2021-01-13 15:51:38 -05:00
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2021 Jon Beniston, M7RCE //
// Copyright (C) 2004 Rutherford Appleton Laboratory //
// Copyright (C) 2012 Science and Technology Facilities Council. //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
# include <cmath>
# include <QRegExp>
# include <QDateTime>
# include <QDebug>
# include "util/units.h"
# include "astronomy.h"
// Function prototypes
static void palRefz ( double zu , double refa , double refb , double * zr ) ;
static void palRefco ( double hm , double tdk , double pmb , double rh ,
double wl , double phi , double tlr , double eps ,
double * refa , double * refb ) ;
static void palRefro ( double zobs , double hm , double tdk , double pmb ,
double rh , double wl , double phi , double tlr ,
double eps , double * ref ) ;
// Calculate Julian date (days since January 1, 4713 BC) from Gregorian calendar date
double Astronomy : : julianDate ( int year , int month , int day , int hours , int minutes , int seconds )
{
int julian_day ;
double julian_date ;
// From: https://en.wikipedia.org/wiki/Julian_day
julian_day = ( 1461 * ( year + 4800 + ( month - 14 ) / 12 ) ) / 4 + ( 367 * ( month - 2 - 12 * ( ( month - 14 ) / 12 ) ) ) / 12 - ( 3 * ( ( year + 4900 + ( month - 14 ) / 12 ) / 100 ) ) / 4 + day - 32075 ;
julian_date = julian_day + ( hours / 24.0 - 0.5 ) + minutes / ( 24.0 * 60.0 ) + seconds / ( 24.0 * 60.0 * 60.0 ) ;
return julian_date ;
}
// Calculate Julian date
double Astronomy : : julianDate ( QDateTime dt )
{
QDateTime utc = dt . toUTC ( ) ;
QDate date = utc . date ( ) ;
QTime time = utc . time ( ) ;
return julianDate ( date . year ( ) , date . month ( ) , date . day ( ) , time . hour ( ) , time . minute ( ) , time . second ( ) ) ;
}
// Get Julian date of J2000 Epoch
double Astronomy : : jd_j2000 ( void )
{
static double j2000 = 0.0 ;
if ( j2000 = = 0.0 ) {
j2000 = julianDate ( 2000 , 1 , 1 , 12 , 0 , 0 ) ;
}
return j2000 ;
}
// Get Julian date of B1950 Epoch
double Astronomy : : jd_b1950 ( void )
{
static double b1950 = 0.0 ;
if ( b1950 = = 0.0 ) {
b1950 = julianDate ( 1949 , 12 , 31 , 22 , 9 , 0 ) ;
}
return b1950 ;
}
// Get Julian date of current time Epoch
double Astronomy : : jd_now ( void )
{
time_t system_time ;
struct tm * utc_time ;
// Get current time in seconds since Unix Epoch (1970)
time ( & system_time ) ;
// Convert to UTC (GMT)
utc_time = gmtime ( & system_time ) ;
// Convert to Julian date
return julianDate ( utc_time - > tm_year + 1900 , utc_time - > tm_mon + 1 , utc_time - > tm_mday ,
utc_time - > tm_hour , utc_time - > tm_min , utc_time - > tm_sec ) ;
}
// Precess a RA/DEC between two given Epochs
RADec Astronomy : : precess ( RADec rd_in , double jd_from , double jd_to )
{
RADec rd_out ;
double x , y , z ;
double xp , yp , zp ;
double ra_rad , dec_rad ;
double rot [ 3 ] [ 3 ] ; // [row][col]
double ra_deg ;
double days_per_century = 36524.219878 ;
double t0 = ( jd_from - jd_b1950 ( ) ) / days_per_century ; // Tropical centuries since B1950.0
double t = ( jd_to - jd_from ) / days_per_century ; // Tropical centuries from starting epoch to ending epoch
// From: https://www.cloudynights.com/topic/561254-ra-dec-epoch-conversion/
rot [ 0 ] [ 0 ] = 1.0 - ( ( 29696.0 + 26.0 * t0 ) * t * t - 13.0 * t * t * t ) * .00000001 ;
rot [ 1 ] [ 0 ] = ( ( 2234941.0 + 1355.0 * t0 ) * t - 676.0 * t * t + 221.0 * t * t * t ) * .00000001 ;
rot [ 2 ] [ 0 ] = ( ( 971690.0 - 414.0 * t0 ) * t + 207.0 * t * t + 96.0 * t * t * t ) * .00000001 ;
rot [ 0 ] [ 1 ] = - rot [ 1 ] [ 0 ] ;
rot [ 1 ] [ 1 ] = 1.0 - ( ( 24975.0 + 30.0 * t0 ) * t * t - 15.0 * t * t * t ) * .00000001 ;
rot [ 2 ] [ 1 ] = - ( ( 10858.0 + 2.0 * t0 ) * t * t ) * .00000001 ;
rot [ 0 ] [ 2 ] = - rot [ 2 ] [ 0 ] ;
rot [ 1 ] [ 2 ] = rot [ 2 ] [ 1 ] ;
rot [ 2 ] [ 2 ] = 1.0 - ( ( 4721.0 - 4.0 * t0 ) * t * t ) * .00000001 ;
// Hours to degrees
ra_deg = rd_in . ra * ( 360.0 / 24.0 ) ;
// Convert to rectangular coordinates
ra_rad = Units : : degreesToRadians ( ra_deg ) ;
dec_rad = Units : : degreesToRadians ( rd_in . dec ) ;
x = cos ( ra_rad ) * cos ( dec_rad ) ;
y = sin ( ra_rad ) * cos ( dec_rad ) ;
z = sin ( dec_rad ) ;
// Rotate
xp = rot [ 0 ] [ 0 ] * x + rot [ 0 ] [ 1 ] * y + rot [ 0 ] [ 2 ] * z ;
yp = rot [ 1 ] [ 0 ] * x + rot [ 1 ] [ 1 ] * y + rot [ 1 ] [ 2 ] * z ;
