1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-12-25 20:22:10 -05:00
sdrangel/plugins/samplemimo/bladerf2mimo/bladerf2mimogui.cpp

824 lines
27 KiB
C++
Raw Normal View History

2020-11-10 13:09:44 -05:00
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QDebug>
#include <QTime>
#include <QDateTime>
#include <QString>
#include <QMessageBox>
#include <QFileDialog>
#include "plugin/pluginapi.h"
#include "device/deviceapi.h"
#include "device/deviceuiset.h"
#include "gui/colormapper.h"
#include "gui/glspectrum.h"
#include "gui/crightclickenabler.h"
#include "gui/basicdevicesettingsdialog.h"
#include "dsp/dspengine.h"
#include "dsp/dspdevicemimoengine.h"
#include "dsp/dspcommands.h"
#include "dsp/devicesamplestatic.h"
#include "util/db.h"
#include "mainwindow.h"
#include "bladerf2mimo.h"
#include "ui_bladerf2mimogui.h"
#include "bladerf2mimogui.h"
BladeRF2MIMOGui::BladeRF2MIMOGui(DeviceUISet *deviceUISet, QWidget* parent) :
DeviceGUI(parent),
ui(new Ui::BladeRF2MIMOGui),
m_deviceUISet(deviceUISet),
m_settings(),
m_rxElseTx(true),
m_streamIndex(0),
m_spectrumRxElseTx(true),
m_spectrumStreamIndex(0),
m_gainLock(false),
m_doApplySettings(true),
m_forceSettings(true),
m_sampleMIMO(nullptr),
m_tickCount(0),
m_rxBasebandSampleRate(3072000),
m_txBasebandSampleRate(3072000),
m_rxDeviceCenterFrequency(435000*1000),
m_txDeviceCenterFrequency(435000*1000),
m_lastRxEngineState(DeviceAPI::StNotStarted),
m_lastTxEngineState(DeviceAPI::StNotStarted),
m_sampleRateMode(true)
{
qDebug("BladeRF2MIMOGui::BladeRF2MIMOGui");
ui->setupUi(this);
m_sampleMIMO = (BladeRF2MIMO*) m_deviceUISet->m_deviceAPI->getSampleMIMO();
m_sampleMIMO->getRxFrequencyRange(m_fMinRx, m_fMaxRx, m_fStepRx, m_fScaleRx);
m_sampleMIMO->getTxFrequencyRange(m_fMinTx, m_fMaxTx, m_fStepTx, m_fScaleTx);
m_sampleMIMO->getRxBandwidthRange(m_bwMinRx, m_bwMaxRx, m_bwStepRx, m_bwScaleRx);
m_sampleMIMO->getTxBandwidthRange(m_bwMinTx, m_bwMaxTx, m_bwStepTx, m_bwScaleTx);
ui->centerFrequency->setColorMapper(ColorMapper(ColorMapper::GrayGold));
ui->sampleRate->setColorMapper(ColorMapper(ColorMapper::GrayGreenYellow));
ui->bandwidth->setColorMapper(ColorMapper(ColorMapper::GrayYellow));
int minRx, maxRx, stepRx, minTx, maxTx, stepTx;
m_sampleMIMO->getRxSampleRateRange(minRx, maxRx, stepRx, m_srScaleRx);
m_sampleMIMO->getTxSampleRateRange(minTx, maxTx, stepTx, m_srScaleTx);
m_srMin = std::max(minRx, minTx);
m_srMax = std::min(maxRx, maxTx);
m_sampleMIMO->getRxGlobalGainRange(m_gainMinRx, m_gainMaxRx, m_gainStepRx, m_gainScaleRx);
m_sampleMIMO->getTxGlobalGainRange(m_gainMinTx, m_gainMaxTx, m_gainStepTx, m_gainScaleTx);
displayGainModes();
displaySettings();
connect(&m_updateTimer, SIGNAL(timeout()), this, SLOT(updateHardware()));
connect(&m_statusTimer, SIGNAL(timeout()), this, SLOT(updateStatus()));
m_statusTimer.start(500);
