a
couple of subtractions followed by multiplication and other modular reductions.
The usefulness of this algorithm becomes exceedingly clear when an appropriate
modulus is chosen.

Division in general is a very expensive operation to perform. The one ex-
ception is when the division is by a power of the radix of representation used.
Division by ten for example is simple for pencil and paper mathematics since
it amounts to shifting the decimal place to the right. Similarly division by two
(or powers of two) is very simple for binary computers to perform. It would
therefore seem logical to choose n of the form 2p which would imply that ⌊x/n⌋
is a simple shift of x right p bits.

However, there is one operation related to division of power of twos that is
even faster than this. If n = βp then the division may be performed by moving
whole digits to the right p places. In practice division by βp is much faster than
division by 2p for any p. Also with the choice of n = βp reducing x modulo n
merely requires zeroing the digits above the p− 1’th digit of x.

Throughout the next section the term “restricted modulus” will refer to a
modulus of the form βp− k whereas the term “unrestricted modulus” will refer



174 CHAPTER 6. MODULAR REDUCTION

to a modulus of the form 2p − k. The word “restricted” in this case refers to
the fact that it is based on the 2p logic except p must be a multiple of lg(β).

6.4.2 Choice of k

Now that division and reduction (step 1 and 3 of figure 6.12) have been opti-
mized to simple digit operations the multiplication by k in step 2 is the most
expensive operation. Fortunately the choice of k is not terribly limited. For all
intents and purposes it might as well be a single digit. The smaller the value of
k is the faster the algorithm will be.

6.4.3 Restricted Diminished Radix Reduction

The restricted Diminished Radix algorithm can quickly reduce an input modulo
a modulus of the form n = βp−k. This algorithm can reduce an input x within
the range 0 ≤ x < n2 using only a couple passes of the algorithm demonstrated
in figure 6.12. The implementation of this algorithm has been optimized to
avoid additional overhead associated with a division by βp, the multiplication
by k or the addition of x and q. The resulting algorithm is very efficient and
can lead to substantial improvements over Barrett and Montgomery reduction
when modular exponentiations are performed.
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Algorithm mp dr reduce.
Input. mp int x, n and a mp digit k = β − n0

(0 ≤ x < n2, n > 1, 0 < k < β)
Output. x mod n

1. m← n.used
2. If x.alloc < 2m then grow x to 2m digits.
3. µ← 0
4. for i from 0 to m− 1 do
4.1 r̂ ← k · xm+i + xi + µ
4.2 xi ← r̂ (mod β)
4.3 µ← ⌊r̂/β⌋

5. xm ← µ
6. for i from m+ 1 to x.used− 1 do
6.1 xi ← 0

7. Clamp excess digits of x.
8. If x ≥ n then
8.1 x← x− n
8.2 Goto step 3.

9. Return(MP OKAY ).

Figure 6.14: Algorithm mp dr reduce

Algorithm mp dr reduce. This algorithm will perform the Dimished
Radix reduction of x modulo n. It has similar restrictions to that of the Barrett
reduction with the addition that n must be of the form n = βm − k where
0 < k < β.

This algorithm essentially implements the pseudo-code in figure 6.12 except
with a slight optimization. The division by βm, multiplication by k and addition
of x mod βm are all performed simultaneously inside the loop on step 4. The
division by βm is emulated by accessing the term at the m+ i’th position which
is subsequently multiplied by k and added to the term at the i’th position. After
the loop the m’th digit is set to the carry and the upper digits are zeroed. Steps
5 and 6 emulate the reduction modulo βm that should have happend to x before
the addition of the multiple of the upper half.

At step 8 if x is still larger than n another pass of the algorithm is required.
First n is subtracted from x and then the algorithm resumes at step 3.

File: bn mp dr reduce.c
016

017 /* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
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018 *

019 * Based on algorithm from the paper

020 *

021 * "Generating Efficient Primes for Discrete Log Cryptosystems"

022 * Chae Hoon Lim, Pil Joong Lee,

023 * POSTECH Information Research Laboratories

024 *

025 * The modulus must be of a special format [see manual]

026 *

027 * Has been modified to use algorithm 7.10 from the LTM book instead

028 *

029 * Input x must be in the range 0 <= x <= (n-1)**2

030 */

031 int

032 mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)

033 {
034 int err, i, m;

035 mp_word r;

036 mp_digit mu, *tmpx1, *tmpx2;

037

038 /* m = digits in modulus */

039 m = n->used;

040

041 /* ensure that "x" has at least 2m digits */

042 if (x->alloc < m + m) {
043 if ((err = mp_grow (x, m + m)) != MP_OKAY) {
044 return err;

045 }
046 }
047

048 /* top of loop, this is where the code resumes if

049 * another reduction pass is required.

050 */

051 top:

052 /* aliases for digits */

053 /* alias for lower half of x */

054 tmpx1 = x->dp;

055

056 /* alias for upper half of x, or x/B**m */

057 tmpx2 = x->dp + m;

058

059 /* set carry to zero */
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060 mu = 0;

061

062 /* compute (x mod B**m) + k * [x/B**m] inline and inplace */

063 for (i = 0; i < m; i++) {
064 r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;

065 *tmpx1++ = (mp_digit)(r & MP_MASK);

066 mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT));

067 }
068

069 /* set final carry */

070 *tmpx1++ = mu;

071

072 /* zero words above m */

073 for (i = m + 1; i < x->used; i++) {
074 *tmpx1++ = 0;

075 }
076

077 /* clamp, sub and return */

078 mp_clamp (x);

079

080 /* if x >= n then subtract and reduce again

081 * Each successive "recursion" makes the input smaller and smaller.

082 */

083 if (mp_cmp_mag (x, n) != MP_LT) {
084 if ((err = s_mp_sub(x, n, x)) != MP_OKAY) {
085 return err;

086 }
087 goto top;

088 }
089 return MP_OKAY;

090 }
091 #endif

092

The first step is to grow x as required to 2m digits since the reduction is
performed in place on x. The label on line 51 is where the algorithm will resume
if further reduction passes are required. In theory it could be placed at the top
of the function however, the size of the modulus and question of whether x is
large enough are invariant after the first pass meaning that it would be a waste
of time.

The aliases tmpx1 and tmpx2 refer to the digits of x where the latter is
offset by m digits. By reading digits from x offset by m digits a division by βm
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can be simulated virtually for free. The loop on line 63 performs the bulk of
the work (corresponds to step 4 of algorithm 7.11 ) in this algorithm.

By line 70 the pointer tmpx1 points to the m’th digit of x which is where
the final carry will be placed. Similarly by line 73 the same pointer will point
to the m+ 1’th digit where the zeroes will be placed.

Since the algorithm is only valid if both x and n are greater than zero an
unsigned comparison suffices to determine if another pass is required. With
the same logic at line 84 the value of x is known to be greater than or equal
to n meaning that an unsigned subtraction can be used as well. Since the
destination of the subtraction is the larger of the inputs the call to algorithm
s mp sub cannot fail and the return code does not need to be checked.

Setup

To setup the restricted Diminished Radix algorithm the value k = β − n0 is re-
quired. This algorithm is not really complicated but provided for completeness.

Algorithm mp dr setup.
Input. mp int n
Output. k = β − n0

1. k ← β − n0

Figure 6.15: Algorithm mp dr setup

File: bn mp dr setup.c

016

017 /* determines the setup value */

018 void mp_dr_setup(mp_int *a, mp_digit *d)

019 {
020 /* the casts are required if DIGIT_BIT is one less than

021 * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]

022 */

023 *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -

024 ((mp_word)a->dp[0]));

025 }
026

027 #endif

028
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Modulus Detection

Another algorithm which will be useful is the ability to detect a restricted Di-
minished Radix modulus. An integer is said to be of restricted Diminished
Radix form if all of the digits are equal to β − 1 except the trailing digit which
may be any value.

Algorithm mp dr is modulus.
Input. mp int n
Output. 1 if n is in D.R form, 0 otherwise

1. If n.used < 2 then return(0).
2. for ix from 1 to n.used− 1 do
2.1 If nix 6= β − 1 return(0).

3. Return(1).

Figure 6.16: Algorithm mp dr is modulus

Algorithm mp dr is modulus. This algorithm determines if a value is
in Diminished Radix form. Step 1 rejects obvious cases where fewer than two
digits are in the mp int. Step 2 tests all but the first digit to see if they are
equal to β − 1. If the algorithm manages to get to step 3 then n must be of
Diminished Radix form.

File: bn mp dr is modulus.c

016

017 /* determines if a number is a valid DR modulus */

018 int mp_dr_is_modulus(mp_int *a)

019 {
020 int ix;

021

022 /* must be at least two digits */

023 if (a->used < 2) {
024 return 0;

025 }
026

027 /* must be of the form b**k - a [a <= b] so all

028 * but the first digit must be equal to -1 (mod b).

029 */

030 for (ix = 1; ix < a->used; ix++) {
031 if (a->dp[ix] != MP_MASK) {
032 return 0;
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033 }
034 }
035 return 1;

036 }
037

038 #endif

039

6.4.4 Unrestricted Diminished Radix Reduction

The unrestricted Diminished Radix algorithm allows modular reductions to be
performed when the modulus is of the form 2p−k. This algorithm is a straight-
forward adaptation of algorithm 6.12.

In general the restricted Diminished Radix reduction algorithm is much
faster since it has considerably lower overhead. However, this new algorithm is
much faster than either Montgomery or Barrett reduction when the moduli are
of the appropriate form.

Algorithm mp reduce 2k.
Input. mp int a and n. mp digit k

(a ≥ 0, n > 1, 0 < k < β, n+ k is a power of two)
Output. a (mod n)

1. p← ⌈lg(n)⌉ (mp count bits)
2. While a ≥ n do
2.1 q ← ⌊a/2p⌋ (mp div 2d)
2.2 a← a (mod 2p) (mp mod 2d)
2.3 q ← q · k (mp mul d)
2.4 a← a− q (s mp sub)
2.5 If a ≥ n then do
2.5.1 a← a− n

3. Return(MP OKAY ).

Figure 6.17: Algorithm mp reduce 2k

Algorithm mp reduce 2k. This algorithm quickly reduces an input a
modulo an unrestricted Diminished Radix modulus n. Division by 2p is emu-
lated with a right shift which makes the algorithm fairly inexpensive to use.

File: bn mp reduce 2k.c
016

017 /* reduces a modulo n where n is of the form 2**p - d */
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018 int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)

019 {
020 mp_int q;

021 int p, res;

022

023 if ((res = mp_init(&q)) != MP_OKAY) {
024 return res;

025 }
026

027 p = mp_count_bits(n);

028 top:

029 /* q = a/2**p, a = a mod 2**p */

030 if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
031 goto ERR;

032 }
033

034 if (d != 1) {
035 /* q = q * d */

036 if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
037 goto ERR;

038 }
039 }
040

041 /* a = a + q */

042 if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
043 goto ERR;

044 }
045

046 if (mp_cmp_mag(a, n) != MP_LT) {
047 if ((res = s_mp_sub(a, n, a)) != MP_OKAY) {
048 goto ERR;

049 }
050 goto top;

051 }
052

053 ERR:

054 mp_clear(&q);

055 return res;

056 }
057

058 #endif

059
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The algorithm mp count bits calculates the number of bits in an mp int
which is used to find the initial value of p. The call to mp div 2d on line 30
calculates both the quotient q and the remainder a required. By doing both in a
single function call the code size is kept fairly small. The multiplication by k is
only performed if k > 1. This allows reductions modulo 2p − 1 to be performed
without any multiplications.

The unsigned s mp add, mp cmp mag and s mp sub are used in place of
their full sign counterparts since the inputs are only valid if they are positive.
By using the unsigned versions the overhead is kept to a minimum.

Unrestricted Setup

To setup this reduction algorithm the value of k = 2p − n is required.

Algorithm mp reduce 2k setup.
Input. mp int n
Output. k = 2p − n

1. p← ⌈lg(n)⌉ (mp count bits)
2. x← 2p (mp 2expt)
3. x← x− n (mp sub)
4. k ← x0

5. Return(MP OKAY ).

Figure 6.18: Algorithm mp reduce 2k setup

Algorithm mp reduce 2k setup. This algorithm computes the value of
k required for the algorithm mp reduce 2k. By making a temporary variable x
equal to 2p a subtraction is sufficient to solve for k. Alternatively if n has more
than one digit the value of k is simply β − n0.

File: bn mp reduce 2k setup.c

016

017 /* determines the setup value */

018 int mp_reduce_2k_setup(mp_int *a, mp_digit *d)

019 {
020 int res, p;

021 mp_int tmp;

022

023 if ((res = mp_init(&tmp)) != MP_OKAY) {
024 return res;
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025 }
026

027 p = mp_count_bits(a);

028 if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
029 mp_clear(&tmp);

030 return res;

031 }
032

033 if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
034 mp_clear(&tmp);

035 return res;

036 }
037

038 *d = tmp.dp[0];

039 mp_clear(&tmp);

040 return MP_OKAY;

041 }
042 #endif

043

Unrestricted Detection

An integer n is a valid unrestricted Diminished Radix modulus if either of the
following are true.

1. The number has only one digit.

2. The number has more than one digit and every bit from the β’th to the
most significant is one.

If either condition is true than there is a power of two 2p such that 0 <
2p − n < β. If the input is only one digit than it will always be of the correct
form. Otherwise all of the bits above the first digit must be one. This arises from
the fact that there will be value of k that when added to the modulus causes a
carry in the first digit which propagates all the way to the most significant bit.
The resulting sum will be a power of two.

Algorithm mp reduce is 2k. This algorithm quickly determines if a mod-
ulus is of the form required for algorithm mp reduce 2k to function properly.

File: bn mp reduce is 2k.c
016

017 /* determines if mp_reduce_2k can be used */
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Algorithm mp reduce is 2k.
Input. mp int n
Output. 1 if of proper form, 0 otherwise

1. If n.used = 0 then return(0).
2. If n.used = 1 then return(1).
3. p← ⌈lg(n)⌉ (mp count bits)
4. for x from lg(β) to p do
4.1 If the (x mod lg(β))’th bit of the ⌊x/lg(β)⌋ of n is zero then return(0).

5. Return(1).

Figure 6.19: Algorithm mp reduce is 2k

018 int mp_reduce_is_2k(mp_int *a)

019 {
020 int ix, iy, iw;

021 mp_digit iz;

022

023 if (a->used == 0) {
024 return MP_NO;

025 } else if (a->used == 1) {
026 return MP_YES;

027 } else if (a->used > 1) {
028 iy = mp_count_bits(a);

029 iz = 1;

030 iw = 1;

031

032 /* Test every bit from the second digit up, must be 1 */

033 for (ix = DIGIT_BIT; ix < iy; ix++) {
034 if ((a->dp[iw] & iz) == 0) {
035 return MP_NO;

036 }
037 iz <<= 1;

038 if (iz > (mp_digit)MP_MASK) {
039 ++iw;

040 iz = 1;

041 }
042 }
043 }
044 return MP_YES;

045 }



6.5. ALGORITHM COMPARISON 185

046

047 #endif

048

6.5 Algorithm Comparison

So far three very different algorithms for modular reduction have been discussed.
Each of the algorithms have their own strengths and weaknesses that makes
having such a selection very useful. The following table sumarizes the three
algorithms along with comparisons of work factors. Since all three algorithms
have the restriction that 0 ≤ x < n2 and n > 1 those limitations are not included
in the table.

Method Work Required Limitations m = 8 m = 32 m = 64

Barrett m2 + 2m− 1 None 79 1087 4223

Montgomery m2 +m n must be odd 72 1056 4160

D.R. 2m n = βm − k 16 64 128

In theory Montgomery and Barrett reductions would require roughly the
same amount of time to complete. However, in practice since Montgomery
reduction can be written as a single function with the Comba technique it is
much faster. Barrett reduction suffers from the overhead of calling the half
precision multipliers, addition and division by β algorithms.