zp = rot [ 2 ] [ 0 ] * x + rot [ 2 ] [ 1 ] * y + rot [ 2 ] [ 2 ] * z ;
// Convert back to spherical coordinates
rd_out . ra = Units : : radiansToDegrees ( atan ( yp / xp ) ) ;
if ( xp < 0.0 ) {
rd_out . ra + = 180.0 ;
} else if ( ( yp < 0 ) & & ( xp > 0 ) ) {
rd_out . ra + = 360.0 ;
}
rd_out . dec = Units : : radiansToDegrees ( asin ( zp ) ) ;
// Degrees to hours
rd_out . ra / = ( 360.0 / 24.0 ) ;
return rd_out ;
}
// Calculate local mean sidereal time (LMST) in degrees
double Astronomy : : localSiderealTime ( QDateTime dateTime , double longitude )
{
double jd = julianDate ( dateTime ) ;
double d = ( jd - jd_j2000 ( ) ) ; // Days since J2000 epoch (including fraction)
double f = fmod ( jd , 1.0 ) ; // Fractional part is decimal days
double ut = ( f + 0.5 ) * 24.0 ; // Universal time in decimal hours
// https://astronomy.stackexchange.com/questions/24859/local-sidereal-time
// 100.46 is offset for GMST at 0h UT on 1 Jan 2000
// 0.985647 is number of degrees per day over 360 the Earth rotates in one solar day
// Approx to 0.3 arcseconds
return fmod ( 100.46 + 0.985647 * d + longitude + ( 360 / 24 ) * ut , 360.0 ) ;
}
// Convert from J2000 right ascension (decimal hours) and declination (decimal degrees) to altitude and azimuth, for location (decimal degrees) and time
AzAlt Astronomy : : raDecToAzAlt ( RADec rd , double latitude , double longitude , QDateTime dt , bool j2000 )
{
AzAlt aa ;
double ra_deg ; // Right ascension in degrees
double lst_deg ; // Local sidereal time in degrees
double ha ; // Hour angle
double a , az ;
double dec_rad , lat_rad , ha_rad , alt_rad ; // Corresponding variables as radians
double jd = julianDate ( dt ) ;
// Precess RA/DEC from J2000 Epoch to desired (typically current) Epoch
if ( j2000 )
rd = precess ( rd , jd_j2000 ( ) , jd ) ;
// Calculate local mean sidereal time (LMST) in degrees
// https://astronomy.stackexchange.com/questions/24859/local-sidereal-time
// 100.46 is offset for GMST at 0h UT on 1 Jan 2000
// 0.985647 is number of degrees per day over 360 the Earth rotates in one solar day
// Approx to 0.3 arcseconds
lst_deg = Astronomy : : localSiderealTime ( dt , longitude ) ;
// Convert right ascension from hours to degrees
ra_deg = rd . ra * ( 360.0 / 24.0 ) ;
// Calculate hour angle
ha = fmod ( lst_deg - ra_deg , 360.0 ) ;
// Convert degrees to radians
dec_rad = Units : : degreesToRadians ( rd . dec ) ;
lat_rad = Units : : degreesToRadians ( latitude ) ;
ha_rad = Units : : degreesToRadians ( ha ) ;
// Calculate altitude and azimuth - no correction for atmospheric refraction
// From: http://www.convertalot.com/celestial_horizon_co-ordinates_calculator.html
alt_rad = asin ( sin ( dec_rad ) * sin ( lat_rad ) + cos ( dec_rad ) * cos ( lat_rad ) * cos ( ha_rad ) ) ;
a = Units : : radiansToDegrees ( acos ( ( sin ( dec_rad ) - sin ( alt_rad ) * sin ( lat_rad ) ) / ( cos ( alt_rad ) * cos ( lat_rad ) ) ) ) ;
if ( sin ( ha_rad ) < 0.0 ) {
az = a ;
} else {
az = 360.0 - a ;
}
aa . alt = Units : : radiansToDegrees ( alt_rad ) ;
aa . az = az ;
return aa ;
}
2021-05-24 07:34:38 -04:00
// Convert from altitude and azimuth, for location (decimal degrees) and time, to Jnow right ascension (decimal hours) and declination (decimal degrees)
// See: http://jonvoisey.net/blog/2018/07/data-converting-alt-az-to-ra-dec-example/
RADec Astronomy : : azAltToRaDec ( AzAlt aa , double latitude , double longitude , QDateTime dt )
{
RADec rd ;
double lst_deg ; // Local sidereal time
double ha_rad , ha_deg ; // Hour angle
double alt_rad , az_rad , lat_rad , dec_rad ; // Corresponding variables as radians
// Calculate local mean sidereal time (LMST) in degrees (see raDecToAzAlt)
lst_deg = Astronomy : : localSiderealTime ( dt , longitude ) ;
// Convert degrees to radians
alt_rad = Units : : degreesToRadians ( aa . alt ) ;
az_rad = Units : : degreesToRadians ( aa . az ) ;
lat_rad = Units : : degreesToRadians ( latitude ) ;
// Calculate declination
dec_rad = asin ( sin ( lat_rad ) * sin ( alt_rad ) + cos ( lat_rad ) * cos ( alt_rad ) * cos ( az_rad ) ) ;
// Calculate hour angle
double quotient = ( sin ( alt_rad ) - sin ( lat_rad ) * sin ( dec_rad ) ) / ( cos ( lat_rad ) * cos ( dec_rad ) ) ;
// At extreme altitudes, we seem to get small numerical errors that causes values to be out of range, so clip to [-1,1]
