201 lines
5.0 KiB
C
201 lines
5.0 KiB
C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
*
|
|
* LibTomMath is library that provides for multiple-precision
|
|
* integer arithmetic as well as number theoretic functionality.
|
|
*
|
|
* The library is designed directly after the MPI library by
|
|
* Michael Fromberger but has been written from scratch with
|
|
* additional optimizations in place.
|
|
*
|
|
* The library is free for all purposes without any express
|
|
* guarantee it works.
|
|
*
|
|
* Tom St Denis, tomstdenis@iahu.ca, http://libtommath.iahu.ca
|
|
*/
|
|
#include <tommath.h>
|
|
|
|
/* integer signed division. c*b + d == a [e.g. a/b, c=quotient, d=remainder]
|
|
* HAC pp.598 Algorithm 14.20
|
|
*
|
|
* Note that the description in HAC is horribly incomplete. For example,
|
|
* it doesn't consider the case where digits are removed from 'x' in the inner
|
|
* loop. It also doesn't consider the case that y has fewer than three digits, etc..
|
|
*
|
|
* The overall algorithm is as described as 14.20 from HAC but fixed to treat these cases.
|
|
*/
|
|
int
|
|
mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
{
|
|
mp_int q, x, y, t1, t2;
|
|
int res, n, t, i, norm, neg;
|
|
|
|
|
|
/* is divisor zero ? */
|
|
if (mp_iszero (b) == 1) {
|
|
return MP_VAL;
|
|
}
|
|
|
|
/* if a < b then q=0, r = a */
|
|
if (mp_cmp_mag (a, b) == MP_LT) {
|
|
if (d != NULL) {
|
|
res = mp_copy (a, d);
|
|
} else {
|
|
res = MP_OKAY;
|
|
}
|
|
if (c != NULL) {
|
|
mp_zero (c);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
|
|
return res;
|
|
}
|
|
q.used = a->used + 2;
|
|
|
|
if ((res = mp_init (&t1)) != MP_OKAY) {
|
|
goto __Q;
|
|
}
|
|
|
|
if ((res = mp_init (&t2)) != MP_OKAY) {
|
|
goto __T1;
|
|
}
|
|
|
|
if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
|
|
goto __T2;
|
|
}
|
|
|
|
if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
|
|
goto __X;
|
|
}
|
|
|
|
/* fix the sign */
|
|
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
|
x.sign = y.sign = MP_ZPOS;
|
|
|
|
/* normalize both x and y, ensure that y >= b/2, [b == 2^DIGIT_BIT] */
|
|
norm = 0;
|
|
while ((y.dp[y.used - 1] & (((mp_digit) 1) << (DIGIT_BIT - 1))) ==
|
|
((mp_digit) 0)) {
|
|
++norm;
|
|
if ((res = mp_mul_2d (&x, 1, &x)) != MP_OKAY) {
|
|
goto __Y;
|
|
}
|
|
if ((res = mp_mul_2d (&y, 1, &y)) != MP_OKAY) {
|
|
goto __Y;
|
|
}
|
|
}
|
|
|
|
/* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
|
|
n = x.used - 1;
|
|
t = y.used - 1;
|
|
|
|
/* step 2. while (x >= y*b^n-t) do { q[n-t] += 1; x -= y*b^{n-t} } */
|
|
if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b^{n-t} */
|
|
goto __Y;
|
|
}
|
|
|
|
while (mp_cmp (&x, &y) != MP_LT) {
|
|
++(q.dp[n - t]);
|
|
if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
|
|
goto __Y;
|
|
}
|
|
}
|
|
|
|
/* reset y by shifting it back down */
|
|
mp_rshd (&y, n - t);
|
|
|
|
/* step 3. for i from n down to (t + 1) */
|
|
for (i = n; i >= (t + 1); i--) {
|
|
if (i > x.alloc)
|
|
continue;
|
|
|
|
/* step 3.1 if xi == yt then set q{i-t-1} to b-1, otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
|
|
if (x.dp[i] == y.dp[t]) {
|
|
q.dp[i - t - 1] = ((1UL << DIGIT_BIT) - 1UL);
|
|
} else {
|
|
mp_word tmp;
|
|
tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
|
|
tmp |= ((mp_word) x.dp[i - 1]);
|
|
tmp /= ((mp_word) y.dp[t]);
|
|
if (tmp > (mp_word) MP_MASK)
|
|
tmp = MP_MASK;
|
|
q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
|
|
}
|
|
|
|
/* step 3.2 while (q{i-t-1} * (yt * b + y{t-1})) > xi * b^2 + xi-1 * b + xi-2 do q{i-t-1} -= 1; */
|
|
q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
|
|
do {
|
|
q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
|
|
|
|
/* find left hand */
|
|
mp_zero (&t1);
|
|
t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
|
|
t1.dp[1] = y.dp[t];
|
|
t1.used = 2;
|
|
if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
|
|
goto __Y;
|
|
}
|
|
|
|
/* find right hand */
|
|
t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
|
|
t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
|
|
t2.dp[2] = x.dp[i];
|
|
t2.used = 3;
|
|
}
|
|
while (mp_cmp (&t1, &t2) == MP_GT);
|
|
|
|
/* step 3.3 x = x - q{i-t-1} * y * b^{i-t-1} */
|
|
if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
|
|
goto __Y;
|
|
}
|
|
|
|
if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
|
|
goto __Y;
|
|
}
|
|
|
|
if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
|
|
goto __Y;
|
|
}
|
|
|
|
/* step 3.4 if x < 0 then { x = x + y*b^{i-t-1}; q{i-t-1} -= 1; } */
|
|
if (x.sign == MP_NEG) {
|
|
if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
|
|
goto __Y;
|
|
}
|
|
if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
|
|
goto __Y;
|
|
}
|
|
if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
|
|
goto __Y;
|
|
}
|
|
|
|
q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
|
|
}
|
|
}
|
|
|
|
/* now q is the quotient and x is the remainder [which we have to normalize] */
|
|
/* get sign before writing to c */
|
|
x.sign = a->sign;
|
|
if (c != NULL) {
|
|
mp_clamp (&q);
|
|
mp_exch (&q, c);
|
|
c->sign = neg;
|
|
}
|
|
|
|
if (d != NULL) {
|
|
mp_div_2d (&x, norm, &x, NULL);
|
|
mp_clamp (&x);
|
|
mp_exch (&x, d);
|
|
}
|
|
|
|
res = MP_OKAY;
|
|
|
|
__Y:mp_clear (&y);
|
|
__X:mp_clear (&x);
|
|
__T2:mp_clear (&t2);
|
|
__T1:mp_clear (&t1);
|
|
__Q:mp_clear (&q);
|
|
return res;
|
|
}
|