For almost every cryptographic algorithm Montgomery reduction is the al-
gorithm of choice. The one set of algorithms where Diminished Radix reduction
truly shines are based on the discrete logarithm problem such as Diffie-Hellman
[?] and ElGamal [?]. In these algorithms primes of the form βm − k can be
found and shared amongst users. These primes will allow the Diminished Radix
algorithm to be used in modular exponentiation to greatly speed up the opera-
tion.
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Exercises

[3] Prove that the “trick” in algorithm mp montgomery setup actually
calculates the correct value of ρ.

[2] Devise an algorithm to reduce modulo n+ k for small k quickly.

[4] Prove that the pseudo-code algorithm “Diminished Radix Reduction”
(figure 6.12) terminates. Also prove the probability that it will
terminate within 1 ≤ k ≤ 10 iterations.



Chapter 7

Exponentiation

Exponentiation is the operation of raising one variable to the power of another,
for example, ab. A variant of exponentiation, computed in a finite field or ring,
is called modular exponentiation. This latter style of operation is typically
used in public key cryptosystems such as RSA and Diffie-Hellman. The ability
to quickly compute modular exponentiations is of great benefit to any such
cryptosystem and many methods have been sought to speed it up.

7.1 Exponentiation Basics

A trivial algorithm would simply multiply a against itself b−1 times to compute
the exponentiation desired. However, as b grows in size the number of multipli-
cations becomes prohibitive. Imagine what would happen if b ∼ 21024 as is the
case when computing an RSA signature with a 1024-bit key. Such a calculation
could never be completed as it would take simply far too long.

Fortunately there is a very simple algorithm based on the laws of exponents.
Recall that lga(a

b) = b and that lga(a
bac) = b + c which are two trivial rela-

tionships between the base and the exponent. Let bi represent the i’th bit of b
starting from the least significant bit. If b is a k-bit integer than the following
equation is true.

ab =

k−1
∏

i=0

a2
i·bi (7.1)

187
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By taking the base a logarithm of both sides of the equation the following
equation is the result.

b =

k−1
∑

i=0

2i · bi (7.2)

The term a2
i

can be found from the i − 1’th term by squaring the term

since
(

a2
i
)2

is equal to a2
i+1

. This observation forms the basis of essentially

all fast exponentiation algorithms. It requires k squarings and on average k
2

multiplications to compute the result. This is indeed quite an improvement
over simply multiplying by a a total of b− 1 times.

While this current method is a considerable speed up there are further im-
provements to be made. For example, the a2

i

term does not need to be computed
in an auxilary variable. Consider the following equivalent algorithm.

Algorithm Left to Right Exponentiation.
Input. Integer a, b and k

Output. c = ab

1. c← 1
2. for i from k − 1 to 0 do
2.1 c← c2

2.2 c← c · abi

3. Return c.

Figure 7.1: Left to Right Exponentiation

This algorithm starts from the most significant bit and works towards the
least significant bit. When the i’th bit of b is set a is multiplied against the
current product. In each iteration the product is squared which doubles the
exponent of the individual terms of the product.

For example, let b = 1011002 ≡ 4410. The following chart demonstrates the
actions of the algorithm.
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Value of i Value of c
- 1
5 a
4 a2

3 a4 · a
2 a8 · a2 · a
1 a16 · a4 · a2
0 a32 · a8 · a4

Figure 7.2: Example of Left to Right Exponentiation

When the product a32 ·a8 ·a4 is simplified it is equal a44 which is the desired
exponentiation. This particular algorithm is called “Left to Right” because it
reads the exponent in that order. All of the exponentiation algorithms that will
be presented are of this nature.

7.1.1 Single Digit Exponentiation

The first algorithm in the series of exponentiation algorithms will be an un-
bounded algorithm where the exponent is a single digit. It is intended to be
used when a small power of an input is required (e.g. a5). It is faster than
simply multiplying b− 1 times for all values of b that are greater than three.
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Algorithm mp expt d.
Input. mp int a and mp digit b

Output. c = ab

1. g ← a (mp init copy)
2. c← 1 (mp set)
3. for x from 1 to lg(β) do
3.1 c← c2 (mp sqr)

3.2 If b AND 2lg(β)−1 6= 0 then
3.2.1 c← c · g (mp mul)

3.3 b← b << 1
4. Clear g.
5. Return(MP OKAY ).

Figure 7.3: Algorithm mp expt d

Algorithm mp expt d. This algorithm computes the value of a raised to
the power of a single digit b. It uses the left to right exponentiation algorithm
to quickly compute the exponentiation. It is loosely based on algorithm 14.79
of HAC [2, pp. 615] with the difference that the exponent is a fixed width.

A copy of a is made first to allow destination variable c be the same as the
source variable a. The result is set to the initial value of 1 in the subsequent
step.

Inside the loop the exponent is read from the most significant bit first down
to the least significant bit. First c is invariably squared on step 3.1. In the
following step if the most significant bit of b is one the copy of a is multiplied
against c. The value of b is shifted left one bit to make the next bit down from
the most signficant bit the new most significant bit. In effect each iteration
of the loop moves the bits of the exponent b upwards to the most significant
location.

File: bn mp expt d ex.c

016

017 /* calculate c = a**b using a square-multiply algorithm */

018 int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast)

019 {
020 int res;

021 unsigned int x;

022

023 mp_int g;
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024

025 if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
026 return res;

027 }
028

029 /* set initial result */

030 mp_set (c, 1);

031

032 if (fast != 0) {
033 while (b > 0) {
034 /* if the bit is set multiply */

035 if ((b & 1) != 0) {
036 if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
037 mp_clear (&g);

038 return res;

039 }
040 }
041

042 /* square */

043 if (b > 1) {
044 if ((res = mp_sqr (&g, &g)) != MP_OKAY) {
045 mp_clear (&g);

046 return res;

047 }
048 }
049

050 /* shift to next bit */

051 b >>= 1;

052 }
053 }
054 else {
055 for (x = 0; x < DIGIT_BIT; x++) {
056 /* square */

057 if ((res = mp_sqr (c, c)) != MP_OKAY) {
058 mp_clear (&g);

059 return res;

060 }
061

062 /* if the bit is set multiply */

063 if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
064 if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
065 mp_clear (&g);
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066 return res;

067 }
068 }
069

070 /* shift to next bit */

071 b <<= 1;

072 }
073 } /* if ... else */

074

075 mp_clear (&g);

076 return MP_OKAY;

077 }
078 #endif

079

This describes only the algorithm that is used when the parameter fast is
0. Line 30 sets the initial value of the result to 1. Next the loop on line 55
steps through each bit of the exponent starting from the most significant down
towards the least significant. The invariant squaring operation placed on line
57 is performed first. After the squaring the result c is multiplied by the base
g if and only if the most significant bit of the exponent is set. The shift on line
71 moves all of the bits of the exponent upwards towards the most significant
location.

7.2 k-ary Exponentiation

When calculating an exponentiation the most time consuming bottleneck is the
multiplications which are in general a small factor slower than squaring. Recall
from the previous algorithm that bi refers to the i’th bit of the exponent b.
Suppose instead it referred to the i’th k-bit digit of the exponent of b. For
k = 1 the definitions are synonymous and for k > 1 algorithm 7.4 computes the
same exponentiation. A group of k bits from the exponent is called a window.
That is it is a small window on only a portion of the entire exponent. Consider
the following modification to the basic left to right exponentiation algorithm.

The squaring on step 2.1 can be calculated by squaring the value c succes-
sively k times. If the values of ag for 0 < g < 2k have been precomputed this
algorithm requires only t multiplications and tk squarings. The table can be
generated with 2k−1−1 squarings and 2k−1+1 multiplications. This algorithm
assumes that the number of bits in the exponent is evenly divisible by k. How-
ever, when it is not the remaining 0 < x ≤ k − 1 bits can be handled with
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Algorithm k-ary Exponentiation.
Input. Integer a, b, k and t

Output. c = ab

1. c← 1
2. for i from t− 1 to 0 do

2.1 c← c2
k

2.2 Extract the i’th k-bit word from b and store it in g.
2.3 c← c · ag

3. Return c.

Figure 7.4: k-ary Exponentiation

algorithm 7.1.
Suppose k = 4 and t = 100. This modified algorithm will require 109

multiplications and 408 squarings to compute the exponentiation. The original
algorithm would on average have required 200 multiplications and 400 squrings
to compute the same value. The total number of squarings has increased slightly
but the number of multiplications has nearly halved.

7.2.1 Optimal Values of k

An optimal value of k will minimize 2k + ⌈n/k⌉ + n − 1 for a fixed number of
bits in the exponent n. The simplest approach is to brute force search amongst
the values k = 2, 3, . . . , 8 for the lowest result. Table 7.5 lists optimal values
of k for various exponent sizes and compares the number of multiplication and
squarings required against algorithm 7.1.

7.2.2 Sliding-Window Exponentiation

A simple modification to the previous algorithm is only generate the upper half
of the table in the range 2k−1 ≤ g < 2k. Essentially this is a table for all values
of g where the most significant bit of g is a one. However, in order for this to be
allowed in the algorithm values of g in the range 0 ≤ g < 2k−1 must be avoided.

Table 7.6 lists optimal values of k for various exponent sizes and compares
the work required against algorithm 7.4.
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Exponent (bits) Optimal k Work at k Work with 7.1

16 2 27 24

32 3 49 48

64 3 92 96

128 4 175 192

256 4 335 384

512 5 645 768

1024 6 1257 1536

2048 6 2452 3072

4096 7 4808 6144

Figure 7.5: Optimal Values of k for k-ary Exponentiation

Exponent (bits) Optimal k Work at k Work with 7.4

16 3 24 27

32 3 45 49

64 4 87 92

128 4 167 175

256 5 322 335

512 6 628 645

1024 6 1225 1257

2048 7 2403 2452

4096 8 4735 4808

Figure 7.6: Optimal Values of k for Sliding Window Exponentiation

Similar to the previous algorithm this algorithm must have a special handler
when fewer than k bits are left in the exponent. While this algorithm requires
the same number of squarings it can potentially have fewer multiplications. The
pre-computed table ag is also half the size as the previous table.

Consider the exponent b = 1111010110010002 ≡ 3143210 with k = 3 using
both algorithms. The first algorithm will divide the exponent up as the following
five 3-bit words b ≡ (111, 101, 011, 001, 000)2. The second algorithm will break
the exponent as b ≡ (111, 101, 0, 110, 0, 100, 0)2. The single digit 0 in the second
representation are where a single squaring took place instead of a squaring and
multiplication. In total the first method requires 10 multiplications and 18
squarings. The second method requires 8 multiplications and 18 squarings.

In general the sliding window method is never slower than the generic k-ary
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Algorithm Sliding Window k-ary Exponentiation.
Input. Integer a, b, k and t

Output. c = ab

1. c← 1
2. for i from t− 1 to 0 do
2.1 If the i’th bit of b is a zero then
2.1.1 c← c2

2.2 else do

2.2.1 c← c2
k

2.2.2 Extract the k bits from (bibi−1 . . . bi−(k−1)) and store it in g.
2.2.3 c← c · ag

2.2.4 i← i− k
3. Return c.

Figure 7.7: Sliding Window k-ary Exponentiation

method and often it is slightly faster.

7.3 Modular Exponentiation

Modular exponentiation is essentially computing the power of a base within
a finite field or ring. For example, computing d ≡ ab (mod c) is a modular
exponentiation. Instead of first computing ab and then reducing it modulo c the
intermediate result is reduced modulo c after every squaring or multiplication
operation.

This guarantees that any intermediate result is bounded by 0 ≤ d ≤ c2−2c+1
and can be reduced modulo c quickly using one of the algorithms presented in
chapter six.

Before the actual modular exponentiation algorithm can be written a wrap-
per algorithm must be written first. This algorithm will allow the exponent b to

be negative which is computed as c ≡ (1/a)
|b|

(mod d). The value of (1/a) mod c
is computed using the modular inverse (see ??). If no inverse exists the algo-
rithm terminates with an error.

Algorithm mp exptmod. The first algorithm which actually performs
modular exponentiation is algorithm s mp exptmod. It is a sliding window k-
ary algorithm which uses Barrett reduction to reduce the product modulo p.
The second algorithm mp exptmod fast performs the same operation except it
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Algorithm mp exptmod.
Input. mp int a, b and c
Output. y ≡ gx (mod p)

1. If c.sign = MP NEG return(MP VAL).
2. If b.sign = MP NEG then
2.1 g′ ← g−1 (mod c)
2.2 x′ ← |x|

2.3 Compute d ≡ g′x
′

(mod c) via recursion.
3. if p is odd OR p is a D.R. modulus then
3.1 Compute y ≡ gx (mod p) via algorithm mp exptmod fast.

4. else
4.1 Compute y ≡ gx (mod p) via algorithm s mp exptmod.

Figure 7.8: Algorithm mp exptmod

uses either Montgomery or Diminished Radix reduction. The two latter reduc-
tion algorithms are clumped in the same exponentiation algorithm since their
arguments are essentially the same (two mp ints and one mp digit).

File: bn mp exptmod.c
016

017

018 /* this is a shell function that calls either the normal or Montgomery

019 * exptmod functions. Originally the call to the montgomery code was

020 * embedded in the normal function but that wasted alot of stack space

021 * for nothing (since 99% of the time the Montgomery code would be called)

022 */

023 int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)

024 {
025 int dr;

026

027 /* modulus P must be positive */

028 if (P->sign == MP_NEG) {
029 return MP_VAL;

030 }
031

032 /* if exponent X is negative we have to recurse */

033 if (X->sign == MP_NEG) {
034 #ifdef BN_MP_INVMOD_C

035 mp_int tmpG, tmpX;
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036 int err;

037

038 /* first compute 1/G mod P */

039 if ((err = mp_init(&tmpG)) != MP_OKAY) {
040 return err;

041 }
042 if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
043 mp_clear(&tmpG);

044 return err;

045 }
046

047 /* now get |X| */

048 if ((err = mp_init(&tmpX)) != MP_OKAY) {
049 mp_clear(&tmpG);

050 return err;

051 }
052 if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
053 mp_clear_multi(&tmpG, &tmpX, NULL);

054 return err;

055 }
056

057 /* and now compute (1/G)**|X| instead of G**X [X < 0] */

058 err = mp_exptmod(&tmpG, &tmpX, P, Y);

059 mp_clear_multi(&tmpG, &tmpX, NULL);

060 return err;

061 #else

062 /* no invmod */

063 return MP_VAL;

064 #endif

065 }
066

067 /* modified diminished radix reduction */

068 #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defin

ed(BN_S_MP_EXPTMOD_C)

069 if (mp_reduce_is_2k_l(P) == MP_YES) {
070 return s_mp_exptmod(G, X, P, Y, 1);

071 }
072 #endif

073

074 #ifdef BN_MP_DR_IS_MODULUS_C

075 /* is it a DR modulus? */

076 dr = mp_dr_is_modulus(P);
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077 #else

078 /* default to no */

079 dr = 0;

080 #endif

081

082 #ifdef BN_MP_REDUCE_IS_2K_C

083 /* if not, is it a unrestricted DR modulus? */

084 if (dr == 0) {
085 dr = mp_reduce_is_2k(P) << 1;

086 }
087 #endif

088

089 /* if the modulus is odd or dr != 0 use the montgomery method */

090 #ifdef BN_MP_EXPTMOD_FAST_C

091 if (mp_isodd (P) == MP_YES || dr != 0) {
092 return mp_exptmod_fast (G, X, P, Y, dr);

093 } else {
094 #endif

095 #ifdef BN_S_MP_EXPTMOD_C

096 /* otherwise use the generic Barrett reduction technique */

097 return s_mp_exptmod (G, X, P, Y, 0);

098 #else

099 /* no exptmod for evens */

100 return MP_VAL;

101 #endif

102 #ifdef BN_MP_EXPTMOD_FAST_C

103 }
104 #endif

105 }
106

107 #endif

108

In order to keep the algorithms in a known state the first step on line 28 is to
reject any negative modulus as input. If the exponent is negative the algorithm
tries to perform a modular exponentiation with the modular inverse of the base
G. The temporary variable tmpG is assigned the modular inverse of G and
tmpX is assigned the absolute value of X. The algorithm will recuse with these
new values with a positive exponent.