connect(&m_inputMessageQueue, SIGNAL(messageEnqueued()), this, SLOT(handleInputMessages()), Qt::QueuedConnection);
m_sampleMIMO->setMessageQueueToGUI(&m_inputMessageQueue);
CRightClickEnabler *startStopRightClickEnabler = new CRightClickEnabler(ui->startStopRx);
connect(startStopRightClickEnabler, SIGNAL(rightClick(const QPoint &)), this, SLOT(openDeviceSettingsDialog(const QPoint &)));
sendSettings();
}
BladeRF2MIMOGui::~BladeRF2MIMOGui()
{
delete ui;
}
void BladeRF2MIMOGui::destroy()
{
delete this;
}
void BladeRF2MIMOGui::resetToDefaults()
{
m_settings.resetToDefaults();
displaySettings();
sendSettings();
}
QByteArray BladeRF2MIMOGui::serialize() const
{
return m_settings.serialize();
}
bool BladeRF2MIMOGui::deserialize(const QByteArray& data)
{
if (m_settings.deserialize(data))
{
displaySettings();
m_forceSettings = true;
sendSettings();
return true;
}
else
{
resetToDefaults();
return false;
}
}
void BladeRF2MIMOGui::displaySettings()
{
updateFrequencyLimits();
if (m_rxElseTx)
{
ui->transverter->setDeltaFrequency(m_settings.m_rxTransverterDeltaFrequency);
ui->transverter->setDeltaFrequencyActive(m_settings.m_rxTransverterMode);
ui->transverter->setIQOrder(m_settings.m_iqOrder);
ui->centerFrequency->setValueRange(7, m_fMinRx / 1000, m_fMaxRx / 1000);
ui->centerFrequency->setValue(m_settings.m_rxCenterFrequency / 1000);
ui->bandwidth->setValueRange(5, m_bwMinRx / 1000, m_bwMaxRx / 1000);
ui->bandwidth->setValue(m_settings.m_rxBandwidth / 1000);
uint32_t basebandSampleRate = m_settings.m_devSampleRate/(1<<m_settings.m_log2Decim);
ui->deviceRateText->setText(tr("%1k").arg(QString::number(basebandSampleRate / 1000.0f, 'g', 5)));
ui->dcOffset->setEnabled(true);
ui->dcOffset->setChecked(m_settings.m_dcBlock);
ui->iqImbalance->setEnabled(true);
ui->iqImbalance->setChecked(m_settings.m_iqCorrection);
ui->biasTee->setChecked(m_settings.m_rxBiasTee);
ui->decim->setCurrentIndex(m_settings.m_log2Decim);
ui->label_decim->setText(QString("Dec"));
ui->decim->setToolTip(QString("Decimation factor"));
ui->gainMode->setEnabled(true);
ui->fcPos->setCurrentIndex((int) m_settings.m_fcPosRx);
if (m_streamIndex == 0) {
ui->gainMode->setCurrentIndex(m_settings.m_rx0GainMode);
} else if (m_streamIndex == 1) {
ui->gainMode->setCurrentIndex(m_settings.m_rx1GainMode);
}
}
else
{
ui->transverter->setDeltaFrequency(m_settings.m_txTransverterDeltaFrequency);
ui->transverter->setDeltaFrequencyActive(m_settings.m_txTransverterMode);
ui->transverter->setIQOrder(m_settings.m_iqOrder);
ui->centerFrequency->setValueRange(7, m_fMinTx / 1000, m_fMaxTx / 1000);
ui->centerFrequency->setValue(m_settings.m_txCenterFrequency / 1000);
ui->bandwidth->setValueRange(5, m_bwMinTx / 1000, m_bwMaxTx / 1000);
ui->bandwidth->setValue(m_settings.m_txBandwidth / 1000);
uint32_t basebandSampleRate = m_settings.m_devSampleRate/(1<<m_settings.m_log2Interp);
ui->deviceRateText->setText(tr("%1k").arg(QString::number(basebandSampleRate / 1000.0f, 'g', 5)));