if ( quotient < - 1.0 ) {
ha_rad = acos ( - 1.0 ) ;
} else if ( quotient > 1.0 ) {
ha_rad = acos ( 1.0 ) ;
} else {
ha_rad = acos ( quotient ) ;
}
// Convert radians to degrees
rd . dec = Units : : radiansToDegrees ( dec_rad ) ;
ha_deg = Units : : radiansToDegrees ( ha_rad ) ;
// Calculate right ascension in decimal hours
rd . ra = modulo ( ( lst_deg - ha_deg ) / ( 360.0 / 24.0 ) , 24.0 ) ;
return rd ;
}
2021-01-13 15:51:38 -05:00
// Needs to work for negative a
double Astronomy : : modulo ( double a , double b )
{
return a - b * floor ( a / b ) ;
}
// Calculate azimuth and altitude angles to the sun from the given latitude and longitude at the given time
// Refer to:
// https://en.wikipedia.org/wiki/Position_of_the_Sun
// https://www.aa.quae.nl/en/reken/zonpositie.html
// Said to be accurate to .01 degree (36") for dates between 1950 and 2050
// although we use slightly more accurate constants and an extra term in the equation
// of centre from the second link
// For an alternative, see: http://www.psa.es/sdg/sunpos.htm
// Most accurate algorithm is supposedly: https://midcdmz.nrel.gov/spa/
void Astronomy : : sunPosition ( AzAlt & aa , RADec & rd , double latitude , double longitude , QDateTime dt )
{
double jd = julianDate ( dt ) ;
double n = ( jd - jd_j2000 ( ) ) ; // Days since J2000 epoch (including fraction)
double l = 280.461 + 0.9856474 * n ; // Mean longitude of the Sun, corrected for the abberation of light
double g = 357.5291 + 0.98560028 * n ; // Mean anomaly of the Sun - how far around orbit from perihlion, in degrees
l = modulo ( l , 360.0 ) ;
g = modulo ( g , 360.0 ) ;
double gr = Units : : degreesToRadians ( g ) ;
double la = l + 1.9148 * sin ( gr ) + 0.0200 * sin ( 2.0 * gr ) + 0.0003 * sin ( 3.0 * gr ) ; // Ecliptic longitude (Ecliptic latitude b set to 0)
// Convert la, b=0, which give the position of the Sun in the ecliptic coordinate sytem, to
// equatorial coordinates
double e = 23.4393 - 3.563E-7 * n ; // Obliquity of the ecliptic - tilt of Earth's axis of rotation
double er = Units : : degreesToRadians ( e ) ;
double lr = Units : : degreesToRadians ( la ) ;
double a = atan2 ( cos ( er ) * sin ( lr ) , cos ( lr ) ) ; // Right ascension, radians
double d = asin ( sin ( er ) * sin ( lr ) ) ; // Declination, radians
rd . ra = modulo ( Units : : radiansToDegrees ( a ) , 360.0 ) / ( 360.0 / 24.0 ) ; // Convert to hours
rd . dec = Units : : radiansToDegrees ( d ) ; // Convert to degrees
aa = raDecToAzAlt ( rd , latitude , longitude , dt , false ) ;
}
double Astronomy : : moonDays ( QDateTime dt )
{
QDateTime utc = dt . toUTC ( ) ;
QDate date = utc . date ( ) ;
QTime time = utc . time ( ) ;
int y = date . year ( ) ;
int m = date . month ( ) ;
int D = date . day ( ) ;
int d = 367 * y - 7 * ( y + ( m + 9 ) / 12 ) / 4 - 3 * ( ( y + ( m - 9 ) / 7 ) / 100 + 1 ) / 4 + 275 * m / 9 + D - 730515 ;
return d + time . hour ( ) / 24.0 + time . minute ( ) / ( 24.0 * 60.0 ) + time . second ( ) / ( 24.0 * 60.0 * 60.0 ) ;
}
// Calculate azimuth and altitude angles to the moon from the given latitude and longitude at the given time
// Refer to: https://stjarnhimlen.se/comp/ppcomp.html
// Accurate to 4 arcminute
void Astronomy : : moonPosition ( AzAlt & aa , RADec & rd , double latitude , double longitude , QDateTime dt )
{
double d = moonDays ( dt ) ;
double ecl = Units : : degreesToRadians ( 23.4393 - 3.563E-7 * d ) ; // Obliquity of the ecliptic - tilt of Earth's axis of rotation
// Orbital elements for the Sun
double ws = Units : : degreesToRadians ( 282.9404 + 4.70935E-5 * d ) ;
double Ms = Units : : degreesToRadians ( 356.0470 + 0.9856002585 * d ) ;
// Orbital elements for the Moon
double Nm = Units : : degreesToRadians ( 125.1228 - 0.0529538083 * d ) ; // longitude of the ascending node
double im = Units : : degreesToRadians ( 5.1454 ) ; // inclination to the ecliptic (plane of the Earth's orbit)
double wm = Units : : degreesToRadians ( 318.0634 + 0.1643573223 * d ) ; // argument of perihelion
double am = 60.2666 ; // (Earth radii) semi-major axis, or mean distance from Sun
double em = 0.054900 ; // ecm // eccentricity (0=circle, 0-1=ellipse, 1=parabola)
double Mm = Units : : degreesToRadians ( 115.3654 + 13.0649929509 * d ) ; // mean anomaly (0 at perihelion; increases uniformly with time), degrees