If the exponent is positive the algorithm resumes the exponentiation. Line
76 determines if the modulus is of the restricted Diminished Radix form. If it
is not line 69 attempts to determine if it is of a unrestricted Diminished Radix
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form. The integer dr will take on one of three values.

1. dr = 0 means that the modulus is not of either restricted or unrestricted
Diminished Radix form.

2. dr = 1 means that the modulus is of restricted Diminished Radix form.

3. dr = 2 means that the modulus is of unrestricted Diminished Radix form.

Line 69 determines if the fast modular exponentiation algorithm can be
used. It is allowed if dr 6= 0 or if the modulus is odd. Otherwise, the slower
s mp exptmod algorithm is used which uses Barrett reduction.

7.3.1 Barrett Modular Exponentiation
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Algorithm s mp exptmod.
Input. mp int a, b and c
Output. y ≡ gx (mod p)

1. k ← lg(x)

2. winsize←







































2 if k ≤ 7
3 if 7 < k ≤ 36
4 if 36 < k ≤ 140
5 if 140 < k ≤ 450
6 if 450 < k ≤ 1303
7 if 1303 < k ≤ 3529
8 if 3529 < k

3. Initialize 2winsize mp ints in an array named M and one mp int named µ
4. Calculate the µ required for Barrett Reduction (mp reduce setup).
5. M1 ← g (mod p)

Setup the table of small powers of g. First find g2
winsize

and then all multiples of it.
6. k ← 2winsize−1

7. Mk ←M1

8. for ix from 0 to winsize− 2 do

8.1 Mk ← (Mk)
2 (mp sqr)

8.2 Mk ←Mk (mod p) (mp reduce)
9. for ix from 2winsize−1 + 1 to 2winsize − 1 do
9.1 Mix ←Mix−1 ·M1 (mp mul)
9.2 Mix ←Mix (mod p) (mp reduce)

10. res← 1

Start Sliding Window.
11. mode← 0, bitcnt← 1, buf ← 0, digidx← x.used− 1, bitcpy ← 0, bitbuf ← 0
12. Loop
12.1 bitcnt← bitcnt− 1
12.2 If bitcnt = 0 then do
12.2.1 If digidx = −1 goto step 13.
12.2.2 buf ← xdigidx

12.2.3 digidx← digidx− 1
12.2.4 bitcnt← lg(β)

Continued on next page.

Figure 7.9: Algorithm s mp exptmod
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Algorithm s mp exptmod (continued).
Input. mp int a, b and c
Output. y ≡ gx (mod p)

12.3 y ← (buf >> (lg(β)− 1)) AND 1
12.4 buf ← buf << 1
12.5 if mode = 0 and y = 0 then goto step 12.
12.6 if mode = 1 and y = 0 then do
12.6.1 res← res2

12.6.2 res← res (mod p)
12.6.3 Goto step 12.

12.7 bitcpy ← bitcpy + 1
12.8 bitbuf ← bitbuf + (y << (winsize− bitcpy))
12.9 mode← 2
12.10 If bitcpy = winsize then do
Window is full so perform the squarings and single multiplication.
12.10.1 for ix from 0 to winsize− 1 do
12.10.1.1 res← res2

12.10.1.2 res← res (mod p)
12.10.2 res← res ·Mbitbuf

12.10.3 res← res (mod p)
Reset the window.
12.10.4 bitcpy ← 0, bitbuf ← 0,mode← 1

No more windows left. Check for residual bits of exponent.
13. If mode = 2 and bitcpy > 0 then do
13.1 for ix form 0 to bitcpy − 1 do
13.1.1 res← res2

13.1.2 res← res (mod p)
13.1.3 bitbuf ← bitbuf << 1
13.1.4 If bitbuf AND 2winsize 6= 0 then do
13.1.4.1 res← res ·M1

13.1.4.2 res← res (mod p)
14. y ← res
15. Clear res, mu and the M array.
16. Return(MP OKAY ).

Figure 7.10: Algorithm s mp exptmod (continued)

Algorithm s mp exptmod. This algorithm computes the x’th power of g
modulo p and stores the result in y. It takes advantage of the Barrett reduction
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algorithm to keep the product small throughout the algorithm.
The first two steps determine the optimal window size based on the number

of bits in the exponent. The larger the exponent the larger the window size
becomes. After a window size winsize has been chosen an array of 2winsize

mp int variables is allocated. This table will hold the values of gx (mod p) for
2winsize−1 ≤ x < 2winsize.

After the table is allocated the first power of g is found. Since g ≥ p is
allowed it must be first reduced modulo p to make the rest of the algorithm
more efficient. The first element of the table at 2winsize−1 is found by squaring
M1 successively winsize− 2 times. The rest of the table elements are found by
multiplying the previous element by M1 modulo p.

Now that the table is available the sliding window may begin. The following
list describes the functions of all the variables in the window.

1. The variable mode dictates how the bits of the exponent are interpreted.

(a) When mode = 0 the bits are ignored since no non-zero bit of the
exponent has been seen yet. For example, if the exponent were simply
1 then there would be lg(β)−1 zero bits before the first non-zero bit.
In this case bits are ignored until a non-zero bit is found.

(b) When mode = 1 a non-zero bit has been seen before and a new
winsize-bit window has not been formed yet. In this mode leading
0 bits are read and a single squaring is performed. If a non-zero bit
is read a new window is created.

(c) When mode = 2 the algorithm is in the middle of forming a window
and new bits are appended to the window from the most significant
bit downwards.

2. The variable bitcnt indicates how many bits are left in the current digit of
the exponent left to be read. When it reaches zero a new digit is fetched
from the exponent.

3. The variable buf holds the currently read digit of the exponent.

4. The variable digidx is an index into the exponents digits. It starts at the
leading digit x.used− 1 and moves towards the trailing digit.

5. The variable bitcpy indicates how many bits are in the currently formed
window. When it reaches winsize the window is flushed and the appro-
priate operations performed.
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6. The variable bitbuf holds the current bits of the window being formed.

All of step 12 is the window processing loop. It will iterate while there are
digits available form the exponent to read. The first step inside this loop is to
extract a new digit if no more bits are available in the current digit. If there
are no bits left a new digit is read and if there are no digits left than the loop
terminates.

After a digit is made available step 12.3 will extract the most significant bit
of the current digit and move all other bits in the digit upwards. In effect the
digit is read from most significant bit to least significant bit and since the digits
are read from leading to trailing edges the entire exponent is read from most
significant bit to least significant bit.

At step 12.5 if the mode and currently extracted bit y are both zero the bit
is ignored and the next bit is read. This prevents the algorithm from having to
perform trivial squaring and reduction operations before the first non-zero bit
is read. Step 12.6 and 12.7-10 handle the two cases of mode = 1 and mode = 2
respectively.

Figure 7.11: Sliding Window State Diagram

By step 13 there are no more digits left in the exponent. However, there may
be partial bits in the window left. If mode = 2 then a Left-to-Right algorithm
is used to process the remaining few bits.

File: bn s mp exptmod.c
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016 #ifdef MP_LOW_MEM

017 #define TAB_SIZE 32

018 #else

019 #define TAB_SIZE 256

020 #endif

021

022 int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmod

e)

023 {
024 mp_int M[TAB_SIZE], res, mu;

025 mp_digit buf;

026 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;

027 int (*redux)(mp_int*,mp_int*,mp_int*);

028

029 /* find window size */

030 x = mp_count_bits (X);

031 if (x <= 7) {
032 winsize = 2;

033 } else if (x <= 36) {
034 winsize = 3;

035 } else if (x <= 140) {
036 winsize = 4;

037 } else if (x <= 450) {
038 winsize = 5;

039 } else if (x <= 1303) {
040 winsize = 6;

041 } else if (x <= 3529) {
042 winsize = 7;

043 } else {
044 winsize = 8;

045 }
046

047 #ifdef MP_LOW_MEM

048 if (winsize > 5) {
049 winsize = 5;

050 }
051 #endif

052

053 /* init M array */

054 /* init first cell */

055 if ((err = mp_init(&M[1])) != MP_OKAY) {
056 return err;
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057 }
058

059 /* now init the second half of the array */

060 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
061 if ((err = mp_init(&M[x])) != MP_OKAY) {
062 for (y = 1<<(winsize-1); y < x; y++) {
063 mp_clear (&M[y]);

064 }
065 mp_clear(&M[1]);

066 return err;

067 }
068 }
069

070 /* create mu, used for Barrett reduction */

071 if ((err = mp_init (&mu)) != MP_OKAY) {
072 goto LBL_M;

073 }
074

075 if (redmode == 0) {
076 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
077 goto LBL_MU;

078 }
079 redux = mp_reduce;

080 } else {
081 if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
082 goto LBL_MU;

083 }
084 redux = mp_reduce_2k_l;

085 }
086

087 /* create M table

088 *

089 * The M table contains powers of the base,

090 * e.g. M[x] = G**x mod P

091 *

092 * The first half of the table is not

093 * computed though accept for M[0] and M[1]

094 */

095 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
096 goto LBL_MU;

097 }
098
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099 /* compute the value at M[1<<(winsize-1)] by squaring

100 * M[1] (winsize-1) times

101 */

102 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
103 goto LBL_MU;

104 }
105

106 for (x = 0; x < (winsize - 1); x++) {
107 /* square it */

108 if ((err = mp_sqr (&M[1 << (winsize - 1)],

109 &M[1 << (winsize - 1)])) != MP_OKAY) {
110 goto LBL_MU;

111 }
112

113 /* reduce modulo P */

114 if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
115 goto LBL_MU;

116 }
117 }
118

119 /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)

120 * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)

121 */

122 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
123 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
124 goto LBL_MU;

125 }
126 if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
127 goto LBL_MU;

128 }
129 }
130

131 /* setup result */

132 if ((err = mp_init (&res)) != MP_OKAY) {
133 goto LBL_MU;

134 }
135 mp_set (&res, 1);

136

137 /* set initial mode and bit cnt */

138 mode = 0;

139 bitcnt = 1;

140 buf = 0;
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141 digidx = X->used - 1;

142 bitcpy = 0;

143 bitbuf = 0;

144

145 for (;;) {
146 /* grab next digit as required */

147 if (--bitcnt == 0) {
148 /* if digidx == -1 we are out of digits */

149 if (digidx == -1) {
150 break;

151 }
152 /* read next digit and reset the bitcnt */

153 buf = X->dp[digidx--];

154 bitcnt = (int) DIGIT_BIT;

155 }
156

157 /* grab the next msb from the exponent */

158 y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;

159 buf <<= (mp_digit)1;

160

161 /* if the bit is zero and mode == 0 then we ignore it

162 * These represent the leading zero bits before the first 1 bit

163 * in the exponent. Technically this opt is not required but it

164 * does lower the # of trivial squaring/reductions used

165 */

166 if (mode == 0 && y == 0) {
167 continue;

168 }
169

170 /* if the bit is zero and mode == 1 then we square */

171 if (mode == 1 && y == 0) {
172 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
173 goto LBL_RES;

174 }
175 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
176 goto LBL_RES;

177 }
178 continue;

179 }
180

181 /* else we add it to the window */

182 bitbuf |= (y << (winsize - ++bitcpy));
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183 mode = 2;

184

185 if (bitcpy == winsize) {
186 /* ok window is filled so square as required and multiply */

187 /* square first */

188 for (x = 0; x < winsize; x++) {
189 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
190 goto LBL_RES;

191 }
192 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
193 goto LBL_RES;

194 }
195 }
196

197 /* then multiply */

198 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
199 goto LBL_RES;

200 }
201 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
202 goto LBL_RES;

203 }
204

205 /* empty window and reset */

206 bitcpy = 0;

207 bitbuf = 0;

208 mode = 1;

209 }
210 }
211

212 /* if bits remain then square/multiply */

213 if (mode == 2 && bitcpy > 0) {
214 /* square then multiply if the bit is set */

215 for (x = 0; x < bitcpy; x++) {
216 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
217 goto LBL_RES;

218 }
219 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
220 goto LBL_RES;

221 }
222

223 bitbuf <<= 1;

224 if ((bitbuf & (1 << winsize)) != 0) {
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225 /* then multiply */

226 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
227 goto LBL_RES;

228 }
229 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
230 goto LBL_RES;

231 }
232 }
233 }
234 }
235

236 mp_exch (&res, Y);

237 err = MP_OKAY;

238 LBL_RES:mp_clear (&res);

239 LBL_MU:mp_clear (&mu);

240 LBL_M:

241 mp_clear(&M[1]);

242 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
243 mp_clear (&M[x]);

244 }
245 return err;

246 }
247 #endif

248

Lines 31 through 45 determine the optimal window size based on the length
of the exponent in bits. The window divisions are sorted from smallest to
greatest so that in each if statement only one condition must be tested. For
example, by the if statement on line 37 the value of x is already known to be
greater than 140.

The conditional piece of code beginning on line 47 allows the window size to
be restricted to five bits. This logic is used to ensure the table of precomputed
powers of G remains relatively small.

The for loop on line 60 initializes the M array while lines 71 and 76 through
85 initialize the reduction function that will be used for this modulus.

– More later.

7.4 Quick Power of Two

Calculating b = 2a can be performed much quicker than with any of the previous
algorithms. Recall that a logical shift left m << k is equivalent to m · 2k. By
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this logic when m = 1 a quick power of two can be achieved.

Algorithm mp 2expt.
Input. integer b

Output. a← 2b

1. a← 0
2. If a.alloc < ⌊b/lg(β)⌋+ 1 then grow a appropriately.
3. a.used← ⌊b/lg(β)⌋+ 1
4. a⌊b/lg(β)⌋ ← 1 << (b mod lg(β))
5. Return(MP OKAY ).

Figure 7.12: Algorithm mp 2expt

Algorithm mp 2expt.

File: bn mp 2expt.c
016

017 /* computes a = 2**b

018 *

019 * Simple algorithm which zeroes the int, grows it then just sets one bit

020 * as required.

021 */

022 int

023 mp_2expt (mp_int * a, int b)

024 {
025 int res;

026

027 /* zero a as per default */

028 mp_zero (a);

029

030 /* grow a to accomodate the single bit */

031 if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
032 return res;

033 }
034

035 /* set the used count of where the bit will go */

036 a->used = b / DIGIT_BIT + 1;

037

038 /* put the single bit in its place */

039 a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);

040
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041 return MP_OKAY;

042 }
043 #endif

044
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Chapter 8

Higher Level Algorithms

This chapter discusses the various higher level algorithms that are required to
complete a well rounded multiple precision integer package. These routines are
less performance oriented than the algorithms of chapters five, six and seven
but are no less important.

The first section describes a method of integer division with remainder that
is universally well known. It provides the signed division logic for the package.
The subsequent section discusses a set of algorithms which allow a single digit
to be the 2nd operand for a variety of operations. These algorithms serve
mostly to simplify other algorithms where small constants are required. The
last two sections discuss how to manipulate various representations of integers.
For example, converting from an mp int to a string of character.