ui->dcOffset->setEnabled(false);
ui->iqImbalance->setEnabled(false);
ui->biasTee->setChecked(m_settings.m_txBiasTee);
ui->decim->setCurrentIndex(m_settings.m_log2Interp);
ui->label_decim->setText(QString("Int"));
ui->decim->setToolTip(QString("Interpolation factor"));
ui->gainMode->setEnabled(false);
ui->fcPos->setCurrentIndex((int) m_settings.m_fcPosTx);
}
displayGain();
ui->sampleRate->setValue(m_settings.m_devSampleRate);
ui->LOppm->setValue(m_settings.m_LOppmTenths);
ui->LOppmText->setText(QString("%1").arg(QString::number(m_settings.m_LOppmTenths/10.0, 'f', 1)));
displaySampleRate();
}
void BladeRF2MIMOGui::displaySampleRate()
{
ui->sampleRate->blockSignals(true);
displayFcTooltip();
quint32 log2Factor = m_rxElseTx ? m_settings.m_log2Decim : m_settings.m_log2Interp;
if (m_sampleRateMode)
{
ui->sampleRateMode->setStyleSheet("QToolButton { background:rgb(60,60,60); }");
ui->sampleRateMode->setText("SR");
// BladeRF can go as low as 80 kS/s but because of buffering in practice experience is not good below 330 kS/s
ui->sampleRate->setValueRange(8, m_srMin, m_srMax);
ui->sampleRate->setValue(m_settings.m_devSampleRate);
ui->sampleRate->setToolTip("Device to host sample rate (S/s)");
ui->deviceRateText->setToolTip("Baseband sample rate (S/s)");
uint32_t basebandSampleRate = m_settings.m_devSampleRate/(1<<log2Factor);
ui->deviceRateText->setText(tr("%1k").arg(QString::number(basebandSampleRate / 1000.0f, 'g', 5)));
}
else
{
ui->sampleRateMode->setStyleSheet("QToolButton { background:rgb(50,50,50); }");
ui->sampleRateMode->setText("BB");
// BladeRF can go as low as 80 kS/s but because of buffering in practice experience is not good below 330 kS/s
ui->sampleRate->setValueRange(8, m_srMin/(1<<log2Factor), m_srMax/(1<<log2Factor));
ui->sampleRate->setValue(m_settings.m_devSampleRate/(1<<log2Factor));
ui->sampleRate->setToolTip("Baseband sample rate (S/s)");
ui->deviceRateText->setToolTip("Device to host sample rate (S/s)");
ui->deviceRateText->setText(tr("%1k").arg(QString::number(m_settings.m_devSampleRate / 1000.0f, 'g', 5)));
}
ui->sampleRate->blockSignals(false);
}
void BladeRF2MIMOGui::displayFcTooltip()
{
int32_t fShift;
if (m_rxElseTx)
{
fShift = DeviceSampleStatic::calculateSourceFrequencyShift(
m_settings.m_log2Decim,
(DeviceSampleStatic::fcPos_t) m_settings.m_fcPosRx,
m_settings.m_devSampleRate,
DeviceSampleStatic::FrequencyShiftScheme::FSHIFT_STD
);
}
else
{
fShift = DeviceSampleStatic::calculateSinkFrequencyShift(
m_settings.m_log2Interp,
(DeviceSampleStatic::fcPos_t) m_settings.m_fcPosTx,
m_settings.m_devSampleRate
);
}
ui->fcPos->setToolTip(tr("Relative position of device center frequency: %1 kHz").arg(QString::number(fShift / 1000.0f, 'g', 5)));
}
void BladeRF2MIMOGui::displayGainModes()
{
ui->gainMode->blockSignals(true);
if (m_rxElseTx)
{
