1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-08 17:46:03 -05:00
sdrangel/plugins/samplesink/usrpoutput/usrpoutput.cpp

1206 lines
45 KiB
C++
Raw Normal View History

2020-10-02 17:45:28 -04:00
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017 Edouard Griffiths, F4EXB //
// Copyright (C) 2020 Jon Beniston, M7RCE //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <cstddef>
#include <string.h>
#include <QMutexLocker>
#include <QDebug>
#include <QNetworkReply>
#include <QBuffer>
#include <uhd/usrp/multi_usrp.hpp>
#include "SWGDeviceSettings.h"
#include "SWGUSRPOutputSettings.h"
#include "SWGDeviceState.h"
#include "SWGDeviceReport.h"
#include "SWGUSRPOutputReport.h"
#include "device/deviceapi.h"
#include "dsp/dspcommands.h"
#include "dsp/dspengine.h"
#include "usrpoutputthread.h"
#include "usrp/deviceusrpparam.h"
#include "usrp/deviceusrp.h"
#include "usrpoutput.h"
MESSAGE_CLASS_DEFINITION(USRPOutput::MsgConfigureUSRP, Message)
MESSAGE_CLASS_DEFINITION(USRPOutput::MsgStartStop, Message)
MESSAGE_CLASS_DEFINITION(USRPOutput::MsgGetStreamInfo, Message)
MESSAGE_CLASS_DEFINITION(USRPOutput::MsgGetDeviceInfo, Message)
MESSAGE_CLASS_DEFINITION(USRPOutput::MsgReportStreamInfo, Message)
USRPOutput::USRPOutput(DeviceAPI *deviceAPI) :
m_deviceAPI(deviceAPI),
m_settings(),
m_usrpOutputThread(nullptr),
m_deviceDescription("USRPOutput"),
m_running(false),
2020-11-13 23:51:19 -05:00
m_channelAcquired(false),
m_bufSamples(0)
2020-10-02 17:45:28 -04:00
{
m_deviceAPI->setNbSinkStreams(1);
m_sampleSourceFifo.resize(SampleSourceFifo::getSizePolicy(m_settings.m_devSampleRate));
m_streamId = nullptr;
suspendRxBuddies();
suspendTxBuddies();
openDevice();
resumeTxBuddies();
resumeRxBuddies();
m_networkManager = new QNetworkAccessManager();
connect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*)));
}
USRPOutput::~USRPOutput()
{
disconnect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*)));
delete m_networkManager;
if (m_running) {
stop();
}
suspendRxBuddies();
suspendTxBuddies();
closeDevice();
resumeTxBuddies();
resumeRxBuddies();
}
void USRPOutput::destroy()
{
delete this;
}
bool USRPOutput::openDevice()
{
int requestedChannel = m_deviceAPI->getDeviceItemIndex();
// look for Tx buddies and get reference to common parameters
// if there is a channel left take the first available
if (m_deviceAPI->getSinkBuddies().size() > 0) // look sink sibling first
{
qDebug("USRPOutput::openDevice: look in Ix buddies");
DeviceAPI *sinkBuddy = m_deviceAPI->getSinkBuddies()[0];
//m_deviceShared = *((DeviceUSRPShared *) sinkBuddy->getBuddySharedPtr()); // copy shared data
DeviceUSRPShared *deviceUSRPShared = (DeviceUSRPShared*) sinkBuddy->getBuddySharedPtr();
m_deviceShared.m_deviceParams = deviceUSRPShared->m_deviceParams;
DeviceUSRPParams *deviceParams = m_deviceShared.m_deviceParams; // get device parameters
if (deviceParams == 0)
{
qCritical("USRPOutput::openDevice: cannot get device parameters from Tx buddy");
return false; // the device params should have been created by the buddy
}
else
{
qDebug("USRPOutput::openDevice: getting device parameters from Tx buddy");
}
if (m_deviceAPI->getSinkBuddies().size() == deviceParams->m_nbTxChannels)
{
qCritical("USRPOutput::openDevice: no more Tx channels available in device");
return false; // no more Tx channels available in device
}
else
{
qDebug("USRPOutput::openDevice: at least one more Tx channel is available in device");
}
// check if the requested channel is busy and abort if so (should not happen if device management is working correctly)
for (unsigned int i = 0; i < m_deviceAPI->getSinkBuddies().size(); i++)
{
DeviceAPI *buddy = m_deviceAPI->getSinkBuddies()[i];
DeviceUSRPShared *buddyShared = (DeviceUSRPShared *) buddy->getBuddySharedPtr();
if (buddyShared->m_channel == requestedChannel)
{
qCritical("USRPOutput::openDevice: cannot open busy channel %u", requestedChannel);
return false;
}
}
m_deviceShared.m_channel = requestedChannel; // acknowledge the requested channel
}
// look for Rx buddies and get reference to common parameters
// take the first Rx channel
else if (m_deviceAPI->getSourceBuddies().size() > 0) // then source
{
qDebug("USRPOutput::openDevice: look in Rx buddies");
DeviceAPI *sourceBuddy = m_deviceAPI->getSourceBuddies()[0];
//m_deviceShared = *((DeviceUSRPShared *) sourceBuddy->getBuddySharedPtr()); // copy parameters
DeviceUSRPShared *deviceUSRPShared = (DeviceUSRPShared*) sourceBuddy->getBuddySharedPtr();
m_deviceShared.m_deviceParams = deviceUSRPShared->m_deviceParams;
if (m_deviceShared.m_deviceParams == 0)
{
qCritical("USRPOutput::openDevice: cannot get device parameters from Rx buddy");
return false; // the device params should have been created by the buddy
}
else
{
qDebug("USRPOutput::openDevice: getting device parameters from Rx buddy");
}