8.1 Integer Division with Remainder

Integer division aside from modular exponentiation is the most intensive algo-
rithm to compute. Like addition, subtraction and multiplication the basis of
this algorithm is the long-hand division algorithm taught to school children.
Throughout this discussion several common variables will be used. Let x rep-
resent the divisor and y represent the dividend. Let q represent the integer
quotient ⌊y/x⌋ and let r represent the remainder r = y−x⌊y/x⌋. The following
simple algorithm will be used to start the discussion.

213



214 CHAPTER 8. HIGHER LEVEL ALGORITHMS

Algorithm Radix-β Integer Division.
Input. integer x and y
Output. q = ⌊y/x⌋, r = y − xq

1. q ← 0
2. n← ||y|| − ||x||
3. for t from n down to 0 do
3.1 Maximize k such that kxβt is less than or equal to y and (k + 1)xβt is greater.
3.2 q ← q + kβt

3.3 y ← y − kxβt

4. r ← y
5. Return(q, r)

Figure 8.1: Algorithm Radix-β Integer Division

As children we are taught this very simple algorithm for the case of β = 10.
Almost instinctively several optimizations are taught for which their reason
of existing are never explained. For this example let y = 5471 represent the
dividend and x = 23 represent the divisor.

To find the first digit of the quotient the value of k must be maximized such
that kxβt is less than or equal to y and simultaneously (k+1)xβt is greater than
y. Implicitly k is the maximum value the t’th digit of the quotient may have.
The habitual method used to find the maximum is to “eyeball” the two numbers,
typically only the leading digits and quickly estimate a quotient. By only using
leading digits a much simpler division may be used to form an educated guess
at what the value must be. In this case k = ⌊54/23⌋ = 2 quickly arises as a
possible solution. Indeed 2xβ2 = 4600 is less than y = 5471 and simultaneously
(k + 1)xβ2 = 6900 is larger than y. As a result kβ2 is added to the quotient
which now equals q = 200 and 4600 is subtracted from y to give a remainder of
y = 841.

Again this process is repeated to produce the quotient digit k = 3 which
makes the quotient q = 200+3β = 230 and the remainder y = 841−3xβ = 181.
Finally the last iteration of the loop produces k = 7 which leads to the quotient
q = 230 + 7 = 237 and the remainder y = 181 − 7x = 20. The final quotient
and remainder found are q = 237 and r = y = 20 which are indeed correct since
237 · 23 + 20 = 5471 is true.
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8.1.1 Quotient Estimation

As alluded to earlier the quotient digit k can be estimated from only the leading
digits of both the divisor and dividend. When p leading digits are used from both
the divisor and dividend to form an estimation the accuracy of the estimation
rises as p grows. Technically speaking the estimation is based on assuming the
lower ||y|| − p and ||x|| − p lower digits of the dividend and divisor are zero.

The value of the estimation may off by a few values in either direction and in
general is fairly correct. A simplification [1, pp. 271] of the estimation technique
is to use t + 1 digits of the dividend and t digits of the divisor, in particularly
when t = 1. The estimate using this technique is never too small. For the
following proof let t = ||y|| − 1 and s = ||x|| − 1 represent the most significant
digits of the dividend and divisor respectively.

Proof. The quotient k̂ = ⌊(ytβ + yt−1)/xs⌋ is greater than or equal to

k = ⌊y/(x · β||y||−||x||−1)⌋. The first obvious case is when k̂ = β − 1 in which
case the proof is concluded since the real quotient cannot be larger. For all
other cases k̂ = ⌊(ytβ + yt−1)/xs⌋ and k̂xs ≥ ytβ + yt−1 − xs + 1. The latter
portion of the inequalility −xs + 1 arises from the fact that a truncated integer
division will give the same quotient for at most xs − 1 values. Next a series of
inequalities will prove the hypothesis.

y − k̂x ≤ y − k̂xsβ
s (8.1)

This is trivially true since x ≥ xsβ
s. Next we replace k̂xsβ

s by the previous
inequality for k̂xs.

y − k̂x ≤ ytβ
t + . . .+ y0 − (ytβ

t + yt−1β
t−1 − xsβ

t + βs) (8.2)

By simplifying the previous inequality the following inequality is formed.

y − k̂x ≤ yt−2β
t−2 + . . .+ y0 + xsβ

s − βs (8.3)

Subsequently,

yt−2β
t−2 + . . .+ y0 + xsβ

s − βs < xsβ
s ≤ x (8.4)

Which proves that y − k̂x ≤ x and by consequence k̂ ≥ k which concludes
the proof. QED
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8.1.2 Normalized Integers

For the purposes of division a normalized input is when the divisors leading
digit xn is greater than or equal to β/2. By multiplying both x and y by j =
⌊(β/2)/xn⌋ the quotient remains unchanged and the remainder is simply j times
the original remainder. The purpose of normalization is to ensure the leading
digit of the divisor is sufficiently large such that the estimated quotient will lie in
the domain of a single digit. Consider the maximum dividend (β−1) ·β+(β−1)
and the minimum divisor β/2.

β2 − 1

β/2
≤ 2β − 2

β
(8.5)

At most the quotient approaches 2β, however, in practice this will not occur
since that would imply the previous quotient digit was too small.

8.1.3 Radix-β Division with Remainder
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Algorithm mp div.
Input. mp int a, b
Output. c = ⌊a/b⌋, d = a− bc

1. If b = 0 return(MP VAL).
2. If |a| < |b| then do
2.1 d← a
2.2 c← 0
2.3 Return(MP OKAY ).

Setup the quotient to receive the digits.
3. Grow q to a.used+ 2 digits.
4. q ← 0
5. x← |a|, y ← |b|

6. sign←

{

MP ZPOS if a.sign = b.sign
MP NEG otherwise

Normalize the inputs such that the leading digit of y is greater than or equal to β/2.
7. norm← (lg(β)− 1)− (⌈lg(y)⌉ (mod lg(β)))
8. x← x · 2norm, y ← y · 2norm

Find the leading digit of the quotient.
9. n← x.used− 1, t← y.used− 1
10. y ← y · βn−t

11. While (x ≥ y) do
11.1 qn−t ← qn−t + 1
11.2 x← x− y

12. y ← ⌊y/βn−t⌋

Continued on the next page.

Figure 8.2: Algorithm mp div
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Algorithm mp div (continued).
Input. mp int a, b
Output. c = ⌊a/b⌋, d = a− bc

Now find the remainder fo the digits.
13. for i from n down to (t+ 1) do
13.1 If i > x.used then jump to the next iteration of this loop.
13.2 If xi = yt then
13.2.1 qi−t−1 ← β − 1

13.3 else
13.3.1 r̂ ← xi · β + xi−1

13.3.2 r̂ ← ⌊r̂/yt⌋
13.3.3 qi−t−1 ← r̂

13.4 qi−t−1 ← qi−t−1 + 1

Fixup quotient estimation.
13.5 Loop
13.5.1 qi−t−1 ← qi−t−1 − 1
13.5.2 t1← 0
13.5.3 t10 ← yt−1, t11 ← yt, t1.used← 2
13.5.4 t1← t1 · qi−t−1

13.5.5 t20 ← xi−2, t21 ← xi−1, t22 ← xi, t2.used← 3
13.5.6 If |t1| > |t2| then goto step 13.5.

13.6 t1← y · qi−t−1

13.7 t1← t1 · βi−t−1

13.8 x← x− t1
13.9 If x.sign = MP NEG then
13.10 t1← y
13.11 t1← t1 · βi−t−1

13.12 x← x+ t1
13.13 qi−t−1 ← qi−t−1 − 1

Finalize the result.
14. Clamp excess digits of q
15. c← q, c.sign← sign
16. x.sign← a.sign
17. d← ⌊x/2norm⌋
18. Return(MP OKAY ).

Figure 8.3: Algorithm mp div (continued)
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Algorithm mp div. This algorithm will calculate quotient and remainder
from an integer division given a dividend and divisor. The algorithm is a signed
division and will produce a fully qualified quotient and remainder.

First the divisor b must be non-zero which is enforced in step one. If the
divisor is larger than the dividend than the quotient is implicitly zero and the
remainder is the dividend.

After the first two trivial cases of inputs are handled the variable q is setup
to receive the digits of the quotient. Two unsigned copies of the divisor y and
dividend x are made as well. The core of the division algorithm is an unsigned
division and will only work if the values are positive. Now the two values x and
y must be normalized such that the leading digit of y is greater than or equal
to β/2. This is performed by shifting both to the left by enough bits to get the
desired normalization.

At this point the division algorithm can begin producing digits of the quo-
tient. Recall that maximum value of the estimation used is 2β− 2

β which means
that a digit of the quotient must be first produced by another means. In this
case y is shifted to the left (step ten) so that it has the same number of digits
as x. The loop on step eleven will subtract multiples of the shifted copy of y
until x is smaller. Since the leading digit of y is greater than or equal to β/2
this loop will iterate at most two times to produce the desired leading digit of
the quotient.

Now the remainder of the digits can be produced. The equation q̂ =
⌊xiβ+xi−1

yt
⌋ is used to fairly accurately approximate the true quotient digit. The

estimation can in theory produce an estimation as high as 2β− 2
β but by induc-

tion the upper quotient digit is correct (as established on step eleven) and the
estimate must be less than β.

Recall from section 8.1.1 that the estimation is never too low but may be too
high. The next step of the estimation process is to refine the estimation. The
loop on step 13.5 uses xiβ

2 + xi−1β + xi−2 and qi−t−1(ytβ + yt−1) as a higher
order approximation to adjust the quotient digit.

After both phases of estimation the quotient digit may still be off by a
value of one1. Steps 13.6 and 13.7 subtract the multiple of the divisor from
the dividend (Similar to step 3.3 of algorithm 8.1 and then subsequently add a
multiple of the divisor if the quotient was too large.

Now that the quotient has been determine finializing the result is a matter
of clamping the quotient, fixing the sizes and de-normalizing the remainder. An
important aspect of this algorithm seemingly overlooked in other descriptions

1This is similar to the error introduced by optimizing Barrett reduction.
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such as that of Algorithm 14.20 HAC [2, pp. 598] is that when the estimations
are being made (inside the loop on step 13.5 ) that the digits yt−1, xi−2 and
xi−1 may lie outside their respective boundaries. For example, if t = 0 or i ≤ 1
then the digits would be undefined. In those cases the digits should respectively
be replaced with a zero.

File: bn mp div.c

016

017 #ifdef BN_MP_DIV_SMALL

018

019 /* slower bit-bang division... also smaller */

020 int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)

021 {
022 mp_int ta, tb, tq, q;

023 int res, n, n2;

024

025 /* is divisor zero ? */

026 if (mp_iszero (b) == MP_YES) {
027 return MP_VAL;

028 }
029

030 /* if a < b then q=0, r = a */

031 if (mp_cmp_mag (a, b) == MP_LT) {
032 if (d != NULL) {
033 res = mp_copy (a, d);

034 } else {
035 res = MP_OKAY;

036 }
037 if (c != NULL) {
038 mp_zero (c);

039 }
040 return res;

041 }
042

043 /* init our temps */

044 if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
045 return res;

046 }
047

048

049 mp_set(&tq, 1);

050 n = mp_count_bits(a) - mp_count_bits(b);
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051 if (((res = mp_abs(a, &ta)) != MP_OKAY) ||

052 ((res = mp_abs(b, &tb)) != MP_OKAY) ||

053 ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||

054 ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
055 goto LBL_ERR;

056 }
057

058 while (n-- >= 0) {
059 if (mp_cmp(&tb, &ta) != MP_GT) {
060 if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||

061 ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
062 goto LBL_ERR;

063 }
064 }
065 if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||

066 ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
067 goto LBL_ERR;

068 }
069 }
070

071 /* now q == quotient and ta == remainder */

072 n = a->sign;

073 n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);

074 if (c != NULL) {
075 mp_exch(c, &q);

076 c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;

077 }
078 if (d != NULL) {
079 mp_exch(d, &ta);

080 d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;

081 }
082 LBL_ERR:

083 mp_clear_multi(&ta, &tb, &tq, &q, NULL);

084 return res;

085 }
086

087 #else

088

089 /* integer signed division.

090 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]

091 * HAC pp.598 Algorithm 14.20

092 *
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093 * Note that the description in HAC is horribly

094 * incomplete. For example, it doesn’t consider

095 * the case where digits are removed from ’x’ in

096 * the inner loop. It also doesn’t consider the

097 * case that y has fewer than three digits, etc..

098 *

099 * The overall algorithm is as described as

100 * 14.20 from HAC but fixed to treat these cases.

101 */

102 int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)

103 {
104 mp_int q, x, y, t1, t2;

105 int res, n, t, i, norm, neg;

106

107 /* is divisor zero ? */

108 if (mp_iszero (b) == MP_YES) {
109 return MP_VAL;

110 }
111

112 /* if a < b then q=0, r = a */

113 if (mp_cmp_mag (a, b) == MP_LT) {
114 if (d != NULL) {
115 res = mp_copy (a, d);

116 } else {
117 res = MP_OKAY;

118 }
119 if (c != NULL) {
120 mp_zero (c);

121 }
122 return res;

123 }
124

125 if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
126 return res;

127 }
128 q.used = a->used + 2;

129

130 if ((res = mp_init (&t1)) != MP_OKAY) {
131 goto LBL_Q;

132 }
133

134 if ((res = mp_init (&t2)) != MP_OKAY) {
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135 goto LBL_T1;

136 }
137

138 if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
139 goto LBL_T2;

140 }
141

142 if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
143 goto LBL_X;

144 }
145

146 /* fix the sign */

147 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;

148 x.sign = y.sign = MP_ZPOS;

149

150 /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */

151 norm = mp_count_bits(&y) % DIGIT_BIT;

152 if (norm < (int)(DIGIT_BIT-1)) {
153 norm = (DIGIT_BIT-1) - norm;

154 if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
155 goto LBL_Y;

156 }
157 if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
158 goto LBL_Y;

159 }
160 } else {
161 norm = 0;

162 }
163

164 /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */

165 n = x.used - 1;

166 t = y.used - 1;

167

168 /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */

169 if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */

170 goto LBL_Y;

171 }
172

173 while (mp_cmp (&x, &y) != MP_LT) {
174 ++(q.dp[n - t]);

175 if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
176 goto LBL_Y;
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177 }
178 }
179

180 /* reset y by shifting it back down */

181 mp_rshd (&y, n - t);

182

183 /* step 3. for i from n down to (t + 1) */

184 for (i = n; i >= (t + 1); i--) {
185 if (i > x.used) {
186 continue;

187 }
188

189 /* step 3.1 if xi == yt then set q{i-t-1} to b-1,

190 * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */

191 if (x.dp[i] == y.dp[t]) {
192 q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);

193 } else {
194 mp_word tmp;

195 tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);

196 tmp |= ((mp_word) x.dp[i - 1]);

197 tmp /= ((mp_word) y.dp[t]);

198 if (tmp > (mp_word) MP_MASK) {
199 tmp = MP_MASK;

200 }
201 q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));

202 }
203

204 /* while (q{i-t-1} * (yt * b + y{t-1})) >

205 xi * b**2 + xi-1 * b + xi-2

206

207 do q{i-t-1} -= 1;

208 */

209 q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;

210 do {
211 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;

212

213 /* find left hand */

214 mp_zero (&t1);

215 t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];

216 t1.dp[1] = y.dp[t];

217 t1.used = 2;

218 if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
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219 goto LBL_Y;

220 }
221

222 /* find right hand */

223 t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];

224 t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];

225 t2.dp[2] = x.dp[i];

226 t2.used = 3;

227 } while (mp_cmp_mag(&t1, &t2) == MP_GT);

228

229 /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */

230 if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
231 goto LBL_Y;

232 }
233

234 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
235 goto LBL_Y;

236 }
237

238 if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
239 goto LBL_Y;

240 }
241

242 /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */

243 if (x.sign == MP_NEG) {
244 if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
245 goto LBL_Y;

246 }
247 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
248 goto LBL_Y;

249 }
250 if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
251 goto LBL_Y;

252 }
253

254 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;

255 }
256 }
257

258 /* now q is the quotient and x is the remainder

259 * [which we have to normalize]

260 */
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261

262 /* get sign before writing to c */

263 x.sign = x.used == 0 ? MP_ZPOS : a->sign;

264

265 if (c != NULL) {
266 mp_clamp (&q);

267 mp_exch (&q, c);

268 c->sign = neg;

269 }
270

271 if (d != NULL) {
272 if ((res = mp_div_2d (&x, norm, &x, NULL)) != MP_OKAY) {
273 goto LBL_Y;

274 }
275 mp_exch (&x, d);

276 }
277

278 res = MP_OKAY;

279

280 LBL_Y:mp_clear (&y);

281 LBL_X:mp_clear (&x);

282 LBL_T2:mp_clear (&t2);

283 LBL_T1:mp_clear (&t1);

284 LBL_Q:mp_clear (&q);

285 return res;

286 }
287

288 #endif

289

290 #endif

291

The implementation of this algorithm differs slightly from the pseudo code
presented previously. In this algorithm either of the quotient c or remainder d
may be passed as a NULL pointer which indicates their value is not desired.
For example, the C code to call the division algorithm with only the quotient is

mp_div(&a, &b, &c, NULL); /* c = [a/b] */

Lines 108 and 113 handle the two trivial cases of inputs which are division
by zero and dividend smaller than the divisor respectively. After the two trivial
cases all of the temporary variables are initialized. Line 147 determines the sign
of the quotient and line 148 ensures that both x and y are positive.
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The number of bits in the leading digit is calculated on line 151. Implictly
an mp int with r digits will require lg(β)(r−1)+k bits of precision which when
reduced modulo lg(β) produces the value of k. In this case k is the number of
bits in the leading digit which is exactly what is required. For the algorithm
to operate k must equal lg(β) − 1 and when it does not the inputs must be
normalized by shifting them to the left by lg(β)− 1− k bits.

