149 lines
3.3 KiB
C
149 lines
3.3 KiB
C
#include <tommath.h>
|
|
#ifdef BN_FAST_MP_INVMOD_C
|
|
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
*
|
|
* LibTomMath is a library that provides multiple-precision
|
|
* integer arithmetic as well as number theoretic functionality.
|
|
*
|
|
* The library was designed directly after the MPI library by
|
|
* Michael Fromberger but has been written from scratch with
|
|
* additional optimizations in place.
|
|
*
|
|
* The library is free for all purposes without any express
|
|
* guarantee it works.
|
|
*
|
|
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
|
*/
|
|
|
|
/* computes the modular inverse via binary extended euclidean algorithm,
|
|
* that is c = 1/a mod b
|
|
*
|
|
* Based on slow invmod except this is optimized for the case where b is
|
|
* odd as per HAC Note 14.64 on pp. 610
|
|
*/
|
|
int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
|
|
{
|
|
mp_int x, y, u, v, B, D;
|
|
int res, neg;
|
|
|
|
/* 2. [modified] b must be odd */
|
|
if (mp_iseven (b) == 1) {
|
|
return MP_VAL;
|
|
}
|
|
|
|
/* init all our temps */
|
|
if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
|
|
return res;
|
|
}
|
|
|
|
/* x == modulus, y == value to invert */
|
|
if ((res = mp_copy (b, &x)) != MP_OKAY) {
|
|
goto LBL_ERR;
|
|
}
|
|
|
|
/* we need y = |a| */
|
|
if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
|
|
goto LBL_ERR;
|
|
}
|
|
|
|
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
|
if ((res = mp_copy (&x, &u)) != MP_OKAY) {
|
|
goto LBL_ERR;
|
|
}
|
|
if ((res = mp_copy (&y, &v)) != MP_OKAY) {
|
|
goto LBL_ERR;
|
|
}
|
|
mp_set (&D, 1);
|
|
|
|
top:
|
|
/* 4. while u is even do */
|
|
while (mp_iseven (&u) == 1) {
|
|
/* 4.1 u = u/2 */
|
|
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
|
goto LBL_ERR;
|
|
}
|
|
/* 4.2 if B is odd then */
|
|
if (mp_isodd (&B) == 1) {
|
|
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
/* B = B/2 */
|
|
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
|
|
/* 5. while v is even do */
|
|
while (mp_iseven (&v) == 1) {
|
|
/* 5.1 v = v/2 */
|
|
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
|
goto LBL_ERR;
|
|
}
|
|
/* 5.2 if D is odd then */
|
|
if (mp_isodd (&D) == 1) {
|
|
/* D = (D-x)/2 */
|
|
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
/* D = D/2 */
|
|
if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
|
|
/* 6. if u >= v then */
|
|
if (mp_cmp (&u, &v) != MP_LT) {
|
|
/* u = u - v, B = B - D */
|
|
if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
|
|
goto LBL_ERR;
|
|
}
|
|
|
|
if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
|
|
goto LBL_ERR;
|
|
}
|
|
} else {
|
|
/* v - v - u, D = D - B */
|
|
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
|
|
goto LBL_ERR;
|
|
}
|
|
|
|
if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
|
|
/* if not zero goto step 4 */
|
|
if (mp_iszero (&u) == 0) {
|
|
goto top;
|
|
}
|
|
|
|
/* now a = C, b = D, gcd == g*v */
|
|
|
|
/* if v != 1 then there is no inverse */
|
|
if (mp_cmp_d (&v, 1) != MP_EQ) {
|
|
res = MP_VAL;
|
|
goto LBL_ERR;
|
|
}
|
|
|
|
/* b is now the inverse */
|
|
neg = a->sign;
|
|
while (D.sign == MP_NEG) {
|
|
if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
mp_exch (&D, c);
|
|
c->sign = neg;
|
|
res = MP_OKAY;
|
|
|
|
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
/* $Source$ */
|
|
/* $Revision$ */
|
|
/* $Date$ */
|