m_deviceShared.m_channel = requestedChannel; // acknowledge the requested channel
}
// There are no buddies then create the first USRP common parameters
// open the device this will also populate common fields
// take the first Tx channel
else
{
qDebug("USRPOutput::openDevice: open device here");
m_deviceShared.m_deviceParams = new DeviceUSRPParams();
char serial[256];
strcpy(serial, qPrintable(m_deviceAPI->getSamplingDeviceSerial()));
m_deviceShared.m_deviceParams->open(serial, false);
2020-10-02 17:45:28 -04:00
m_deviceShared.m_channel = requestedChannel; // acknowledge the requested channel
}
m_deviceAPI->setBuddySharedPtr(&m_deviceShared); // propagate common parameters to API
return true;
}
void USRPOutput::suspendRxBuddies()
{
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator itSource = sourceBuddies.begin();
qDebug("USRPOutput::suspendRxBuddies (%lu)", sourceBuddies.size());
for (; itSource != sourceBuddies.end(); ++itSource)
{
DeviceUSRPShared *buddySharedPtr = (DeviceUSRPShared *) (*itSource)->getBuddySharedPtr();
if (buddySharedPtr->m_thread && buddySharedPtr->m_thread->isRunning())
{
buddySharedPtr->m_thread->stopWork();
buddySharedPtr->m_threadWasRunning = true;
}
else
{
buddySharedPtr->m_threadWasRunning = false;
}
}
}
void USRPOutput::suspendTxBuddies()
{
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator itSink = sinkBuddies.begin();
qDebug("USRPOutput::suspendTxBuddies (%lu)", sinkBuddies.size());
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceUSRPShared *buddySharedPtr = (DeviceUSRPShared *) (*itSink)->getBuddySharedPtr();
if (buddySharedPtr->m_thread && buddySharedPtr->m_thread->isRunning())
{
buddySharedPtr->m_thread->stopWork();
buddySharedPtr->m_threadWasRunning = true;
}
else
{
buddySharedPtr->m_threadWasRunning = false;
}
}
}
void USRPOutput::resumeRxBuddies()
{
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator itSource = sourceBuddies.begin();
qDebug("USRPOutput::resumeRxBuddies (%lu)", sourceBuddies.size());
for (; itSource != sourceBuddies.end(); ++itSource)
{
DeviceUSRPShared *buddySharedPtr = (DeviceUSRPShared *) (*itSource)->getBuddySharedPtr();
if (buddySharedPtr->m_threadWasRunning) {
buddySharedPtr->m_thread->startWork();
}
}
}
void USRPOutput::resumeTxBuddies()
{
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator itSink = sinkBuddies.begin();
qDebug("USRPOutput::resumeTxBuddies (%lu)", sinkBuddies.size());
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceUSRPShared *buddySharedPtr = (DeviceUSRPShared *) (*itSink)->getBuddySharedPtr();
if (buddySharedPtr->m_threadWasRunning) {
buddySharedPtr->m_thread->startWork();
}
}
}
void USRPOutput::closeDevice()
{
if (m_deviceShared.m_deviceParams->getDevice() == nullptr) { // was never open
return;
}
if (m_running) stop();
// No buddies so effectively close the device
if ((m_deviceAPI->getSourceBuddies().size() == 0) && (m_deviceAPI->getSinkBuddies().size() == 0))
{
m_deviceShared.m_deviceParams->close();
delete m_deviceShared.m_deviceParams;
m_deviceShared.m_deviceParams = 0;
}
m_deviceShared.m_channel = -1; // effectively release the channel for the possible buddies
}
bool USRPOutput::acquireChannel()
{
suspendRxBuddies();
suspendTxBuddies();
if (m_streamId == nullptr)
2020-10-02 17:45:28 -04:00
{
try
{
uhd::usrp::multi_usrp::sptr usrp = m_deviceShared.m_deviceParams->getDevice();
// Apply settings before creating stream
// However, don't set LPF to <10MHz at this stage, otherwise there is massive TX LO leakage
applySettings(m_settings, true, true);
usrp->set_tx_bandwidth(56000000, m_deviceShared.m_channel);
// set up the stream
std::string cpu_format("sc16");
std::string wire_format("sc16");
std::vector<size_t> channel_nums;
channel_nums.push_back(m_deviceShared.m_channel);
2020-10-02 17:45:28 -04:00
uhd::stream_args_t stream_args(cpu_format, wire_format);
stream_args.channels = channel_nums;
2020-10-02 17:45:28 -04:00
m_streamId = usrp->get_tx_stream(stream_args);
// Match our transmit buffer size to what UHD uses
m_bufSamples = m_streamId->get_max_num_samps();
// Wait for reference and LO to lock
DeviceUSRP::waitForLock(usrp, m_settings.m_clockSource, m_deviceShared.m_channel);
// Now we can set desired bandwidth
usrp->set_tx_bandwidth(m_settings.m_lpfBW, m_deviceShared.m_channel);
}
catch (std::exception& e)
{
qDebug() << "USRPOutput::acquireChannel: exception: " << e.what();
}
2020-10-02 17:45:28 -04:00
}
resumeTxBuddies();
resumeRxBuddies();
m_channelAcquired = true;
return true;
}
void USRPOutput::releaseChannel()
{
suspendRxBuddies();
suspendTxBuddies();
// destroy the stream
m_streamId = nullptr;
2020-10-02 17:45:28 -04:00
resumeTxBuddies();
resumeRxBuddies();
m_channelAcquired = false;
}
void USRPOutput::init()
{
applySettings(m_settings, false, true);
2020-10-02 17:45:28 -04:00
}