Throughout the variables n and t will represent the highest digit of x and y
respectively. These are first used to produce the leading digit of the quotient.
The loop beginning on line 184 will produce the remainder of the quotient digits.

The conditional “continue” on line 186 is used to prevent the algorithm
from reading past the leading edge of x which can occur when the algorithm
eliminates multiple non-zero digits in a single iteration. This ensures that xi is
always non-zero since by definition the digits above the i’th position x must be
zero in order for the quotient to be precise2.

Lines 214, 216 and 223 through 225 manually construct the high accuracy
estimations by setting the digits of the two mp int variables directly.

8.2 Single Digit Helpers

This section briefly describes a series of single digit helper algorithms which
come in handy when working with small constants. All of the helper functions
assume the single digit input is positive and will treat them as such.

8.2.1 Single Digit Addition and Subtraction

Both addition and subtraction are performed by “cheating” and using mp set
followed by the higher level addition or subtraction algorithms. As a result these
algorithms are subtantially simpler with a slight cost in performance.

2Precise as far as integer division is concerned.
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Algorithm mp add d.
Input. mp int a and a mp digit b
Output. c = a+ b

1. t← b (mp set)
2. c← a+ t
3. Return(MP OKAY )

Figure 8.4: Algorithm mp add d

Algorithm mp add d. This algorithm initiates a temporary mp int with
the value of the single digit and uses algorithm mp add to add the two values
together.

File: bn mp add d.c
016

017 /* single digit addition */

018 int

019 mp_add_d (mp_int * a, mp_digit b, mp_int * c)

020 {
021 int res, ix, oldused;

022 mp_digit *tmpa, *tmpc, mu;

023

024 /* grow c as required */

025 if (c->alloc < a->used + 1) {
026 if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
027 return res;

028 }
029 }
030

031 /* if a is negative and |a| >= b, call c = |a| - b */

032 if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
033 /* temporarily fix sign of a */

034 a->sign = MP_ZPOS;

035

036 /* c = |a| - b */

037 res = mp_sub_d(a, b, c);

038

039 /* fix sign */

040 a->sign = c->sign = MP_NEG;

041

042 /* clamp */
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043 mp_clamp(c);

044

045 return res;

046 }
047

048 /* old number of used digits in c */

049 oldused = c->used;

050

051 /* sign always positive */

052 c->sign = MP_ZPOS;

053

054 /* source alias */

055 tmpa = a->dp;

056

057 /* destination alias */

058 tmpc = c->dp;

059

060 /* if a is positive */

061 if (a->sign == MP_ZPOS) {
062 /* add digit, after this we’re propagating

063 * the carry.

064 */

065 *tmpc = *tmpa++ + b;

066 mu = *tmpc >> DIGIT_BIT;

067 *tmpc++ &= MP_MASK;

068

069 /* now handle rest of the digits */

070 for (ix = 1; ix < a->used; ix++) {
071 *tmpc = *tmpa++ + mu;

072 mu = *tmpc >> DIGIT_BIT;

073 *tmpc++ &= MP_MASK;

074 }
075 /* set final carry */

076 ix++;

077 *tmpc++ = mu;

078

079 /* setup size */

080 c->used = a->used + 1;

081 } else {
082 /* a was negative and |a| < b */

083 c->used = 1;

084
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085 /* the result is a single digit */

086 if (a->used == 1) {
087 *tmpc++ = b - a->dp[0];

088 } else {
089 *tmpc++ = b;

090 }
091

092 /* setup count so the clearing of oldused

093 * can fall through correctly

094 */

095 ix = 1;

096 }
097

098 /* now zero to oldused */

099 while (ix++ < oldused) {
100 *tmpc++ = 0;

101 }
102 mp_clamp(c);

103

104 return MP_OKAY;

105 }
106

107 #endif

108

Clever use of the letter ’t’.

Subtraction

The single digit subtraction algorithm mp sub d is essentially the same except
it uses mp sub to subtract the digit from the mp int.

8.2.2 Single Digit Multiplication

Single digit multiplication arises enough in division and radix conversion that it
ought to be implement as a special case of the baseline multiplication algorithm.
Essentially this algorithm is a modified version of algorithm s mp mul digs
where one of the multiplicands only has one digit.

Algorithm mp mul d. This algorithm quickly multiplies an mp int by a
small single digit value. It is specially tailored to the job and has a minimal
of overhead. Unlike the full multiplication algorithms this algorithm does not
require any significnat temporary storage or memory allocations.
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Algorithm mp mul d.
Input. mp int a and a mp digit b
Output. c = ab

1. pa← a.used
2. Grow c to at least pa+ 1 digits.
3. oldused← c.used
4. c.used← pa+ 1
5. c.sign← a.sign
6. µ← 0
7. for ix from 0 to pa− 1 do
7.1 r̂ ← µ+ aixb
7.2 cix ← r̂ (mod β)
7.3 µ← ⌊r̂/β⌋

8. cpa ← µ
9. for ix from pa+ 1 to oldused do
9.1 cix ← 0

10. Clamp excess digits of c.
11. Return(MP OKAY ).

Figure 8.5: Algorithm mp mul d

File: bn mp mul d.c
016

017 /* multiply by a digit */

018 int

019 mp_mul_d (mp_int * a, mp_digit b, mp_int * c)

020 {
021 mp_digit u, *tmpa, *tmpc;

022 mp_word r;

023 int ix, res, olduse;

024

025 /* make sure c is big enough to hold a*b */

026 if (c->alloc < a->used + 1) {
027 if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
028 return res;

029 }
030 }
031

032 /* get the original destinations used count */

033 olduse = c->used;
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034

035 /* set the sign */

036 c->sign = a->sign;

037

038 /* alias for a->dp [source] */

039 tmpa = a->dp;

040

041 /* alias for c->dp [dest] */

042 tmpc = c->dp;

043

044 /* zero carry */

045 u = 0;

046

047 /* compute columns */

048 for (ix = 0; ix < a->used; ix++) {
049 /* compute product and carry sum for this term */

050 r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);

051

052 /* mask off higher bits to get a single digit */

053 *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));

054

055 /* send carry into next iteration */

056 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));

057 }
058

059 /* store final carry [if any] and increment ix offset */

060 *tmpc++ = u;

061 ++ix;

062

063 /* now zero digits above the top */

064 while (ix++ < olduse) {
065 *tmpc++ = 0;

066 }
067

068 /* set used count */

069 c->used = a->used + 1;

070 mp_clamp(c);

071

072 return MP_OKAY;

073 }
074 #endif

075
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In this implementation the destination cmay point to the same mp int as the
source a since the result is written after the digit is read from the source. This
function uses pointer aliases tmpa and tmpc for the digits of a and c respectively.

8.2.3 Single Digit Division

Like the single digit multiplication algorithm, single digit division is also a fairly
common algorithm used in radix conversion. Since the divisor is only a single
digit a specialized variant of the division algorithm can be used to compute the
quotient.
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Algorithm mp div d.
Input. mp int a and a mp digit b
Output. c = ⌊a/b⌋, d = a− cb

1. If b = 0 then return(MP VAL).
2. If b = 3 then use algorithm mp div 3 instead.
3. Init q to a.used digits.
4. q.used← a.used
5. q.sign← a.sign
6. ŵ ← 0
7. for ix from a.used− 1 down to 0 do
7.1 ŵ ← ŵβ + aix

7.2 If ŵ ≥ b then
7.2.1 t← ⌊ŵ/b⌋
7.2.2 ŵ ← ŵ (mod b)

7.3 else
7.3.1 t← 0

7.4 qix ← t
8. d← ŵ
9. Clamp excess digits of q.
10. c← q
11. Return(MP OKAY ).

Figure 8.6: Algorithm mp div d

Algorithm mp div d. This algorithm divides the mp int a by the single
mp digit b using an optimized approach. Essentially in every iteration of the
algorithm another digit of the dividend is reduced and another digit of quotient
produced. Provided b < β the value of ŵ after step 7.1 will be limited such that
0 ≤ ⌊ŵ/b⌋ < β.

If the divisor b is equal to three a variant of this algorithm is used which
is called mp div 3. It replaces the division by three with a multiplication by
⌊β/3⌋ and the appropriate shift and residual fixup. In essence it is much like
the Barrett reduction from chapter seven.

File: bn mp div d.c
016

017 static int s_is_power_of_two(mp_digit b, int *p)

018 {
019 int x;

020



8.2. SINGLE DIGIT HELPERS 235

021 /* fast return if no power of two */

022 if ((b == 0) || ((b & (b-1)) != 0)) {
023 return 0;

024 }
025

026 for (x = 0; x < DIGIT_BIT; x++) {
027 if (b == (((mp_digit)1)<<x)) {
028 *p = x;

029 return 1;

030 }
031 }
032 return 0;

033 }
034

035 /* single digit division (based on routine from MPI) */

036 int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)

037 {
038 mp_int q;

039 mp_word w;

040 mp_digit t;

041 int res, ix;

042

043 /* cannot divide by zero */

044 if (b == 0) {
045 return MP_VAL;

046 }
047

048 /* quick outs */

049 if (b == 1 || mp_iszero(a) == MP_YES) {
050 if (d != NULL) {
051 *d = 0;

052 }
053 if (c != NULL) {
054 return mp_copy(a, c);

055 }
056 return MP_OKAY;

057 }
058

059 /* power of two ? */

060 if (s_is_power_of_two(b, &ix) == 1) {
061 if (d != NULL) {
062 *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
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063 }
064 if (c != NULL) {
065 return mp_div_2d(a, ix, c, NULL);

066 }
067 return MP_OKAY;

068 }
069

070 #ifdef BN_MP_DIV_3_C

071 /* three? */

072 if (b == 3) {
073 return mp_div_3(a, c, d);

074 }
075 #endif

076

077 /* no easy answer [c’est la vie]. Just division */

078 if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
079 return res;

080 }
081

082 q.used = a->used;

083 q.sign = a->sign;

084 w = 0;

085 for (ix = a->used - 1; ix >= 0; ix--) {
086 w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);

087

088 if (w >= b) {
089 t = (mp_digit)(w / b);

090 w -= ((mp_word)t) * ((mp_word)b);

091 } else {
092 t = 0;

093 }
094 q.dp[ix] = (mp_digit)t;

095 }
096

097 if (d != NULL) {
098 *d = (mp_digit)w;

099 }
100

101 if (c != NULL) {
102 mp_clamp(&q);

103 mp_exch(&q, c);

104 }
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105 mp_clear(&q);

106

107 return res;

108 }
109

110 #endif

111

Like the implementation of algorithm mp div this algorithm allows either
of the quotient or remainder to be passed as a NULL pointer to indicate the
respective value is not required. This allows a trivial single digit modular re-
duction algorithm, mp mod d to be created.

The division and remainder on lines 43 and @45,processors can divide a
64-bit quantity by a 32-bit quantity and produce the quotient and remainder
simultaneously. Unfortunately the GCC compiler does not recognize that opti-
mization and will actually produce two function calls to find the quotient and
remainder respectively.

8.2.4 Single Digit Root Extraction

Finding the n’th root of an integer is fairly easy as far as numerical analysis is
concerned. Algorithms such as the Newton-Raphson approximation (8.6) series
will converge very quickly to a root for any continuous function f(x).

xi+1 = xi −
f(xi)

f ′(xi)
(8.6)

In this case the n’th root is desired and f(x) = xn−a where a is the integer
of which the root is desired. The derivative of f(x) is simply f ′(x) = nxn−1. Of
particular importance is that this algorithm will be used over the integers not
over the a more continuous domain such as the real numbers. As a result the
root found can be above the true root by few and must be manually adjusted.
Ideally at the end of the algorithm the n’th root b of an integer a is desired such
that bn ≤ a.
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Algorithm mp n root.
Input. mp int a and a mp digit b

Output. cb ≤ a

1. If b is even and a.sign = MP NEG return(MP VAL).
2. sign← a.sign
3. a.sign←MP ZPOS
4. t2← 2
5. Loop
5.1 t1← t2

5.2 t3← t1b−1

5.3 t2← t3 · t1
5.4 t2← t2− a
5.5 t3← t3 · b
5.6 t3← ⌊t2/t3⌋
5.7 t2← t1− t3
5.8 If t1 6= t2 then goto step 5.

6. Loop

6.1 t2← t1b

6.2 If t2 > a then
6.2.1 t1← t1− 1
6.2.2 Goto step 6.

7. a.sign← sign
8. c← t1
9. c.sign← sign
10. Return(MP OKAY ).

Figure 8.7: Algorithm mp n root

Algorithm mp n root. This algorithm finds the integer n’th root of an
input using the Newton-Raphson approach. It is partially optimized based

on the observation that the numerator of f(x)
f ′(x) can be derived from a partial

denominator. That is at first the denominator is calculated by finding xb−1.
This value can then be multiplied by x and have a subtracted from it to find
the numerator. This saves a total of b− 1 multiplications by t1 inside the loop.

The initial value of the approximation is t2 = 2 which allows the algorithm
to start with very small values and quickly converge on the root. Ideally this
algorithm is meant to find the n’th root of an input where n is bounded by
2 ≤ n ≤ 5.
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File: bn mp n root.c
016

017 /* wrapper function for mp_n_root_ex()

018 * computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a

019 */

020 int mp_n_root (mp_int * a, mp_digit b, mp_int * c)

021 {
022 return mp_n_root_ex(a, b, c, 0);

023 }
024

025 #endif

026

8.3 Random Number Generation

Random numbers come up in a variety of activities from public key cryptography
to simple simulations and various randomized algorithms. Pollard-Rho factoring
for example, can make use of random values as starting points to find factors of a
composite integer. In this case the algorithm presented is solely for simulations
and not intended for cryptographic use.
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Algorithm mp rand.
Input. An integer b
Output. A pseudo-random number of b digits

1. a← 0
2. If b ≤ 0 return(MP OKAY )
3. Pick a non-zero random digit d.
4. a← a+ d
5. for ix from 1 to d− 1 do
5.1 a← a · β
5.2 Pick a random digit d.
5.3 a← a+ d

6. Return(MP OKAY ).

Figure 8.8: Algorithm mp rand

Algorithm mp rand. This algorithm produces a pseudo-random integer of
b digits. By ensuring that the first digit is non-zero the algorithm also guarantees
that the final result has at least b digits. It relies heavily on a third-part random
number generator which should ideally generate uniformly all of the integers
from 0 to β − 1.

