177 lines
3.7 KiB
C
177 lines
3.7 KiB
C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
*
|
|
* LibTomMath is library that provides for multiple-precision
|
|
* integer arithmetic as well as number theoretic functionality.
|
|
*
|
|
* The library is designed directly after the MPI library by
|
|
* Michael Fromberger but has been written from scratch with
|
|
* additional optimizations in place.
|
|
*
|
|
* The library is free for all purposes without any express
|
|
* guarantee it works.
|
|
*
|
|
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
|
*/
|
|
#include <tommath.h>
|
|
|
|
/* computes the modular inverse via binary extended euclidean algorithm,
|
|
* that is c = 1/a mod b
|
|
*
|
|
* Based on mp_invmod except this is optimized for the case where b is
|
|
* odd as per HAC Note 14.64 on pp. 610
|
|
*/
|
|
int
|
|
fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
|
|
{
|
|
mp_int x, y, u, v, B, D;
|
|
int res, neg;
|
|
|
|
if ((res = mp_init (&x)) != MP_OKAY) {
|
|
goto __ERR;
|
|
}
|
|
|
|
if ((res = mp_init (&y)) != MP_OKAY) {
|
|
goto __X;
|
|
}
|
|
|
|
if ((res = mp_init (&u)) != MP_OKAY) {
|
|
goto __Y;
|
|
}
|
|
|
|
if ((res = mp_init (&v)) != MP_OKAY) {
|
|
goto __U;
|
|
}
|
|
|
|
if ((res = mp_init (&B)) != MP_OKAY) {
|
|
goto __V;
|
|
}
|
|
|
|
if ((res = mp_init (&D)) != MP_OKAY) {
|
|
goto __B;
|
|
}
|
|
|
|
/* x == modulus, y == value to invert */
|
|
if ((res = mp_copy (b, &x)) != MP_OKAY) {
|
|
goto __D;
|
|
}
|
|
if ((res = mp_copy (a, &y)) != MP_OKAY) {
|
|
goto __D;
|
|
}
|
|
|
|
if ((res = mp_abs (&y, &y)) != MP_OKAY) {
|
|
goto __D;
|
|
}
|
|
|
|
/* 2. [modified] if x,y are both even then return an error!
|
|
*
|
|
* That is if gcd(x,y) = 2 * k then obviously there is no inverse.
|
|
*/
|
|
if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
|
|
res = MP_VAL;
|
|
goto __D;
|
|
}
|
|
|
|
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
|
if ((res = mp_copy (&x, &u)) != MP_OKAY) {
|
|
goto __D;
|
|
}
|
|
if ((res = mp_copy (&y, &v)) != MP_OKAY) {
|
|
goto __D;
|
|
}
|
|
mp_set (&D, 1);
|
|
|
|
|
|
top:
|
|
/* 4. while u is even do */
|
|
while (mp_iseven (&u) == 1) {
|
|
/* 4.1 u = u/2 */
|
|
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
|
goto __D;
|
|
}
|
|
/* 4.2 if A or B is odd then */
|
|
if (mp_iseven (&B) == 0) {
|
|
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
|
|
goto __D;
|
|
}
|
|
}
|
|
/* A = A/2, B = B/2 */
|
|
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
|
|
goto __D;
|
|
}
|
|
}
|
|
|
|
|
|
/* 5. while v is even do */
|
|
while (mp_iseven (&v) == 1) {
|
|
/* 5.1 v = v/2 */
|
|
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
|
goto __D;
|
|
}
|
|
/* 5.2 if C,D are even then */
|
|
if (mp_iseven (&D) == 0) {
|
|
/* C = (C+y)/2, D = (D-x)/2 */
|
|
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
|
|
goto __D;
|
|
}
|
|
}
|
|
/* C = C/2, D = D/2 */
|
|
if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
|
|
goto __D;
|
|
}
|
|
}
|
|
|
|
/* 6. if u >= v then */
|
|
if (mp_cmp (&u, &v) != MP_LT) {
|
|
/* u = u - v, A = A - C, B = B - D */
|
|
if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
|
|
goto __D;
|
|
}
|
|
|
|
if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
|
|
goto __D;
|
|
}
|
|
} else {
|
|
/* v - v - u, C = C - A, D = D - B */
|
|
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
|
|
goto __D;
|
|
}
|
|
|
|
if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
|
|
goto __D;
|
|
}
|
|
}
|
|
|
|
/* if not zero goto step 4 */
|
|
if (mp_iszero (&u) == 0) {
|
|
goto top;
|
|
}
|
|
|
|
/* now a = C, b = D, gcd == g*v */
|
|
|
|
/* if v != 1 then there is no inverse */
|
|
if (mp_cmp_d (&v, 1) != MP_EQ) {
|
|
res = MP_VAL;
|
|
goto __D;
|
|
}
|
|
|
|
/* b is now the inverse */
|
|
neg = a->sign;
|
|
while (D.sign == MP_NEG) {
|
|
if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
|
|
goto __D;
|
|
}
|
|
}
|
|
mp_exch (&D, c);
|
|
c->sign = neg;
|
|
res = MP_OKAY;
|
|
|
|
__D:mp_clear (&D);
|
|
__B:mp_clear (&B);
|
|
__V:mp_clear (&v);
|
|
__U:mp_clear (&u);
|
|
__Y:mp_clear (&y);
|
|
__X:mp_clear (&x);
|
|
__ERR:
|
|
return res;
|
|
}
|