1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-05 00:11:16 -05:00
sdrangel/plugins/channelrx/radioastronomy/radioastronomysink.cpp

305 lines
11 KiB
C++
Raw Normal View History

2021-10-12 06:31:14 -04:00
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// Copyright (C) 2021 Jon Beniston, M7RCE //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QDebug>
#include "dsp/dspengine.h"
#include "radioastronomy.h"
#include "radioastronomysink.h"
RadioAstronomySink::RadioAstronomySink(RadioAstronomy *aisDemod) :
m_radioAstronomy(aisDemod),
m_channelSampleRate(1000000),
m_channelFrequencyOffset(0),
m_fftSequence(-1),
m_fft(nullptr),
m_fftCounter(0),
m_fftSum(nullptr),
m_fftTemp(nullptr),
m_fftSumCount(0),
m_enabled(false),
m_cal(false),
m_magsqSum(0.0f),
m_magsqPeak(0.0f),
m_magsqCount(0),
m_messageQueueToChannel(nullptr)
{
m_magsq = 0.0;
applySettings(m_settings, true);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
}
RadioAstronomySink::~RadioAstronomySink()
{
delete[] m_fftSum;
delete[] m_fftTemp;
}
void RadioAstronomySink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
Complex ci;
for (SampleVector::const_iterator it = begin; it != end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if (m_interpolatorDistance < 1.0f) // interpolate
{
while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
else // decimate
{
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
}
}
void RadioAstronomySink::processOneSample(Complex &ci)
{
// Calculate power
double magsqRaw = ci.real()*ci.real() + ci.imag()*ci.imag();
double magsq = (magsqRaw / (SDR_RX_SCALED*SDR_RX_SCALED));
// Calculate average and peak levels for level meter
m_movingAverage(magsq);
m_magsq = m_movingAverage.asDouble();
m_magsqSum += magsq;
if (magsq > m_magsqPeak)
{
m_magsqPeak = magsq;
}
m_magsqCount++;
if (m_enabled || m_cal)
{
// Add to FFT input buffer
m_fft->in()[m_fftCounter] = Complex(ci.real() / SDR_RX_SCALEF, ci.imag() / SDR_RX_SCALEF);
m_fftCounter++;
if (m_fftCounter >= m_settings.m_fftSize)
{
// Calculate FFT
m_fftWindow.apply(m_fft->in());
m_fft->transform();
m_fftCounter = 0;
// Calculate power and accumulate
for (int i = 0; i < m_settings.m_fftSize; i++)
{
Complex s = m_fft->out()[i];
Real v = s.real() * s.real() + s.imag() * s.imag();
Real enbw = 1.0f;
/*if (m_settings.m_fftWindow == RadioAstronomySettings::HAN && m_settings.m_fftCorrection == RadioAstronomySettings::POWER) {
enbw = 1.5; // FIXME: Small dependence on fftSize in Matlab
}*/
m_fftSum[i] += v / (enbw * m_settings.m_fftSize * m_settings.m_fftSize); // Why FFT size here and not Fs?
}
m_fftSumCount++;
if (m_fftSumCount >= m_settings.m_integration)
{
// Average
for (int i = 0; i < m_settings.m_fftSize; i++) {
m_fftSum[i] /= m_fftSumCount;
}
// Put negative frequencies first
std::copy(m_fftSum + m_settings.m_fftSize/2, m_fftSum + m_settings.m_fftSize, m_fftTemp);
std::copy(m_fftSum, m_fftSum + m_settings.m_fftSize/2, m_fftTemp + m_settings.m_fftSize/2);
// Filter freqs with RFI
if (m_filterBins.size() > 0)
{
// Find minimum value to use as replacement
// Should possibly use an average of the n lowest values or something
float minVal = std::numeric_limits<float>::max();
for (int i = 0; i < m_settings.m_fftSize; i++) {
minVal = std::min(minVal, m_fftTemp[i]);
}
for (int i = 0; i < m_filterBins.size(); i++)
{
int bin = m_filterBins[i];
if (bin < m_settings.m_fftSize) {
m_fftTemp[bin] = minVal;
}
}
}
getMessageQueueToChannel()->push(RadioAstronomy::MsgMeasurementProgress::create(100));
if (m_cal)
{
// Indicate calibration complete
if (getMessageQueueToChannel())
{
RadioAstronomy::MsgCalComplete *msg = RadioAstronomy::MsgCalComplete::create(m_fftTemp, m_settings.m_fftSize, QDateTime::currentDateTime(), m_hot);
getMessageQueueToChannel()->push(msg);
}
// Cal complete
m_cal = false;
}
else
{
// Send averaged FFT to channel
if (getMessageQueueToChannel())