double Em = Mm + em * sin ( Mm ) * ( 1.0 + em * cos ( Mm ) ) ; // Eccentric anomaly in radians
double xv = am * ( cos ( Em ) - em ) ;
double yv = am * ( sqrt ( 1.0 - em * em ) * sin ( Em ) ) ;
double vm = atan2 ( yv , xv ) ; // True anomaly
double rm = sqrt ( xv * xv + yv * yv ) ; // Distance
// Compute position in space (for the Moon, this is geocentric)
double xh = rm * ( cos ( Nm ) * cos ( vm + wm ) - sin ( Nm ) * sin ( vm + wm ) * cos ( im ) ) ;
double yh = rm * ( sin ( Nm ) * cos ( vm + wm ) + cos ( Nm ) * sin ( vm + wm ) * cos ( im ) ) ;
double zh = rm * ( sin ( vm + wm ) * sin ( im ) ) ;
// Convert to ecliptic longitude and latitude
double lonecl = atan2 ( yh , xh ) ;
double latecl = atan2 ( zh , sqrt ( xh * xh + yh * yh ) ) ;
// Perturbations of the Moon
double Ls = Ms + ws ; // Mean Longitude of the Sun (Ns=0)
double Lm = Mm + wm + Nm ; // Mean longitude of the Moon
double D = Lm - Ls ; // Mean elongation of the Moon
double F = Lm - Nm ; // Argument of latitude for the Moon
double dlon ;
dlon = - 1.274 * sin ( Mm - 2 * D ) ; // (the Evection)
dlon + = + 0.658 * sin ( 2 * D ) ; // (the Variation)
dlon + = - 0.186 * sin ( Ms ) ; // (the Yearly Equation)
dlon + = - 0.059 * sin ( 2 * Mm - 2 * D ) ;
dlon + = - 0.057 * sin ( Mm - 2 * D + Ms ) ;
dlon + = + 0.053 * sin ( Mm + 2 * D ) ;
dlon + = + 0.046 * sin ( 2 * D - Ms ) ;
dlon + = + 0.041 * sin ( Mm - Ms ) ;
dlon + = - 0.035 * sin ( D ) ; // (the Parallactic Equation)
dlon + = - 0.031 * sin ( Mm + Ms ) ;
dlon + = - 0.015 * sin ( 2 * F - 2 * D ) ;
dlon + = + 0.011 * sin ( Mm - 4 * D ) ;
double dlat ;
dlat = - 0.173 * sin ( F - 2 * D ) ;
dlat + = - 0.055 * sin ( Mm - F - 2 * D ) ;
dlat + = - 0.046 * sin ( Mm + F - 2 * D ) ;
dlat + = + 0.033 * sin ( F + 2 * D ) ;
dlat + = + 0.017 * sin ( 2 * Mm + F ) ;
lonecl + = Units : : degreesToRadians ( dlon ) ;
latecl + = Units : : degreesToRadians ( dlat ) ;
rm + = - 0.58 * cos ( Mm - 2 * D ) ;
rm + = - 0.46 * cos ( 2 * D ) ;
// Convert perturbed
xh = rm * cos ( lonecl ) * cos ( latecl ) ;
yh = rm * sin ( lonecl ) * cos ( latecl ) ;
zh = rm * sin ( latecl ) ;
// Convert to geocentric coordinates (already the case for the Moon)
double xg = xh ;
double yg = yh ;
double zg = zh ;
// Convert to equatorial cordinates
double xe = xg ;
double ye = yg * cos ( ecl ) - zg * sin ( ecl ) ;
double ze = yg * sin ( ecl ) + zg * cos ( ecl ) ;
// Compute right ascension and declination
double ra = atan2 ( ye , xe ) ;
double dec = atan2 ( ze , sqrt ( xe * xe + ye * ye ) ) ;
rd . ra = modulo ( Units : : radiansToDegrees ( ra ) , 360.0 ) / ( 360.0 / 24.0 ) ; // Convert to hours
rd . dec = Units : : radiansToDegrees ( dec ) ; // Convert to degrees
// Convert from geocentric to topocentric
double mpar = asin ( 1 / rm ) ;
double lat = Units : : degreesToRadians ( latitude ) ;
double gclat = Units : : degreesToRadians ( latitude - 0.1924 * sin ( 2.0 * lat ) ) ;
double rho = 0.99833 + 0.00167 * cos ( 2 * lat ) ;
QTime time = dt . toUTC ( ) . time ( ) ;
double UT = time . hour ( ) + time . minute ( ) / 60.0 + time . second ( ) / ( 60.0 * 60.0 ) ;
double GMST0 = Units : : radiansToDegrees ( Ls ) / 15.0 + 12 ; // In hours
double GMST = GMST0 + UT ;
double LST = GMST + longitude / 15.0 ;
double HA = Units : : degreesToRadians ( LST * 15.0 - Units : : radiansToDegrees ( ra ) ) ; // Hour angle in radians
double g = atan ( tan ( gclat ) / cos ( HA ) ) ;
double topRA = ra - mpar * rho * cos ( gclat ) * sin ( HA ) / cos ( dec ) ;
double topDec ;
if ( g ! = 0.0 )
topDec = dec - mpar * rho * sin ( gclat ) * sin ( g - dec ) / sin ( g ) ;
else
topDec = dec - mpar * rho * sin ( - dec ) * cos ( HA ) ;
rd . ra = modulo ( Units : : radiansToDegrees ( topRA ) , 360.0 ) / ( 360.0 / 24.0 ) ; // Convert to hours
rd . dec = Units : : radiansToDegrees ( topDec ) ; // Convert to degrees
aa = raDecToAzAlt ( rd , latitude , longitude , dt , false ) ;
}
// Calculated adjustment to altitude angle from true to apparent due to atmospheric refraction using
// Saemundsson's formula (which is used by Stellarium and is primarily just for
// optical wavelengths)
// See: https://en.wikipedia.org/wiki/Atmospheric_refraction#Calculating_refraction
// Alt is in degrees. 90 = Zenith gives a factor of 0.
