1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-27 02:09:14 -05:00
sdrangel/plugins/channeltx/remotesource/remotesourcesource.cpp

245 lines
9.1 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <boost/crc.hpp>
#include <boost/cstdint.hpp>
#include "remotesourceworker.h"
#include "remotesourcesource.h"
RemoteSourceSource::RemoteSourceSource() :
m_running(false),
m_sourceWorker(nullptr),
m_nbCorrectableErrors(0),
m_nbUncorrectableErrors(0),
m_channelSampleRate(48000)
{
connect(&m_dataQueue, SIGNAL(dataBlockEnqueued()), this, SLOT(handleData()), Qt::QueuedConnection);
m_cm256p = m_cm256.isInitialized() ? &m_cm256 : 0;
m_currentMeta.init();
m_dataReadQueue.setSize(20);
applyChannelSettings(m_channelSampleRate, true);
}
RemoteSourceSource::~RemoteSourceSource()
{
stop();
}
void RemoteSourceSource::pull(SampleVector::iterator begin, unsigned int nbSamples)
{
std::for_each(
begin,
begin + nbSamples,
[this](Sample& s) {
pullOne(s);
}
);
}
void RemoteSourceSource::pullOne(Sample& sample)
{
m_dataReadQueue.readSample(sample, true);
}
void RemoteSourceSource::start()
{
qDebug("RemoteSourceSource::start");
if (m_running) {
stop();
}
m_sourceWorker = new RemoteSourceWorker(&m_dataQueue);
m_sourceWorker->moveToThread(&m_sourceWorkerThread);
startWorker();
m_sourceWorker->dataBind(m_settings.m_dataAddress, m_settings.m_dataPort);
m_running = true;
}
void RemoteSourceSource::stop()
{
qDebug("RemoteSourceSource::stop");
if (m_sourceWorker)
{
stopWorker();
m_sourceWorker->deleteLater();
m_sourceWorker = nullptr;
}
m_running = false;
}
void RemoteSourceSource::startWorker()
{
m_sourceWorker->startWork();
m_sourceWorkerThread.start();
}
void RemoteSourceSource::stopWorker()
{
m_sourceWorker->stopWork();
m_sourceWorkerThread.quit();
m_sourceWorkerThread.wait();
}
void RemoteSourceSource::handleData()
{
RemoteDataFrame* dataFrame;
while (m_running && ((dataFrame = m_dataQueue.pop()) != nullptr)) {
handleDataFrame(dataFrame);
}
}
void RemoteSourceSource::handleDataFrame(RemoteDataFrame* dataFrame)
{
if (dataFrame->m_rxControlBlock.m_blockCount < RemoteNbOrginalBlocks)
{
qWarning("RemoteSourceSource::handleDataFrame: incomplete data frame (%d): not processing", dataFrame->m_rxControlBlock.m_blockCount);
}
else
{
int blockCount = 0;
for (int blockIndex = 0; blockIndex < 256; blockIndex++)
{
if ((blockIndex == 0) && (dataFrame->m_rxControlBlock.m_metaRetrieved))
{
m_cm256DescriptorBlocks[blockCount].Index = 0;
m_cm256DescriptorBlocks[blockCount].Block = (void *) &(dataFrame->m_superBlocks[0].m_protectedBlock);
blockCount++;
}
else if (dataFrame->m_superBlocks[blockIndex].m_header.m_blockIndex != 0)
{
m_cm256DescriptorBlocks[blockCount].Index = dataFrame->m_superBlocks[blockIndex].m_header.m_blockIndex;
m_cm256DescriptorBlocks[blockCount].Block = (void *) &(dataFrame->m_superBlocks[blockIndex].m_protectedBlock);
blockCount++;
}
}
//qDebug("RemoteSourceSource::handleDataFrame: frame: %u blocks: %d", dataFrame.m_rxControlBlock.m_frameIndex, blockCount);
// Need to use the CM256 recovery
if (m_cm256p &&(dataFrame->m_rxControlBlock.m_originalCount < RemoteNbOrginalBlocks))
{
qDebug("RemoteSourceSource::handleDataFrame: %d recovery blocks", dataFrame->m_rxControlBlock.m_recoveryCount);
CM256::cm256_encoder_params paramsCM256;