bool USRPOutput::start()
{
if (!m_deviceShared.m_deviceParams->getDevice()) {
return false;
}
if (m_running) { stop(); }
if (!acquireChannel())
{
return false;
}
m_usrpOutputThread = new USRPOutputThread(m_streamId, m_bufSamples, &m_sampleSourceFifo);
2020-10-02 17:45:28 -04:00
qDebug("USRPOutput::start: thread created");
m_usrpOutputThread->setLog2Interpolation(m_settings.m_log2SoftInterp);
m_usrpOutputThread->startWork();
m_deviceShared.m_thread = m_usrpOutputThread;
m_running = true;
return true;
}
void USRPOutput::stop()
{
qDebug("USRPOutput::stop");
if (m_usrpOutputThread)
{
m_usrpOutputThread->stopWork();
delete m_usrpOutputThread;
m_usrpOutputThread = nullptr;
}
m_deviceShared.m_thread = 0;
m_running = false;
releaseChannel();
}
QByteArray USRPOutput::serialize() const
{
return m_settings.serialize();
}
bool USRPOutput::deserialize(const QByteArray& data)
{
bool success = true;
if (!m_settings.deserialize(data))
{
m_settings.resetToDefaults();
success = false;
}
MsgConfigureUSRP* message = MsgConfigureUSRP::create(m_settings, true);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue)
{
MsgConfigureUSRP* messageToGUI = MsgConfigureUSRP::create(m_settings, true);
m_guiMessageQueue->push(messageToGUI);
}
return success;
}
const QString& USRPOutput::getDeviceDescription() const
{
return m_deviceDescription;
}
int USRPOutput::getSampleRate() const
{
int rate = m_settings.m_devSampleRate;
return (rate / (1<<m_settings.m_log2SoftInterp));
}
quint64 USRPOutput::getCenterFrequency() const
{
return m_settings.m_centerFrequency;
}
void USRPOutput::setCenterFrequency(qint64 centerFrequency)
{
USRPOutputSettings settings = m_settings;
settings.m_centerFrequency = centerFrequency;
MsgConfigureUSRP* message = MsgConfigureUSRP::create(settings, false);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue)
{
MsgConfigureUSRP* messageToGUI = MsgConfigureUSRP::create(settings, false);
m_guiMessageQueue->push(messageToGUI);
}
}
std::size_t USRPOutput::getChannelIndex()
{
return m_deviceShared.m_channel;
}
void USRPOutput::getLORange(float& minF, float& maxF) const
{
minF = m_deviceShared.m_deviceParams->m_loRangeTx.start();
maxF = m_deviceShared.m_deviceParams->m_loRangeTx.stop();
}
void USRPOutput::getSRRange(float& minF, float& maxF) const
{
minF = m_deviceShared.m_deviceParams->m_srRangeTx.start();
maxF = m_deviceShared.m_deviceParams->m_srRangeTx.stop();
}
void USRPOutput::getLPRange(float& minF, float& maxF) const
{
minF = m_deviceShared.m_deviceParams->m_lpfRangeTx.start();
maxF = m_deviceShared.m_deviceParams->m_lpfRangeTx.stop();
}
void USRPOutput::getGainRange(float& minF, float& maxF) const
{
minF = m_deviceShared.m_deviceParams->m_gainRangeTx.start();
maxF = m_deviceShared.m_deviceParams->m_gainRangeTx.stop();
}
QStringList USRPOutput::getTxAntennas() const
{
return m_deviceShared.m_deviceParams->m_txAntennas;
}
QStringList USRPOutput::getClockSources() const
{
return m_deviceShared.m_deviceParams->m_clockSources;
}
bool USRPOutput::handleMessage(const Message& message)
{
if (MsgConfigureUSRP::match(message))
{
MsgConfigureUSRP& conf = (MsgConfigureUSRP&) message;
qDebug() << "USRPOutput::handleMessage: MsgConfigureUSRP";
if (!applySettings(conf.getSettings(), false, conf.getForce()))
2020-10-02 17:45:28 -04:00
{
qDebug("USRPOutput::handleMessage config error");
}
return true;
}
else if (MsgStartStop::match(message))
{
MsgStartStop& cmd = (MsgStartStop&) message;
qDebug() << "USRPOutput::handleMessage: MsgStartStop: " << (cmd.getStartStop() ? "start" : "stop");
if (cmd.getStartStop())
{
if (m_deviceAPI->initDeviceEngine())
{
m_deviceAPI->startDeviceEngine();
}
}
else
{
m_deviceAPI->stopDeviceEngine();
}
if (m_settings.m_useReverseAPI) {
webapiReverseSendStartStop(cmd.getStartStop());
}
return true;
}
else if (DeviceUSRPShared::MsgReportBuddyChange::match(message))
{
DeviceUSRPShared::MsgReportBuddyChange& report = (DeviceUSRPShared::MsgReportBuddyChange&) message;
if (!report.getRxElseTx())
2020-10-02 17:45:28 -04:00
{
// Tx buddy changed settings, we need to copy
2020-10-02 17:45:28 -04:00
m_settings.m_devSampleRate = report.getDevSampleRate();
m_settings.m_centerFrequency = report.getCenterFrequency();
m_settings.m_loOffset = report.getLOOffset();
2020-10-02 17:45:28 -04:00
}
// Master clock rate is common between all buddies
int masterClockRate = report.getMasterClockRate();
if (masterClockRate > 0)
m_settings.m_masterClockRate = masterClockRate;
qDebug() << "USRPOutput::handleMessage MsgReportBuddyChange";
qDebug() << "m_masterClockRate " << m_settings.m_masterClockRate;
2020-10-02 17:45:28 -04:00
DSPSignalNotification *notif = new DSPSignalNotification(
m_settings.m_devSampleRate/(1<<m_settings.m_log2SoftInterp),
m_settings.m_centerFrequency);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif);
if (getMessageQueueToGUI())