File: bn mp rand.c

016

017 /* makes a pseudo-random int of a given size */

018 int

019 mp_rand (mp_int * a, int digits)

020 {
021 int res;

022 mp_digit d;

023

024 mp_zero (a);

025 if (digits <= 0) {
026 return MP_OKAY;

027 }
028

029 /* first place a random non-zero digit */

030 do {
031 d = ((mp_digit) abs (MP_GEN_RANDOM())) & MP_MASK;

032 } while (d == 0);

033
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034 if ((res = mp_add_d (a, d, a)) != MP_OKAY) {
035 return res;

036 }
037

038 while (--digits > 0) {
039 if ((res = mp_lshd (a, 1)) != MP_OKAY) {
040 return res;

041 }
042

043 if ((res = mp_add_d (a, ((mp_digit) abs (MP_GEN_RANDOM())), a)) != MP_OK

AY) {
044 return res;

045 }
046 }
047

048 return MP_OKAY;

049 }
050 #endif

051

8.4 Formatted Representations

The ability to emit a radix-n textual representation of an integer is useful for
interacting with human parties. For example, the ability to be given a string of
characters such as “114585” and turn it into the radix-β equivalent would make
it easier to enter numbers into a program.

8.4.1 Reading Radix-n Input

For the purposes of this text we will assume that a simple lower ASCII map (8.9)
is used for the values of from 0 to 63 to printable characters. For example, when
the character “N” is read it represents the integer 23. The first 16 characters of
the map are for the common representations up to hexadecimal. After that they
match the “base64” encoding scheme which are suitable chosen such that they
are printable. While outputting as base64 may not be too helpful for human
operators it does allow communication via non binary mediums.
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Value Char Value Char Value Char Value Char
0 0 1 1 2 2 3 3
4 4 5 5 6 6 7 7
8 8 9 9 10 A 11 B
12 C 13 D 14 E 15 F
16 G 17 H 18 I 19 J
20 K 21 L 22 M 23 N
24 O 25 P 26 Q 27 R
28 S 29 T 30 U 31 V
32 W 33 X 34 Y 35 Z
36 a 37 b 38 c 39 d
40 e 41 f 42 g 43 h
44 i 45 j 46 k 47 l
48 m 49 n 50 o 51 p
52 q 53 r 54 s 55 t
56 u 57 v 58 w 59 x
60 y 61 z 62 + 63 /

Figure 8.9: Lower ASCII Map
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Algorithm mp read radix.
Input. A string str of length sn and radix r.
Output. The radix-β equivalent mp int.

1. If r < 2 or r > 64 return(MP VAL).
2. ix← 0
3. If str0 = “-” then do
3.1 ix← ix+ 1
3.2 sign←MP NEG

4. else
4.1 sign←MP ZPOS

5. a← 0
6. for iy from ix to sn− 1 do
6.1 Let y denote the position in the map of striy.
6.2 If striy is not in the map or y ≥ r then goto step 7.
6.3 a← a · r
6.4 a← a+ y

7. If a 6= 0 then a.sign← sign
8. Return(MP OKAY ).

Figure 8.10: Algorithm mp read radix

Algorithm mp read radix. This algorithm will read an ASCII string
and produce the radix-β mp int representation of the same integer. A minus
symbol “-” may precede the string to indicate the value is negative, otherwise
it is assumed to be positive. The algorithm will read up to sn characters from
the input and will stop when it reads a character it cannot map the algorithm
stops reading characters from the string. This allows numbers to be embedded
as part of larger input without any significant problem.

File: bn mp read radix.c

016

017 /* read a string [ASCII] in a given radix */

018 int mp_read_radix (mp_int * a, const char *str, int radix)

019 {
020 int y, res, neg;

021 char ch;

022

023 /* zero the digit bignum */

024 mp_zero(a);

025
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026 /* make sure the radix is ok */

027 if (radix < 2 || radix > 64) {
028 return MP_VAL;

029 }
030

031 /* if the leading digit is a

032 * minus set the sign to negative.

033 */

034 if (*str == ’-’) {
035 ++str;

036 neg = MP_NEG;

037 } else {
038 neg = MP_ZPOS;

039 }
040

041 /* set the integer to the default of zero */

042 mp_zero (a);

043

044 /* process each digit of the string */

045 while (*str != ’\0’) {
046 /* if the radix <= 36 the conversion is case insensitive

047 * this allows numbers like 1AB and 1ab to represent the same value

048 * [e.g. in hex]

049 */

050 ch = (radix <= 36) ? (char)toupper((int)*str) : *str;

051 for (y = 0; y < 64; y++) {
052 if (ch == mp_s_rmap[y]) {
053 break;

054 }
055 }
056

057 /* if the char was found in the map

058 * and is less than the given radix add it

059 * to the number, otherwise exit the loop.

060 */

061 if (y < radix) {
062 if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) {
063 return res;

064 }
065 if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) {
066 return res;

067 }
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068 } else {
069 break;

070 }
071 ++str;

072 }
073

074 /* set the sign only if a != 0 */

075 if (mp_iszero(a) != MP_YES) {
076 a->sign = neg;

077 }
078 return MP_OKAY;

079 }
080 #endif

081

8.4.2 Generating Radix-n Output

Generating radix-n output is fairly trivial with a division and remainder algo-
rithm.
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Algorithm mp toradix.
Input. A mp int a and an integer r
Output. The radix-r representation of a

1. If r < 2 or r > 64 return(MP VAL).
2. If a = 0 then str = “0” and return(MP OKAY ).
3. t← a
4. str ← “”
5. if t.sign = MP NEG then
5.1 str ← str+ “-”
5.2 t.sign = MP ZPOS

6. While (t 6= 0) do
6.1 d← t (mod r)
6.2 t← ⌊t/r⌋
6.3 Look up d in the map and store the equivalent character in y.
6.4 str ← str + y

7. If str0 =“−” then
7.1 Reverse the digits str1, str2, . . . strn.

8. Otherwise
8.1 Reverse the digits str0, str1, . . . strn.

9. Return(MP OKAY ).

Figure 8.11: Algorithm mp toradix

Algorithm mp toradix. This algorithm computes the radix-r representa-
tion of an mp int a. The “digits” of the representation are extracted by reducing
successive powers of ⌊a/rk⌋ the input modulo r until rk > a. Note that instead
of actually dividing by rk in each iteration the quotient ⌊a/r⌋ is saved for the
next iteration. As a result a series of trivial n× 1 divisions are required instead
of a series of n× k divisions. One design flaw of this approach is that the digits
are produced in the reverse order (see 8.12). To remedy this flaw the digits must
be swapped or simply “reversed”.

File: bn mp toradix.c
016

017 /* stores a bignum as a ASCII string in a given radix (2..64) */

018 int mp_toradix (mp_int * a, char *str, int radix)

019 {
020 int res, digs;

021 mp_int t;

022 mp_digit d;
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Value of a Value of d Value of str
1234 – –
123 4 “4”
12 3 “43”
1 2 “432”
0 1 “4321”

Figure 8.12: Example of Algorithm mp toradix.

023 char *_s = str;

024

025 /* check range of the radix */

026 if (radix < 2 || radix > 64) {
027 return MP_VAL;

028 }
029

030 /* quick out if its zero */

031 if (mp_iszero(a) == MP_YES) {
032 *str++ = ’0’;

033 *str = ’\0’;

034 return MP_OKAY;

035 }
036

037 if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
038 return res;

039 }
040

041 /* if it is negative output a - */

042 if (t.sign == MP_NEG) {
043 ++_s;

044 *str++ = ’-’;

045 t.sign = MP_ZPOS;

046 }
047

048 digs = 0;

049 while (mp_iszero (&t) == MP_NO) {
050 if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
051 mp_clear (&t);

052 return res;

053 }
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054 *str++ = mp_s_rmap[d];

055 ++digs;

056 }
057

058 /* reverse the digits of the string. In this case _s points

059 * to the first digit [exluding the sign] of the number]

060 */

061 bn_reverse ((unsigned char *)_s, digs);

062

063 /* append a NULL so the string is properly terminated */

064 *str = ’\0’;

065

066 mp_clear (&t);

067 return MP_OKAY;

068 }
069

070 #endif

071



Chapter 9

Number Theoretic

Algorithms

This chapter discusses several fundamental number theoretic algorithms such as
the greatest common divisor, least common multiple and Jacobi symbol com-
putation. These algorithms arise as essential components in several key cryp-
tographic algorithms such as the RSA public key algorithm and various Sieve
based factoring algorithms.

9.1 Greatest Common Divisor

The greatest common divisor of two integers a and b, often denoted as (a, b) is
the largest integer k that is a proper divisor of both a and b. That is, k is the
largest integer such that 0 ≡ a (mod k) and 0 ≡ b (mod k) occur simultaneously.

The most common approach (cite) is to reduce one input modulo another.
That is if a and b are divisible by some integer k and if qa+ r = b then r is also
divisible by k. The reduction pattern follows 〈a, b〉 → 〈b, a mod b〉.

249
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Algorithm Greatest Common Divisor (I).
Input. Two positive integers a and b greater than zero.
Output. The greatest common divisor (a, b).

1. While (b > 0) do
1.1 r ← a (mod b)
1.2 a← b
1.3 b← r

2. Return(a).

Figure 9.1: Algorithm Greatest Common Divisor (I)

This algorithm will quickly converge on the greatest common divisor since
the residue r tends diminish rapidly. However, divisions are relatively expensive
operations to perform and should ideally be avoided. There is another approach
based on a similar relationship of greatest common divisors. The faster approach
is based on the observation that if k divides both a and b it will also divide a−b.
In particular, we would like a − b to decrease in magnitude which implies that
b ≥ a.

Algorithm Greatest Common Divisor (II).
Input. Two positive integers a and b greater than zero.
Output. The greatest common divisor (a, b).

1. While (b > 0) do
1.1 Swap a and b such that a is the smallest of the two.
1.2 b← b− a

2. Return(a).

Figure 9.2: Algorithm Greatest Common Divisor (II)

Proof Algorithm 9.2 will return the greatest common divisor of a and b. The
algorithm in figure 9.2 will eventually terminate since b ≥ a the subtraction in
step 1.2 will be a value less than b. In other words in every iteration that tuple
〈a, b〉 decrease in magnitude until eventually a = b. Since both a and b are
always divisible by the greatest common divisor (until the last iteration) and in
the last iteration of the algorithm b = 0, therefore, in the second to last iteration
of the algorithm b = a and clearly (a, a) = a which concludes the proof. QED.

As a matter of practicality algorithm 9.1 decreases far too slowly to be useful.
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Specially if b is much larger than a such that b−a is still very much larger than
a. A simple addition to the algorithm is to divide b − a by a power of some
integer p which does not divide the greatest common divisor but will divide b−a.
In this case b−a

p is also an integer and still divisible by the greatest common
divisor.

However, instead of factoring b − a to find a suitable value of p the powers
of p can be removed from a and b that are in common first. Then inside the
loop whenever b− a is divisible by some power of p it can be safely removed.

Algorithm Greatest Common Divisor (III).
Input. Two positive integers a and b greater than zero.
Output. The greatest common divisor (a, b).

1. k ← 0
2. While a and b are both divisible by p do
2.1 a← ⌊a/p⌋
2.2 b← ⌊b/p⌋
2.3 k ← k + 1

3. While a is divisible by p do
3.1 a← ⌊a/p⌋

4. While b is divisible by p do
4.1 b← ⌊b/p⌋

5. While (b > 0) do
5.1 Swap a and b such that a is the smallest of the two.
5.2 b← b− a
5.3 While b is divisible by p do
5.3.1 b← ⌊b/p⌋

6. Return(a · pk).

Figure 9.3: Algorithm Greatest Common Divisor (III)

This algorithm is based on the first except it removes powers of p first and
inside the main loop to ensure the tuple 〈a, b〉 decreases more rapidly. The
first loop on step two removes powers of p that are in common. A count, k, is
kept which will present a common divisor of pk. After step two the remaining
common divisor of a and b cannot be divisible by p. This means that p can
be safely divided out of the difference b − a so long as the division leaves no
remainder.

In particular the value of p should be chosen such that the division on step
5.3.1 occur often. It also helps that division by p be easy to compute. The ideal
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choice of p is two since division by two amounts to a right logical shift. Another
important observation is that by step five both a and b are odd. Therefore, the
diffrence b − a must be even which means that each iteration removes one bit
from the largest of the pair.

9.1.1 Complete Greatest Common Divisor

The algorithms presented so far cannot handle inputs which are zero or negative.
The following algorithm can handle all input cases properly and will produce
the greatest common divisor.
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Algorithm mp gcd.
Input. mp int a and b
Output. The greatest common divisor c = (a, b).

1. If a = 0 then
1.1 c← |b|
1.2 Return(MP OKAY ).

2. If b = 0 then
2.1 c← |a|
2.2 Return(MP OKAY ).

3. u← |a|, v ← |b|
4. k ← 0
5. While u.used > 0 and v.used > 0 and u0 ≡ v0 ≡ 0 (mod 2)
5.1 k ← k + 1
5.2 u← ⌊u/2⌋
5.3 v ← ⌊v/2⌋

6. While u.used > 0 and u0 ≡ 0 (mod 2)
6.1 u← ⌊u/2⌋

7. While v.used > 0 and v0 ≡ 0 (mod 2)
7.1 v ← ⌊v/2⌋

8. While v.used > 0
8.1 If |u| > |v| then
8.1.1 Swap u and v.

8.2 v ← |v| − |u|
8.3 While v.used > 0 and v0 ≡ 0 (mod 2)
8.3.1 v ← ⌊v/2⌋

9. c← u · 2k

10. Return(MP OKAY ).

Figure 9.4: Algorithm mp gcd

Algorithm mp gcd. This algorithm will produce the greatest common
divisor of two mp ints a and b. The algorithm was originally based on Algorithm
B of Knuth [1, pp. 338] but has been modified to be simpler to explain. In theory
it achieves the same asymptotic working time as Algorithm B and in practice
this appears to be true.

The first two steps handle the cases where either one of or both inputs are
zero. If either input is zero the greatest common divisor is the largest input or
zero if they are both zero. If the inputs are not trivial than u and v are assigned
the absolute values of a and b respectively and the algorithm will proceed to



254 CHAPTER 9. NUMBER THEORETIC ALGORITHMS

reduce the pair.

Step five will divide out any common factors of two and keep track of the
count in the variable k. After this step, two is no longer a factor of the remaining
greatest common divisor between u and v and can be safely evenly divided out
of either whenever they are even. Step six and seven ensure that the u and v
respectively have no more factors of two. At most only one of the while–loops
will iterate since they cannot both be even.

By step eight both of u and v are odd which is required for the inner logic.
First the pair are swapped such that v is equal to or greater than u. This ensures
that the subtraction on step 8.2 will always produce a positive and even result.
Step 8.3 removes any factors of two from the difference u to ensure that in the
next iteration of the loop both are once again odd.

After v = 0 occurs the variable u has the greatest common divisor of the
pair 〈u, v〉 just after step six. The result must be adjusted by multiplying by
the common factors of two (2k) removed earlier.