const std::vector<BladeRF2MIMO::GainMode>& modes = m_sampleMIMO->getRxGainModes();
std::vector<BladeRF2MIMO::GainMode>::const_iterator it = modes.begin();
for (; it != modes.end(); ++it) {
ui->gainMode->addItem(it->m_name);
}
}
else
{
ui->gainMode->clear();
ui->gainMode->addItem("automatic");
}
ui->gainMode->blockSignals(false);
}
void BladeRF2MIMOGui::displayGain()
{
int min, max, step, gainDB;
float scale;
if (m_rxElseTx)
{
m_sampleMIMO->getRxGlobalGainRange(min, max, step, scale);
if (m_streamIndex == 0) {
gainDB = m_settings.m_rx0GlobalGain;
} else {
gainDB = m_settings.m_rx1GlobalGain;
}
}
else
{
m_sampleMIMO->getTxGlobalGainRange(min, max, step, scale);
if (m_streamIndex == 0) {
gainDB = m_settings.m_tx0GlobalGain;
} else {
gainDB = m_settings.m_tx1GlobalGain;
}
}
ui->gain->setMinimum(min/step);
ui->gain->setMaximum(max/step);
ui->gain->setSingleStep(1);
ui->gain->setPageStep(1);
ui->gain->setValue(getGainValue(gainDB, min, max, step, scale));
ui->gainText->setText(tr("%1 dB").arg(QString::number(gainDB, 'f', 2)));
}
bool BladeRF2MIMOGui::handleMessage(const Message& message)
{
if (DSPMIMOSignalNotification::match(message))
{
const DSPMIMOSignalNotification& notif = (const DSPMIMOSignalNotification&) message;
int istream = notif.getIndex();
bool sourceOrSink = notif.getSourceOrSink();
if (sourceOrSink)
{
m_rxBasebandSampleRate = notif.getSampleRate();
m_rxDeviceCenterFrequency = notif.getCenterFrequency();
}
else
{
m_txBasebandSampleRate = notif.getSampleRate();
m_txDeviceCenterFrequency = notif.getCenterFrequency();
}
qDebug("BladeRF2MIMOGui::handleInputMessages: DSPMIMOSignalNotification: %s stream: %d SampleRate:%d, CenterFrequency:%llu",
sourceOrSink ? "source" : "sink",
istream,
notif.getSampleRate(),
notif.getCenterFrequency());
updateSampleRateAndFrequency();
return true;
}
else if (BladeRF2MIMO::MsgConfigureBladeRF2MIMO::match(message))
{
const BladeRF2MIMO::MsgConfigureBladeRF2MIMO& notif = (const BladeRF2MIMO::MsgConfigureBladeRF2MIMO&) message;
m_settings = notif.getSettings();
displaySettings();
return true;
}
return false;
}
void BladeRF2MIMOGui::handleInputMessages()
{
Message* message;
while ((message = m_inputMessageQueue.pop()) != 0)
{
if (handleMessage(*message)) {
delete message;
} else {
qDebug("BladeRF2MIMOGui::handleInputMessages: unhandled message: %s", message->getIdentifier());
}
}
}
void BladeRF2MIMOGui::sendSettings()
{
if(!m_updateTimer.isActive()) {
m_updateTimer.start(100);
}
}
void BladeRF2MIMOGui::updateHardware()
{
if (m_doApplySettings)
{
BladeRF2MIMO::MsgConfigureBladeRF2MIMO* message = BladeRF2MIMO::MsgConfigureBladeRF2MIMO::create(m_settings, m_forceSettings);
m_sampleMIMO->getInputMessageQueue()->push(message);
m_forceSettings = false;
m_updateTimer.stop();
}
}
void BladeRF2MIMOGui::updateSampleRateAndFrequency()
{
if (m_spectrumRxElseTx)
{
m_deviceUISet->getSpectrum()->setSampleRate(m_rxBasebandSampleRate);