{
RadioAstronomy::MsgFFTMeasurement *msg = RadioAstronomy::MsgFFTMeasurement::create(m_fftTemp, m_settings.m_fftSize, QDateTime::currentDateTime());
getMessageQueueToChannel()->push(msg);
}
m_enabled = (m_settings.m_runMode == RadioAstronomySettings::CONTINUOUS);
if (m_enabled) {
getMessageQueueToChannel()->push(RadioAstronomy::MsgMeasurementProgress::create(0));
}
}
m_fftSumCount = 0;
std::fill(m_fftSum, m_fftSum + m_settings.m_fftSize, 0.0f);
}
else
{
// Don't send more than ~4 updates per second
int fftsPerSecond = m_settings.m_sampleRate / m_settings.m_fftSize;
if ((m_fftSumCount % (fftsPerSecond/4)) == 0) {
getMessageQueueToChannel()->push(RadioAstronomy::MsgMeasurementProgress::create(100 * m_fftSumCount / m_settings.m_integration));
}
}
}
}
}
void RadioAstronomySink::startMeasurements()
{
getMessageQueueToChannel()->push(RadioAstronomy::MsgMeasurementProgress::create(0));
m_enabled = true;
m_fftSumCount = 0;
std::fill(m_fftSum, m_fftSum + m_settings.m_fftSize, 0.0f);
}
void RadioAstronomySink::stopMeasurements()
{
m_enabled = false;
}
void RadioAstronomySink::startCal(bool hot)
{
getMessageQueueToChannel()->push(RadioAstronomy::MsgMeasurementProgress::create(0));
m_cal = true;
m_hot = hot;
m_fftSumCount = 0;
std::fill(m_fftSum, m_fftSum + m_settings.m_fftSize, 0.0f);
}
void RadioAstronomySink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "RadioAstronomySink::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset;
if ((m_channelFrequencyOffset != channelFrequencyOffset) ||
(m_channelSampleRate != channelSampleRate) || force)
{
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
}
if ((m_channelSampleRate != channelSampleRate) || force)
{
m_interpolator.create(16, channelSampleRate, m_settings.m_rfBandwidth / 2.0f);
m_interpolatorDistance = (Real) channelSampleRate / (Real) m_settings.m_sampleRate;
m_interpolatorDistanceRemain = m_interpolatorDistance;
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
}
void RadioAstronomySink::applySettings(const RadioAstronomySettings& settings, bool force)
{
qDebug() << "RadioAstronomySink::applySettings:"
<< " m_sampleRate: " << settings.m_sampleRate
<< " m_rfBandwidth: " << settings.m_rfBandwidth
<< " m_fftSize: " << settings.m_fftSize
<< " m_fftWindow: " << settings.m_fftWindow
<< " m_filterFreqs: " << settings.m_filterFreqs
<< " force: " << force;
if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth)
|| (settings.m_sampleRate != m_settings.m_sampleRate)
|| force)
{
m_interpolator.create(16, m_channelSampleRate, settings.m_rfBandwidth / 2.0f); // 2.0 rather than 2.2 as in other plugins, to reduce rolloff at edge of band
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) settings.m_sampleRate;
m_interpolatorDistanceRemain = m_interpolatorDistance;
}
if ((settings.m_fftSize != m_settings.m_fftSize) || force)
{
FFTFactory *fftFactory = DSPEngine::instance()->getFFTFactory();
if (m_fftSequence >= 0) {
fftFactory->releaseEngine(m_settings.m_fftSize, false, m_fftSequence);
}
m_fftSequence = fftFactory->getEngine(settings.m_fftSize, false, &m_fft);
m_fftCounter = 0;
delete[] m_fftSum;
delete[] m_fftTemp;
m_fftSum = new Real[settings.m_fftSize]();
m_fftTemp = new Real[settings.m_fftSize]();
m_fftSumCount = 0;
}
if ((settings.m_fftSize != m_settings.m_fftSize)
|| (settings.m_fftWindow != m_settings.m_fftWindow)
|| force)
{
if (settings.m_fftWindow == RadioAstronomySettings::HAN) {
m_fftWindow.create(FFTWindow::Hanning, settings.m_fftSize);
} else {
m_fftWindow.create(FFTWindow::Rectangle, settings.m_fftSize);
}
}
if ((settings.m_filterFreqs != m_settings.m_filterFreqs) || force)
{
m_filterBins.clear();
QStringList filterFreqs = settings.m_filterFreqs.split(" ");
for (int i = 0; i < filterFreqs.size(); i++)
{
bool ok;
int bin = filterFreqs[i].toInt(&ok);
if (ok) {
m_filterBins.append(bin);
}
}
}
m_settings = settings;
}