// Pressure in millibars
// Temperature in Celsuis
// We divide by 60.0 to get a value in degrees (as original formula is in arcminutes)
double Astronomy : : refractionSaemundsson ( double alt , double pressure , double temperature )
{
double pt = ( pressure / 1010.0 ) * ( 283.0 / ( 273.0 + temperature ) ) ;
2021-01-13 18:03:55 -05:00
return pt * ( 1.02 / tan ( Units : : degreesToRadians ( alt + 10.3 / ( alt + 5.11 ) ) ) + 0.0019279 ) / 60.0 ;
2021-01-13 15:51:38 -05:00
}
// Calculated adjustment to altitude angle from true to apparent due to atmospheric refraction using
// code from Starlink Positional Astronomy Library. This is more accurate for
// radio than Saemundsson's formula, but also more complex.
// See: https://github.com/Starlink/pal
// Alt is in degrees. 90 = Zenith gives a factor of 0.
// Pressure in millibars
// Temperature in Celsuis
// Humdity in %
// Frequency in Hertz
// Latitude in decimal degrees
// HeightAboveSeaLevel in metres
// Temperature lapse rate in K/km
double Astronomy : : refractionPAL ( double alt , double pressure , double temperature , double humidity , double frequency ,
double latitude , double heightAboveSeaLevel , double temperatureLapseRate )
{
double tdk = Units : : celsiusToKelvin ( temperature ) ; // Ambient temperature at the observer (K)
double wl = ( 299792458.0 / frequency ) * 1000000.0 ; // Wavelength in micrometres
double rh = humidity / 100.0 ; // Relative humidity in range 0-1
double phi = Units : : degreesToRadians ( latitude ) ; // Latitude of the observer (radian, astronomical)
double tlr = temperatureLapseRate / 1000.0 ; // Temperature lapse rate in the troposphere (K/metre)
double refa , refb ;
double z = 90.0 - alt ;
double zu = Units : : degreesToRadians ( z ) ;
double zr ;
palRefco ( heightAboveSeaLevel , tdk , pressure , rh ,
wl , phi , tlr , 1E-10 ,
& refa , & refb ) ;
palRefz ( zu , refa , refb , & zr ) ;
return z - Units : : radiansToDegrees ( zr ) ;
}
double Astronomy : : raToDecimal ( const QString & value )
{
QRegExp decimal ( " ^([0-9]+( \\ .[0-9]+) ? ) " ) ;
QRegExp hms ( " ^([0-9]+) [ h ] ( [ 0 - 9 ] + ) [ m ] ( [ 0 - 9 ] + ( \ \ . [ 0 - 9 ] + ) ? ) s ? " ) ;
if ( decimal . exactMatch ( value ) )
return decimal . capturedTexts ( ) [ 0 ] . toDouble ( ) ;
else if ( hms . exactMatch ( value ) )
{
return Units : : hoursMinutesSecondsToDecimal (
hms . capturedTexts ( ) [ 1 ] . toDouble ( ) ,
hms . capturedTexts ( ) [ 2 ] . toDouble ( ) ,
hms . capturedTexts ( ) [ 3 ] . toDouble ( ) ) ;
}
return 0.0 ;
}
double Astronomy : : decToDecimal ( const QString & value )
{
QRegExp decimal ( " ^(-?[0-9]+( \\ .[0-9]+) ? ) " ) ;
QRegExp dms ( QString ( " ^(-?[0-9]+) [ % 1 d ] ( [ 0 - 9 ] + ) [ ' m ] ( [ 0 - 9 ] + ( \ \ . [ 0 - 9 ] + ) ? ) [ \ " s]? " ) . arg ( QChar ( 0xb0 ) ) ) ;
if ( decimal . exactMatch ( value ) )
return decimal . capturedTexts ( ) [ 0 ] . toDouble ( ) ;
else if ( dms . exactMatch ( value ) )
{
return Units : : degreesMinutesSecondsToDecimal (
dms . capturedTexts ( ) [ 1 ] . toDouble ( ) ,
dms . capturedTexts ( ) [ 2 ] . toDouble ( ) ,
dms . capturedTexts ( ) [ 3 ] . toDouble ( ) ) ;
}
return 0.0 ;
}
double Astronomy : : lstAndRAToLongitude ( double lst , double raHours )
{
double longitude = lst - ( raHours * 15.0 ) ; // Convert hours to degrees
if ( longitude < - 180.0 )
longitude + = 360.0 ;
else if ( longitude > 180.0 )
longitude - = 360.0 ;
return - longitude ; // East positive
}
2021-01-29 07:57:58 -05:00
// Return right ascension and declination of North Galactic Pole in J2000 Epoch
2021-05-24 07:34:38 -04:00
// http://www.lsc-group.phys.uwm.edu/lal/lsd/node1777.html
2021-01-29 07:57:58 -05:00
void Astronomy : : northGalacticPoleJ2000 ( double & ra , double & dec )
{
2021-05-24 07:34:38 -04:00
ra = 192.8594813 / 15.0 ;
dec = 27.1282511 ;
2021-01-29 07:57:58 -05:00
}
// Convert from equatorial to Galactic coordinates, J2000 Epoch
void Astronomy : : equatorialToGalactic ( double ra , double dec , double & l , double & b )
{
const double raRad = Units : : degreesToRadians ( ra * 15.0 ) ;