{
DeviceUSRPShared::MsgReportBuddyChange *reportToGUI = DeviceUSRPShared::MsgReportBuddyChange::create(
m_settings.m_devSampleRate, m_settings.m_centerFrequency, m_settings.m_loOffset, m_settings.m_masterClockRate, false);
getMessageQueueToGUI()->push(reportToGUI);
}
2020-10-02 17:45:28 -04:00
return true;
}
else if (DeviceUSRPShared::MsgReportClockSourceChange::match(message))
{
DeviceUSRPShared::MsgReportClockSourceChange& report = (DeviceUSRPShared::MsgReportClockSourceChange&) message;
m_settings.m_clockSource = report.getClockSource();
if (getMessageQueueToGUI())
{
DeviceUSRPShared::MsgReportClockSourceChange *reportToGUI = DeviceUSRPShared::MsgReportClockSourceChange::create(
m_settings.m_clockSource);
getMessageQueueToGUI()->push(reportToGUI);
}
return true;
}
else if (MsgGetStreamInfo::match(message))
{
if (m_deviceAPI->getSamplingDeviceGUIMessageQueue())
{
if ((m_streamId != nullptr) && m_channelAcquired)
2020-10-02 17:45:28 -04:00
{
bool active;
quint32 underflows;
quint32 droppedPackets;
m_usrpOutputThread->getStreamStatus(active, underflows, droppedPackets);
MsgReportStreamInfo *report = MsgReportStreamInfo::create(
true, // success
active,
underflows,
droppedPackets
);
m_deviceAPI->getSamplingDeviceGUIMessageQueue()->push(report);
}
else
{
MsgReportStreamInfo *report = MsgReportStreamInfo::create(false, false, 0, 0);
m_deviceAPI->getSamplingDeviceGUIMessageQueue()->push(report);
}
}
return true;
}
else
{
return false;
}
}
bool USRPOutput::applySettings(const USRPOutputSettings& settings, bool preGetStream, bool force)
2020-10-02 17:45:28 -04:00
{
bool forwardChangeOwnDSP = false;
bool forwardChangeTxDSP = false;
bool forwardChangeAllDSP = false;
bool forwardClockSource = false;
bool checkRates = false;
2020-10-02 17:45:28 -04:00
QList<QString> reverseAPIKeys;
try
{
qint64 deviceCenterFrequency = settings.m_centerFrequency;
deviceCenterFrequency -= settings.m_transverterMode ? settings.m_transverterDeltaFrequency : 0;
deviceCenterFrequency = deviceCenterFrequency < 0 ? 0 : deviceCenterFrequency;
// apply settings
if ((m_settings.m_clockSource != settings.m_clockSource) || force)
{
reverseAPIKeys.append("clockSource");
if (m_deviceShared.m_deviceParams->getDevice() && (m_channelAcquired || preGetStream))
2020-10-02 17:45:28 -04:00
{
try
{
m_deviceShared.m_deviceParams->getDevice()->set_clock_source(settings.m_clockSource.toStdString(), 0);
forwardClockSource = true;
qDebug() << "USRPOutput::applySettings: clock set to" << settings.m_clockSource;
}
catch (std::exception &e)
{
// An exception will be thrown if the clock is not detected
// however, get_clock_source called below will still say the clock has is set
qCritical() << "USRPOutput::applySettings: could not set clock " << settings.m_clockSource;
// So, default back to internal
m_deviceShared.m_deviceParams->getDevice()->set_clock_source("internal", 0);
// notify GUI that source couldn't be set
forwardClockSource = true;
}
}
else
{
qCritical() << "USRPOutput::applySettings: could not set clock to " << settings.m_clockSource;
}
}
if ((m_settings.m_devSampleRate != settings.m_devSampleRate) || force)
{
reverseAPIKeys.append("devSampleRate");
forwardChangeAllDSP = true;
if (m_deviceShared.m_deviceParams->getDevice() && (m_channelAcquired || preGetStream))
2020-10-02 17:45:28 -04:00
{
m_deviceShared.m_deviceParams->getDevice()->set_tx_rate(settings.m_devSampleRate, m_deviceShared.m_channel);
qDebug("USRPOutput::applySettings: set sample rate set to %d", settings.m_devSampleRate);
checkRates = true;
2020-10-02 17:45:28 -04:00
}
}
if ((m_settings.m_centerFrequency != settings.m_centerFrequency)
|| (m_settings.m_loOffset != settings.m_loOffset)
2020-10-02 17:45:28 -04:00
|| (m_settings.m_transverterMode != settings.m_transverterMode)
|| (m_settings.m_transverterDeltaFrequency != settings.m_transverterDeltaFrequency)
|| force)
{
reverseAPIKeys.append("centerFrequency");
reverseAPIKeys.append("transverterMode");
reverseAPIKeys.append("transverterDeltaFrequency");
forwardChangeTxDSP = true;
if (m_deviceShared.m_deviceParams->getDevice() && (m_channelAcquired || preGetStream))
2020-10-02 17:45:28 -04:00
{
if (settings.m_loOffset != 0)
{
uhd::tune_request_t tune_request(deviceCenterFrequency, settings.m_loOffset);
m_deviceShared.m_deviceParams->getDevice()->set_tx_freq(tune_request, m_deviceShared.m_channel);
}
else
{
uhd::tune_request_t tune_request(deviceCenterFrequency);
m_deviceShared.m_deviceParams->getDevice()->set_tx_freq(tune_request, m_deviceShared.m_channel);
}
2020-10-02 17:45:28 -04:00
m_deviceShared.m_centerFrequency = deviceCenterFrequency; // for buddies
qDebug("USRPOutput::applySettings: frequency set to %lld with LO offset %d", deviceCenterFrequency, settings.m_loOffset);
2020-10-02 17:45:28 -04:00
}
}
if ((m_settings.m_devSampleRate != settings.m_devSampleRate)