paramsCM256.BlockBytes = sizeof(RemoteProtectedBlock); // never changes
paramsCM256.OriginalCount = RemoteNbOrginalBlocks; // never changes
if (m_currentMeta.m_tv_sec == 0) {
paramsCM256.RecoveryCount = dataFrame->m_rxControlBlock.m_recoveryCount;
} else {
paramsCM256.RecoveryCount = m_currentMeta.m_nbFECBlocks;
}
// update counters
if (dataFrame->m_rxControlBlock.m_originalCount < RemoteNbOrginalBlocks - paramsCM256.RecoveryCount) {
m_nbUncorrectableErrors += RemoteNbOrginalBlocks - paramsCM256.RecoveryCount - dataFrame->m_rxControlBlock.m_originalCount;
} else {
m_nbCorrectableErrors += dataFrame->m_rxControlBlock.m_recoveryCount;
}
if (m_cm256.cm256_decode(paramsCM256, m_cm256DescriptorBlocks)) // CM256 decode
{
qWarning() << "RemoteSourceSource::handleDataFrame: decode CM256 error:"
<< " m_originalCount: " << dataFrame->m_rxControlBlock.m_originalCount
<< " m_recoveryCount: " << dataFrame->m_rxControlBlock.m_recoveryCount;
}
else
{
for (int ir = 0; ir < dataFrame->m_rxControlBlock.m_recoveryCount; ir++) // restore missing blocks
{
int recoveryIndex = RemoteNbOrginalBlocks - dataFrame->m_rxControlBlock.m_recoveryCount + ir;
int blockIndex = m_cm256DescriptorBlocks[recoveryIndex].Index;
RemoteProtectedBlock *recoveredBlock =
(RemoteProtectedBlock *) m_cm256DescriptorBlocks[recoveryIndex].Block;
memcpy((void *) &(dataFrame->m_superBlocks[blockIndex].m_protectedBlock), recoveredBlock, sizeof(RemoteProtectedBlock));
if ((blockIndex == 0) && !dataFrame->m_rxControlBlock.m_metaRetrieved) {
dataFrame->m_rxControlBlock.m_metaRetrieved = true;
}
}
}
}
// Validate block zero and retrieve its data
if (dataFrame->m_rxControlBlock.m_metaRetrieved)
{
RemoteMetaDataFEC *metaData = (RemoteMetaDataFEC *) &(dataFrame->m_superBlocks[0].m_protectedBlock);
boost::crc_32_type crc32;
crc32.process_bytes(metaData, sizeof(RemoteMetaDataFEC)-4);
if (crc32.checksum() == metaData->m_crc32)
{
if (!(m_currentMeta == *metaData))
{
printMeta("RemoteSourceSource::handleDataFrame", metaData);
if (m_currentMeta.m_sampleRate != metaData->m_sampleRate) {
emit newRemoteSampleRate(metaData->m_sampleRate);
// returns via applyChannelSettings to set interpolator
}
}
m_currentMeta = *metaData;
}
else
{
qWarning() << "RemoteSource::handleDataFrame: recovered meta: invalid CRC32";
}
}
m_dataReadQueue.push(dataFrame); // Push into R/W buffer
}
}
void RemoteSourceSource::printMeta(const QString& header, RemoteMetaDataFEC *metaData)
{
qDebug().noquote() << header << ": "
<< "|" << metaData->m_centerFrequency
<< ":" << metaData->m_sampleRate
<< ":" << (int) (metaData->m_sampleBytes & 0xF)
<< ":" << (int) metaData->m_sampleBits
<< ":" << (int) metaData->m_nbOriginalBlocks
<< ":" << (int) metaData->m_nbFECBlocks
<< "|" << metaData->m_deviceIndex
<< ":" << metaData->m_channelIndex
<< "|" << metaData->m_tv_sec
<< ":" << metaData->m_tv_usec
<< "|";
}
void RemoteSourceSource::dataBind(const QString& dataAddress, uint16_t dataPort)
{
if (m_sourceWorker) {
m_sourceWorker->dataBind(dataAddress, dataPort);
}
m_settings.m_dataAddress = dataAddress;
m_settings.m_dataPort = dataPort;
}
void RemoteSourceSource::applyChannelSettings(int channelSampleRate, bool force)
{
qDebug() << "RemoteSourceSource::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " force: " << force;
m_channelSampleRate = channelSampleRate;
}