const double decRad = Units : : degreesToRadians ( dec ) ;
// Calculate RA and dec for North Galactic pole, J2000
double ngpRa , ngpDec ;
northGalacticPoleJ2000 ( ngpRa , ngpDec ) ;
const double ngpRaRad = Units : : degreesToRadians ( ngpRa * 15.0 ) ;
const double ngpDecRad = Units : : degreesToRadians ( ngpDec ) ;
// Calculate galactic longitude in radians
double bRad = asin ( sin ( ngpDecRad ) * sin ( decRad ) + cos ( ngpDecRad ) * cos ( decRad ) * cos ( raRad - ngpRaRad ) ) ;
2021-05-24 07:34:38 -04:00
// Calculate galactic latitiude in radians
double lRad = atan2 ( sin ( decRad ) - sin ( bRad ) * sin ( ngpDecRad ) , cos ( decRad ) * cos ( ngpDecRad ) * sin ( raRad - ngpRaRad ) ) ;
// Ascending node of the galactic plane in degrees
double lAscend = 33.0 ;
2021-01-29 07:57:58 -05:00
// Convert to degrees in range -90,90 and 0,360
b = Units : : radiansToDegrees ( bRad ) ;
2021-05-24 07:34:38 -04:00
l = Units : : radiansToDegrees ( lRad ) + lAscend ;
if ( l < 0.0 ) {
2021-01-29 07:57:58 -05:00
l + = 360.0 ;
2021-05-24 07:34:38 -04:00
}
if ( l > 360.0 ) {
2021-01-29 07:57:58 -05:00
l - = 360.0 ;
2021-05-24 07:34:38 -04:00
}
2021-01-29 07:57:58 -05:00
}
2021-01-13 15:51:38 -05:00
// The following functions are from Starlink Positional Astronomy Library
// https://github.com/Starlink/pal
/* Pi */
static const double PAL__DPI = 3.1415926535897932384626433832795028841971693993751 ;
/* 2Pi */
static const double PAL__D2PI = 6.2831853071795864769252867665590057683943387987502 ;
/* pi/180: degrees to radians */
static const double PAL__DD2R = 0.017453292519943295769236907684886127134428718885417 ;
/* Radians to degrees */
static const double PAL__DR2D = 57.295779513082320876798154814105170332405472466564 ;
/* DMAX(A,B) - return maximum value - evaluates arguments multiple times */
# define DMAX(A,B) ((A) > (B) ? (A) : (B) )
/* DMIN(A,B) - return minimum value - evaluates arguments multiple times */
# define DMIN(A,B) ((A) < (B) ? (A) : (B) )
// Normalize angle into range +/- pi
double palDrange ( double angle ) {
double result = fmod ( angle , PAL__D2PI ) ;
if ( result > PAL__DPI ) {
result - = PAL__D2PI ;
} else if ( result < - PAL__DPI ) {
result + = PAL__D2PI ;
}
return result ;
}
// Calculate stratosphere parameters
static void pal1Atms ( double rt , double tt , double dnt , double gamal ,
double r , double * dn , double * rdndr ) {
double b ;
double w ;
b = gamal / tt ;
w = ( dnt - 1.0 ) * exp ( - b * ( r - rt ) ) ;
* dn = 1.0 + w ;
* rdndr = - r * b * w ;
}
// Calculate troposphere parameters
static void pal1Atmt ( double r0 , double t0 , double alpha , double gamm2 ,
double delm2 , double c1 , double c2 , double c3 , double c4 ,
double c5 , double c6 , double r ,
double * t , double * dn , double * rdndr ) {
double tt0 ;
double tt0gm2 ;
double tt0dm2 ;
* t = DMAX ( DMIN ( t0 - alpha * ( r - r0 ) , 320.0 ) , 100.0 ) ;
tt0 = * t / t0 ;
tt0gm2 = pow ( tt0 , gamm2 ) ;
tt0dm2 = pow ( tt0 , delm2 ) ;
* dn = 1.0 + ( c1 * tt0gm2 - ( c2 - c5 / * t ) * tt0dm2 ) * tt0 ;
* rdndr = r * ( - c3 * tt0gm2 + ( c4 - c6 / tt0 ) * tt0dm2 ) ;
}
// Adjust unrefracted zenith distance
static void palRefz ( double zu , double refa , double refb , double * zr ) {
/* Constants */
/* Largest usable ZD (deg) */
const double D93 = 93.0 ;
/* ZD at which one model hands over to the other (radians) */
const double Z83 = 83.0 * PAL__DD2R ;
/* coefficients for high ZD model (used beyond ZD 83 deg) */
const double C1 = + 0.55445 ;
const double C2 = - 0.01133 ;
const double C3 = + 0.00202 ;
const double C4 = + 0.28385 ;
const double C5 = + 0.02390 ;
/* High-ZD-model prefiction (deg) for that point */
const double REF83 = ( C1 + C2 * 7.0 + C3 * 49.0 ) / ( 1.0 + C4 * 7.0 + C5 * 49.0 ) ;
double zu1 , zl , s , c , t , tsq , tcu , ref , e , e2 ;
/* perform calculations for zu or 83 deg, whichever is smaller */
zu1 = DMIN ( zu , Z83 ) ;
/* functions of ZD */
zl = zu1 ;
s = sin ( zl ) ;
c = cos ( zl ) ;
t = s / c ;
tsq = t * t ;
tcu = t * tsq ;
/* refracted zd (mathematically to better than 1 mas at 70 deg) */