m_deviceUISet->getSpectrum()->setCenterFrequency(m_rxDeviceCenterFrequency);
}
else
{
m_deviceUISet->getSpectrum()->setSampleRate(m_txBasebandSampleRate);
m_deviceUISet->getSpectrum()->setCenterFrequency(m_txDeviceCenterFrequency);
}
}
void BladeRF2MIMOGui::on_streamSide_currentIndexChanged(int index)
{
m_rxElseTx = index == 0;
displayGainModes();
displaySettings();
}
void BladeRF2MIMOGui::on_streamIndex_currentIndexChanged(int index)
{
m_streamIndex = index < 0 ? 0 : index > 1 ? 1 : index;
displaySettings();
}
void BladeRF2MIMOGui::on_spectrumSide_currentIndexChanged(int index)
{
m_spectrumRxElseTx = (index == 0);
m_deviceUISet->m_spectrum->setDisplayedStream(m_spectrumRxElseTx, m_spectrumStreamIndex);
m_deviceUISet->m_deviceAPI->setSpectrumSinkInput(m_spectrumRxElseTx, m_spectrumStreamIndex);
m_deviceUISet->setSpectrumScalingFactor(m_spectrumRxElseTx ? SDR_RX_SCALEF : SDR_TX_SCALEF);
updateSampleRateAndFrequency();
}
void BladeRF2MIMOGui::on_spectrumIndex_currentIndexChanged(int index)
{
m_spectrumStreamIndex = index < 0 ? 0 : index > 1 ? 1 : index;
m_deviceUISet->m_spectrum->setDisplayedStream(m_spectrumRxElseTx, m_spectrumStreamIndex);
m_deviceUISet->m_deviceAPI->setSpectrumSinkInput(m_spectrumRxElseTx, m_spectrumStreamIndex);
updateSampleRateAndFrequency();
}
void BladeRF2MIMOGui::on_startStopRx_toggled(bool checked)
{
if (m_doApplySettings)
{
BladeRF2MIMO::MsgStartStop *message = BladeRF2MIMO::MsgStartStop::create(checked, true);
m_sampleMIMO->getInputMessageQueue()->push(message);
}
}
void BladeRF2MIMOGui::on_startStopTx_toggled(bool checked)
{
if (m_doApplySettings)
{
BladeRF2MIMO::MsgStartStop *message = BladeRF2MIMO::MsgStartStop::create(checked, false);
m_sampleMIMO->getInputMessageQueue()->push(message);
}
}
void BladeRF2MIMOGui::on_centerFrequency_changed(quint64 value)
{
if (m_rxElseTx) {
m_settings.m_rxCenterFrequency = value * 1000;
} else {
m_settings.m_txCenterFrequency = value * 1000;
}
sendSettings();
}
void BladeRF2MIMOGui::on_LOppm_valueChanged(int value)
{
ui->LOppmText->setText(QString("%1").arg(QString::number(value/10.0, 'f', 1)));
m_settings.m_LOppmTenths = value;
sendSettings();
}
void BladeRF2MIMOGui::on_dcOffset_toggled(bool checked)
{
m_settings.m_dcBlock = checked;
sendSettings();
}
void BladeRF2MIMOGui::on_iqImbalance_toggled(bool checked)
{
m_settings.m_iqCorrection = checked;
sendSettings();
}
void BladeRF2MIMOGui::on_bandwidth_changed(quint64 value)
{
if (m_rxElseTx) {
m_settings.m_rxBandwidth = value * 1000;
} else {
m_settings.m_txBandwidth = value * 1000;
}
sendSettings();
}
void BladeRF2MIMOGui::on_sampleRate_changed(quint64 value)
{
if (m_sampleRateMode)
{
m_settings.m_devSampleRate = value;
}
else
{
if (m_rxElseTx) {
m_settings.m_devSampleRate = value * (1 << m_settings.m_log2Decim);
} else {
m_settings.m_devSampleRate = value * (1 << m_settings.m_log2Interp);
}
