1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-18 14:21:49 -05:00
sdrangel/ft8/util.cpp

342 lines
9.9 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2023 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// //
// This is the code from ft8mon: https://github.com/rtmrtmrtmrtm/ft8mon //
// reformatted and adapted to Qt and SDRangel context //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <math.h>
#include <complex>
#include <string>
#include <algorithm>
#include "util/timeutil.h"
#include "util.h"
namespace FT8 {
double now()
{
return TimeUtil::nowus() / 1000000.0;
}
//
// Goertzel Algorithm for a Non-integer Frequency Index, Rick Lyons
// https://www.dsprelated.com/showarticle/495.php
//
std::complex<float> goertzel(std::vector<float> v, int rate, int i0, int n, float hz)
{
// float radians_per_sample = (hz * 2 * M_PI) / rate;
// float k = radians_per_sample * n;
float bin_hz = rate / (float)n;
float k = hz / bin_hz;
float alpha = 2 * M_PI * k / n;
float beta = 2 * M_PI * k * (n - 1.0) / n;
float two_cos_alpha = 2 * cos(alpha);
float a = cos(beta);
float b = -sin(beta);
float c = sin(alpha) * sin(beta) - cos(alpha) * cos(beta);
float d = sin(2 * M_PI * k);
float w1 = 0;
float w2 = 0;
for (int i = 0; i < n; i++)
{
float w0 = v[i0 + i] + two_cos_alpha * w1 - w2;
w2 = w1;
w1 = w0;
}
float re = w1 * a + w2 * c;
float im = w1 * b + w2 * d;
return std::complex<float>(re, im);
}
float vmax(const std::vector<float> &v)
{
float mx = 0;
int got = 0;
for (int i = 0; i < (int)v.size(); i++)
{
if (got == 0 || v[i] > mx)
{
got = 1;
mx = v[i];
}
}
return mx;
}
std::vector<float> vreal(const std::vector<std::complex<float>> &a)
{
std::vector<float> b(a.size());
for (int i = 0; i < (int)a.size(); i++)
{
b[i] = a[i].real();
}
return b;
}
std::vector<float> vimag(const std::vector<std::complex<float>> &a)
{
std::vector<float> b(a.size());
for (int i = 0; i < (int)a.size(); i++)
{
b[i] = a[i].imag();
}
return b;
}
// generate 8-FSK, at 25 hz, bin size 6.25 hz,
// 200 samples/second, 32 samples/symbol.
// used as reference to detect pairs of symbols.
// superseded by gfsk().
std::vector<std::complex<float>> fsk_c(const std::vector<int> &syms)
{
int n = syms.size();
std::vector<std::complex<float>> v(n * 32);
float theta = 0;
for (int si = 0; si < n; si++)
{
float hz = 25 + syms[si] * 6.25;
for (int i = 0; i < 32; i++)
{
v[si * 32 + i] = std::complex<float>(cos(theta), sin(theta));
theta += 2 * M_PI / (200 / hz);
}
}
return v;
}
// copied from wsjt-x ft2/gfsk_pulse.f90.
// b is 1.0 for FT4; 2.0 for FT8.
float gfsk_point(float b, float t)
{
float c = M_PI * sqrt(2.0 / log(2.0));
float x = 0.5 * (erf(c * b * (t + 0.5)) - erf(c * b * (t - 0.5)));
return x;
}
// the smoothing window for gfsk.
// run the window over impulses of symbol frequencies,
// each impulse at the center of its symbol time.
// three symbols wide.
// most of the pulse is in the center symbol.
// b is 1.0 for FT4; 2.0 for FT8.
std::vector<float> gfsk_window(int samples_per_symbol, float b)
{
std::vector<float> v(3 * samples_per_symbol);
float sum = 0;
for (int i = 0; i < (int)v.size(); i++)
{
float x = i / (float)samples_per_symbol;
x -= 1.5;
float y = gfsk_point(b, x);
v[i] = y;
sum += y;
}
for (int i = 0; i < (int)v.size(); i++)
{
v[i] /= sum;
}
return v;
}
// gaussian-smoothed fsk.
// the gaussian smooths the instantaneous frequencies,
// so that the transitions between symbols don't
// cause clicks.
// gwin is gfsk_window(32, 2.0)
std::vector<std::complex<float>> gfsk_c(
const std::vector<int> &symbols,
float hz0, float hz1,
float spacing, int rate, int symsamples,
float phase0,
const std::vector<float> &gwin
)
{
if (!((gwin.size() % 2) == 0))
{
std::vector<std::complex<float>> v(symsamples * symbols.size());
return v;
}
// compute frequency for each symbol.