zl = zl - ( refa * t + refb * tcu ) / ( 1.0 + ( refa + 3.0 * refb * tsq ) / ( c * c ) ) ;
/* further iteration */
s = sin ( zl ) ;
c = cos ( zl ) ;
t = s / c ;
tsq = t * t ;
tcu = t * tsq ;
ref = zu1 - zl +
( zl - zu1 + refa * t + refb * tcu ) / ( 1.0 + ( refa + 3.0 * refb * tsq ) / ( c * c ) ) ;
/* special handling for large zu */
if ( zu > zu1 ) {
e = 90.0 - DMIN ( D93 , zu * PAL__DR2D ) ;
e2 = e * e ;
ref = ( ref / REF83 ) * ( C1 + C2 * e + C3 * e2 ) / ( 1.0 + C4 * e + C5 * e2 ) ;
}
/* return refracted zd */
* zr = zu - ref ;
}
// Determine constants in atmospheric refraction model
static void palRefco ( double hm , double tdk , double pmb , double rh ,
double wl , double phi , double tlr , double eps ,
double * refa , double * refb ) {
double r1 , r2 ;
/* Sample zenith distances: arctan(1) and arctan(4) */
const double ATN1 = 0.7853981633974483 ;
const double ATN4 = 1.325817663668033 ;
/* Determine refraction for the two sample zenith distances */
palRefro ( ATN1 , hm , tdk , pmb , rh , wl , phi , tlr , eps , & r1 ) ;
palRefro ( ATN4 , hm , tdk , pmb , rh , wl , phi , tlr , eps , & r2 ) ;
/* Solve for refraction constants */
* refa = ( 64.0 * r1 - r2 ) / 60.0 ;
* refb = ( r2 - 4.0 * r1 ) / 60.0 ;
}
// Atmospheric refraction for radio and optical/IR wavelengths
static void palRefro ( double zobs , double hm , double tdk , double pmb ,
double rh , double wl , double phi , double tlr ,
double eps , double * ref ) {
/*
* Fixed parameters
*/
/* 93 degrees in radians */
const double D93 = 1.623156204 ;
/* Universal gas constant */
const double GCR = 8314.32 ;
/* Molecular weight of dry air */
const double DMD = 28.9644 ;
/* Molecular weight of water vapour */
const double DMW = 18.0152 ;
/* Mean Earth radius (metre) */
const double S = 6378120. ;
/* Exponent of temperature dependence of water vapour pressure */
const double DELTA = 18.36 ;
/* Height of tropopause (metre) */
const double HT = 11000. ;
/* Upper limit for refractive effects (metre) */
const double HS = 80000. ;
/* Numerical integration: maximum number of strips. */
const int ISMAX = 16384l ;
/* Local variables */
int is , k , n , i , j ;
int optic , loop ; /* booleans */
double zobs1 , zobs2 , hmok , tdkok , pmbok , rhok , wlok , alpha ,
tol , wlsq , gb , a , gamal , gamma , gamm2 , delm2 ,
tdc , psat , pwo , w ,
c1 , c2 , c3 , c4 , c5 , c6 , r0 , tempo , dn0 , rdndr0 , sk0 , f0 ,
rt , tt , dnt , rdndrt , sine , zt , ft , dnts , rdndrp , zts , fts ,
rs , dns , rdndrs , zs , fs , refold , z0 , zrange , fb , ff , fo , fe ,
h , r , sz , rg , dr , tg , dn , rdndr , t , f , refp , reft ;
/* The refraction integrand */
# define refi(DN,RDNDR) RDNDR / (DN+RDNDR)
/* Transform ZOBS into the normal range. */
zobs1 = palDrange ( zobs ) ;
zobs2 = DMIN ( fabs ( zobs1 ) , D93 ) ;
/* keep other arguments within safe bounds. */
hmok = DMIN ( DMAX ( hm , - 1e3 ) , HS ) ;
tdkok = DMIN ( DMAX ( tdk , 100.0 ) , 500.0 ) ;
pmbok = DMIN ( DMAX ( pmb , 0.0 ) , 10000.0 ) ;
rhok = DMIN ( DMAX ( rh , 0.0 ) , 1.0 ) ;
wlok = DMAX ( wl , 0.1 ) ;
alpha = DMIN ( DMAX ( fabs ( tlr ) , 0.001 ) , 0.01 ) ;
/* tolerance for iteration. */
tol = DMIN ( DMAX ( fabs ( eps ) , 1e-12 ) , 0.1 ) / 2.0 ;
/* decide whether optical/ir or radio case - switch at 100 microns. */
optic = wlok < 100.0 ;
/* set up model atmosphere parameters defined at the observer. */
wlsq = wlok * wlok ;
gb = 9.784 * ( 1.0 - 0.0026 * cos ( phi + phi ) - 0.00000028 * hmok ) ;
if ( optic ) {
a = ( 287.6155 + ( 1.62887 + 0.01360 / wlsq ) / wlsq ) * 273.15e-6 / 1013.25 ;
} else {
a = 77.6890e-6 ;
}
gamal = ( gb * DMD ) / GCR ;
gamma = gamal / alpha ;
gamm2 = gamma - 2.0 ;
delm2 = DELTA - 2.0 ;
tdc = tdkok - 273.15 ;
psat = pow ( 10.0 , ( 0.7859 + 0.03477 * tdc ) / ( 1.0 + 0.00412 * tdc ) ) *
( 1.0 + pmbok * ( 4.5e-6 + 6.0e-10 * tdc * tdc ) ) ;
if ( pmbok > 0.0 ) {
pwo = rhok * psat / ( 1.0 - ( 1.0 - rhok ) * psat / pmbok ) ;
} else {
pwo = 0.0 ;
}
w = pwo * ( 1.0 - DMW / DMD ) * gamma / ( DELTA - gamma ) ;
c1 = a * ( pmbok + w ) / tdkok ;
