tommath/demo.c
2010-07-15 17:25:10 +02:00

304 lines
14 KiB
C

#include <time.h>
#ifdef U_MPI
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <limits.h>
#include "mpi.h"
#else
#include "bn.h"
#endif
#ifdef TIMER_X86
#define TIMER
extern unsigned long long rdtsc(void);
extern void reset(void);
#else
unsigned long long _tt;
void reset(void) { _tt = clock(); }
unsigned long long rdtsc(void) { return clock() - _tt; }
#endif
void draw(mp_int *a)
{
char buf[4096];
printf("a->used == %d\na->alloc == %d\na->sign == %d\n", a->used, a->alloc, a->sign);
mp_toradix(a, buf, 10);
printf("num == %s\n", buf);
printf("\n");
}
unsigned long lfsr = 0xAAAAAAAAUL;
int lbit(void)
{
if (lfsr & 0x80000000UL) {
lfsr = ((lfsr << 1) ^ 0x8000001BUL) & 0xFFFFFFFFUL;
return 1;
} else {
lfsr <<= 1;
return 0;
}
}
int main(void)
{
mp_int a, b, c, d, e, f;
unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, inv_n;
unsigned char cmd[4096], buf[4096];
int rr;
mp_digit tom;
#ifdef TIMER
int n;
unsigned long long tt;
#endif
mp_init(&a);
mp_init(&b);
mp_init(&c);
mp_init(&d);
mp_init(&e);
mp_init(&f);
mp_read_radix(&a, "-2", 10);
mp_read_radix(&b, "2", 10);
mp_expt_d(&a, 3, &a);
draw(&a);
#ifdef TIMER
mp_read_radix(&a, "340282366920938463463374607431768211455", 10);
while (a.used * DIGIT_BIT < 8192) {
reset();
for (rr = 0; rr < 100000; rr++) {
mp_mul(&a, &a, &b);
}
tt = rdtsc();
printf("Multiplying %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((unsigned long long)100000));
mp_copy(&b, &a);
}
mp_read_radix(&a, "340282366920938463463374607431768211455", 10);
while (a.used * DIGIT_BIT < 8192) {
reset();
for (rr = 0; rr < 100000; rr++) {
mp_sqr(&a, &b);
}
tt = rdtsc();
printf("Squaring %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((unsigned long long)100000));
mp_copy(&b, &a);
}
{
char *primes[] = {
"17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
"2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
"347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
"47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887",
"436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227",
"11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207",
"1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
NULL
};
for (n = 0; primes[n]; n++) {
mp_read_radix(&a, primes[n], 10);
mp_zero(&b);
for (rr = 0; rr < mp_count_bits(&a); rr++) {
mp_mul_2d(&b, 1, &b);
b.dp[0] |= lbit();
}
mp_sub_d(&a, 1, &c);
mp_mod(&b, &c, &b);
mp_set(&c, 3);
reset();
for (rr = 0; rr < 35; rr++) {
mp_exptmod(&c, &b, &a, &d);
}
tt = rdtsc();
mp_sub_d(&a, 1, &e);
mp_sub(&e, &b, &b);
mp_exptmod(&c, &b, &a, &e); /* c^(p-1-b) mod a */
mp_mulmod(&e, &d, &a, &d); /* c^b * c^(p-1-b) == c^p-1 == 1 */
if (mp_cmp_d(&d, 1)) {
printf("Different (%d)!!!\n", mp_count_bits(&a));
draw(&d);
exit(0);
}
printf("Exponentiating %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((unsigned long long)35));
}
}
#endif
inv_n = expt_n = lcm_n = gcd_n = add_n = sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = 0;
for (;;) {
printf("%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu\r", add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, expt_n, inv_n);
fgets(cmd, 4095, stdin);
cmd[strlen(cmd)-1] = 0;
printf("%s ]\r",cmd);
if (!strcmp(cmd, "mul2d")) { ++mul2d_n;
fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 10);
fgets(buf, 4095, stdin); sscanf(buf, "%d", &rr);
fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 10);
mp_mul_2d(&a, rr, &a);
a.sign = b.sign;