// generate a spike in the middle of each symbol time;
// the gaussian filter will turn it into a waveform.
std::vector<float> hzv(symsamples * (symbols.size() + 2), 0.0);
for (int bi = 0; bi < (int)symbols.size(); bi++)
{
float base_hz = hz0 + (hz1 - hz0) * (bi / (float)symbols.size());
float fr = base_hz + (symbols[bi] * spacing);
int mid = symsamples * (bi + 1) + symsamples / 2;
// the window has even size, so split the impulse over
// the two middle samples to be symmetric.
hzv[mid] = fr * symsamples / 2.0;
hzv[mid - 1] = fr * symsamples / 2.0;
}
// repeat first and last symbols
for (int i = 0; i < symsamples; i++)
{
hzv[i] = hzv[i + symsamples];
hzv[symsamples * (symbols.size() + 1) + i] = hzv[symsamples * symbols.size() + i];
}
// run the per-sample frequency vector through
// the gaussian filter.
int half = gwin.size() / 2;
std::vector<float> o(hzv.size());
for (int i = 0; i < (int)o.size(); i++)
{
float sum = 0;
for (int j = 0; j < (int)gwin.size(); j++)
{
int k = i - half + j;
if (k >= 0 && k < (int)hzv.size())
{
sum += hzv[k] * gwin[j];
}
}
o[i] = sum;
}
// drop repeated first and last symbols
std::vector<float> oo(symsamples * symbols.size());
for (int i = 0; i < (int)oo.size(); i++)
{
oo[i] = o[i + symsamples];
}
// now oo[i] contains the frequency for the i'th sample.
std::vector<std::complex<float>> v(symsamples * symbols.size());
float theta = phase0;
for (int i = 0; i < (int)v.size(); i++)
{
v[i] = std::complex<float>(cos(theta), sin(theta));
float hz = oo[i];
theta += 2 * M_PI / (rate / hz);
}
return v;
}
// gaussian-smoothed fsk.
// the gaussian smooths the instantaneous frequencies,
// so that the transitions between symbols don't
// cause clicks.
// gwin is gfsk_window(32, 2.0)
std::vector<float> gfsk_r(
const std::vector<int> &symbols,
float hz0, float hz1,
float spacing, int rate, int symsamples,
float phase0,
const std::vector<float> &gwin
)
{
if (!((gwin.size() % 2) == 0))
{
std::vector<float> v(symsamples * symbols.size());
return v;
}
// compute frequency for each symbol.
// generate a spike in the middle of each symbol time;
// the gaussian filter will turn it into a waveform.
std::vector<float> hzv(symsamples * (symbols.size() + 2), 0.0);
for (int bi = 0; bi < (int)symbols.size(); bi++)
{
float base_hz = hz0 + (hz1 - hz0) * (bi / (float)symbols.size());
float fr = base_hz + (symbols[bi] * spacing);
int mid = symsamples * (bi + 1) + symsamples / 2;
// the window has even size, so split the impulse over
// the two middle samples to be symmetric.
hzv[mid] = fr * symsamples / 2.0;
hzv[mid - 1] = fr * symsamples / 2.0;
}
// repeat first and last symbols
for (int i = 0; i < symsamples; i++)
{
hzv[i] = hzv[i + symsamples];
hzv[symsamples * (symbols.size() + 1) + i] = hzv[symsamples * symbols.size() + i];
}
// run the per-sample frequency vector through
// the gaussian filter.
int half = gwin.size() / 2;
std::vector<float> o(hzv.size());
for (int i = 0; i < (int)o.size(); i++)
{
float sum = 0;
for (int j = 0; j < (int)gwin.size(); j++)
{
int k = i - half + j;
if (k >= 0 && k < (int)hzv.size())
{
sum += hzv[k] * gwin[j];
}
}
o[i] = sum;
}
// drop repeated first and last symbols
std::vector<float> oo(symsamples * symbols.size());
for (int i = 0; i < (int)oo.size(); i++)
{
oo[i] = o[i + symsamples];
}
// now oo[i] contains the frequency for the i'th sample.
std::vector<float> v(symsamples * symbols.size());
float theta = phase0;
for (int i = 0; i < (int)v.size(); i++)
{
v[i] = cos(theta);
float hz = oo[i];
theta += 2 * M_PI / (rate / hz);
}
return v;
}
const std::string WHITESPACE = " \n\r\t\f\v";
std::string ltrim(const std::string &s)
{
size_t start = s.find_first_not_of(WHITESPACE);
return (start == std::string::npos) ? "" : s.substr(start);
}
std::string rtrim(const std::string &s)
{
size_t end = s.find_last_not_of(WHITESPACE);
return (end == std::string::npos) ? "" : s.substr(0, end + 1);
}
std::string trim(const std::string &s) {
return rtrim(ltrim(s));
}
} // namespace FT8