File: bn mp gcd.c

016

017 /* Greatest Common Divisor using the binary method */

018 int mp_gcd (mp_int * a, mp_int * b, mp_int * c)

019 {
020 mp_int u, v;

021 int k, u_lsb, v_lsb, res;

022

023 /* either zero than gcd is the largest */

024 if (mp_iszero (a) == MP_YES) {
025 return mp_abs (b, c);

026 }
027 if (mp_iszero (b) == MP_YES) {
028 return mp_abs (a, c);

029 }
030

031 /* get copies of a and b we can modify */

032 if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
033 return res;

034 }
035

036 if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
037 goto LBL_U;

038 }
039
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040 /* must be positive for the remainder of the algorithm */

041 u.sign = v.sign = MP_ZPOS;

042

043 /* B1. Find the common power of two for u and v */

044 u_lsb = mp_cnt_lsb(&u);

045 v_lsb = mp_cnt_lsb(&v);

046 k = MIN(u_lsb, v_lsb);

047

048 if (k > 0) {
049 /* divide the power of two out */

050 if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
051 goto LBL_V;

052 }
053

054 if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
055 goto LBL_V;

056 }
057 }
058

059 /* divide any remaining factors of two out */

060 if (u_lsb != k) {
061 if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
062 goto LBL_V;

063 }
064 }
065

066 if (v_lsb != k) {
067 if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
068 goto LBL_V;

069 }
070 }
071

072 while (mp_iszero(&v) == MP_NO) {
073 /* make sure v is the largest */

074 if (mp_cmp_mag(&u, &v) == MP_GT) {
075 /* swap u and v to make sure v is >= u */

076 mp_exch(&u, &v);

077 }
078

079 /* subtract smallest from largest */

080 if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
081 goto LBL_V;
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082 }
083

084 /* Divide out all factors of two */

085 if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
086 goto LBL_V;

087 }
088 }
089

090 /* multiply by 2**k which we divided out at the beginning */

091 if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
092 goto LBL_V;

093 }
094 c->sign = MP_ZPOS;

095 res = MP_OKAY;

096 LBL_V:mp_clear (&u);

097 LBL_U:mp_clear (&v);

098 return res;

099 }
100 #endif

101

This function makes use of the macros mp iszero and mp iseven. The former
evaluates to 1 if the input mp int is equivalent to the integer zero otherwise it
evaluates to 0. The latter evaluates to 1 if the input mp int represents a non-
zero even integer otherwise it evaluates to 0. Note that just because mp iseven
may evaluate to 0 does not mean the input is odd, it could also be zero. The
three trivial cases of inputs are handled on lines 23 through 29. After those
lines the inputs are assumed to be non-zero.

Lines 32 and 36 make local copies u and v of the inputs a and b respectively.
At this point the common factors of two must be divided out of the two inputs.
The block starting at line 43 removes common factors of two by first counting
the number of trailing zero bits in both. The local integer k is used to keep track
of how many factors of 2 are pulled out of both values. It is assumed that the
number of factors will not exceed the maximum value of a C “int” data type1.

At this point there are no more common factors of two in the two values. The
divisions by a power of two on lines 61 and 67 remove any independent factors of
two such that both u and v are guaranteed to be an odd integer before hitting the
main body of the algorithm. The while loop on line 72 performs the reduction

1Strictly speaking no array in C may have more than entries than are accessible by an
“int” so this is not a limitation.
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of the pair until v is equal to zero. The unsigned comparison and subtraction
algorithms are used in place of the full signed routines since both values are
guaranteed to be positive and the result of the subtraction is guaranteed to be
non-negative.

9.2 Least Common Multiple

The least common multiple of a pair of integers is their product divided by their
greatest common divisor. For two integers a and b the least common multiple
is normally denoted as [a, b] and numerically equivalent to ab

(a,b) . For example,

if a = 2 · 2 · 3 = 12 and b = 2 · 3 · 3 · 7 = 126 the least common multiple is
126

(12,126) =
126
6 = 21.

The least common multiple arises often in coding theory as well as number
theory. If two functions have periods of a and b respectively they will collide,
that is be in synchronous states, after only [a, b] iterations. This is why, for
example, random number generators based on Linear Feedback Shift Registers
(LFSR) tend to use registers with periods which are co-prime (e.g. the greatest

common divisor is one.). Similarly in number theory if a composite n has two
prime factors p and q then maximal order of any unit of Z/nZ will be [p−1, q−1].

Algorithm mp lcm.
Input. mp int a and b
Output. The least common multiple c = [a, b].

1. c← (a, b)
2. t← a · b
3. c← ⌊t/c⌋
4. Return(MP OKAY ).

Figure 9.5: Algorithm mp lcm

Algorithm mp lcm. This algorithm computes the least common multiple
of two mp int inputs a and b. It computes the least common multiple directly
by dividing the product of the two inputs by their greatest common divisor.

File: bn mp lcm.c
016

017 /* computes least common multiple as |a*b|/(a, b) */

018 int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
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019 {
020 int res;

021 mp_int t1, t2;

022

023

024 if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) {
025 return res;

026 }
027

028 /* t1 = get the GCD of the two inputs */

029 if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
030 goto LBL_T;

031 }
032

033 /* divide the smallest by the GCD */

034 if (mp_cmp_mag(a, b) == MP_LT) {
035 /* store quotient in t2 such that t2 * b is the LCM */

036 if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
037 goto LBL_T;

038 }
039 res = mp_mul(b, &t2, c);

040 } else {
041 /* store quotient in t2 such that t2 * a is the LCM */

042 if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
043 goto LBL_T;

044 }
045 res = mp_mul(a, &t2, c);

046 }
047

048 /* fix the sign to positive */

049 c->sign = MP_ZPOS;

050

051 LBL_T:

052 mp_clear_multi (&t1, &t2, NULL);

053 return res;

054 }
055 #endif

056
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9.3 Jacobi Symbol Computation

To explain the Jacobi Symbol we shall first discuss the Legendre function2 off
which the Jacobi symbol is defined. The Legendre function computes whether
or not an integer a is a quadratic residue modulo an odd prime p. Numerically
it is equivalent to equation 9.1.

– Tom, don’t be an ass, cite your source here...!

a(p−1)/2 ≡
−1 if a is a quadratic non-residue.
0 if a divides p.
1 if a is a quadratic residue.

(mod p) (9.1)

Proof. Equation 9.1 correctly identifies the residue status of an integer a
modulo a prime p. An integer a is a quadratic residue if the following equation
has a solution.

x2 ≡ a (mod p) (9.2)

Consider the following equation.

0 ≡ xp−1 − 1 ≡
{

(

x2
)(p−1)/2 − a(p−1)/2

}

+
(

a(p−1)/2 − 1
)

(mod p) (9.3)

Whether equation 9.2 has a solution or not equation 9.3 is always true. If
a(p−1)/2 − 1 ≡ 0 (mod p) then the quantity in the braces must be zero. By
reduction,

(

x2
)(p−1)/2 − a(p−1)/2 ≡ 0
(

x2
)(p−1)/2 ≡ a(p−1)/2

x2 ≡ a (mod p) (9.4)

As a result there must be a solution to the quadratic equation and in turn
a must be a quadratic residue. If a does not divide p and a is not a quadratic
residue then the only other value a(p−1)/2 may be congruent to is −1 since

0 ≡ ap−1 − 1 ≡ (a(p−1)/2 + 1)(a(p−1)/2 − 1) (mod p) (9.5)

One of the terms on the right hand side must be zero. QED

2Arrg. What is the name of this?
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9.3.1 Jacobi Symbol

The Jacobi symbol is a generalization of the Legendre function for any odd non

prime moduli p greater than 2. If p =
∏n

i=0 pi then the Jacobi symbol
(

a
p

)

is

equal to the following equation.

(

a

p

)

=

(

a

p0

)(

a

p1

)

. . .

(

a

pn

)

(9.6)

By inspection if p is prime the Jacobi symbol is equivalent to the Legendre
function. The following facts3 will be used to derive an efficient Jacobi symbol
algorithm. Where p is an odd integer greater than two and a, b ∈ Z the following
are true.

1.
(

a
p

)

equals −1, 0 or 1.

2.
(

ab
p

)

=
(

a
p

)(

b
p

)

.

3. If a ≡ b then
(

a
p

)

=
(

b
p

)

.

4.
(

2
p

)

equals 1 if p ≡ 1 or 7 (mod 8). Otherwise, it equals −1.

5.
(

a
p

)

≡
(

p
a

)

· (−1)(p−1)(a−1)/4. More specifically
(

a
p

)

=
(

p
a

)

if p ≡ a ≡
1 (mod 4).

Using these facts if a = 2k · a′ then

(

a

p

)

=

(

2k

p

)(

a′

p

)

=

(

2

p

)k (
a′

p

)

(9.7)

By fact five,

(

a

p

)

=
(p

a

)

· (−1)(p−1)(a−1)/4 (9.8)

3See HAC [2, pp. 72-74] for further details.
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Subsequently by fact three since p ≡ (p mod a) (mod a) then

(

a

p

)

=

(

p mod a

a

)

· (−1)(p−1)(a−1)/4 (9.9)

By putting both observations into equation 9.7 the following simplified equa-
tion is formed.

(

a

p

)

=

(

2

p

)k (
p mod a′

a′

)

· (−1)(p−1)(a′−1)/4 (9.10)

The value of
(

p mod a′

a′

)

can be found by using the same equation recur-

sively. The value of
(

2
p

)k

equals 1 if k is even otherwise it equals
(

2
p

)

. Using this

approach the factors of p do not have to be known. Furthermore, if (a, p) = 1
then the algorithm will terminate when the recursion requests the Jacobi symbol
computation of

(

1
a′

)

which is simply 1.
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Algorithm mp jacobi.
Input. mp int a and p, a ≥ 0, p ≥ 3, p ≡ 1 (mod 2)

Output. The Jacobi symbol c =
(

a
p

)

.

1. If a = 0 then
1.1 c← 0
1.2 Return(MP OKAY ).

2. If a = 1 then
2.1 c← 1
2.2 Return(MP OKAY ).

3. a′ ← a
4. k ← 0
5. While a′.used > 0 and a′

0 ≡ 0 (mod 2)
5.1 k ← k + 1
5.2 a′ ← ⌊a′/2⌋

6. If k ≡ 0 (mod 2) then
6.1 s← 1

7. else
7.1 r ← p0 (mod 8)
7.2 If r = 1 or r = 7 then
7.2.1 s← 1

7.3 else
7.3.1 s← −1

8. If p0 ≡ a′
0 ≡ 3 (mod 4) then

8.1 s← −s
9. If a′ 6= 1 then
9.1 p′ ← p (mod a′)
9.2 s← s ·mp jacobi(p′, a′)

10. c← s
11. Return(MP OKAY ).

Figure 9.6: Algorithm mp jacobi

Algorithm mp jacobi. This algorithm computes the Jacobi symbol for an
arbitrary positive integer a with respect to an odd integer p greater than three.
The algorithm is based on algorithm 2.149 of HAC [2, pp. 73].

Step numbers one and two handle the trivial cases of a = 0 and a = 1
respectively. Step five determines the number of two factors in the input a. If

k is even than the term
(

2
p

)k

must always evaluate to one. If k is odd than the

term evaluates to one if p0 is congruent to one or seven modulo eight, otherwise
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it evaluates to −1. After the the
(

2
p

)k

term is handled the (−1)(p−1)(a′−1)/4

is computed and multiplied against the current product s. The latter term
evaluates to one if both p and a′ are congruent to one modulo four, otherwise
it evaluates to negative one.

By step nine if a′ does not equal one a recursion is required. Step 9.1

computes p′ ≡ p (mod a′) and will recurse to compute
(

p′

a′

)

which is multiplied

against the current Jacobi product.

File: bn mp jacobi.c

016

017 /* computes the jacobi c = (a | n) (or Legendre if n is prime)

018 * HAC pp. 73 Algorithm 2.149

019 */

020 int mp_jacobi (mp_int * a, mp_int * p, int *c)

021 {
022 mp_int a1, p1;

023 int k, s, r, res;

024 mp_digit residue;

025

026 /* if p <= 0 return MP_VAL */

027 if (mp_cmp_d(p, 0) != MP_GT) {
028 return MP_VAL;

029 }
030

031 /* step 1. if a == 0, return 0 */

032 if (mp_iszero (a) == MP_YES) {
033 *c = 0;

034 return MP_OKAY;

035 }
036

037 /* step 2. if a == 1, return 1 */

038 if (mp_cmp_d (a, 1) == MP_EQ) {
039 *c = 1;

040 return MP_OKAY;

041 }
042

043 /* default */

044 s = 0;

045

046 /* step 3. write a = a1 * 2**k */

047 if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
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048 return res;

049 }
050

051 if ((res = mp_init (&p1)) != MP_OKAY) {
052 goto LBL_A1;

053 }
054

055 /* divide out larger power of two */

056 k = mp_cnt_lsb(&a1);

057 if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
058 goto LBL_P1;

059 }
060

061 /* step 4. if e is even set s=1 */

062 if ((k & 1) == 0) {
063 s = 1;

064 } else {
065 /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */

066 residue = p->dp[0] & 7;

067

068 if (residue == 1 || residue == 7) {
069 s = 1;

070 } else if (residue == 3 || residue == 5) {
071 s = -1;

072 }
073 }
074

075 /* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */

076 if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
077 s = -s;

078 }
079

080 /* if a1 == 1 we’re done */

081 if (mp_cmp_d (&a1, 1) == MP_EQ) {
082 *c = s;

083 } else {
084 /* n1 = n mod a1 */

085 if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) {
086 goto LBL_P1;

087 }
088 if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
089 goto LBL_P1;
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090 }
091 *c = s * r;

092 }
093

094 /* done */

095 res = MP_OKAY;

096 LBL_P1:mp_clear (&p1);

097 LBL_A1:mp_clear (&a1);

098 return res;

099 }
100 #endif

101

As a matter of practicality the variable a′ as per the pseudo-code is reprensented
by the variable a1 since the ′ symbol is not valid for a C variable name character.

The two simple cases of a = 0 and a = 1 are handled at the very beginning to
simplify the algorithm. If the input is non-trivial the algorithm has to proceed
compute the Jacobi. The variable s is used to hold the current Jacobi product.
Note that s is merely a C “int” data type since the values it may obtain are
merely −1, 0 and 1.

After a local copy of a is made all of the factors of two are divided out and
the total stored in k. Technically only the least significant bit of k is required,
however, it makes the algorithm simpler to follow to perform an addition. In
practice an exclusive-or and addition have the same processor requirements and
neither is faster than the other.

Line 61 through 70 determines the value of
(

2
p

)k

. If the least significant bit

of k is zero than k is even and the value is one. Otherwise, the value of s depends
on which residue class p belongs to modulo eight. The value of (−1)(p−1)(a′−1)/4

is compute and multiplied against s on lines 75 through 73.
Finally, if a1 does not equal one the algorithm must recurse and compute

(

p′

a′

)

.

– Comment about default s and such...

9.4 Modular Inverse

The modular inverse of a number actually refers to the modular multiplicative
inverse. Essentially for any integer a such that (a, p) = 1 there exist another
integer b such that ab ≡ 1 (mod p). The integer b is called the multiplicative
inverse of a which is denoted as b = a−1. Technically speaking modular inversion
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is a well defined operation for any finite ring or field not just for rings and fields
of integers. However, the former will be the matter of discussion.

The simplest approach is to compute the algebraic inverse of the input. That
is to compute b ≡ aΦ(p)−1. If Φ(p) is the order of the multiplicative subgroup
modulo p then b must be the multiplicative inverse of a. The proof of which is
trivial.

ab ≡ a
(

aΦ(p)−1
)

≡ aΦ(p) ≡ a0 ≡ 1 (mod p) (9.11)

However, as simple as this approach may be it has two serious flaws. It
requires that the value of Φ(p) be known which if p is composite requires all of
the prime factors. This approach also is very slow as the size of p grows.