if (mp_cmp(&a, &b) != MP_EQ) {
printf("mul2d failed, rr == %d\n",rr);
draw(&a);
draw(&b);
return 0;
}
} else if (!strcmp(cmd, "div2d")) { ++div2d_n;
fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 10);
fgets(buf, 4095, stdin); sscanf(buf, "%d", &rr);
fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 10);
mp_div_2d(&a, rr, &a, &e);
a.sign = b.sign;
if (a.used == b.used && a.used == 0) { a.sign = b.sign = MP_ZPOS; }
if (mp_cmp(&a, &b) != MP_EQ) {
printf("div2d failed, rr == %d\n",rr);
draw(&a);
draw(&b);
return 0;
}
} else if (!strcmp(cmd, "add")) { ++add_n;
fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 10);
mp_add(&a, &b, &d);
if (mp_cmp(&c, &d) != MP_EQ) {
printf("add %lu failure!\n", add_n);
draw(&a);draw(&b);draw(&c);draw(&d);
return 0;
}
/* test the sign/unsigned storage functions */
rr = mp_signed_bin_size(&c);
mp_to_signed_bin(&c, cmd);
memset(cmd+rr, rand()&255, sizeof(cmd)-rr);
mp_read_signed_bin(&d, cmd, rr);
if (mp_cmp(&c, &d) != MP_EQ) {
printf("mp_signed_bin failure!\n");
draw(&c);
draw(&d);
return 0;
}
rr = mp_unsigned_bin_size(&c);
mp_to_unsigned_bin(&c, cmd);
memset(cmd+rr, rand()&255, sizeof(cmd)-rr);
mp_read_unsigned_bin(&d, cmd, rr);
if (mp_cmp_mag(&c, &d) != MP_EQ) {
printf("mp_unsigned_bin failure!\n");
draw(&c);
draw(&d);
return 0;
}
} else if (!strcmp(cmd, "sub")) { ++sub_n;
fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 10);
mp_sub(&a, &b, &d);
if (mp_cmp(&c, &d) != MP_EQ) {
printf("sub %lu failure!\n", sub_n);
draw(&a);draw(&b);draw(&c);draw(&d);
return 0;
}
} else if (!strcmp(cmd, "mul")) { ++mul_n;
fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 10);
mp_mul(&a, &b, &d);
if (mp_cmp(&c, &d) != MP_EQ) {
printf("mul %lu failure!\n", mul_n);
draw(&a);draw(&b);draw(&c);draw(&d);
return 0;
}
} else if (!strcmp(cmd, "div")) { ++div_n;
fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&d, buf, 10);
mp_div(&a, &b, &e, &f);
if (mp_cmp(&c, &e) != MP_EQ || mp_cmp(&d, &f) != MP_EQ) {
printf("div %lu failure!\n", div_n);
draw(&a);draw(&b);draw(&c);draw(&d); draw(&e); draw(&f);
return 0;
}
} else if (!strcmp(cmd, "sqr")) { ++sqr_n;
fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 10);
mp_sqr(&a, &c);
if (mp_cmp(&b, &c) != MP_EQ) {
printf("sqr %lu failure!\n", sqr_n);
draw(&a);draw(&b);draw(&c);
return 0;
}
} else if (!strcmp(cmd, "gcd")) { ++gcd_n;
fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 10);
mp_gcd(&a, &b, &d);
d.sign = c.sign;
if (mp_cmp(&c, &d) != MP_EQ) {
printf("gcd %lu failure!\n", gcd_n);
draw(&a);draw(&b);draw(&c);draw(&d);
return 0;
}
} else if (!strcmp(cmd, "lcm")) { ++lcm_n;
fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 10);
mp_lcm(&a, &b, &d);
d.sign = c.sign;
if (mp_cmp(&c, &d) != MP_EQ) {
printf("lcm %lu failure!\n", lcm_n);
draw(&a);draw(&b);draw(&c);draw(&d);
return 0;
}
} else if (!strcmp(cmd, "expt")) { ++expt_n;
fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&d, buf, 10);
mp_exptmod(&a, &b, &c, &e);
if (mp_cmp(&d, &e) != MP_EQ) {
printf("expt %lu failure!\n", expt_n);
draw(&a);draw(&b);draw(&c);draw(&d); draw(&e);
return 0;
}
} else if (!strcmp(cmd, "invmod")) { ++inv_n;
fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 10);
fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 10);
mp_invmod(&a, &b, &d);
mp_mulmod(&d,&a,&b,&e);
if (mp_cmp_d(&e, 1) != MP_EQ) {
printf("inv [wrong value from MPI?!] failure\n");
draw(&a);draw(&b);draw(&c);draw(&d);
mp_gcd(&a, &b, &e);
draw(&e);
return 0;
}
}
}
return 0;
}