}
displaySampleRate();
displayFcTooltip();
sendSettings();
}
void BladeRF2MIMOGui::on_fcPos_currentIndexChanged(int index)
{
if (m_rxElseTx) {
m_settings.m_fcPosRx = (BladeRF2MIMOSettings::fcPos_t) (index < 0 ? 0 : index > 2 ? 2 : index);
} else {
m_settings.m_fcPosTx = (BladeRF2MIMOSettings::fcPos_t) (index < 0 ? 0 : index > 2 ? 2 : index);
}
displayFcTooltip();
sendSettings();
}
void BladeRF2MIMOGui::on_decim_currentIndexChanged(int index)
{
if ((index <0) || (index > 6)) {
return;
}
if (m_rxElseTx) {
m_settings.m_log2Decim = index;
} else {
m_settings.m_log2Interp = index;
}
displaySampleRate();
if (m_sampleRateMode) {
m_settings.m_devSampleRate = ui->sampleRate->getValueNew();
} else {
m_settings.m_devSampleRate = ui->sampleRate->getValueNew() * (1 << (m_rxElseTx ? m_settings.m_log2Decim : m_settings.m_log2Interp));
}
sendSettings();
}
void BladeRF2MIMOGui::on_gainLock_toggled(bool checked)
{
if (!m_gainLock && checked)
{
m_settings.m_rx1GlobalGain = m_settings.m_rx0GlobalGain;
m_settings.m_rx1GainMode = m_settings.m_rx0GainMode;
m_settings.m_tx1GlobalGain = m_settings.m_tx0GlobalGain;
sendSettings();
}
m_gainLock = checked;
}
void BladeRF2MIMOGui::on_gainMode_currentIndexChanged(int index)
{
if (!m_rxElseTx) { // not for Tx
return;
}
const std::vector<BladeRF2MIMO::GainMode>& modes = m_sampleMIMO->getRxGainModes();
unsigned int uindex = index < 0 ? 0 : (unsigned int) index;
if (uindex < modes.size())
{
BladeRF2MIMO::GainMode mode = modes[index];
if (m_streamIndex == 0 || m_gainLock)
{
if (m_settings.m_rx0GainMode != mode.m_value)
{
if (mode.m_value == BLADERF_GAIN_MANUAL)
{
setGainFromValue(ui->gain->value());
ui->gain->setEnabled(true);
} else {
ui->gain->setEnabled(false);
}
}
m_settings.m_rx0GainMode = mode.m_value;
}
if (m_streamIndex == 1 || m_gainLock)
{
if (m_settings.m_rx1GainMode != mode.m_value)
{
if (mode.m_value == BLADERF_GAIN_MANUAL)
{
setGainFromValue(ui->gain->value());
ui->gain->setEnabled(true);
} else {
ui->gain->setEnabled(false);
}
}
m_settings.m_rx1GainMode = mode.m_value;
}
sendSettings();
}
}
void BladeRF2MIMOGui::on_gain_valueChanged(int value)
{
float gainDB = setGainFromValue(value);
ui->gainText->setText(tr("%1 dB").arg(QString::number(gainDB, 'f', 2)));
sendSettings();
}
float BladeRF2MIMOGui::setGainFromValue(int value)
{
int min, max, step;
float scale, gainDB;
if (m_rxElseTx)
{
m_sampleMIMO->getRxGlobalGainRange(min, max, step, scale);
gainDB = getGainDB(value, min, max, step, scale);
if (m_streamIndex == 0 || m_gainLock) {
m_settings.m_rx0GlobalGain = (int) gainDB;
}
if (m_streamIndex == 1 || m_gainLock) {
m_settings.m_rx1GlobalGain = (int) gainDB;
}
}
else
{
m_sampleMIMO->getTxGlobalGainRange(min, max, step, scale);
gainDB = getGainDB(value, min, max, step, scale);
if (m_streamIndex == 0 || m_gainLock) {
m_settings.m_tx0GlobalGain = (int) gainDB;
}
if (m_streamIndex == 1 || m_gainLock) {