A simpler approach is based on the observation that solving for the multi-
plicative inverse is equivalent to solving the linear Diophantine4 equation.

ab+ pq = 1 (9.12)

Where a, b, p and q are all integers. If such a pair of integers 〈b, q〉 exist than
b is the multiplicative inverse of a modulo p. The extended Euclidean algorithm
(Knuth [1, pp. 342]) can be used to solve such equations provided (a, p) = 1.
However, instead of using that algorithm directly a variant known as the binary
Extended Euclidean algorithm will be used in its place. The binary approach
is very similar to the binary greatest common divisor algorithm except it will
produce a full solution to the Diophantine equation.

9.4.1 General Case

4See LeVeque [?, pp. 40-43] for more information.
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Algorithm mp invmod.
Input. mp int a and b, (a, b) = 1, p ≥ 2, 0 < a < p.
Output. The modular inverse c ≡ a−1 (mod b).

1. If b ≤ 0 then return(MP VAL).
2. If b0 ≡ 1 (mod 2) then use algorithm fast mp invmod.
3. x← |a|, y ← b
4. If x0 ≡ y0 ≡ 0 (mod 2) then return(MP VAL).
5. B ← 0, C ← 0, A← 1, D ← 1
6. While u.used > 0 and u0 ≡ 0 (mod 2)
6.1 u← ⌊u/2⌋
6.2 If (A.used > 0 and A0 ≡ 1 (mod 2)) or (B.used > 0 and B0 ≡ 1 (mod 2)) then
6.2.1 A← A+ y
6.2.2 B ← B − x

6.3 A← ⌊A/2⌋
6.4 B ← ⌊B/2⌋

7. While v.used > 0 and v0 ≡ 0 (mod 2)
7.1 v ← ⌊v/2⌋
7.2 If (C.used > 0 and C0 ≡ 1 (mod 2)) or (D.used > 0 and D0 ≡ 1 (mod 2)) then
7.2.1 C ← C + y
7.2.2 D ← D − x

7.3 C ← ⌊C/2⌋
7.4 D ← ⌊D/2⌋

8. If u ≥ v then
8.1 u← u− v
8.2 A← A− C
8.3 B ← B −D

9. else
9.1 v ← v − u
9.2 C ← C −A
9.3 D ← D −B

10. If u 6= 0 goto step 6.
11. If v 6= 1 return(MP VAL).
12. While C ≤ 0 do
12.1 C ← C + b

13. While C ≥ b do
13.1 C ← C − b

14. c← C
15. Return(MP OKAY ).

Algorithm mp invmod. This algorithm computes the modular multi-
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plicative inverse of an integer a modulo an integer b. This algorithm is a vari-
ation of the extended binary Euclidean algorithm from HAC [2, pp. 608]. It
has been modified to only compute the modular inverse and not a complete
Diophantine solution.

If b ≤ 0 than the modulus is invalid and MP VAL is returned. Similarly if
both a and b are even then there cannot be a multiplicative inverse for a and
the error is reported.

The astute reader will observe that steps seven through nine are very similar
to the binary greatest common divisor algorithm mp gcd. In this case the other
variables to the Diophantine equation are solved. The algorithm terminates
when u = 0 in which case the solution is

Ca+Db = v (9.13)

If v, the greatest common divisor of a and b is not equal to one then the
algorithm will report an error as no inverse exists. Otherwise, C is the modular
inverse of a. The actual value of C is congruent to, but not necessarily equal to,
the ideal modular inverse which should lie within 1 ≤ a−1 < b. Step numbers
twelve and thirteen adjust the inverse until it is in range. If the original input
a is within 0 < a < p then only a couple of additions or subtractions will be
required to adjust the inverse.

File: bn mp invmod.c

016

017 /* hac 14.61, pp608 */

018 int mp_invmod (mp_int * a, mp_int * b, mp_int * c)

019 {
020 /* b cannot be negative */

021 if (b->sign == MP_NEG || mp_iszero(b) == MP_YES) {
022 return MP_VAL;

023 }
024

025 #ifdef BN_FAST_MP_INVMOD_C

026 /* if the modulus is odd we can use a faster routine instead */

027 if (mp_isodd (b) == MP_YES) {
028 return fast_mp_invmod (a, b, c);

029 }
030 #endif

031

032 #ifdef BN_MP_INVMOD_SLOW_C

033 return mp_invmod_slow(a, b, c);
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034 #else

035 return MP_VAL;

036 #endif

037 }
038 #endif

039

Odd Moduli

When the modulus b is odd the variables A and C are fixed and are not required
to compute the inverse. In particular by attempting to solve the Diophantine
Cb+Da = 1 only B and D are required to find the inverse of a.

The algorithm fast mp invmod is a direct adaptation of algorithm mp invmod
with all all steps involving either A or C removed. This optimization will halve
the time required to compute the modular inverse.

9.5 Primality Tests

A non-zero integer a is said to be prime if it is not divisible by any other integer
excluding one and itself. For example, a = 7 is prime since the integers 2 . . . 6
do not evenly divide a. By contrast, a = 6 is not prime since a = 6 = 2 · 3.

Prime numbers arise in cryptography considerably as they allow finite fields
to be formed. The ability to determine whether an integer is prime or not quickly
has been a viable subject in cryptography and number theory for considerable
time. The algorithms that will be presented are all probablistic algorithms in
that when they report an integer is composite it must be composite. However,
when the algorithms report an integer is prime the algorithm may be incorrect.

As will be discussed it is possible to limit the probability of error so well
that for practical purposes the probablity of error might as well be zero. For
the purposes of these discussions let n represent the candidate integer of which
the primality is in question.

9.5.1 Trial Division

Trial division means to attempt to evenly divide a candidate integer by small
prime integers. If the candidate can be evenly divided it obviously cannot be
prime. By dividing by all primes 1 < p ≤ √n this test can actually prove
whether an integer is prime. However, such a test would require a prohibitive
amount of time as n grows.
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Instead of dividing by every prime, a smaller, more mangeable set of primes
may be used instead. By performing trial division with only a subset of the
primes less than

√
n + 1 the algorithm cannot prove if a candidate is prime.

However, often it can prove a candidate is not prime.
The benefit of this test is that trial division by small values is fairly efficient.

Specially compared to the other algorithms that will be discussed shortly. The
probability that this approach correctly identifies a composite candidate when
tested with all primes upto q is given by 1− 1.12

ln(q) . The graph (??, will be added

later) demonstrates the probability of success for the range 3 ≤ q ≤ 100.
At approximately q = 30 the gain of performing further tests diminishes

fairly quickly. At q = 90 further testing is generally not going to be of any
practical use. In the case of LibTomMath the default limit q = 256 was chosen
since it is not too high and will eliminate approximately 80% of all candidate
integers. The constant PRIME SIZE is equal to the number of primes in the
test base. The array prime tab is an array of the first PRIME SIZE prime
numbers.

Algorithm mp prime is divisible.
Input. mp int a
Output. c = 1 if n is divisible by a small prime, otherwise c = 0.

1. for ix from 0 to PRIME SIZE do
1.1 d← n (mod prime tabix)
1.2 If d = 0 then
1.2.1 c← 1
1.2.2 Return(MP OKAY ).

2. c← 0
3. Return(MP OKAY ).

Figure 9.7: Algorithm mp prime is divisible

Algorithm mp prime is divisible. This algorithm attempts to deter-
mine if a candidate integer n is composite by performing trial divisions.

File: bn mp prime is divisible.c
016

017 /* determines if an integers is divisible by one

018 * of the first PRIME_SIZE primes or not

019 *

020 * sets result to 0 if not, 1 if yes
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021 */

022 int mp_prime_is_divisible (mp_int * a, int *result)

023 {
024 int err, ix;

025 mp_digit res;

026

027 /* default to not */

028 *result = MP_NO;

029

030 for (ix = 0; ix < PRIME_SIZE; ix++) {
031 /* what is a mod LBL_prime_tab[ix] */

032 if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) {
033 return err;

034 }
035

036 /* is the residue zero? */

037 if (res == 0) {
038 *result = MP_YES;

039 return MP_OKAY;

040 }
041 }
042

043 return MP_OKAY;

044 }
045 #endif

046

The algorithm defaults to a return of 0 in case an error occurs. The values
in the prime table are all specified to be in the range of a mp digit. The table
prime tab is defined in the following file.

File: bn prime tab.c
016 const mp_digit ltm_prime_tab[] = {
017 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,

018 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,

019 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,

020 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,

021 #ifndef MP_8BIT

022 0x0083,

023 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,

024 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,

025 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,

026 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
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027

028 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,

029 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,

030 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,

031 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,

032 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,

033 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,

034 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,

035 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,

036

037 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,

038 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,

039 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,

040 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,

041 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,

042 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,

043 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,

044 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,

045

046 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,

047 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,

048 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,

049 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,

050 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,

051 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,

052 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,

053 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653

054 #endif

055 };
056 #endif

057

Note that there are two possible tables. When an mp digit is 7-bits long
only the primes upto 127 may be included, otherwise the primes upto 1619 are
used. Note that the value of PRIME SIZE is a constant dependent on the
size of a mp digit.

9.5.2 The Fermat Test

The Fermat test is probably one the oldest tests to have a non-trivial probability
of success. It is based on the fact that if n is in fact prime then an ≡ a (mod n)
for all 0 < a < n. The reason being that if n is prime than the order of the
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multiplicative sub group is n− 1. Any base a must have an order which divides
n− 1 and as such an is equivalent to a1 = a.

If n is composite then any given base a does not have to have a period which
divides n − 1. In which case it is possible that an 6≡ a (mod n). However, this
test is not absolute as it is possible that the order of a base will divide n − 1
which would then be reported as prime. Such a base yields what is known as a
Fermat pseudo-prime. Several integers known as Carmichael numbers will be a
pseudo-prime to all valid bases. Fortunately such numbers are extremely rare
as n grows in size.

Algorithm mp prime fermat.
Input. mp int a and b, a ≥ 2, 0 < b < a.
Output. c = 1 if ba ≡ b (mod a), otherwise c = 0.

1. t← ba (mod a)
2. If t = b then
2.1 c = 1

3. else
3.1 c = 0

4. Return(MP OKAY ).

Figure 9.8: Algorithm mp prime fermat

Algorithm mp prime fermat. This algorithm determines whether an
mp int a is a Fermat prime to the base b or not. It uses a single modular
exponentiation to determine the result.

File: bn mp prime fermat.c
016

017 /* performs one Fermat test.

018 *

019 * If "a" were prime then b**a == b (mod a) since the order of

020 * the multiplicative sub-group would be phi(a) = a-1. That means

021 * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).

022 *

023 * Sets result to 1 if the congruence holds, or zero otherwise.

024 */

025 int mp_prime_fermat (mp_int * a, mp_int * b, int *result)

026 {
027 mp_int t;

028 int err;
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029

030 /* default to composite */

031 *result = MP_NO;

032

033 /* ensure b > 1 */

034 if (mp_cmp_d(b, 1) != MP_GT) {
035 return MP_VAL;

036 }
037

038 /* init t */

039 if ((err = mp_init (&t)) != MP_OKAY) {
040 return err;

041 }
042

043 /* compute t = b**a mod a */

044 if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) {
045 goto LBL_T;

046 }
047

048 /* is it equal to b? */

049 if (mp_cmp (&t, b) == MP_EQ) {
050 *result = MP_YES;

051 }
052

053 err = MP_OKAY;

054 LBL_T:mp_clear (&t);

055 return err;

056 }
057 #endif

058

9.5.3 The Miller-Rabin Test

The Miller-Rabin (citation) test is another primality test which has tighter error
bounds than the Fermat test specifically with sequentially chosen candidate
integers. The algorithm is based on the observation that if n − 1 = 2kr and if
br 6≡ ±1 then after upto k − 1 squarings the value must be equal to −1. The
squarings are stopped as soon as −1 is observed. If the value of 1 is observed
first it means that some value not congruent to ±1 when squared equals one
which cannot occur if n is prime.

Algorithm mp prime miller rabin. This algorithm performs one trial
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Algorithm mp prime miller rabin.
Input. mp int a and b, a ≥ 2, 0 < b < a.
Output. c = 1 if a is a Miller-Rabin prime to the base a, otherwise c = 0.

1. a′ ← a− 1
2. r ← n1
3. c← 0, s← 0
4. While r.used > 0 and r0 ≡ 0 (mod 2)
4.1 s← s+ 1
4.2 r ← ⌊r/2⌋

5. y ← br (mod a)
6. If y 6≡ ±1 then
6.1 j ← 1
6.2 While j ≤ (s− 1) and y 6≡ a′

6.2.1 y ← y2 (mod a)
6.2.2 If y = 1 then goto step 8.
6.2.3 j ← j + 1

6.3 If y 6≡ a′ goto step 8.
7. c← 1
8. Return(MP OKAY ).

Figure 9.9: Algorithm mp prime miller rabin

round of the Miller-Rabin algorithm to the base b. It will set c = 1 if the
algorithm cannot determine if b is composite or c = 0 if b is provably composite.
The values of s and r are computed such that a′ = a− 1 = 2sr.

If the value y ≡ br is congruent to ±1 then the algorithm cannot prove if
a is composite or not. Otherwise, the algorithm will square y upto s− 1 times
stopping only when y ≡ −1. If y2 ≡ 1 and y 6≡ ±1 then the algorithm can
report that a is provably composite. If the algorithm performs s− 1 squarings
and y 6≡ −1 then a is provably composite. If a is not provably composite then
it is probably prime.

File: bn mp prime miller rabin.c

016

017 /* Miller-Rabin test of "a" to the base of "b" as described in

018 * HAC pp. 139 Algorithm 4.24

019 *

020 * Sets result to 0 if definitely composite or 1 if probably prime.

021 * Randomly the chance of error is no more than 1/4 and often

022 * very much lower.
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023 */

024 int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)

025 {
026 mp_int n1, y, r;

027 int s, j, err;

028

029 /* default */

030 *result = MP_NO;

031

032 /* ensure b > 1 */

033 if (mp_cmp_d(b, 1) != MP_GT) {
034 return MP_VAL;

035 }
036

037 /* get n1 = a - 1 */

038 if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
039 return err;

040 }
041 if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
042 goto LBL_N1;

043 }
044

045 /* set 2**s * r = n1 */

046 if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
047 goto LBL_N1;

048 }
049

050 /* count the number of least significant bits

051 * which are zero

052 */

053 s = mp_cnt_lsb(&r);

054

055 /* now divide n - 1 by 2**s */

056 if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
057 goto LBL_R;

058 }
059

060 /* compute y = b**r mod a */

061 if ((err = mp_init (&y)) != MP_OKAY) {
062 goto LBL_R;

063 }
064 if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
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065 goto LBL_Y;

066 }
067

068 /* if y != 1 and y != n1 do */

069 if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
070 j = 1;

071 /* while j <= s-1 and y != n1 */

072 while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
073 if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
074 goto LBL_Y;

075 }
076

077 /* if y == 1 then composite */

078 if (mp_cmp_d (&y, 1) == MP_EQ) {
079 goto LBL_Y;

080 }
081

082 ++j;

083 }
084

085 /* if y != n1 then composite */

086 if (mp_cmp (&y, &n1) != MP_EQ) {
087 goto LBL_Y;

088 }
089 }
090

091 /* probably prime now */

092 *result = MP_YES;

093 LBL_Y:mp_clear (&y);

094 LBL_R:mp_clear (&r);

095 LBL_N1:mp_clear (&n1);

096 return err;

097 }
098 #endif

099
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