if ( optic ) {
c2 = ( a * w + 11.2684e-6 * pwo ) / tdkok ;
} else {
c2 = ( a * w + 6.3938e-6 * pwo ) / tdkok ;
}
c3 = ( gamma - 1.0 ) * alpha * c1 / tdkok ;
c4 = ( DELTA - 1.0 ) * alpha * c2 / tdkok ;
if ( optic ) {
c5 = 0.0 ;
c6 = 0.0 ;
} else {
c5 = 375463e-6 * pwo / tdkok ;
c6 = c5 * delm2 * alpha / ( tdkok * tdkok ) ;
}
/* conditions at the observer. */
r0 = S + hmok ;
pal1Atmt ( r0 , tdkok , alpha , gamm2 , delm2 , c1 , c2 , c3 , c4 , c5 , c6 ,
r0 , & tempo , & dn0 , & rdndr0 ) ;
sk0 = dn0 * r0 * sin ( zobs2 ) ;
f0 = refi ( dn0 , rdndr0 ) ;
/* conditions in the troposphere at the tropopause. */
rt = S + DMAX ( HT , hmok ) ;
pal1Atmt ( r0 , tdkok , alpha , gamm2 , delm2 , c1 , c2 , c3 , c4 , c5 , c6 ,
rt , & tt , & dnt , & rdndrt ) ;
sine = sk0 / ( rt * dnt ) ;
zt = atan2 ( sine , sqrt ( DMAX ( 1.0 - sine * sine , 0.0 ) ) ) ;
ft = refi ( dnt , rdndrt ) ;
/* conditions in the stratosphere at the tropopause. */
pal1Atms ( rt , tt , dnt , gamal , rt , & dnts , & rdndrp ) ;
sine = sk0 / ( rt * dnts ) ;
zts = atan2 ( sine , sqrt ( DMAX ( 1.0 - sine * sine , 0.0 ) ) ) ;
fts = refi ( dnts , rdndrp ) ;
/* conditions at the stratosphere limit. */
rs = S + HS ;
pal1Atms ( rt , tt , dnt , gamal , rs , & dns , & rdndrs ) ;
sine = sk0 / ( rs * dns ) ;
zs = atan2 ( sine , sqrt ( DMAX ( 1.0 - sine * sine , 0.0 ) ) ) ;
fs = refi ( dns , rdndrs ) ;
/* variable initialization to avoid compiler warning. */
reft = 0.0 ;
/* integrate the refraction integral in two parts; first in the
* troposphere ( k = 1 ) , then in the stratosphere ( k = 2 ) . */
for ( k = 1 ; k < = 2 ; k + + ) {
/* initialize previous refraction to ensure at least two iterations. */
refold = 1.0 ;
/* start off with 8 strips. */
is = 8 ;
/* start z, z range, and start and end values. */
if ( k = = 1 ) {
z0 = zobs2 ;
zrange = zt - z0 ;
fb = f0 ;
ff = ft ;
} else {
z0 = zts ;
zrange = zs - z0 ;
fb = fts ;
ff = fs ;
}
/* sums of odd and even values. */
fo = 0.0 ;
fe = 0.0 ;
/* first time through the loop we have to do every point. */
n = 1 ;
/* start of iteration loop (terminates at specified precision). */
loop = 1 ;
while ( loop ) {
/* strip width. */
h = zrange / ( ( double ) is ) ;
/* initialize distance from earth centre for quadrature pass. */
if ( k = = 1 ) {
r = r0 ;
} else {
r = rt ;
}
/* one pass (no need to compute evens after first time). */
for ( i = 1 ; i < is ; i + = n ) {
/* sine of observed zenith distance. */
sz = sin ( z0 + h * ( double ) ( i ) ) ;
/* find r (to the nearest metre, maximum four iterations). */
if ( sz > 1e-20 ) {
w = sk0 / sz ;
rg = r ;
dr = 1.0e6 ;
j = 0 ;
while ( fabs ( dr ) > 1.0 & & j < 4 ) {
j + + ;
if ( k = = 1 ) {
pal1Atmt ( r0 , tdkok , alpha , gamm2 , delm2 ,
c1 , c2 , c3 , c4 , c5 , c6 , rg , & tg , & dn , & rdndr ) ;
} else {
pal1Atms ( rt , tt , dnt , gamal , rg , & dn , & rdndr ) ;
}
dr = ( rg * dn - w ) / ( dn + rdndr ) ;
rg = rg - dr ;
}
r = rg ;
}
/* find the refractive index and integrand at r. */
if ( k = = 1 ) {
pal1Atmt ( r0 , tdkok , alpha , gamm2 , delm2 ,
c1 , c2 , c3 , c4 , c5 , c6 , r , & t , & dn , & rdndr ) ;
} else {
pal1Atms ( rt , tt , dnt , gamal , r , & dn , & rdndr ) ;
}
f = refi ( dn , rdndr ) ;
/* accumulate odd and (first time only) even values. */
if ( n = = 1 & & i % 2 = = 0 ) {
fe + = f ;
} else {
fo + = f ;
}
}
/* evaluate the integrand using simpson's rule. */
refp = h * ( fb + 4.0 * fo + 2.0 * fe + ff ) / 3.0 ;
/* has the required precision been achieved (or can't be)? */
if ( fabs ( refp - refold ) > tol & & is < ISMAX ) {
/* no: prepare for next iteration.*/
/* save current value for convergence test. */
refold = refp ;
/* double the number of strips. */
is + = is ;
/* sum of all current values = sum of next pass's even values. */
fe + = fo ;
/* prepare for new odd values. */
fo = 0.0 ;
/* skip even values next time. */
n = 2 ;
} else {
/* yes: save troposphere component and terminate the loop. */
if ( k = = 1 ) reft = refp ;
loop = 0 ;
}
}
}
/* result. */
* ref = reft + refp ;
if ( zobs1 < 0.0 ) * ref = - ( * ref ) ;
}