m_settings.m_tx1GlobalGain = (int) gainDB;
}
}
return gainDB;
}
void BladeRF2MIMOGui::on_biasTee_toggled(bool checked)
{
if (m_rxElseTx) {
m_settings.m_rxBiasTee = checked;
} else {
m_settings.m_txBiasTee = checked;
}
sendSettings();
}
void BladeRF2MIMOGui::on_transverter_clicked()
{
if (m_rxElseTx)
{
m_settings.m_rxTransverterMode = ui->transverter->getDeltaFrequencyAcive();
m_settings.m_rxTransverterDeltaFrequency = ui->transverter->getDeltaFrequency();
m_settings.m_iqOrder = ui->transverter->getIQOrder();
qDebug("BladeRF2InputGui::on_transverter_clicked: Rx: %lld Hz %s", m_settings.m_rxTransverterDeltaFrequency, m_settings.m_rxTransverterMode ? "on" : "off");
}
else
{
m_settings.m_txTransverterMode = ui->transverter->getDeltaFrequencyAcive();
m_settings.m_txTransverterDeltaFrequency = ui->transverter->getDeltaFrequency();
qDebug("BladeRF2InputGui::on_transverter_clicked: Tx: %lld Hz %s", m_settings.m_txTransverterDeltaFrequency, m_settings.m_txTransverterMode ? "on" : "off");
}
updateFrequencyLimits();
setCenterFrequencySetting(ui->centerFrequency->getValueNew());
sendSettings();
}
void BladeRF2MIMOGui::updateFrequencyLimits()
{
// values in kHz
uint64_t f_min, f_max;
int step;
float scale;
if (m_rxElseTx)
{
qint64 deltaFrequency = m_settings.m_rxTransverterMode ? m_settings.m_rxTransverterDeltaFrequency/1000 : 0;
m_sampleMIMO->getRxFrequencyRange(f_min, f_max, step, scale);
qint64 minLimit = f_min/1000 + deltaFrequency;
qint64 maxLimit = f_max/1000 + deltaFrequency;
minLimit = minLimit < 0 ? 0 : minLimit > 9999999 ? 9999999 : minLimit;
maxLimit = maxLimit < 0 ? 0 : maxLimit > 9999999 ? 9999999 : maxLimit;
qDebug("BladeRF2MIMOGui::updateFrequencyLimits: Rx: delta: %lld min: %lld max: %lld", deltaFrequency, minLimit, maxLimit);
ui->centerFrequency->setValueRange(7, minLimit, maxLimit);
}
else
{
qint64 deltaFrequency = m_settings.m_txTransverterMode ? m_settings.m_txTransverterDeltaFrequency/1000 : 0;
m_sampleMIMO->getRxFrequencyRange(f_min, f_max, step, scale);
qint64 minLimit = f_min/1000 + deltaFrequency;
qint64 maxLimit = f_max/1000 + deltaFrequency;
minLimit = minLimit < 0 ? 0 : minLimit > 9999999 ? 9999999 : minLimit;
maxLimit = maxLimit < 0 ? 0 : maxLimit > 9999999 ? 9999999 : maxLimit;
qDebug("BladeRF2MIMOGui::updateFrequencyLimits: Rx: delta: %lld min: %lld max: %lld", deltaFrequency, minLimit, maxLimit);
ui->centerFrequency->setValueRange(7, minLimit, maxLimit);
}
}
void BladeRF2MIMOGui::setCenterFrequencySetting(uint64_t kHzValue)
{
int64_t centerFrequency = kHzValue*1000;
if (m_rxElseTx) {
m_settings.m_rxCenterFrequency = centerFrequency < 0 ? 0 : (uint64_t) centerFrequency;
} else {
m_settings.m_txCenterFrequency = centerFrequency < 0 ? 0 : (uint64_t) centerFrequency;
}
ui->centerFrequency->setToolTip(QString("Main center frequency in kHz (LO: %1 kHz)").arg(centerFrequency/1000));
}