|| (m_settings.m_log2SoftInterp != settings.m_log2SoftInterp) || force)
{
reverseAPIKeys.append("devSampleRate");
reverseAPIKeys.append("log2SoftInterp");
#if defined(_MSC_VER)
unsigned int fifoRate = (unsigned int) settings.m_devSampleRate / (1<<settings.m_log2SoftInterp);
fifoRate = fifoRate < 48000U ? 48000U : fifoRate;
#else
unsigned int fifoRate = std::max(
(unsigned int) settings.m_devSampleRate / (1<<settings.m_log2SoftInterp),
DeviceUSRPShared::m_sampleFifoMinRate);
#endif
m_sampleSourceFifo.resize(SampleSourceFifo::getSizePolicy(fifoRate));
qDebug("USRPOutput::applySettings: resize FIFO: rate %u", fifoRate);
}
if ((m_settings.m_gain != settings.m_gain) || force)
{
reverseAPIKeys.append("gain");
if (m_deviceShared.m_deviceParams->getDevice() && (m_channelAcquired || preGetStream))
2020-10-02 17:45:28 -04:00
{
m_deviceShared.m_deviceParams->getDevice()->set_tx_gain(settings.m_gain, m_deviceShared.m_channel);
qDebug() << "USRPOutput::applySettings: Gain set to " << settings.m_gain;
}
}
if ((m_settings.m_lpfBW != settings.m_lpfBW) || force)
{
reverseAPIKeys.append("lpfBW");
// Don't set bandwidth before get_tx_stream (See above)
2020-10-02 17:45:28 -04:00
if (m_deviceShared.m_deviceParams->getDevice() && m_channelAcquired)
{
m_deviceShared.m_deviceParams->getDevice()->set_tx_bandwidth(settings.m_lpfBW, m_deviceShared.m_channel);
qDebug("USRPOutput::applySettings: LPF BW: %f for channel %d", settings.m_lpfBW, m_deviceShared.m_channel);
}
}
if ((m_settings.m_log2SoftInterp != settings.m_log2SoftInterp) || force)
{
reverseAPIKeys.append("log2SoftInterp");
forwardChangeOwnDSP = true;
m_deviceShared.m_log2Soft = settings.m_log2SoftInterp; // for buddies
if (m_usrpOutputThread)
{
m_usrpOutputThread->setLog2Interpolation(settings.m_log2SoftInterp);
qDebug() << "USRPOutput::applySettings: set soft interpolation to " << (1<<settings.m_log2SoftInterp);
}
}
if ((m_settings.m_antennaPath != settings.m_antennaPath) || force)
{
reverseAPIKeys.append("antennaPath");
if (m_deviceShared.m_deviceParams->getDevice() && (m_channelAcquired || preGetStream))
2020-10-02 17:45:28 -04:00
{
m_deviceShared.m_deviceParams->getDevice()->set_tx_antenna(settings.m_antennaPath.toStdString(), m_deviceShared.m_channel);
qDebug("USRPOutput::applySettings: set antenna path to %s on channel %d", qPrintable(settings.m_antennaPath), m_deviceShared.m_channel);
}
}
if (settings.m_useReverseAPI)
{
bool fullUpdate = ((m_settings.m_useReverseAPI != settings.m_useReverseAPI) && settings.m_useReverseAPI) ||
(m_settings.m_reverseAPIAddress != settings.m_reverseAPIAddress) ||
(m_settings.m_reverseAPIPort != settings.m_reverseAPIPort) ||
(m_settings.m_reverseAPIDeviceIndex != settings.m_reverseAPIDeviceIndex);
webapiReverseSendSettings(reverseAPIKeys, settings, fullUpdate || force);
}
m_settings = settings;
if (checkRates)
{
// Check if requested rate could actually be met and what master clock rate we ended up with
double actualSampleRate = m_deviceShared.m_deviceParams->getDevice()->get_tx_rate(m_deviceShared.m_channel);
qDebug("USRPOutput::applySettings: actual sample rate %f", actualSampleRate);
double masterClockRate = m_deviceShared.m_deviceParams->getDevice()->get_master_clock_rate();
qDebug("USRPOutput::applySettings: master_clock_rate %f", masterClockRate);
m_settings.m_devSampleRate = actualSampleRate;
m_settings.m_masterClockRate = masterClockRate;
}
2020-10-02 17:45:28 -04:00
// forward changes to buddies or oneself
if (forwardChangeAllDSP)
{
qDebug("USRPOutput::applySettings: forward change to all buddies");
// send to self first
DSPSignalNotification *notif = new DSPSignalNotification(
m_settings.m_devSampleRate/(1<<m_settings.m_log2SoftInterp),
m_settings.m_centerFrequency);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif);
// send to sink buddies
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator itSink = sinkBuddies.begin();
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceUSRPShared::MsgReportBuddyChange *report = DeviceUSRPShared::MsgReportBuddyChange::create(
m_settings.m_devSampleRate, m_settings.m_centerFrequency, m_settings.m_loOffset, m_settings.m_masterClockRate, false);
2020-10-02 17:45:28 -04:00
(*itSink)->getSamplingDeviceInputMessageQueue()->push(report);
}
// send to source buddies
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator itSource = sourceBuddies.begin();
for (; itSource != sourceBuddies.end(); ++itSource)
{
DeviceUSRPShared::MsgReportBuddyChange *report = DeviceUSRPShared::MsgReportBuddyChange::create(
m_settings.m_devSampleRate, m_settings.m_centerFrequency, m_settings.m_loOffset, m_settings.m_masterClockRate, false);
2020-10-02 17:45:28 -04:00
(*itSource)->getSamplingDeviceInputMessageQueue()->push(report);
}
// send to GUI so it can see master clock rate and if actual rate differs
