118 lines
2.7 KiB
C
118 lines
2.7 KiB
C
#include <tommath_private.h>
|
|
#ifdef BN_MP_JACOBI_C
|
|
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
*
|
|
* LibTomMath is a library that provides multiple-precision
|
|
* integer arithmetic as well as number theoretic functionality.
|
|
*
|
|
* The library was designed directly after the MPI library by
|
|
* Michael Fromberger but has been written from scratch with
|
|
* additional optimizations in place.
|
|
*
|
|
* The library is free for all purposes without any express
|
|
* guarantee it works.
|
|
*/
|
|
|
|
/* computes the jacobi c = (a | n) (or Legendre if n is prime)
|
|
* HAC pp. 73 Algorithm 2.149
|
|
* HAC is wrong here, as the special case of (0 | 1) is not
|
|
* handled correctly.
|
|
*/
|
|
int mp_jacobi(const mp_int *a, const mp_int *n, int *c)
|
|
{
|
|
mp_int a1, p1;
|
|
int k, s, r, res;
|
|
mp_digit residue;
|
|
|
|
/* if a < 0 return MP_VAL */
|
|
if (mp_isneg(a) == MP_YES) {
|
|
return MP_VAL;
|
|
}
|
|
|
|
/* if n <= 0 return MP_VAL */
|
|
if (mp_cmp_d(n, 0uL) != MP_GT) {
|
|
return MP_VAL;
|
|
}
|
|
|
|
/* step 1. handle case of a == 0 */
|
|
if (mp_iszero(a) == MP_YES) {
|
|
/* special case of a == 0 and n == 1 */
|
|
if (mp_cmp_d(n, 1uL) == MP_EQ) {
|
|
*c = 1;
|
|
} else {
|
|
*c = 0;
|
|
}
|
|
return MP_OKAY;
|
|
}
|
|
|
|
/* step 2. if a == 1, return 1 */
|
|
if (mp_cmp_d(a, 1uL) == MP_EQ) {
|
|
*c = 1;
|
|
return MP_OKAY;
|
|
}
|
|
|
|
/* default */
|
|
s = 0;
|
|
|
|
/* step 3. write a = a1 * 2**k */
|
|
if ((res = mp_init_copy(&a1, a)) != MP_OKAY) {
|
|
return res;
|
|
}
|
|
|
|
if ((res = mp_init(&p1)) != MP_OKAY) {
|
|
goto LBL_A1;
|
|
}
|
|
|
|
/* divide out larger power of two */
|
|
k = mp_cnt_lsb(&a1);
|
|
if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
|
|
goto LBL_P1;
|
|
}
|
|
|
|
/* step 4. if e is even set s=1 */
|
|
if (((unsigned)k & 1u) == 0u) {
|
|
s = 1;
|
|
} else {
|
|
/* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
|
|
residue = n->dp[0] & 7u;
|
|
|
|
if ((residue == 1u) || (residue == 7u)) {
|
|
s = 1;
|
|
} else if ((residue == 3u) || (residue == 5u)) {
|
|
s = -1;
|
|
}
|
|
}
|
|
|
|
/* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
|
|
if (((n->dp[0] & 3u) == 3u) && ((a1.dp[0] & 3u) == 3u)) {
|
|
s = -s;
|
|
}
|
|
|
|
/* if a1 == 1 we're done */
|
|
if (mp_cmp_d(&a1, 1uL) == MP_EQ) {
|
|
*c = s;
|
|
} else {
|
|
/* n1 = n mod a1 */
|
|
if ((res = mp_mod(n, &a1, &p1)) != MP_OKAY) {
|
|
goto LBL_P1;
|
|
}
|
|
if ((res = mp_jacobi(&p1, &a1, &r)) != MP_OKAY) {
|
|
goto LBL_P1;
|
|
}
|
|
*c = s * r;
|
|
}
|
|
|
|
/* done */
|
|
res = MP_OKAY;
|
|
LBL_P1:
|
|
mp_clear(&p1);
|
|
LBL_A1:
|
|
mp_clear(&a1);
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
/* ref: $Format:%D$ */
|
|
/* git commit: $Format:%H$ */
|
|
/* commit time: $Format:%ai$ */
|