void BladeRF2MIMOGui::updateStatus()
{
int stateRx = m_deviceUISet->m_deviceAPI->state(0);
int stateTx = m_deviceUISet->m_deviceAPI->state(1);
if (m_lastRxEngineState != stateRx)
{
qDebug("BladeRF2MIMOGui::updateStatus: stateRx: %d", (int) stateRx);
switch(stateRx)
{
case DeviceAPI::StNotStarted:
ui->startStopRx->setStyleSheet("QToolButton { background:rgb(79,79,79); }");
break;
case DeviceAPI::StIdle:
ui->startStopRx->setStyleSheet("QToolButton { background-color : blue; }");
break;
case DeviceAPI::StRunning:
ui->startStopRx->setStyleSheet("QToolButton { background-color : green; }");
break;
case DeviceAPI::StError:
ui->startStopRx->setStyleSheet("QToolButton { background-color : red; }");
QMessageBox::information(this, tr("Message"), m_deviceUISet->m_deviceAPI->errorMessage(0));
break;
default:
break;
}
m_lastRxEngineState = stateRx;
}
if (m_lastTxEngineState != stateTx)
{
qDebug("BladeRF2MIMOGui::updateStatus: stateTx: %d", (int) stateTx);
switch(stateTx)
{
case DeviceAPI::StNotStarted:
ui->startStopTx->setStyleSheet("QToolButton { background:rgb(79,79,79); }");
break;
case DeviceAPI::StIdle:
ui->startStopTx->setStyleSheet("QToolButton { background-color : blue; }");
break;
case DeviceAPI::StRunning:
ui->startStopTx->setStyleSheet("QToolButton { background-color : green; }");
break;
case DeviceAPI::StError:
ui->startStopTx->setStyleSheet("QToolButton { background-color : red; }");
QMessageBox::information(this, tr("Message"), m_deviceUISet->m_deviceAPI->errorMessage(1));
break;
default:
break;
}
m_lastTxEngineState = stateTx;
}
}
void BladeRF2MIMOGui::openDeviceSettingsDialog(const QPoint& p)
{
BasicDeviceSettingsDialog dialog(this);
dialog.setUseReverseAPI(m_settings.m_useReverseAPI);
dialog.setReverseAPIAddress(m_settings.m_reverseAPIAddress);
dialog.setReverseAPIPort(m_settings.m_reverseAPIPort);
dialog.setReverseAPIDeviceIndex(m_settings.m_reverseAPIDeviceIndex);
dialog.move(p);
dialog.exec();
m_settings.m_useReverseAPI = dialog.useReverseAPI();
m_settings.m_reverseAPIAddress = dialog.getReverseAPIAddress();
m_settings.m_reverseAPIPort = dialog.getReverseAPIPort();
m_settings.m_reverseAPIDeviceIndex = dialog.getReverseAPIDeviceIndex();
sendSettings();
}
float BladeRF2MIMOGui::getGainDB(int gainValue, int gainMin, int gainMax, int gainStep, float gainScale)
{
float gain = gainValue * gainStep * gainScale;
qDebug("BladeRF2MIMOGui::getGainDB: gainValue: %d gainMin: %d gainMax: %d gainStep: %d gainScale: %f gain: %f",
gainValue, gainMin, gainMax, gainStep, gainScale, gain);
return gain;
}
int BladeRF2MIMOGui::getGainValue(float gainDB, int gainMin, int gainMax, int gainStep, float gainScale)
{
int gain = (gainDB/gainScale) / gainStep;
qDebug("BladeRF2MIMOGui::getGainValue: gainDB: %f m_gainMin: %d m_gainMax: %d m_gainStep: %d gainScale: %f gain: %d",
gainDB, gainMin, gainMax, gainStep, gainScale, gain);
return gain;
}