if (m_deviceAPI->getSamplingDeviceGUIMessageQueue())
{
DeviceUSRPShared::MsgReportBuddyChange *report = DeviceUSRPShared::MsgReportBuddyChange::create(
m_settings.m_devSampleRate, m_settings.m_centerFrequency, m_settings.m_loOffset, m_settings.m_masterClockRate, false);
m_deviceAPI->getSamplingDeviceGUIMessageQueue()->push(report);
}
2020-10-02 17:45:28 -04:00
}
else if (forwardChangeTxDSP)
{
qDebug("USRPOutput::applySettings: forward change to Tx buddies");
int sampleRate = m_settings.m_devSampleRate/(1<<m_settings.m_log2SoftInterp);
// send to self first
DSPSignalNotification *notif = new DSPSignalNotification(sampleRate, m_settings.m_centerFrequency);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif);
// send to sink buddies
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator itSink = sinkBuddies.begin();
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceUSRPShared::MsgReportBuddyChange *report = DeviceUSRPShared::MsgReportBuddyChange::create(
m_settings.m_devSampleRate, m_settings.m_centerFrequency, m_settings.m_loOffset, m_settings.m_masterClockRate, false);
2020-10-02 17:45:28 -04:00
(*itSink)->getSamplingDeviceInputMessageQueue()->push(report);
}
}
else if (forwardChangeOwnDSP)
{
qDebug("USRPOutput::applySettings: forward change to self only");
int sampleRate = m_settings.m_devSampleRate/(1<<m_settings.m_log2SoftInterp);
DSPSignalNotification *notif = new DSPSignalNotification(sampleRate, m_settings.m_centerFrequency);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif);
}
if (forwardClockSource)
{
// get what clock is actually set, in case requested clock couldn't be set
if (m_deviceShared.m_deviceParams->getDevice())
{
try
{
m_settings.m_clockSource = QString::fromStdString(m_deviceShared.m_deviceParams->getDevice()->get_clock_source(0));
qDebug() << "USRPOutput::applySettings: clock source is " << m_settings.m_clockSource;
}
catch (std::exception &e)
{
qDebug() << "USRPOutput::applySettings: could not get clock source";
}
}
// send to GUI in case requested clock isn't detected
if (m_deviceAPI->getSamplingDeviceGUIMessageQueue())
{
DeviceUSRPShared::MsgReportClockSourceChange *report = DeviceUSRPShared::MsgReportClockSourceChange::create(
m_settings.m_clockSource);
m_deviceAPI->getSamplingDeviceGUIMessageQueue()->push(report);
}
2020-10-02 17:45:28 -04:00
// send to source buddies
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator itSource = sourceBuddies.begin();
for (; itSource != sourceBuddies.end(); ++itSource)
{
DeviceUSRPShared::MsgReportClockSourceChange *report = DeviceUSRPShared::MsgReportClockSourceChange::create(
m_settings.m_clockSource);
(*itSource)->getSamplingDeviceInputMessageQueue()->push(report);
}
// send to sink buddies
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator itSink = sinkBuddies.begin();
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceUSRPShared::MsgReportClockSourceChange *report = DeviceUSRPShared::MsgReportClockSourceChange::create(
m_settings.m_clockSource);
(*itSink)->getSamplingDeviceInputMessageQueue()->push(report);
}
}
QLocale loc;
qDebug().noquote() << "USRPOutput::applySettings: center freq: " << m_settings.m_centerFrequency << " Hz"
<< " m_transverterMode: " << m_settings.m_transverterMode
<< " m_transverterDeltaFrequency: " << m_settings.m_transverterDeltaFrequency
<< " deviceCenterFrequency: " << deviceCenterFrequency
<< " device stream sample rate: " << loc.toString(m_settings.m_devSampleRate) << "S/s"
<< " sample rate with soft interpolation: " << loc.toString( m_settings.m_devSampleRate/(1<<m_settings.m_log2SoftInterp)) << "S/s"
<< " m_log2SoftInterp: " << m_settings.m_log2SoftInterp
<< " m_gain: " << m_settings.m_gain
<< " m_lpfBW: " << loc.toString(static_cast<int>(m_settings.m_lpfBW))
<< " m_antennaPath: " << m_settings.m_antennaPath
<< " m_clockSource: " << m_settings.m_clockSource
<< " force: " << force;
return true;
}
catch (std::exception &e)
{
qDebug() << "USRPOutput::applySettings: exception: " << e.what();
return false;
}
}
int USRPOutput::webapiSettingsGet(
SWGSDRangel::SWGDeviceSettings& response,
QString& errorMessage)
{
(void) errorMessage;
response.setUsrpOutputSettings(new SWGSDRangel::SWGUSRPOutputSettings());
response.getUsrpOutputSettings()->init();
webapiFormatDeviceSettings(response, m_settings);
return 200;
}
int USRPOutput::webapiSettingsPutPatch(
bool force,
const QStringList& deviceSettingsKeys,
SWGSDRangel::SWGDeviceSettings& response, // query + response
QString& errorMessage)
{
(void) errorMessage;
USRPOutputSettings settings = m_settings;
webapiUpdateDeviceSettings(settings, deviceSettingsKeys, response);
MsgConfigureUSRP *msg = MsgConfigureUSRP::create(settings, force);
m_inputMessageQueue.push(msg);
if (m_guiMessageQueue) // forward to GUI if any
{
MsgConfigureUSRP *msgToGUI = MsgConfigureUSRP::create(settings, force);
m_guiMessageQueue->push(msgToGUI);
}
webapiFormatDeviceSettings(response, settings);
return 200;
}
void USRPOutput::webapiUpdateDeviceSettings(
USRPOutputSettings& settings,
const QStringList& deviceSettingsKeys,
SWGSDRangel::SWGDeviceSettings& response)
{
if (deviceSettingsKeys.contains("antennaPath")) {
settings.m_antennaPath = *response.getUsrpOutputSettings()->getAntennaPath();
}
if (deviceSettingsKeys.contains("centerFrequency")) {
settings.m_centerFrequency = response.getUsrpOutputSettings()->getCenterFrequency();
}
if (deviceSettingsKeys.contains("devSampleRate")) {
settings.m_devSampleRate = response.getUsrpOutputSettings()->getDevSampleRate();
}
2020-10-26 05:03:23 -04:00
if (deviceSettingsKeys.contains("loOffset")) {
settings.m_loOffset = response.getUsrpOutputSettings()->getLoOffset();
}
2020-10-02 17:45:28 -04:00
if (deviceSettingsKeys.contains("clockSource")) {
settings.m_clockSource = *response.getUsrpOutputSettings()->getClockSource();
}
if (deviceSettingsKeys.contains("gain")) {
settings.m_gain = response.getUsrpOutputSettings()->getGain();
}
if (deviceSettingsKeys.contains("log2SoftInterp")) {
settings.m_log2SoftInterp = response.getUsrpOutputSettings()->getLog2SoftInterp();
}
if (deviceSettingsKeys.contains("lpfBW")) {
settings.m_lpfBW = response.getUsrpOutputSettings()->getLpfBw();
}
if (deviceSettingsKeys.contains("transverterDeltaFrequency")) {
settings.m_transverterDeltaFrequency = response.getUsrpOutputSettings()->getTransverterDeltaFrequency();
}
if (deviceSettingsKeys.contains("transverterMode")) {
settings.m_transverterMode = response.getUsrpOutputSettings()->getTransverterMode() != 0;
}
if (deviceSettingsKeys.contains("useReverseAPI")) {
settings.m_useReverseAPI = response.getUsrpOutputSettings()->getUseReverseApi() != 0;
}
if (deviceSettingsKeys.contains("reverseAPIAddress")) {
settings.m_reverseAPIAddress = *response.getUsrpOutputSettings()->getReverseApiAddress();
}
if (deviceSettingsKeys.contains("reverseAPIPort")) {
settings.m_reverseAPIPort = response.getUsrpOutputSettings()->getReverseApiPort();
}
if (deviceSettingsKeys.contains("reverseAPIDeviceIndex")) {
settings.m_reverseAPIDeviceIndex = response.getUsrpOutputSettings()->getReverseApiDeviceIndex();
}
}
int USRPOutput::webapiReportGet(
SWGSDRangel::SWGDeviceReport& response,
QString& errorMessage)
{
(void) errorMessage;
response.setUsrpOutputReport(new SWGSDRangel::SWGUSRPOutputReport());
response.getUsrpOutputReport()->init();
webapiFormatDeviceReport(response);
return 200;
}
void USRPOutput::webapiFormatDeviceSettings(SWGSDRangel::SWGDeviceSettings& response, const USRPOutputSettings& settings)
{
response.getUsrpOutputSettings()->setAntennaPath(new QString(settings.m_antennaPath));
response.getUsrpOutputSettings()->setCenterFrequency(settings.m_centerFrequency);
response.getUsrpOutputSettings()->setDevSampleRate(settings.m_devSampleRate);
2020-10-26 05:03:23 -04:00
response.getUsrpOutputSettings()->setLoOffset(settings.m_loOffset);
2020-10-02 17:45:28 -04:00
response.getUsrpOutputSettings()->setClockSource(new QString(settings.m_clockSource));
response.getUsrpOutputSettings()->setGain(settings.m_gain);
response.getUsrpOutputSettings()->setLog2SoftInterp(settings.m_log2SoftInterp);
response.getUsrpOutputSettings()->setLpfBw(settings.m_lpfBW);
response.getUsrpOutputSettings()->setTransverterDeltaFrequency(settings.m_transverterDeltaFrequency);
response.getUsrpOutputSettings()->setTransverterMode(settings.m_transverterMode ? 1 : 0);
response.getUsrpOutputSettings()->setUseReverseApi(settings.m_useReverseAPI ? 1 : 0);
if (response.getUsrpOutputSettings()->getReverseApiAddress()) {
*response.getUsrpOutputSettings()->getReverseApiAddress() = settings.m_reverseAPIAddress;
} else {
response.getUsrpOutputSettings()->setReverseApiAddress(new QString(settings.m_reverseAPIAddress));
}
response.getUsrpOutputSettings()->setReverseApiPort(settings.m_reverseAPIPort);
response.getUsrpOutputSettings()->setReverseApiDeviceIndex(settings.m_reverseAPIDeviceIndex);
}
int USRPOutput::webapiRunGet(
SWGSDRangel::SWGDeviceState& response,
QString& errorMessage)
{
(void) errorMessage;
m_deviceAPI->getDeviceEngineStateStr(*response.getState());
return 200;
}
int USRPOutput::webapiRun(
bool run,
SWGSDRangel::SWGDeviceState& response,
QString& errorMessage)
{
(void) errorMessage;
m_deviceAPI->getDeviceEngineStateStr(*response.getState());
MsgStartStop *message = MsgStartStop::create(run);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue)
{
MsgStartStop *messagetoGui = MsgStartStop::create(run);
m_guiMessageQueue->push(messagetoGui);
}
return 200;
}
void USRPOutput::webapiFormatDeviceReport(SWGSDRangel::SWGDeviceReport& response)
{
bool success = false;
bool active = false;
quint32 underflows = 0;
quint32 droppedPackets = 0;
if ((m_streamId != nullptr) && (m_usrpOutputThread != nullptr) && m_channelAcquired)
2020-10-02 17:45:28 -04:00
{
m_usrpOutputThread->getStreamStatus(active, underflows, droppedPackets);
success = true;
}
response.getUsrpOutputReport()->setSuccess(success ? 1 : 0);
response.getUsrpOutputReport()->setStreamActive(active ? 1 : 0);
response.getUsrpOutputReport()->setUnderrunCount(underflows);
response.getUsrpOutputReport()->setDroppedPacketsCount(droppedPackets);
}
void USRPOutput::webapiReverseSendSettings(QList<QString>& deviceSettingsKeys, const USRPOutputSettings& settings, bool force)
{
SWGSDRangel::SWGDeviceSettings *swgDeviceSettings = new SWGSDRangel::SWGDeviceSettings();
swgDeviceSettings->setDirection(1); // single Tx
swgDeviceSettings->setOriginatorIndex(m_deviceAPI->getDeviceSetIndex());
swgDeviceSettings->setDeviceHwType(new QString("USRP"));
swgDeviceSettings->setUsrpOutputSettings(new SWGSDRangel::SWGUSRPOutputSettings());
SWGSDRangel::SWGUSRPOutputSettings *swgUsrpOutputSettings = swgDeviceSettings->getUsrpOutputSettings();
// transfer data that has been modified. When force is on transfer all data except reverse API data
if (deviceSettingsKeys.contains("antennaPath") || force) {
2020-10-03 04:27:37 -04:00
swgUsrpOutputSettings->setAntennaPath(new QString(settings.m_antennaPath));
2020-10-02 17:45:28 -04:00
}
if (deviceSettingsKeys.contains("centerFrequency") || force) {
swgUsrpOutputSettings->setCenterFrequency(settings.m_centerFrequency);
}
if (deviceSettingsKeys.contains("devSampleRate") || force) {
swgUsrpOutputSettings->setDevSampleRate(settings.m_devSampleRate);
}
2020-10-26 05:03:23 -04:00
if (deviceSettingsKeys.contains("loOffset") || force) {
swgUsrpOutputSettings->setLoOffset(settings.m_loOffset);
}
2020-10-02 17:45:28 -04:00
if (deviceSettingsKeys.contains("clockSource") || force) {
2020-10-03 04:27:37 -04:00
swgUsrpOutputSettings->setClockSource(new QString(settings.m_clockSource));
2020-10-02 17:45:28 -04:00
}
if (deviceSettingsKeys.contains("gain") || force) {
swgUsrpOutputSettings->setGain(settings.m_gain);
}
if (deviceSettingsKeys.contains("log2SoftInterp") || force) {
swgUsrpOutputSettings->setLog2SoftInterp(settings.m_log2SoftInterp);
}
if (deviceSettingsKeys.contains("lpfBW") || force) {
swgUsrpOutputSettings->setLpfBw(settings.m_lpfBW);
}
if (deviceSettingsKeys.contains("transverterDeltaFrequency") || force) {
swgUsrpOutputSettings->setTransverterDeltaFrequency(settings.m_transverterDeltaFrequency);
}
if (deviceSettingsKeys.contains("transverterMode") || force) {
swgUsrpOutputSettings->setTransverterMode(settings.m_transverterMode ? 1 : 0);
}
QString deviceSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/device/settings")
.arg(settings.m_reverseAPIAddress)
.arg(settings.m_reverseAPIPort)
.arg(settings.m_reverseAPIDeviceIndex);
m_networkRequest.setUrl(QUrl(deviceSettingsURL));
m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json");
QBuffer *buffer = new QBuffer();
buffer->open((QBuffer::ReadWrite));
buffer->write(swgDeviceSettings->asJson().toUtf8());
buffer->seek(0);
// Always use PATCH to avoid passing reverse API settings
QNetworkReply *reply = m_networkManager->sendCustomRequest(m_networkRequest, "PATCH", buffer);
buffer->setParent(reply);
delete swgDeviceSettings;
}
void USRPOutput::webapiReverseSendStartStop(bool start)
{
SWGSDRangel::SWGDeviceSettings *swgDeviceSettings = new SWGSDRangel::SWGDeviceSettings();
swgDeviceSettings->setDirection(1); // single Tx
swgDeviceSettings->setOriginatorIndex(m_deviceAPI->getDeviceSetIndex());
swgDeviceSettings->setDeviceHwType(new QString("USRP"));
QString deviceSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/device/run")
.arg(m_settings.m_reverseAPIAddress)
.arg(m_settings.m_reverseAPIPort)
.arg(m_settings.m_reverseAPIDeviceIndex);
m_networkRequest.setUrl(QUrl(deviceSettingsURL));
m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json");
QBuffer *buffer = new QBuffer();
buffer->open((QBuffer::ReadWrite));
buffer->write(swgDeviceSettings->asJson().toUtf8());
buffer->seek(0);
QNetworkReply *reply;
if (start) {
reply = m_networkManager->sendCustomRequest(m_networkRequest, "POST", buffer);
} else {
reply = m_networkManager->sendCustomRequest(m_networkRequest, "DELETE", buffer);
}
buffer->setParent(reply);
delete swgDeviceSettings;
}
void USRPOutput::networkManagerFinished(QNetworkReply *reply)
{
QNetworkReply::NetworkError replyError = reply->error();
if (replyError)
{
qWarning() << "USRPOutput::networkManagerFinished:"
<< " error(" << (int) replyError
<< "): " << replyError
<< ": " << reply->errorString();
}
else
{
QString answer = reply->readAll();
answer.chop(1); // remove last \n
qDebug("USRPOutput::networkManagerFinished: reply:\n%s", answer.toStdString().c_str());
}
reply->deleteLater();
}